
Doctoral Dissertation

Doctoral Program in Computer and Control Engineering (30thcycle)

Distributed services across the
network from edge to core

By

Amedeo Sapio

Supervisor(s):
Prof. Mario Baldi

Doctoral Examination Committee:
Prof. Mario Nemirovsky, Referee, Barcelona Supercomputing Center
Dr. Domenico Siracusa, Referee, Create-Net
Prof. Enzo Mingozzi, Università di Pisa
Prof. Lorenzo De Carli, Colorado State University
Prof. Fulvio Risso, Politecnico di Torino

Politecnico di Torino

2018

Declaration

I hereby declare that, the contents and organization of this dissertation constitute my
own original work and does not compromise in any way the rights of third parties,
including those relating to the security of personal data.

Amedeo Sapio
2018

* This dissertation is presented in partial fulfillment of the requirements for Ph.D.
degree in the Graduate School of Politecnico di Torino (ScuDo).

To my family

Abstract

The current internet architecture is evolving from a simple carrier of bits to a platform
able to provide multiple complex services running across the entire Network Service
Provider (NSP) infrastructure. This calls for increased flexibility in resource manage-
ment and allocation to provide dedicated, on-demand network services, leveraging
a distributed infrastructure consisting of heterogeneous devices. More specifically,
NSPs rely on a plethora of low-cost Customer Premise Equipment (CPE), as well as
more powerful appliances at the edge of the network and in dedicated data-centers.

Currently a great research effort is spent to provide this flexibility through Fog
computing, Network Functions Virtualization (NFV), and data plane programmabil-
ity. Fog computing or Edge computing extends the compute and storage capabilities
to the edge of the network, closer to the rapidly growing number of connected devices
and applications that consume cloud services and generate massive amounts of data.
A complementary technology is NFV, a network architecture concept targeting the
execution of software Network Functions (NFs) in isolated Virtual Machines (VMs),
potentially sharing a pool of general-purpose hosts, rather than running on dedicated
hardware (i.e., appliances). Such a solution enables virtual network appliances (i.e.,
VMs executing network functions) to be provisioned, allocated a different amount
of resources, and possibly moved across data centers in little time, which is key in
ensuring that the network can keep up with the flexibility in the provisioning and
deployment of virtual hosts in today’s virtualized data centers. Moreover, recent
advances in networking hardware have introduced new programmable network de-
vices that can efficiently execute complex operations at line rate. As a result, NFs
can be (partially or entirely) folded into the network, speeding up the execution of
distributed services.

The work described in this Ph.D. thesis aims at showing how various network
services can be deployed throughout the NSP infrastructure, accommodating to the

different hardware capabilities of various appliances, by applying and extending the
above-mentioned solutions. First, we consider a data center environment and the
deployment of (virtualized) NFs. In this scenario, we introduce a novel methodology
for the modelization of different NFs aimed at estimating their performance on
different execution platforms. Moreover, we propose to extend the traditional NFV
deployment outside of the data center to leverage the entire NSP infrastructure.
This can be achieved by integrating native NFs, commonly available in low-cost
CPEs, with an existing NFV framework. This facilitates the provision of services
that require NFs close to the end user (e.g., IPsec terminator). On the other hand,
resource-hungry virtualized NFs are run in the NSP data center, where they can take
advantage of the superior computing and storage capabilities.

As an application, we also present a novel technique to deploy a distributed
service, specifically a web filter, to leverage both the low latency of a CPE and the
computational power of a data center. We then show that also the core network, today
dedicated solely to packet routing, can be exploited to provide useful services. In
particular, we propose a novel method to provide distributed network services in core
network devices by means of task distribution and a seamless coordination among
the peers involved. The aim is to transform existing network nodes (e.g., routers,
switches, access points) into a highly distributed data acquisition and processing
platform, which will significantly reduce the storage requirements at the Network
Operations Center and the packet duplication overhead.

Finally, we propose to use new programmable network devices in data center
networks to provide much needed services to distributed applications. By offloading
part of the computation directly to the networking hardware, we show that it is
possible to reduce both the network traffic and the overall job completion time.

