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Abstract

The present work focuses on the integration of analytical and numerical strategies to investigate
the thermal distribution of cancerous breasts. Coupled stationary bioheat transfer equations
are considered for the glandular and heterogeneous tumor regions, which are characterized
by different thermophysical properties. The cross-section of the cancerous breast is identified
by a homogeneous glandular tissue that surrounds the heterogeneous tumor tissue, which is
assumed to be a two-phase periodic composite with non-overlapping circular inclusions and
a square lattice distribution, wherein the constituents exhibit isotropic thermal conductivity
behavior. Asymptotic periodic homogenization method is used to find the effective properties in
the heterogeneous region. The tissue effective thermal conductivities are computed analytically
and then used in the homogenized model, which is solved numerically. Results are compared
with appropriate experimental data reported in the literature. In particular, the tissue scale
temperature profile agrees with experimental observations. Moreover, as a novelty result we
find that the tumor volume fraction in the heterogeneous zone influences the breast surface
temperature.

Keywords: heterogeneous breast cancer, thermography, asymptotic homogenization

1. Introduction

Breast cancer is the leading cause of cancer death among US 20-59 years-old woman [1]. In
recent years, an increasing number of prospective studies focusing on this disease have emerged.
Actually, some clinical protocols are employed to detect and provide a diagnosis of breast
cancer, such as ultrasound, mammography, thermography, among others. Mammography is
the imaging test most widely employed for the detection of breast cancer, however it has a
range of known limitations. For instance, it is less sensitive in detecting tumors in woman
with dense breast tissue and implants, there is a risk of rupture of tumor’s encapsulation
(as the process of taking a mammogram involves the compression of the breast tissue) and
also, confers a slightly increased risk of causing radiation induced breast cancer [2]. On the
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other hand, breast ultrasound technique has been considered a useful tool in dense breasts.
Nevertheless, many cancers are not visible to ultrasound and its accuracy has been found to
depend on three factors: quality of the tools, expertise of the physician and the use of physically
multiple approaches for breast cancer detection (e.g. thermography combined with ultrasound
and biopsy) [2, 3, 4]. Nowadays, thermography technique has emerged as a prospective method
to complement mammography and to improve the efficiency of breast cancer early and overall
detection [3, 5]. Breast infrared thermography is a noninvasive procedure that does not involve
compression of the breast tissue or exposure to radiation, and works through an assessment
of physiological functions, through high resolution surface temperature measurements ([6]).
Particularly, an abnormal thermogram has been shown to be a reliable prognostic indicator of
increased risk of breast cancer at early stage [7, 8]. In addition, many researchers advocate that
thermography ought to be performed more frequently and in between mammography cycles,
since the latter uses radiation which is harmful to the body. The breast thermography for
cancer detection is justified by the fact that tumor growth causes angiogenesis-dependence and
this neo-vascularization causes an increase in temperature in the region near the tumor.

Thermography, because it is a thermal picture of the skin, is unable to localize a lesion
or tumor since abnormalities found by infrared imaging do not define an area that can be
surgically biopsied. The interpretation of the thermal images relies on the identification of
areas of increased temperature, making areas of low metabolic activity or “cold” tumors more
difficult to identify. Then, in order to complement the breast tumor detection by infrared
imaging techniques, mathematical models have been proposed to estimate the temperature
distribution over breasts with and without tumors. Particularly, several works model heat
transfer in a biological tissue using the Pennes bioheat equation. For instance, in [9] the effect
of changing the breast density composition to its surface temperature distribution profile was
investigated. The effect of thermal and elastic properties on the breast surface temperature
distribution was investigated in [10] by means of the finite element method (FEM). Moreover,
in [11] the presence of a tumor and the estimation of its size and location in a tissue was studied
via FEM. A standardized protocol for the acquisition of breast thermal images was developed
in [3], including the design, construction and installation of the mechanical apparatus. A
methodology for estimating thermal properties based on such infrared images was presented,
where the physical process was governed by the static bioheat transfer equation.

In order to improve and extend the knowledge of cancerous breast thermal distribution, we
consider the cross-section of a breast to be with an embedded malignant heterogeneity region
defined as a two-phase periodic composite with non-overlapping circular inclusions and a square
lattice distribution, wherein the constituents exhibit isotropic thermal conductivity behavior.
In previous works, soft tissues assume to present a similar type of arrangement. For example,
in [12], a porous tissue microstructure is depicted with an alike periodic geometry. Several
works adopt the typical convention of treating the entire cancerous region as a homogeneous
one. Here, the heterogeneity of the tumor is taken into account, suiting up a more realistic
condition. A novel semi-analytical approach to overcome the problem is then proposed. That
is, analytical and finite element computations are integrated to solve the stationary bioheat
transfer equation. We apply the asymptotic homogenization technique [13, 14] exploiting the
sharp length scale separation between the local malignant hetereogeneities and the characteristic
size of the whole tissue. We compute the macroscale thermal conductivities solving the local
cell problem analytically [15], [16] for the primary cancer and we solve it in macro-scale via
finite element method. Moreover, the methodology used at the lower length scale (i.e. in
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tumorous region) assumes the cancer has a periodical primary growing (i.e. before to form
multiple secondary cancers or metastases). This is used because it is a frequent biological
assumption according the cancer pre-metastatic behavior and even when it is spreading in
most of the cases. Finally we consider that the tumor grade cannot be assessed and that it is
a well differentiated one. These are the most common types of cancers and include soft tissue
sarcoma, primary brain tumor, prostate and breast cancer. In our results, we found that the
degree of cancer volume fraction in the cancerous region affects the breast surface temperature,
i.e. more cancerous tissue volume fraction induces an increase in the breast surface temperature.
This new modeling approach provides qualitative and quantitative hints that can potentially
be used to improve tumor detection based on temperature maps of the breast tissue.

The work is organized as follows. In Section 2, the geometry for representing the breast
is described. In Section 3 the mathematical model for finding the breast temperature profile
is stated, where the static version of the bioheat transfer equation (BHTE) as proposed by
[17] is used. In Section 4 the homogenization procedure is illustrated, where the homogenized
equation and the effective coefficients are obtained. In Section 5 the method to find the solu-
tion is described and in Section 6 the numerical results are presented and discussed. Finally,
conclusions are presented in section 7.

2. Physical model

Fibroadenoma is the most common surgically treated breast mass in adolescents, accounting
for 44 to 94% of biopsied breast lesions [18]. It is a benign tumor made of glandular and fibrous
tissue [19] which is encapsulated and round. Even if it is unusual for a breast carcinoma to
arise within a fibroadenoma, there are many reported cases in the literature where in situ
ductal carcinoma has been identified inside it [20, 21, 22]. Moreover, it has been found out
that fibroadenomas raise the temperature so that it can be detected using thermal imaging
[23]. Given the above biological scenario, a two-dimensional cross-section of the average female
breast geometry is considered, composed of glandular tissue and the tumor lesion is assumed to
be an encapsulated and round heterogeneous tissue composed of both glandular and periodically
arranged circular cancerous inclusions (Fig. 1). It is also assumed to be hemispherically shaped
with a diameter L = 0.14 m. In fact, in [12], it is claimed that a periodic (porous) microstructure
could represent a malignant cell aggregate.

Figure 1: Decomposition of the macroscopic domain (left) and the corresponding unit periodic cell (right).

The homogeneous tissue (assumed to be glandular tissue) surrounding the tumor region
is associated with the open, bounded and connected domain Ω1 with Lipschitz boundary
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∂Ω1 = ∂Ωn
1 ∪ ∂Ωd

1 and ∂Ωn
1 ∩ ∂Ωd

1 = ∅. The composite cancerous tissue is supposed to be
surrounded by the homogeneous tissue and characterized by two regions of different thermo-
physical properties: the cancerous inclusions (Ωε

t) and the square lattice of glandular tissue
(Ωε

g) where Ωε
g is connected. In this sense, the cancerous region will consist of a periodic mi-

crostructure associated with the open, bounded and connected domain Ω2 = Ωε
g ∪ Ωε

t ∪ ∂Ω2

with Lipschitz boundary ∂Ω2 and with Ωε
g ∩Ωε

t = ∅. Then, the cancerous breast is represented
by Ω = Ω2 ∪ Ω1. Let ε > 0 be the size of the microstructure and introduce the fast scale coor-
dinate y = x/ε. The reference periodic cell will be denoted by Y , which contains one inclusion
occupying the domain Yt such that Y = Yg ∪ Yt ∪ Γ, with Y t ⊂ Y and Yg ∩ Yt = ∅.

Table 1 lists the symbols used in this work.