v

Contents

List of Figures x

List of Tables xiii

Nomenclature xiv

1 Introduction 1

2 Network Function Modeling and Performance Estimation 6

2.1 Introduction . 6

2.2 Methodology . 8

2.2.1 Elementary Operations . 10

2.2.2 Mapping to Hardware . 12

2.3 Modeling Use Cases . 18

2.3.1 L2 Switch . 18

2.3.2 Broadband Network Gateway 22

2.4 Experimental validation . 25

2.4.1 L2 Switch . 25

2.4.2 Broadband Network Gateway 30

2.4.3 Concluding Remarks . 32

2.5 Related work . 34

Contents

2.6 Conclusions and future work . 35

3 Enabling NFV Services on Resource-Constrained CPEs 37

3.1 Introduction . 37

3.2 Related Work . 39

3.3 Background . 40

3.3.1 Network abstraction . 42

3.3.2 Compute abstraction . 42

3.3.3 Northbound interface . 44

3.4 Native Network Functions . 44

3.4.1 NNF model and VNF template 45

3.4.2 The native compute driver 45

3.4.3 I/O model . 46

3.4.4 Isolation model . 47

3.4.5 Multitenancy . 47

3.4.6 Security considerations . 48

3.5 Validation . 49

3.6 Conclusions . 52

4 Enforcement of Dynamic HTTP Policies on Residential Gateways 54

4.1 Introduction . 54

4.2 Architecture and implementation 56

4.2.1 Operating principles . 56

4.2.2 Architecture overview and design principles 57

4.2.3 Netfilter . 60

4.2.4 Key data structures . 62

4.2.5 Online module . 64

vii

Contents

4.2.6 Offline module . 67

4.2.7 Communication with the policy server 69

4.3 Discussion . 70

4.3.1 General limitations . 70

4.3.2 HTTPS . 71

4.3.3 Delay characterization . 72

4.4 Experimental validation . 74

4.4.1 Testbed setup . 74

4.4.2 Interaction with TCP . 76

4.4.3 Browsing experience . 78

4.4.4 Residential gateway aggregated throughput 83

4.4.5 Memory footprint . 85

4.5 Related work . 86

4.6 Conclusions . 88

5 Packet processing in the core: a Massively Distributed Network Data
Caching Platform 90

5.1 Introduction . 90

5.2 MEDINA Design . 93

5.2.1 Deployment model . 94

5.2.2 Hash-based coordinated packet selection 95

5.2.3 Traffic assignment granularity 98

5.2.4 Path discovery . 98

5.2.5 Data storage . 101

5.2.6 Resource allocation . 101

5.2.7 Online fine-tuning . 102

5.3 Evaluation . 102

viii

Contents

5.4 Related Work . 105

5.5 Conclusions and future work . 108

6 In-network computation with programmable data plane 109

6.1 Introduction . 109

6.2 Background . 112

6.2.1 P4 Programming Language 113

6.3 Judicious Network Computing . 114

6.4 Data Aggregation in Data Center Applications 116

6.5 Solution sketch . 118

6.6 Preliminary Evaluation . 122

6.7 Related Work . 124

6.8 Conclusions . 126

7 Conclusions 128

References 130

ix

List of Figures

1.1 Telecom operator infrastructure. 2

2.1 NF modeling and performance estimation approach. 9

2.2 Hardware architecture description. 12

2.3 Sample Intel x86 assembly code for checksum computation. 14

2.4 Hash table lookup pseudo-code. 16

2.5 Entry update pseudo-code for cache table insertion. 17

2.6 Models of different L2 switches. 20

2.7 Packet formats. 23

2.8 BNG model. 24

2.9 L2 Switch testbed setup. 26

2.10 Basic forwarding performance. 27

2.11 Learning switch performance. 28

2.12 MPLS switch performance. 30

2.13 Broadband Network Gateway performance. 31

3.1 Architecture of the Universal Node. 40

3.2 Service instantiation of a graph. 41

3.3 Excerpt of the template of a firewall NNF. 46

3.4 Testbed used in the validation. 49

x

List of Figures

4.1 U-Filter workflow. 57

4.2 U-Filter architecture. 58

4.3 netfilter hooks chain and U-Filter. 61

4.4 HTTP session table, shared between online and offline modules. . . 62

4.5 URL queue, shared between the online module and the offline mod-
ule user space process. 63

4.6 Verdict queue, shared between the offline module kernel thread and
user space process. 63

4.7 Summarized workflow of the online module. 65

4.8 Offline module user space process. 67

4.9 Summarized workflow of the offline module kernel thread. 68

4.10 Delay characterization. 73

4.11 Testbed setup. 75

4.12 Progress of a TCP session. 77

4.13 Waiting time for a single HTTP resource - Cumulative distribution
function. 80

4.14 Resource waiting time considering the 90th percentile of the process-
ing time and RTT with the policy server in a data center. 81

4.15 Complete page loading time cumulative distribution. 82

4.16 Complete page loading time considering the 90th percentile policy
server processing time with the policy server in a data center. 83

4.17 Application-level throughput when downloading files of different
sizes. 84

4.18 Download time when requesting files of different sizes. 84

4.19 U-Filter load. 86

5.1 MEDINA overlay. 94

5.2 Offline manifest computation . 97

5.3 Inline packet processing . 97

xi

List of Figures

5.4 Per node used storage. 104

5.5 Per node captured and forwarded traffic. 105

6.1 Potential traffic reduction ratio for two machine learning applications
and various graph analytics algorithms. 117

6.2 Aggregation Trees: example of physical and logical view for traffic
aggregation in a data center network. 119

6.3 Reduction on the amount of data, running time and number of pack-
ets received at reducers. 123

xii

List of Tables

2.1 List of sample EOs . 10

3.1 Network abstraction in the UN . 43

3.2 Compute abstraction in the UN . 43

3.3 Characteristics of the devices used in the validation 50

3.4 Comparing different implementations of the IPSec client, on differ-
ent machines . 51

4.1 Inferred RTT values with the policy server in different locations
(RT T P). 79

4.2 Inferred policy server latency values (T P
proc). 80

xiii

Nomenclature

Acronyms / Abbreviations

ACK Acknowledgment Number

ALU Arithmetic Logic Unit

ASIC Application-Specific Integrated Circuit

BNG Broadband Network Gateway

BSP Bulk Synchronous Parallel

CAS Column Access Strobe

CGNAT Carrier-Grade Network Address Translation

CPE Customer Premise Equipment

DAIET Data Aggregation In nETwork

DAT S Intel Dataplane Automated Testing System

DC Data Center

DDIO Intel Data Direct I/O Technology

DDR Double Data Rate

DPDK Intel Data Plane Development Kit

DPI Deep Packet Inspection

DPPD Intel Data Plane Performance Demonstrators

xiv

Nomenclature

DSL Digital Subscriber Line

EO Elementary Operation

ET SI European Telecommunications Standards Institute

FCS Frame Check Sequence

GPGPU General-Purpose computing on Graphics Processing Units

GRE Generic Routing Encapsulation

IE− pair Ingress-Egress pair

IID Ingress ID

IoT Internet of Things

ISP Internet Service Provider

IXP Internet eXchange Point

LAN Local Area Network

LSI Logical Switching Instance

MEDINA Massively Distributed Network Data Caching Platform

ML Machine Learning

MPI Message Passing Interface

MPLS MultiProtocol Label Switching

MSS Maximum Segment Size

NAT Network Address Translation

NF Network Functions

NFV Network Functions Virtualization

NFV I NFV Infrastructure

NFVO NFV Orchestrator

xv

Nomenclature

NHLFE Next Hop Label Forwarding Entry

NIC Network Interface Card

NNF Native Network Functions

NSP Network Service Providers

OvS Open vSwitch

POP Point Of Presence

PROX Intel Packet pROcessing eXecution Engine

RMT Reconfigurable Match Tables

RT T Round Trip Time

SACK TCP Selective Acknowledgment

SDN Software Defined Networking

SEQ Sequence Number

SGD Stochastic Gradient Descent

SRAM Static Random Access Memory

SSSP Single Source Shortest Path

TC Linux Traffic Control

TCAM Ternary Content-Addressable Memory

ToR Top-of-Rack

T T L Time To Live

UI User Interface

UN Universal Node

URL Universal Resource Locator

V IM Virtual Infrastructure Manager

xvi

Nomenclature

V LAN Virtual Local Area Network

V M Virtual Machine

V NF Virtualized Network Function

WAN Wide Area Network

WCC Weakly Connected Components

xvii

Chapter 1

Introduction

Modern telecom companies are no longer simple providers of telephone/internet
connectivity. In fact, they are increasingly relying on selling value-added services
to boost their revenues. Connectivity plans are often bundled with music and video
streaming [1–3], safe-browsing, anti-malware and parental control [4] services that,
when coupled with zero-rating [5, 6], can be especially appealing to customers.

On the other hand, the recent trend of network “softwarization” is paving the way
to commoditization of telecommunications infrastructure. In fact, today many of the
fixed-function middleboxes can be replaced by software network functions, poten-
tially sharing a pool of general-purpose hosts, providing more flexibility, simpler
management and configuration, and lower time to market for new functionalities.
This transition is spearheaded by the NFV technology that proposes the execution
of software network functions in isolated VMs rather than on dedicated hardware.
By using SDN, network traffic can be steered through a chain of Virtualized Net-
work Functions (VNFs) in order to provide aggregated services. Network Service
Providers (NSPs) can leverage this flexibility to easily deploy new, on-demand,
services for both their internal use (e.g., monitoring) and their customers (e.g., web
cache).

Currently, NSPs rely on a heterogeneous infrastructure composed of high speed
networking appliances (e.g., routers), a large amount of low-cost, resource-limited
Customer Premise Equipment (CPE), as well as more powerful appliances at the
edge of the network and in dedicated data-centers, as showed in Figure 1.1. In

1

Introduction

DATA CENTER

CORE NETWORK

CPE

ACCESS NETWORK

RADIO ACCESS
NETWORK

Fig. 1.1 Telecom operator infrastructure.

this dissertation, we show how all these different domains can be used to provide
additional services suited to their specific constraints and limitations.