Table 1: Notation
Symbol Description

| • | Volume fraction of •
J•K Contrast across the interface taken from the matrix to the inclusions
〈•〉 Volume average over the periodic cell
ε Small parameter
ρb Blood mass density
cb Blood specific heat capacity
ωb Blood perfusion
qm Metabolic heat generation
h Combined effective heat transfer coefficient due to convection, radiation and

evaporation
ue Surrounding temperature
ua Arterial blood temperature
uc Boundary temperature between the breast and the chest
u Temperature
x Macroscopic (or slow) scale
y Microscopic (or fast) scale
Y Reference unit periodic cell
Yg Glandular tissue in the reference unit periodic cell
Yt Tumoral tissue inclusion in the reference unit periodic cell
Ω Breast domain
Ω1 Breast domain without the tumorous region
Ω2 Heterogeneous tumorous domain
Ωε
g Glandular tissue within heterogeneous tumorous domain

Ωε
t Tumoral tissue within heterogeneous tumorous domain

K Thermal conductivity tensor

3. Statement of the problem

The objective of the paper is to find the stationary temperature fields u and uε that are
described by a coupled stationary Penne’s bioheat transfer equations [17], which are heat con-
duction equations including the effect of blood flow in tissue temperature on a continuum basis,
with specific terms for the generation of heat due to blood perfusion and for metabolic heat.
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In the homogeneous tissue (the glandular region surrounding the tumor heterogeneity) the
problem reads as,

(Pg)


−∇ · (Kg∇u) + ρbcbω

g
b (u− ua) = qgm in Ω1,

−Kg∇u · n = h (u− ue) on ∂Ωn
1 ,

u = uc on ∂Ωd
1.

(1)

Problem (Pg) is already set in a macro-scaled framework, because there are no heterogeneities
and as such, there is not need to obtain an equivalent representation of it. On the other hand,
in the heterogeneous tissue (the cancerous area), the problem is defined as follows,

(Pε)


−∇ · (Kε∇uε) + ρbcbω

ε
b (uε − ua) = qεm in Ω2,

Kε∇uε · n = Kg∇u · n on ∂Ω2,

uε = u on ∂Ω2.

(2)

In (1) and (2), superscripts •g and •ε are used to indicate the belonging to Ω1 or Ω2, respectively.
Moreover, the rapidly oscillating material properties Kε, ωεb and qεm, are given as piecewise
constant functions,

Kε(x) =

{
kgI x ∈ Ωε

g,

ktI x ∈ Ωε
t ,
, ωεb(x) =

{
ωgb x ∈ Ωε

g

ωtb x ∈ Ωε
t

and qεm(x) =

{
qgm x ∈ Ωε

g,

qtm x ∈ Ωε
t .

Boundary conditions for (Pg) are heat transfer by convection between the surface of the tissue
and the external environment on ∂Ωn

1 and a prescribed temperature on ∂Ωd
1. In the case of

(Pε) we assume heat flux and temperature continuity. In the same way, continuity conditions
for heat flux and temperature are imposed on Γ, i.e.,

JuεK = 0 and JKε∇xu
ε · nK = 0 on Γ, (3)

where J•K = •g − •t.
In Section 4, we deal with problem (Pε) via asymptotic homogenization technique in order to

obtain a homogenized representation of it (denoted by (Ph)). Macroscale boundary conditions
are found for the homogenized problem allowing us to coupled it with (Pg). Finally, after
finding the effective coefficient of the homogenized problem via an analytical procedure, we
merged the coupled macro problems (that is (Pg) and (Ph)) into a single one and solve it
numerically.

4. Homogenization procedure

In order to obtain an homogenized formulation of (Pε) in the heterogeneous tissue Ω2,
the two-scale homogenization technique is employed. The basic theory of the homogenization
method can be found in [13, 14]. Then, an asymptotic expansion of uε is sought as a function
of ε for ε→ 0 in the form

uε(x) = u0(x,y) + εu1(x,y) + ε2u2(x,y) + . . . , (4)

where the functions ui(x,y) are Y -periodic in y.
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Remark 1 (On the periodicity assumption and macroscopic uniformity). The arragement of
cancerous inclusions is in general non-periodic, and the assumption of local periodicity is tech-
nically enforced to carry out the standard asymptotic homogenization steps in order to obtain a
tissue scale formulation of the problem, as done in this section. This way, we are able to restrict
our microstructural analysis to a single portion (i.e. the cell) of the domain, where we are to
solve differential problems (numerically and/or analytically) in practice. However, the periodic
cell itself is not necessarily the same for each macroscale point x, and our formulation could be
extended to such non-macroscopically uniform media to account for given, realistic arragements
of cancerous inclusions provided by clinical measurements. This generalization would lead to
slight modifications of the resulting tissue scale equations (due to variations of the periodic cell
with respect to the macroscale variable x), and to a much more complex computational proce-
dure, which would require the solution of different cell problems at each macroscale point, as
depicted in detail in the context of porous and poroelastic media, for example in [24, 25, 26, 12].
Here, we thus focus on the particular case of macroscopic uniformity (i.e. accounting for a pe-
riodic cell which is independent of x) for the sake of simplicity, as we aim at providing a first
modeling step which can qualitatively match the available literature results. �

The fact that

y =
x

ε
,

implies that

∇ → ∇x + ε−1∇y, (5)

where ∇j indicates that the derivative is taken with respect to j = x, y. The substitution of
expansion (4) into problem (Pε) and using the chain rule (5) leads to a sequence of problems
in powers of ε to be solved.

(i) To O(ε−2),

−∇y · (Kε∇yu0) = 0.

Then, applying the solvability condition in [14] to the last equation, i.e. like the average
of the right hand side is zero, it is deduced that,

u0(x,y) = u0(x). (6)

(ii) To O(ε−2) and using result (6), we can write

−∇y · (Kε∇yu1) = ∇y · (Kε∇xu0) .

Then, by the y-periodicity of Kε and the solvability condition, the last equation has
a y-periodic solution which is unique up to an additive constant. In particular, since
the problem is linear and u0 only depends on x, then u1 can be written as u1(x,y) =
χ(y) · ∇xu0(x), where χ(y) is a periodic vector function in y with 〈χ〉 = 0 (〈•〉 denotes
the volume average over the periodic cell), satisfying the local problem

−∇y · (Kε∇y(χ+ y)) = 0, in Y \ Γ

JχK = 0, on Γ

J(Kε∇y(χ+ y)) · nK = 0, on Γ

(7)
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(iii) To O(ε0), using result (6) and substituting the above form of u1, we have

−∇x · (Kε∇xu0)−∇x · (Kε∇yχ∇xu0)−∇y · (Kεχ∇xu0)−∇y · (Kε∇yu2) + gεu0 = f ε,

where gε = ρbcbω
ε
b and f ε = qεm + ρbcbω

ε
bua. Applying the volume average operator to

the last equation and using the y-periodicity of the involved functions, it is obtained that
u0(x) is the solution of the homogenized problem

(Ph)


−∇x ·

(
K̂∇xu0

)
+ 〈gε〉u0 = 〈f ε〉 , in Ω2

K̂∇xu0 · n = Kg∇xu · n, on ∂Ω2

u0 = u, on ∂Ω2

(8)

where

K̂ = 〈Kε + Kε∇yχ〉 (9)

denotes the effective coefficient and

〈gε〉 = ρbcbω
g
b

|Yg|
|Y |

+ ρbcbω
t
b

|Yt|
|Y |

and 〈f ε〉 = (qgm + ρbcbω
g
bua)

|Yg|
|Y |

+
(
qtm + ρbcbω

t
bua
) |Yt|
|Y |

.

In summary, an equation, whose coefficient is not rapidly oscillating is obtained, while its
solution is close to that of the original problem. This is the homogenized equation and
its coefficient represents the macroscopic effective property of the composite.

5. Solution of the problem

We need to solve problems (Pg) and (Ph). In fact, by introducing the characteristic functions
Φi ∈ Ωi (i = 1, 2), namely

Φi =

{
1 if x ∈ Ωi

0 if x /∈ Ωi

and defining

K = KgΦ1 + K̂Φ2, G = gΦ1 + 〈gε〉Φ2 and F = fΦ1 + 〈f ε〉Φ2,

where g = ρbcbω
g
b and f = qgm + ρbcbω

g
bua. Both, (Pg) and (Ph), can be merged into one single

problem as follows,

(P)


−∇ · (K∇u) +Gu = F in Ω,

−Kg∇u · n = h (u− ue) on ∂Ωn
1 ,

u = uc on ∂Ωd
1.

(10)

Then, the following procedure is adopted in order to solve (10).
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(i) Solve the cell problem

The first step consists in solve the cell problem (7). Here, we adopt the procedure and
results given by [15, 16] adapting it to the thermal case. In these papers, the theory of
analytical functions ([27]) was applied to solve the cell problem. The solutions of the local
problems are written as (see Appendix A)

χ
(g)
1 = R

{
a1

0z +
∑∞ o

l=1 a
1
l
ζ(l−1)(z)

(l−1)!

}
and χ

(t)
1 = R

{∑∞ o
l=1 c

1
l z
l
}
, (11)

χ
(g)
2 = I

{
a2

0z +
∑∞ o

l=1 a
2
l
ζ(l−1)(z)

(l−1)!

}
and χ

(t)
2 = I

{∑∞ o
l=1 c

2
l z
l
}
, (12)

where the aim is to find the real coefficients apl and cpl . The interphase conditions in (7)
lead to the solution of the following infinite linear system for each problem defined by
p = 1, 2 (

I + (−1)p+1ξWp
)

Âp = Vp, (13)

with Âp = (âp1, â
p
2, . . .)