First, chapter 2 introduces a methodology for the modelization of network func-
tions (NFs) focused on the identification of recurring execution patterns as basic
building blocks and aimed at providing a platform independent representation. By
mapping each modeling building block on specific hardware, the performance of the
network function can be estimated in terms of maximum throughput that the network
function can achieve on the specific execution platform. The approach is such that
once the basic modeling building blocks have been mapped, the estimate can be
computed automatically for any modeled network function. Experimental results on
several sample network functions show that although our approach cannot be very
accurate without taking in consideration traffic characteristics, it is very valuable
for those application where even loose estimates are key. One such example is
orchestration in NFV platforms, as well as in general virtualization platforms where
virtual machine placement is based also on the performance of network services
offered to them. Being able to automatically estimate the performance of a VNF
on different execution hardware, enables optimal placement of VNFs themselves as
well as the virtual hosts they serve, while efficiently utilizing available resources.

While chapter 2 describes a unified modeling approach for generic NFs, in
chapter 3 we focus on software NFs running in a virtualized environment. These
are often implemented using VMs because they provide an isolated environment
compatible with classical cloud computing technologies. This isolation is required
to leverage consolidation in a data center and comes at a substantial cost in terms

2

of required resources. We propose to extend the NFV infrastructure to support the
deployment of services closer to the end user, using resource-constrained devices
such as residential CPEs. This solution is especially beneficial for low-latency
services. However, these devices cannot provide the large amount of resources
required for deploying standard VMs. Nevertheless, such hardware often runs a
Linux-based operating system that supports several software modules (e.g., iptables)
that can be used to implement network functions (e.g., a firewall), which can be
exploited to provide some of the services offered by simple VNFs, with reduced
overhead. We also propose and validate an architecture that integrates those native
software components in a NFV platform, making their use transparent from the user’s
point of view. This integration allows to jointly orchestrate simple NFs executed in
the CPE with low hardware resources and complex VNFs running in the data center,
hence combining the benefits of the cloud with the locality of the services running
on local CPEs.

An instance of service that can be decomposed in a lightweight component
running on residential gateways and a resource intensive task running in the data
center is presented in detail in chapter 4. Given that nowadays users access content
mostly through mobile apps and web services, both based on HTTP, several filtering
applications, such as parental control, malware detection, and corporate policy
enforcement, require inspecting Universal Resource Locators (URLs) contained in
HTTP requests. Currently, such filtering is most commonly performed in end devices
or in middleboxes. Filtering applications running on end devices are less resource
intensive because they operate only on traffic from a single user and possibly leverage
a hook at the HTTP level to access protocol data, but it is left to the user whether
to execute them. On the other hand, middleboxes present the challenge of ensuring
that they lay on the path of all the traffic from any relevant device. Residential
gateways seem to be the ideal place where to implement traffic filtering because
they forward all traffic generated by the hosts on home(-office) networks. However,
these devices usually have very limited computation and memory resources, while
URL-based filtering is quite demanding. In fact existing approaches rely on a large
database of rules coupled with either deep packet inspection or transparent proxying
for URL extraction. In chapter 4 we present U-Filter, a URL filtering solution
based on a distributed architecture where a lightweight, efficient URL extraction
and policy enforcement component runs on residential gateways, delegating to a
remote policy server the resource intensive task of verifying policy compliance.

3

Introduction

Thanks to the lightweight communication between the two components and the very
limited resource requirements of the local module, U-Filter (i) can be deployed on
resource-limited devices such as residential gateways, and (ii) has almost no impact
on the performance of the device, as well as on the users’ browsing experience, as
demonstrated by the presented experiments.

Traffic analysis and monitoring is of paramount importance also in the access
and core network devices. While the main limitation of residential gateways is
their limited hardware capability, in these devices the main challenge is given by
the massive amount of data that they must forward at high speed. The analysis of
this large traffic is key to many domains including network management, security,
network forensics. Traditionally, it is performed by a NF, running on a dedicated
device, accessing traffic at a specific point within the network through a link tap or a
port of a node mirroring packets. This approach is problematic because the dedicated
device must be equipped with a large amount of computation and storage resources
to cope with the task. Alternatively, in order to achieve scalability, analysis can be
performed by multiple NF instances running in a cluster of hosts. However this is
normally located at a remote location with respect to the observation point, hence
requiring to move across the network a large volume of captured traffic. To address
this problem we present an algorithm to distribute the task of capturing, processing
and storing packets traversing a network across multiple packet forwarding nodes
(e.g., IP routers).

Essentially, our solution, presented in chapter 5, allows individual nodes on the
path of a flow to operate on subsets of packets of that flow in a completely distributed
and decentralized manner. The solution is based on having each node traversed by a
traffic flow act on a subset of the packets of the flow. The proposed algorithm allows
nodes to independently agree on which one is capturing which packets in a way that
ensures that each packet is captured by at least n nodes, where n is a parameter of the
algorithm, which can be set to 1 to minimize overhead or to a higher value to achieve
redundancy. Nodes temporarily store the fraction of packets allocated to them and
create a distributed index that enables efficient retrieval of packets (e.g., for forensics
applications). With minimal changes to the implementation, the basic principles of
the presented solution can be applied to the distributed execution of generic tasks on
data flowing through a network of nodes with processing and storage capabilities.
This has applications in various fields ranging from Fog Computing, to microservice
architectures, to the Internet of Things.

4

Finally, we present an initial proposal to leverage the high speed data center
network fabric to provide services to speed up distributed applications. The advent
of flexible networking hardware and expressive data plane programming languages
have produced networks that are deeply programmable. By delegating part of the
computation to the networking hardware, distributed data center applications can not
only reduce the computation done by the CPU, but also reduce the traffic at each
network device, effectively decreasing job completion times. However, it is not clear
yet what kinds of computation should be delegated to the network. In chapter 6
we discuss the opportunities and challenges for co-designing data center distributed
systems with their network layer. We argue that in-network computation tasks must
be judiciously crafted to match the limitations of the network machine architecture
of programmable devices. With the help of our experiments on machine learning and
graph analytics workloads, we identify that aggregation functions raise opportunities
to exploit the limited computation power of networking hardware to lessen network
congestion and improve the overall application performance. Moreover, as a proof-
of-concept, we propose DAIET, a system that performs in-network data aggregation.

In fact, many scalable data center applications follow a partition-aggregate
pattern where data and computations are distributed among many servers and their
partial results are exchanged over the network and aggregated to produce the final
output. For these workloads, the network communication costs are often one of the
dominant scalability bottlenecks. Experimental results with an initial prototype show
a large data reduction ratio (86.9%-89.3%) and a similar decrease in the workers’
computation time without requiring severe application-level modifications.

Modern networks are becoming smarter through a combination of new hardware
and a higher level of programmability. This thesis aims at showing how the entire
network infrastructure, from the home network to the data center network, can
provide additional services tailored to the specific capabilities and requirements of
different domains.

5

Chapter 2

Network Function Modeling and
Performance Estimation

2.1 Introduction

For a few years now software network appliances have been increasingly deployed.
Initially, their appeal stemmed from their lower cost, shorter time-to-market, ease of
upgrade when compared to purposely designed hardware devices. These features are
particularly advantageous in the case of appliances, a.k.a. middleboxes, operating
on relatively recent, higher layer protocols that are usually more complex and are
possibly still evolving. More recently, with the overwhelming success and diffusion
of cloud computing and virtualization, software appliances became natural means
to ensure that network functionalities have the same flexibility and mobility as the
virtual machines (VMs) they offer services to. In this context, implementing in
software even less complex, more stable network functionalities is valuable. This
trend led to embracing Software Defined Networking (SDN) and Network Functions
Virtualization (NFV). The former as a hybrid hardware/software approach to ensure
high performance for lower layer packet forwarding, while retaining a high degree
of flexibility and programmability. The latter as a virtualization solution targeting
the execution of software network functions in isolated VMs sharing a pool of
hosts, rather than on dedicated hardware (i.e., appliances). Such a solution enables
virtual network appliances (i.e., VMs executing network functions) to be provisioned,

The content of this chapter has been described in [7–9].

6

2.1 Introduction

allocated a different amount of resources, and possibly moved across data centers in
little time, which is key in ensuring that the network can keep up with the flexibility
in the provisioning and deployment of virtual hosts in today’s virtualized data centers.
Additional flexibility is offered when coupling NFV with SDN as network traffic
can be steered through a chain of Virtualized Network Functions (VNFs) in order to
provide aggregated services. With inputs from the industry, the NFV approach has
been standardized by the European Telecommunications Standards Institute (ETSI)
in 2013 [10].

The flexibility provided by NFV requires the ability to effectively assign compute
nodes to VNFs and allocate the most appropriate amount of resources, such as CPU
quota, RAM, virtual interfaces. In the ETSI standard the component in charge of
taking such decisions is called orchestrator and it can also dynamically modify the
amount of resources assigned to a running VNF when needed. The orchestrator can
also request the migration of a VNF when the current compute node executing it
is no longer capable of fulfilling the VNF performance requirements. These tasks
require the orchestrator to be able to estimate the performance of VNFs according
to the amount of resources they can use. Such estimation must take into account
the nature of the traffic manipulation performed by the VNF at hand, some specifics
of its implementation, and the expected amount of traffic it operates on. A good
estimation is key in ensuring higher resource usage efficiency and avoid adjustments
at runtime.

This chapter proposes a unified modeling approach applicable to any VNF,
independently of the platform it is running on. By mapping a VNF model on a
specific hardware it is possible to predict the maximum amount of traffic that the
VNF can sustain with the required performance. The proposed modeling approach
relies on the identification of the most significant operations performed by the
VNF on the most common packets. These operations are described in a hardware
independent notation to ensure that the model is valid for any execution platform.
The mapping of the model on a target hardware architecture (required in order to
determine the actual performance) can be automated, hence allowing to easily apply
the approach to each available hardware platform and choose the most suitable for
the execution.

Even if the proposed modeling approach has been defined with NFV in mind, it
can be applied to non-virtualized network functions (NFs), whether implemented in

7

Network Function Modeling and Performance Estimation

software or hardware, provided that the implementation and characteristics of the
underlying hardware are known. The availability of a unified modeling approach for
VNF and NF is instrumental in the integration of middleboxes in an NFV infrastruc-
ture [11], which is important in a transition phase and for specific applications where
a dedicated or specialized hardware platform is necessary for a specific NF to satisfy
performance requirements.

The modeling approach is introduced in Section 2.2 and is illustrated in Sec-
tion 2.3 by applying it to various network functions. In order to validate the proposed
models, Section 2.4 compares the estimated performance with actual measurements
of software network functions running on a general purpose hardware platform.
After discussing related work in Section 2.5, Section 2.6 concludes the chapter.

2.2 Methodology

The proposed modeling approach is based on the definition of a set of processing
steps, here called Elementary Operations (EOs), that are common throughout various
NF implementations. This stems from the observation that, generally, most NFs
perform a rather small set of operations when processing the average packet, namely,
well-defined alteration of packet header fields, coupled with data structure lookups.

An EO is informally defined as the longest sequence of elementary steps (e.g.,
CPU instructions or ASIC transactions) that is common among the processing tasks
or multiple NFs. As a consequence, an EO has variable granularity ranging from
a simple I/O or memory load operation, to a whole IP checksum computation. On
the other hand, EOs are defined so that each can be potentially used in multiple NF
models.

An NF is modeled as a sequence of EOs that represent the actions performed
for the vast majority of packets. Since we are interested in performance estimation,
we ignore operations that affects only a small number of packets (i.e., less the 1%),
since these tasks have a negligible impact on performance, even when they are
more complex and resource intensive than the most common ones. Accordingly
exceptions, such as failures, configuration changes, etc., are not considered.

It is important to highlight that NF models produced with this approach are
hardware independent, which ensures that they can be applied when NFs are deployed

8

2.2 Methodology

Fig. 2.1 NF modeling and performance estimation approach.

on different execution platforms. In order to estimate the performance of an NF on a
specific hardware platform, each EO must be mapped on the hardware components
involved in its execution and their features. This mapping allows to take into
consideration the limits of the involved hardware components and gather a set of
parameters that affect the performance (e.g., clock frequency). Moreover, the load
incurred by each component when executing each EO must be estimated, whether
through actual experiments or based on nominal hardware specifications. The data
collected during such mapping are specific to EOs and the hardware platform, but
not to a particular NF. Hence, they can be applied to estimate the performance of any
NF modeled in terms of EOs. Specifically, the performance of each individual EO
involved in the NF model is computed and composed considering the cumulative
load that all EOs impose on the hardware components of the execution platform,
while heeding all of the applicable constraints. Figure 2.1 summarizes the steps and
intermediate outputs of the proposed approach.

Table 2.1 presents a list of sample EOs that we identified when modeling a
number of NFs. Such list is by no means meant to be exhaustive; rather, it should
be incrementally extended whenever it turns out that a new NF being considered
cannot be described in terms of previously identified EOs. When defining an EO, it is
important to identify the parameters related to traffic characteristics that significantly
affect the execution and resource consumption.

9

Network Function Modeling and Performance Estimation

Table 2.1 List of sample EOs

EO Parameters Description

1
I/O_mem

hdr, data
Packet copy between I/O

mem_I/O and (cache) memory

2
parse

b Parse or encapsulate a data field
deparse

3
increase

b Increase/decrease a field
decrease

4 sum b Sum 2 operands

5
checksum

b Compute IP checksum
inc_checksum

6 array_access es, max Direct access to a byte array in memory

7 ht_lookup N, HE, max, p Simple hash table lookup

8 lpm_lookup b, es Longest prefix match lookup

9 ct_insertion N, HE, max, p Cache table insertion

2.2.1 Elementary Operations

A succinct description of the EOs listed in table 2.1 is provided below.

1. Packet copy between I/O and memory:

A packet is copied from/to an I/O buffer to/from memory or CPU cache.
hdr is the number of bytes that are preferably stored in the fastest cache
memory, while data bytes can be kept in lower level cache or main memory.
The parameters have been chosen taking into consideration that some NPUs
provide a manual cache that can be explicitly loaded with the data that need
fast access. General purpose CPUs may have assembler instructions (e.g.,
PREFETCHh) to explicitly influence the cache logic.