T , âpk = apk
√
k/Rk, Vp = ((−1)p+1ξR, 0, . . .)T , ξ = kg−kt

kg+kt
and

Wp =

(−1)p+1πR2 for k + l = 2,
∞ o∑
k=1

√
klηklR

k+l for k + l > 2.

(ii) Find the homogenized coefficient

In order to determine the effective properties K̂ik, it is necessary to truncate the sys-
tem (13) into an appropriate order k = N . In fact, only ap1 will be needed. Indeed if
p = 1, using the form of K, Green’s theorem and the double periodicity of χ1

K̂11 = kt |Yt|+ kg |Yg| − (kt − kg)
∫

Γ

χ
(g)
1 dy2.

Now, using the orthogonality properties of the trigonometric functions {sin θl, cos θl} and
relations (A.7)-(A.9) of the Appendix A,

K̂11 = kg
(
1− 2πa1

1

)
. (14)

Analogously, for p = 2

K̂22 = kt
(
1 + 2πa2

1

)
. (15)

If kg = kt, then K̂ = K̂11 = K̂22 = kg.

(iii) Solve (P)

Finally, once we found the effective coefficient we can solve problem (10). For this purpose
we use FreeFem++. In particular, we approximate the involved functions by piecewise lin-
ear continuous finite elements. Moreover, the existence, uniqueness and regularity of the
problem weak solution (10) can be proved by standard methods using the Lax-Milgram
theorem.
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6. Numerical solution and discussion of the results

In the present section, the breast surface temperature change due to a given localized cancer-
ous tissue in an otherwise healthy breast tissue is studied. Numerical calculations were carried
out for two breast models A and B, whose tissue parameters, shown in Tab. 2, were taken from
[3] and [28], respectively. The data cited in Tab. 2 for the tumor and the glandular tissues

Table 2: Tissue parameters

[3] (Model A) [28] (Model B)

kg (W/m �) 0.48 0.48
kt (W/m �) 0.48 0.511
ωgb (1/s) 0.00018 0.000539
ωtb (1/s) 0.009 0.0108
cb (J/kg �) 4200 4200
ρb (kg/m3) 1060 1060
qgm (Wm−3) 450 700

(thermal conductivity, blood perfusion) refer to the specific portion they occupy in Ω2 and not
the entire tumor region. Moreover, temperatures are fixed as ua = uc = 37� [29] and h is set
to 13.5 W/m � [9]. Now, thermograms are sensitive to environmental changes in temperature,
humidity and air circulation, so they need to be captured under strict protocols. In this sense,
the patient is usually required to rest for 10-20 minutes with clothing removed from the relevant
area to achieve thermal equilibrium in a room at 18-22� [29]. In this sense, the surrounding
temperature is fixed to ue = 20�. The metabolic heat value for different tumor sizes follows
the law given in [10] as qtm = C/(468.6 ln(100D) + 50), where C = 3.27× 106 Wday/m3 and D
is the tumor diameter.

The in vivo experiments conducted by [30] on breast tumors permitted to estimate the
mean effective thermal conductivity. In their results, thermal conductivity of cancer tissue was
higher than that of healthy tissue, the latter being approximately twice as high for glandular
tissue as for fat tissue. In particular, it was measured an enhancement in conductivity due to
blood perfusion, as 0.511 W/m�. In fact, it has long been revealed that blood perfusion in the
tumor area often appear abnormally high with respect to the surrounding tissue [29]. In the
data presented in Tab. 2, we observe that tumor blood perfusion by [28] is higher than that
from [3], which induces an increase in the thermal conductivity of the cancerous tissue. The
intramammary measurements of thermal conductivity carried out under in vivo conditions in
[30], showed that it was very different from one cancer breast to another. This fact motivate
us to take different values for the thermal conductivity as shown in Tab. 2. Moreover, in the
experimental observations made in [30], the local temperature in cancerous breasts exhibited
a bell-shaped profile, probably reflecting the increase of heat from the tumor. The increase
of temperature and blood flow in and around the tumor seem to be well correlated, that is,
the greater the blood supply to a tissue, the greater will be the heat produced. Therefore, the
cancerous region can be considered as a heat source compared with the surrounding tissues,
due to its higher metabolic rate. In particular, the metabolic heat generation (qtm) appears to
be typical for each cancer and is very high in comparison with that of healthy breast tissue
[30]. Higher values of qtm are generally associated to younger and smaller lesions [28].
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In what follows, numerical results show a comparison among the two models A and B. We
remark that tissue parameters given in [29] and [9] were also considered, however numerical
results were similar to those presented and thus are not shown. First, Fig. 2 shows the
temperature distribution of a healthy breast. We observe that the temperature is symmetrically
distributed about the x1 axis and it gradually decreases from the chest wall to the front breast
area. Now, a sphere with radius r = 0.01 m was embedded in the breast model to mimic

Figure 2: Temperature distribution of a healthy breast tissue.

the in situ tumor at a depth of d = 0.02 m (in the present study the depth is defined as
the distance between the tumor center and the point on the breast surface in the same axis).
In particular, a relative large tumor volume fraction |Yt| = 0.7 is considered so that healthy
breast tissue volume fraction is |Yg| = 0.3 in the cancerous region. In Fig. 3 the temperature
distribution of the cancerous breast tissue is presented. Clearly, thermal distribution varies

Figure 3: Temperature distribution of a cancerous breast tissue with an embedded spherical tumor of radius
1cm. The solid line represents the boundary of the heterogeneous tumor.

from Fig. 2 to Fig. 3. That is, an anomaly in the region where the tumor is located and
in the breast surface portion near to the tumor location is appreciated. As remarked by [29],
an abnormal thermogram is a reliable indicator of high risk breast cancer and can also be of
help in the differential diagnosis of benign from malignant tumors. In Fig. 4 is estimated
the tumor-induced temperature alteration (∆u = utumor − uhealthy) between a cancerous and
healthy breast, where utumor and uhealthy are the temperature distributions on the cancerous and
normal breast, respectively. Fig. 4 (Model A) shows a temperature variation of approximately
4� in the tumor area and the region surrounding it. Furthermore, in Fig. 4 (Model B) the
variation is approximately 2�. Also, in the zone “far” from the tumor area, no appreciable
temperature changes are observed. This phenomenon is characteristic of tissues or organs with
high metabolic rates, which consequently produce a large amount of heat. This reaction can
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be explained because the greater the blood supply to a tissue, the greater the local metabolism
and the greater is the local quantity of heat produced.

Figure 4: Estimated tumor-induced temperature alteration (∆u = utumor − uhealthy) between a cancerous and
healthy breast.

Thermography only measures the breast surface temperature. Its core assumption is to find
local surface temperature anomalies that points to a probable tumor site. From the thermal
profile in Figs. 2-3, the surface temperature shows an anomaly. Indeed, Fig. 9 shows the surface
temperature difference (∆us) between a healthy and a cancerous breast. It can be noticed that

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Figure 5: Estimated breast surface temperature difference (∆us) between a cancerous and healthy breast.

for the parameters values given in [3] (Fig. 5 (Model A)), the surface temperature difference
is more meaningful. This behavior is a consequence of the blood perfusion rate values of the
glandular tissue, i.e. as the perfusion rate of the glandular tissue for model A is lower than that
from model B, the surface temperature difference in model A is higher than the corresponding
to model B. These results agree with those obtained by [29].

6.1. Influence of tumor volume fraction on breast surface temperature

It is well known that tumor location influences the breast tissue temperature field [10, 29].
Indeed, as the tumor is closer to the boundary, the breast surface temperature increases. In
the present work, we also show that having a composite material approach is significant to
the temperature distribution. As shown in Fig. 10, we find that the cancer volume fraction
degree in the malignant region affects the breast surface temperature. It is clear that a larger
cancerous tissue volume fraction, produces a temperature rise and the opposite occurs when the
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Figure 6: Estimated breast surface temperature difference (∆us) between a cancerous and healthy breast for
different tumoral inclusions volume fraction.

tumor volume fraction diminishes. Then, assuming that the cancerous region is heterogeneous,
extra information regarding thermal profile at the surface near the tumor is obtained. We note
that although thermal properties for the tumor and glandular tissue in the malignant region
in [3] are equal, the tumoral inclusions volume fraction affects the breast surface temperature.
Increasing evidence shows that drug response is significantly reduced with increasing cell density
[31]. Moreover, target volumes for radiotherapy is vital to its successful execution and requires
the best possible characterization of the location and extent of tumor. In fact, the choice of
radiotherapy dose depends on cell density where tumor control requires a higher dose if the
initial cancerous cell number is larger [32]. Then, results shown in Fig. 6, provide a possible
utility of thermal images to deduce the tumor volume percent in a determined tissue region
and therefore adjust treatments.