2. Parse or encapsulate a data field:

A data field of b bytes stored in memory is parsed. A parsing operation is
necessary before performing any computation on a field (it corresponds to
loading a processor register). The dual operation, i.e., deparse, implies storing
back into memory a properly constructed sequence of fields.

10

2.2 Methodology

3. Increase/decrease a field:

Increase/decrease the numerical value contained in a field of b bytes. The field
to increase/decrease must have already been parsed.

4. Sum two operands:

Two operands of b bytes are added.

5. Compute IP checksum:

The standard IP checksum computation is performed on b bytes. When
only some bytes change in the relevant data, the checksum can be computed
incrementally from the previous correct value [12]. In this case, the previous
value of the checksum must be parsed beforehand and b is the number of
changed bytes for which the checksum must be incrementally computed.

6. Direct access to a byte array in memory:

This EO performs a direct access to an element of an array in memory using
an index. Each array entry has size es, while the array has at most max entries.

7. Simple hash table lookup:

A simple lookup in a direct hash table is performed. The hash key consists of
N components and each entry has size equal to HE. The table has at most max
entries and the collision probability is p.

8. Longest Prefix Match lookup:

This EO selects an entry from a table based on the Longest Prefix Match
(LPM). This lookup algorithm selects the most specific of the matching entries
in a table (i.e., the one where the largest number of leading bits of the key
match those in the table entry). The parameter b represents the number of
bytes, on average, of the matching prefix, while es is the entry size.

9. Cache table insertion: Save in a hash table an entry with the current timestamp
or update the timestamp if the entry is already present. This EO have the same
parameters of the simple hash table lookup operation; the performance of both
EOs depends from the hash table characteristics.

For the sake of simplicity (and without affecting the validity of the approach, as
shown by the results in Section 2.4), in modeling NFs by means of EOs, we assume

11

Network Function Modeling and Performance Estimation

Fig. 2.2 Hardware architecture description.

that the number of processor registers is larger than the number of packet fields that
must be processed simultaneously. Therefore there is no competition for processor
registers.

2.2.2 Mapping to Hardware

We now proceed to map the described EOs to a specific hardware platform: a server
with 2 Intel Xeon E5-2690 v2 CPUs (Ivy Bridge architecture with ten physical
cores at 3 GHz), 64 GB DDR3 RAM memory and one Intel 82599ES network card
with 2x10Gbps Ethernet ports. Figure 2.2 provides a schematic representation of
the platform main components and relative constraints using the template proposed
in [13].

Using the CPU reference manual [14], it is possible to determine the operations
required for the execution of each EO in Table 2.1 and estimate the achievable
performance.

1. I/O_mem(hdr, data) - mem_I/O(hdr, data)

The considered CPU provides a DMA-like mechanism to move data from the I/O
buffers to the shared L3 cache and viceversa. Intel DPDK drivers [15] with Data
Direct I/O Technology (DDIO) leverage this capability to move packets to/from the

12

2.2 Methodology

L3 cache without the CPU intervention, improving the packet processing speed. The
portion of each packet that must be processed (hdr) is then moved from L3 cache
into the L1/L2 cache by the CPU. This operation requires 31 clock cycles to access
the L3 cache, around 5 cycles to write a L1/L2 cache line and 9 cycles to write back
a L3 cache line [16]. On the whole, the execution of this EO requires:

31+[5|9]∗⌈ hdr
64B
⌉ clock cycles

provided that hdr is less than the total amount of L1 and L2 caches, as it is reasonable
for modern systems and common packet sizes. The multiplier is 5 for I/O_mem and
9 for mem_I/O.

2. parse(b) - deparse(b)

Loading a 64 bit register requires 5 clock cycles if data is in L1 cache or 12 clock
cycles if data is in L2 cache, otherwise an additional L3 cache or DRAM memory
access is required to retrieve a 64 byte line and store it in L1 or L2 respectively (the
reverse operation has the same cost):

5∗⌈ b
8B
⌉ clock cycles {+⌈ b

64B
⌉ L3 or DRAM accesses}

or

12∗⌈ b
8B
⌉ clock cycles {+⌈ b

64B
⌉ L3 or DRAM accesses}

3. increase(b) - decrease(b)

Whether a processor includes an increase (decrease) instruction or one for adding
(subtract) a constant value to a 64 bit register, this EO requires 1 clock cycle to
complete. However, thanks to pipelining, up to 3 independent such instructions can
be executed during 1 clock cycle:

⌈0.33∗ b
8B
⌉ clock cycles

13

Network Function Modeling and Performance Estimation

Register ECX: number of bytes b
Register EDX: pointer to the buffer
Register EBX: checksum

CHECKSUM_LOOP:

XOR EAX, EAX ;EAX=0
MOV AX, WORD PTR [EDX] ;AX <- next word
ADD EBX, EAX ;add to checksum
SUB ECX, 2 ;update number of bytes
ADD EDX, 2 ;update buffer
CMP ECX, 1 ;check if ended
JG CKSUM_LOOP

MOV EAX, EBX ;EAX=EBX=checksum
;EAX=checksum>>16 EAX is the carry
SHR EAX, 16
AND EBX, 0xffff ;EBX=checksum&0xffff
;EAX=(checksum>>16)+(checksum&0xffff)
ADD EAX, EBX
MOV EBX, EAX ;EBX=checksum
SHR EBX, 16 ;EBX=checksum>>16
ADD EAX, EBX ;checksum+=(checksum>>16)
MOV checksum, EAX ;checksum=EAX

Fig. 2.3 Sample Intel x86 assembly code for checksum computation.

4. sum(b)

On the considered architecture, the execution of this EO is equivalent to the EO
increase(b). Please note that this is not necessarily the case on every architecture.

5. checksum(b) - inc_checksum(b)

Figure 2.3 shows a sample assembly code to compute a checksum on an Intel x86-64
processor. Assuming that the data on which the checksum is computed is not in
L1/L2 cache, according to the Intel documentation [14], the execution of this code

14

2.2 Methodology

requires

7∗⌈b
2
⌉+8 clock cycles

+⌈ b
64B
⌉ L3 or DRAM accesses

6. array_access(es, max)

Direct array access needs to execute an “ADD” instruction (1 clock cycle) for comput-
ing the index and a “LOAD” instruction resulting into a direct memory access and as
many clock cycles as the number of CPU registers required to load the selected array
element:

1+ ⌈ es
8B
⌉ clock cycles + ⌈ es

64B
⌉ DRAM accesses

7. ht_lookup(N, HE, max, p)

We assume that a simple hash table lookup is implemented according to the pseudo-
code described in [13] and shown in Figure 2.4 for ease of reference.

Considering that the hash entry needs to be loaded from memory to L1 cache, a
simple hash table lookup would require approximately:

⌈(4∗N +106+5∗⌈HE
8B
⌉+5∗⌈HE

32B
⌉)∗ (1+ p)⌉

clock cycles and

⌈(⌈HE
64B
⌉∗ (1+ p))⌉ L3 or DRAM accesses

Otherwise, if the entry is already in the L1/L2 cache, the memory accesses and
cache store operations are not required. Notice that in order for the whole table to be
in cache, its size should be limited by:

max∗HE ≤ 32KB+256KB = 288KB

15

Network Function Modeling and Performance Estimation

Register $1-N: key components
Register $HL: hash length
Register $HP: hash array pointer
Register $HE: hash entry size
Register $Z: result

Pseudo code:
hash key calculation
eor $tmp, $tmp
for i in 1 ... N

eor $tmp, $i
key is available in $tmp

calculate hash index from key
udiv $tmp2, $tmp, $HL
mls $tmp2, $tmp2, $HL, $tmp
index is available in $tmp2

index -> hash entry pointer
mul $tmp, $tmp2, $HE
add $tmp, $HP
entry pointer available in $tmp

<prefetch entry to L1 memory>
pointer to L1 entry -> $tmp2

hash key check (entry vs. key)
for i in 1 ... N

ldr $Z, [$tmp2], #4
check keys
cmp $i, $Z
bne collision

no jump means matching keys
pointer to data available in $Z

Fig. 2.4 Hash table lookup pseudo-code.

16

2.2 Methodology

Register $HE: updated hash entry
Register $HT: pointer to previous L1 entry
Register $HS: hash entry size

Pseudo code:
for i in 1 ... $HS/8

mov [$HT], $HE
add $HT, #8

#update timestamp
rdtsc
mov [$HT], EDX
add $HT, #2
mov [$HT], EAX

<store updated entry>

Fig. 2.5 Entry update pseudo-code for cache table insertion.

8. lpm_lookup(b,es)

There are several different algorithms for finding the longest matching rule. Here we
consider the DIR-24-8 algorithm [17], which in most cases (when the entry matches
up to 24 bits) is able to find the first matching rule with only one memory access.
This speed, however, comes at the cost of space, because of the redundant storage of
rules. However, the very fast lookup this algorithm provides heavily outweighs this
space constraint. With the DIR-24-8 algorithm the longest prefix match requires the
equivalent of an array_access(es,16M) operation if b≤ 3, otherwise an additional
memory access is required, corresponding to an array_access(es,255).

9. ct_insertion(N, HE, max, p)

The EO corresponds to a lookup in a hash table followed by either the insertion of a
new entry or the update of the timestamp in an existing one. The two operations have
approximately the same cost; the pseudo-code in Figure 2.5 shows the operations
required to update the timestamp of the entry.

17

Network Function Modeling and Performance Estimation

As a result the cache table insertion algorithm would require approximately:

⌈(4∗N +129+7∗⌈HE
8B
⌉+5∗⌈HE

32B
⌉)∗ (1+ p)⌉

clock cycles and

2∗⌈(⌈HE
64B
⌉∗ (1+ p))⌉ L3 or DRAM accesses

2.3 Modeling Use Cases

This section demonstrates the application of the modeling approach described in
section 2.2. EOs are used to describe the operation of simple network functions, such
as L2 Switches, and a more complex case, a Broadband Network Gateway (BNG).
The model is used to estimate the performance of each use case on the hardware
platform presented in Section 2.2.2. The accuracy of the estimation is evaluated in
Section 2.4 based on real measurements obtained through a range of experiments.

2.3.1 L2 Switch

First we model an Ethernet switch with a static forwarding table. In this case the
output port is selected through a simple lookup in the table using the destination
MAC address. Afterwards we consider a more general case where the forwarding
table is populated using the backward learning algorithm. Finally, we model an
MPLS switch, which selects the output interface according to the MPLS label in the
packet.

Basic Forwarding

For each packet the switch selects the output interface where it must be forwarded;
such interface is retrieved from a hash table using as a key the destination MAC
address extracted from the packet.

More in detail, when a network interface receives a packet, it stores it in an I/O
buffer. In order to access the Ethernet header, the CPU/NPU must first copy the
packet in cache or main memory (possibly with the help of a Direct Memory Access

18

2.3 Modeling Use Cases

module). Since the switch operates only on the Ethernet header together with the
identifier of the ingress and egress ports through which it is received and forwarded,
the corresponding 30 bytes (18+6+6 bytes)1 are copied in the fastest cache, while
the rest of the packet (up to 1500 bytes) can be kept in L3 cache or main memory.
To ensure generality, we consider that an incoming packet cannot be copied directly
from an I/O buffer to another, but instead it must be first copied in (cache) memory.

The switch must then read the destination MAC address (6 bytes) prior to using
it to access the hash table to get the appropriate output interface. The hash table has
one key (the destination MAC) and consists of 12 byte entries composed of the key
and the output interface MAC address. A common number of entries in a typical
switch implementation is ≈ 2M = 2×220, which gives an idea, when mapping the
model to a specific hardware, of whether the hash table can be fully stored in cache
under generic traffic conditions. The new output port must be stored in the data
structure in L3 cache or main memory (which, as previously explained, has the same
cost as parsing 6 bytes), before moving the packet to the buffer of the selected output
I/O device.

The resulting model expressing the above steps in terms of EOs is summarized
in Figure 2.6a, where ps is the ethernet payload size. Such model assumes that
the collision probability of the hash is negligible (i.e., the hash table is sufficiently
sparse).

Applying to the Ethernet switch model the mapping of EOs presented in Sec-
tion 2.2.2, we can estimate that forwarding a packet, regardless of the packet size
(thanks to DDIO), requires:

213 clock cycles +1 DRAM access

As a consequence, a single core of an Intel Xeon E5-2690v2 operating at 3.6 Ghz
can process ≈ 17.31 Mpps, while the DDR3 memory can support 111.08 Mpps.

The memory throughput is estimated considering that each packet requires a 12
byte memory access to read the hash table entry, which has a latency of:

(CAS latency×2)+3
data rate

1We consider that interfaces are identified by their Ethernet address. Different implementations
can use a different identifier, which leads to a minor variation in the model.

19

Network Function Modeling and Performance Estimation

I/O_mem(30,ps)

parse(6)

ht_lookup(1,12,2M,0)

deparse(6)

mem_I/O(30,ps)

(a) Basic forwarding switch model.

I/O_mem(30,ps)

parse(8)

ht_lookup(1,14,2M,0)

parse(12)

ct_insertion(2,14,2M,0)

deparse(6)

mem_I/O(30,ps)

(b) Learning switch model.

I/O_mem(34,ps-4)

parse(3)

ht_lookup(1,12,1M,0)

parse(1)

decrease(1)

deparse(10)

mem_I/O(34,ps-4)

(c) MPLS switch model.

Fig. 2.6 Models of different L2 switches.

If we consider minimum size (64 bytes) packets (i.e., an unrealistic, worst case
scenario), a single core can process ≈ 11.36 Gbps.

Learning Switch

We here consider an Ethernet switch with VLAN support, in which case the key used
for lookups in the forwarding table consists of the destination MAC address and the
VLAN ID (2 bytes). Hence, 8 bytes must be parsed from the header (destination
address and VLAN ID) of each packet in order to obtain the lookup key and entries
in the forwarding table are 14 bytes long (destination address and VLAN ID as
key and output interface as value). Since the switch is applying backward learning,
for each packet the source MAC address and source port are used to update the
forwarding table. The switch must also parse the source MAC address and read from

20

2.3 Modeling Use Cases

memory the source port (added to packets stored in memory) and either add an entry
in the forwarding table or just update the timestamp of an existing one. The resulting
model is shown in Figure 2.6b.