6.2. Parameter sensitivity analysis

Now, the maximum temperature change on the breast surface ∆us with respect to the tumor
size and depth is illustrated in Fig. 7. In particular, it is elucidated that tumor depth has a
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Figure 7: Estimated maximum surface temperature difference between normal and cancerous breasts as a
function of tumor size and depth.

greater effect than tumor size on the tumor-induced temperature difference. Then, tumors
closer to the surface will affect its temperature more prominently. This behavior agrees with
the results obtained by [29] and [10]. Indeed, as the tumor gets closer to the surface, the
maximum surface temperature difference increases. From the numerical results, this change
is more evident for tumors with center in the interval [0.03, 0.05] (Figs. 7 (Model A)) and
[0.04, 0.05] (Fig. 7 (Model B)). Furthermore, surface temperature change ∆us is plotted with
respect to tumor size and tumoral volume fraction and presented in Fig. 8. We notice (as
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Figure 8: Estimated maximum surface temperature difference between normal and cancerous breasts as a
function of tumor size and volume fraction.

expected) that tumor size influences more the temperature change ∆us than tumoral volume
fraction. Consequently, tumor depth still has a greater effect on the breast surface temperature.

6.3. Comparison with experimental data

The model results are compared with the experimental data given in [30]. Following [30],
we have fixed h = 10 W/m �, uc = 36�, d = 0.48 m and r = 0.01 m. In [3], a standardized
protocol for the acquisition of breast thermal images is developed. In their study two room
temperatures ue = 24.9� and ue = 28�, are reported. Based on this fact, we fix ue = 26�.
Figure 9 shows the comparison of the obtained computational results and the experimental
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Figure 9: Comparison of numerical results from models A and B with the experimental data taken from [30].

data in [30]. We observe that though there is a quantitatively difference, there is a satisfactory
qualitative match in the whole interval. Here we remark that for simplicity, we model the
homogeneous tissue surrounding the tumor area comprised of only glandular tissue. As a
matter of fact, breasts are also composed of a muscle layer and subcutaneous fat layer [9]. In
this sense, adding more information to the model must (in principle) induce a more accurate
agreement with the experimental data.

7. Conclusions

In this work, a semi-analyical approach is used for studying breast thermography through
coupled stationary bioheat transfer equations. The breast is represented by two regions of dif-
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ferent thermophysical properties: the glandular tissue and the tumor tissue. A two-dimensional
cross-section of the average female breast geometry is considered and the tumor lesion is as-
sumed to be an encapsulated and round heterogeneous tissue composed of both glandular
and periodically arranged circular cancerous inclusions. The material thermal properties of
matrix and inclusions are supposed isotropic. In particular, the temperature distribution on
both, breast and tumor tissue, was computed using a numerical algorithm implemented in
FreeFem++. In summary, we obtain that: (a) the tumor presence in a breast does affect its
surface temperature distribution. Specially, it is higher on the surface close to the tumor. (b)
Low perfusion rates of glandular tissue induce a higher temperature difference in the tumor
region. (c) No appreciable changes in temperature difference were observed far from the tumor
position. (d) Tumor depth has a greater effect than the tumor size and volume fraction on
the maximum surface temperature difference. As the tumor moves closer to the surface, the
maximum breast surface difference temperature increases. (e) The augment of the cancerous
tissue volume fraction implies an increase in the breast surface temperature near the tumor.
(f) A good qualitative agreement is observed between the model and experimental data.

Some future research directions that we intend to explore are the following. To consider
the dynamic version of the considered bioheat equation with anisotropic thermal properties of
the tumorous tissue. Besides, to contemplate breasts made from the combination of different
tissue layers (fats, muscles, glands, veins and milk channels). Furthemore, a more realistic
description of blood perfusion, which is driving temperature changes within the breast tissue,
could be provided by accounting explicitly for the topology and hydraulic properties of the
tumor microvasculature (see the works [33, 34], which is based on the multiscale models [35]
and [26]). Finally, a three-dimensional setting could be conceived by using the results in [36, 37],
as well as the implementation of a non-macroscopically uniform generalization of the model (see
Remark 1) to account for realistic microstructures given by appropriate medical images.

The proposed approach provides a helpful framework for thermographic diagnosis and treat-
ment of breast tumors. It facilitates the understanding of the complex mechanism underlying
the observed surface temperature profile. Also, it improves the current early tumor detection
and analysis of the thermography technique, integrating mathematical and computational tools
(see e.g. [6]). In fact, infrared thermography has shown to be a promising noninvasive and ef-
fective adjunctive modality to X-ray mammography for breast cancer detection [8]. Moreover,
it has great potential for earlier detecting cancer [3] and according to [4], this may happen years
earlier than with other techniques. No single tool provides excellent predictability; however, a
combination that incorporates thermography may boost both sensitivity and specificity.
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Appendix A. Analytic solution of the cell problem