When mapped to our hardware architecture, forwarding a packet requires an
estimated:

352 clock cycles +2 DRAM accesses

hence the maximum throughput reachable by a single core is reduced to ≈ 10.47
Mpps, while the DDR3 memory can support 55.54 Mpps. This translates to a
maximum throughput of ≈ 6.87 Gbps for 64 byte packets.

MPLS Switch

An MPLS switch is a simple, yet currently widely deployed, Network Function. For
each packet the switch swaps a single MPLS label and forwards the packet on an
Ethernet network towards the next hop. The new label and the next hop are retrieved
from a hash table whose key is the label extracted from the packet. Since the MPLS
switch modifies the label in the MPLS header, in addition to associating to it the
output port, the MPLS header (4 bytes) is also preferably copied in the L1/L2 cache,
while the rest of the packet can be kept in L3 cache or main memory. The switch
must then extract the MPLS label (20 bit ≈ 3 bytes) prior to using it to access the
hash table to get the new label and the next hop. The hash table has one key (the
label) and consists of 12 byte entries:

• Input label (key) - 3 bytes

• Output label - 3 bytes

• Next hop Ethernet address - 6 bytes.

The maximum number of entries in the hash table is, in the worst case, 1M = 220

and we consider that the collision probability is negligible.

In the most general case, each entry, referred in the MPLS standard documents
as Next Hop Label Forwarding Entry (NHLFE), could hold more than one label in
case of multiple label operations. For the sake of simplicity we model only a single

21

Network Function Modeling and Performance Estimation

label operation: the swapping of a label, which is the most frequent operation in
common MPLS switch deployment scenarios.

The switch must also decrease the Time-To-Live (TTL) contained in the MPLS
header, which requires parsing the corresponding field, followed by a decrease
operation for the 1 byte field. The new (outgoing) MPLS header and output port
must be stored in main memory (encapsulation of 10 bytes) and moved to the buffer
of the output I/O device. The resulting model is summarized in Figure 2.6c.

As we map this model to the considered hardware platform, we can conclude
that the estimated forwarding cost for a MPLS switch is:

224 clock cycles +1 DRAM access

corresponding to a maximum per core throughput of ≈ 16.45 Mpps, while the
memory could provide the same throughput as the basic forwarding switch. The
maximum bitrate considering 64 bytes packets is ≈ 10.8 Gbps.

2.3.2 Broadband Network Gateway

A Broadband Network Gateway (BNG) is the first IP point in the network for DSL
and cable modem subscribers connecting them to the broadband IP network. The
primary task of a BNG is to aggregate traffic from various subscriber sessions from
an access network, and route it to the core network of the service provider. Moreover,
a BNG carries out additional vital tasks for Network Service Providers (NSPs), such
as managing subscribers’ sessions, performing accounting and enforcing operator
policies. Hence, a BNG represents a more complex use case for the application of
the proposed modelization approach.

In our modeling effort we refer to the software implementation of a BNG present
in the Intel Data Plane Performance Demonstrators (DPPD) [18]. This is an open
source, highly optimized software BNG specifically intended for performance analy-
sis. In this implementation the traffic in the access network between the Customer
Premise Equipment (CPE) and the BNG is encapsulated using Ethernet QinQ frames,
while the traffic between the BNG and the Carrier-grade NAT (CGNAT) in the core
MPLS network is encapsulated using GRE (Generic Routing Encapsulation). In
this scenario packets received from the access network and packets received from

22

2.3 Modeling Use Cases

Dst addr Src addr S-VLAN C-VLAN EtherType

Data FCS

6 bytes 6 bytes 4 bytes 4 bytes 2 bytes

18 – 1480 bytes 4 bytes

Ethernet MPLS Data FCS

14 bytes 4 bytes 20 bytes 0 – 1444 bytes 4 bytes12 bytes

IPv4

20 bytes

A
c
c
e
s
s

C
o
re

IPv4

22 bytes

GRE Key: 32 bits

VLAN ID: 12 bitsVLAN ID: 12 bits

Ethernet + QinQ

20 bytes

GREIPv4

Fig. 2.7 Packet formats.

the core network are processed differently by the BNG, thus 2 separate models are
required for the 2 directions. The two different formats of packets forwarded in the
access and in the core network is illustrated in Figure 2.7.

Packets from CPEs are matched with 2 different tables: (i) a hash table that given
the QinQ tag provides the corresponding GRE key (up to 16M entries of 7 bytes)
and (ii) an LPM routing table that given the destination IP address returns the output
port, the IP address of the remote GRE tunnel endpoint, the next hop MAC address
and the MPLS label (this table can contain up to 8K routes). Packets from the core
network are instead matched with only one hash table that given the GRE key and
the inner destination IP address provides the QinQ tag, the destination MAC address
and the output port. The BNG supports up to 64K CPEs, thus this table can contain
up to 64K entries of 23 bytes. The QinQ tag and the GRE key are used to track
the subscriber (e.g., for accounting), while the tunnel endpoint (i.e., the CGNAT) is
selected according to the destination of the packet.

The resulting models for both directions are summarized in Figure 2.8. When
processing packets from the access network, MAC with QinQ and IP headers are
loaded preferably in L1/L2 cache, so that the QinQ header can be parsed. The
extracted QinQ tag is used for the lookup in table (i), while the destination IP address
is parsed and deployed in the LPM lookup table (ii). These 2 lookups provide the
output GRE key, destination IP and MAC addresses, MPLS tag and output port
that are used in the encapsulation of the output packet. The TTL (Time To Live) of

23

Network Function Modeling and Performance Estimation

Packet from access network
I/O_mem(42,ps-20)

parse(8)

ht_lookup(1,7,16M,0)

parse(4)

lpm_lookup(2,23)

parse(1)

decrease(1)

parse(2)

inc_checksum(1)

checksum(ps-14)

sum(2)

checksum(20)

parse(16)

ct_insertion(2,23,64K,0)

deparse(70)

mem_I/O(70,ps-20)

Packet from core network
I/O_mem(70,ps-56)

parse(8)

ht_lookup(2,23,64K,0)

parse(1)

decrease(1)

parse(2)

inc_checksum(1)

deparse(42)

mem_I/O(42,ps-56)

Fig. 2.8 BNG model.

the internal IP packet is decremented and thus the checksum must be incrementally
updated starting from the current value. The new packet format requires also the
computation of the GRE checksum and the external IP packet Total Length field
and header checksum. Moreover, backward learning is used to populate the table
used to process packets from the core network. Hence, an additional ct_insertion
operation is required, after parsing source port, MAC and IP addresses. The final
packet is formed with the encapsulation of 70 bytes, corresponding to the new
ethernet, MPLS, external IP, GRE and inner IP headers and then sent to the output
I/O buffer.

Packets from the core network require a parse operation for the GRE key and the
inner destination IP before using them for an hash table lookup to get the QinQ tag,
the destination MAC address and the output port. In this case also the TTL of the

24

2.4 Experimental validation

inner IP packet is decremented and the checksum incrementally updated. The new
outgoing packet must then be stored in memory or cache (encapsulation of 42 bytes)
and moved to the buffer of the output I/O device.