The cell problem is given by
∂2χ

(γ)
p

∂yi∂yj
= 0 in Y \ Γ,

JχpK = 0 on Γ,

JKij
∂χp
∂yj
niK = −JKipniK on Γ,

(A.1)

where i, j, p = 1, 2 and γ = g, t. Then, the mathematical statement of the problem consists in
finding doubly-periodic harmonic functions with null average over the periodic cell that satisfy
the Laplace equation in (A.1). Consequently, the method of complex variables in terms of two

harmonic functions ϕ
(γ)
p (z) and ψ

(γ)
p (z) and the Kolosov-Muskhelishvili complex potentials are

applicable.
The complex potentials ϕ

(γ)
p (z) and ψ

(γ)
p (z) are looked for the periodic cell that contains the

origin of coordinates in the following form

ϕ(g)
p (z) = ap0z +

∞ o∑
k=1

apk
ζ(k−1)(z)

(k − 1)!
and ψ(t)

p (z) =
∞ o∑
k=1

cpkz
k, (A.2)

for the glandular and tumor phases, respectively. In (A.2), apk and cpk are real coefficients to
be determined, ζ represents the quasi-periodic Weierstrass functions of periods w1 = 1 and
w2 = i, ζ(k) denotes the kth derivative of ζ which are doubly-periodic functions of z and the
superscript o specifies that the sum is carried out over odd indices. Now, using Legendre’s
relations, periodicity conditions for ϕ

(g)
p are satisfied if

ap0 = (−1)pap1π. (A.3)

Moreover, the Laurent series of ζ(k−1) (for k ≥ 0 and k odd) in zero is given by

ζ(k−1)

(k − 1)!
=

1

zk
−
∞ o∑
l=1

kηklz
l with ηkl =

(k + l − 1)!

k!l!
Sk+l, (A.4)

where Sk are the reticulate sums; they are defined as Sk =
∑

w∈L∗
1
wk

(k ≥ 3, k odd) with
w = mw1 +nw2 where m,n ∈ Z and L∗ represents the lattice excluding w = 0. Using formulas
(A.3), (A.4) and defining η11 = (−1)p+1π,

ϕ(g)
p (z) =

∞ o∑
l=1

(
apl z
−l − Apl z

l
)

with Apl =
∞ o∑
k=1

kapkηkl. (A.5)

Case p = 1: The following ansatz is proposed,

χ
(g)
1 = R

(
ϕ

(g)
1

)
= R

(
∞ o∑
l=1

(
a1
l z
−l − A1

l z
l
))

and χ
(t)
1 = R

(
ψ

(t)
1

)
= R

(
∞ o∑
l=1

c1
l z
l

)
,

(A.6)

15



where R defines the real part of the involved function. Here, it is noticed that Γ = Reiθ

where R is the radius of the circular inclusion. Then,

χ
(g)
1 =

∞ o∑
l=1

(
a1
lR
−l − A1

lR
l
)

cos θl and χ
(t)
1 =

∞ o∑
l=1

c1
lR

l cos θl. (A.7)

Substituting the last expression into the first boundary condition of (A.1), we have for all
l odd,

a1
lR
−l − A1

lR
l = c1

lR
l. (A.8)

On the other hand, substituting (A.7) in the second boundary condition of (A.1) and
after several manipulations, it is obtained for all l odd,

a1
lR
−l + ξA1

lR
l = ξRlδ1l, (A.9)

where δij is Kronecker’s delta and ξ = kg−kt
kg+kt

. Now, re-scaling with a1
l =

â1lR
l

√
l

, equation

(A.9) can be written as an infinite linear system in the form(
I + ξW 1

)
Â

1
= V 1, (A.10)

where Â
1

= (a1
1, a

1
2, . . .)

T , V 1 = (ξR, 0, . . .) and

W 1 =

{
πR2 for k + l = 2,∑∞ o

k=1

√
klηklR

k+l for k + l > 2.

Case p = 2: The following ansatz is proposed,

χ
(g)
2 = I

(
ϕ

(g)
2

)
= I

(
∞ o∑
l=1

(
a2
l z
−l − A2

l z
l
))

and χ
(t)
2 = I

(
ψ

(t)
2

)
= I

(
∞ o∑
l=1

c2
l z
l

)
,

(A.11)

where I defines the imaginary part of the involved function. As for p = 1, the following
infinite linear system is obtained (

I − ξW 2
)
Â

2
= V 2, (A.12)

where Â
2

= (a2
1, a

2
2, . . .)

T , V 2 = (−ξR, 0, . . .) and

W 2 =

{
−πR2 for k + l = 2,∑∞ o

k=1

√
klηklR

k+l for k + l > 2.
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