Mapping these models to the considered hardware platform, we can conclude
that the estimated cost to process a 64 bytes packet from the access network is:

717 clock cycles +6 DRAM accesses

corresponding to a maximum per core throughput of≈ 5.14 Mpps (3.37 Gbps), while
the DDR3 memory can support ≈ 12.11 Mpps (7.95 Gbps). The estimated cost to
process a 64 byte packet from the core network is:

274 clock cycles +1 DRAM access

corresponding to a maximum per core throughput ≈ 13.45 Mpps (8.83 Gbps) and ≈
24.68 Mpps (16.2 Gbps) achievable by the DDR3 memory.

2.4 Experimental validation

In order to evaluate the accuracy of the estimates produced by the proposed modeling
approach, in this section we present measurements made in a lab setting with software
implementations of the presented Network Functions.

2.4.1 L2 Switch

As a software L2 switch we deploy an instance of Open vSwitch [19] configured
through the OpenFlow protocol to select an output port based on the destination
MAC address. The switch is used with both a predefined forwarding table and
backward learning. Moreover, the same switch implementation is also configured to
perform MPLS label swapping. The software switch runs on the hardware platform
presented in Figure 2.2.

To minimize the interference of the operating system drivers, the network inter-
faces are managed through the Intel DPDK drivers [15]. These drivers are designed
for fast packet processing, providing the possibility to receive and send packets

25

Network Function Modeling and Performance Estimation

Fig. 2.9 L2 Switch testbed setup.

directly from/to a network interface card within the minimum possible number of
CPU cycles. In fact, DPDK drivers allow the CPU to receive packets using polling,
rather than interrupts, since interrupt service routines execute a number of additional
operations for each packet. Moreover, with DPDK drivers it is possible to leverage
DDIO to load packets directly in the L3 cache with no overhead for the CPU.

A separate PC with the same hardware configuration is used as a traffic generator
leveraging PF_RING/DNA drivers [20] to generate traffic up to the link capacity even
with packets of minimum size. As shown in Figure 2.9, we run 4 different processes,
2 PF_RING senders and 2 PF_RING counters, pinned on different dedicated cores,
to generate traffic on both NICs at line rate and, at the same time, compute statistics
on received packets. All the tests are run for 5 minutes and the results present the
averaged aggregate statistics on both sinks.

Basic Forwarding

To test the forwarding performance of the software switch, we generate traffic
consisting of Ethernet packets with ever different destination MAC addresses, in
order to prevent inter-packet caching. For each destination address we had previously
added a rule in the switch to set the destination port. The resulting throughput for

26

2.4 Experimental validation

different packet sizes is presented in Figure 2.10, together with the values estimated
with the modeling approach in Section 2.3.1.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

64 128 256 512 1024 1500

Th
ro

ug
hp

ut
 (

M
pp

s)

Packet size (bytes)

Throughput
Estimate

Link capacity

Fig. 2.10 Basic forwarding performance.

The experimental results show that in this scenario the switch can achieve through-
put up to the link capacity except with packets smaller than 128 bytes. For values of
the performance estimate that exceed the link capacity (i.e., packets greater than 128
bytes), our model cannot be applied by itself as it considers the hardware compu-
tational capability and not the transmission rate of the physical links that becomes
the limiting factor in such scenario. With smaller packets, our mode estimates a rate
around 17 Mpps, regardless of the actual packet size. The measurements demonstrate
that that the throughput estimation is quite accurate, with only a 4% error.

Learning Switch

The next test is aimed at measuring to what extent the performance of the software
switch is impacted in a context in which the learning algorithm plays a significant
role in the processing being performed. We configure the switch by pushing an
OpenFlow rule with a “NORMAL” action, so that it acts as a regular layer 2 learning
switch [21]. Then, before starting the test, for each destination address that will be
used in the test traffic, the corresponding traffic sink sends a packet with the same

27

Network Function Modeling and Performance Estimation

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

64 128 256 512 1024 1500

Th
ro

ug
hp

ut
 (

M
pp

s)

Packet size (bytes)

Single address pair
Multiple address pairs

Estimate
Link capacity

Fig. 2.11 Learning switch performance.

address as source. This allows the switch to learn the output port associated with the
addresses to ensure that measurements will be taken in a steady state (i.e., avoiding
that some packets are flooded on all ports, while others are sent out on a specific
port).

To isolate the impact of caching on the performance we consider 2 scenarios.
In a first test each traffic source sends traffic addressed to only one destination and
with a unique source address. In a second test each traffic source sends traffic using
repeatedly 10 different source and destination addresses. We chose this number of
different address pairs after a preliminary evaluation, which showed that this is the
turning point at which the throughput experiences a sharp decrease due to cache
misses. The difference between the basic forwarding throughput (see Figure 2.10)
and the throughput in this second scenario represents the performance degradation
due to the learning functionality itself. The resulting throughput measured in both
tests by the traffic sinks, is presented in Figure 2.11 for different packet sizes, together
with the values estimated with the proposed model.

The results show that, when all the packets have a single source and destination
address pair, the switch can achieve a very high throughput (≈ 16 Mpps with packets
that are 128 bytes or smaller) because the 2 corresponding entries (one for forwarding

28

2.4 Experimental validation

and one for learning) are matched within the microflow cache [19] that Open vSwitch
implements in kernel space. Since the microflow cache is stored in L1/L2 cache
(thanks to its small size), the execution of the learning code updating the timestamp
requires very few clock cycles (≈ 140), significantly lower than our estimate (≈
350) that assumes a main memory-based lookup of the forwarding table (because the
Open vSwitch implementation specific microflow cache is not modeled).

On the contrary, with 10 different addresses the throughput radically drops to only
5 Mpps for packets smaller than 512 bytes because the forwarding entry to be updated
is not in the microflow cache, in which case the Open vSwitch implementation
delegates the update operation to a user space process. This is significantly different
from the estimated throughput of ≈ 10.5 Mpps expected when an entry timestamp
is updated for each packet. While the design choice of Open vSwitch performing
packet processing, beyond basic forwarding, in user space increases flexibility and
configurability, it adds a large overhead. As the test show, this complexity is not
considered in the model. On the other hand, our model also does not capture the
microflow cache-based optimization and the unlikely case in which it allows to avoid
a lookup within the complete hash table. In fact, the modelization approach we are
proposing aims at evaluating the operation of an optimized NF operating in average
conditions.

MPLS Switch

We evaluate the MPLS Switch model presented in Section 2.3.1 using MPLS over
Ethernet frames. As in the previous case, we perform 2 different tests, one where
each source sends traffic with only one MPLS label, and a second test where each
source sends packets marked with 10 different MPLS labels. A rule matching each
label present in the source traffic is added in the switch before the test begins.

The results of the tests and the estimate plotted in Figure 2.12 show that in both
scenarios the measured throughput is below the estimated value. Since MPLS packet
processing is computationally very similar to basic forwarding, the model estimates a
16.76 Mpps throughput that is close to the 17.47 Mpps estimate for basic forwarding.
On the contrary, the measured throughput for the MPLS switch when operating
with multiple labels (in a scenario comparable to the basic forwarding tests) is well
below (about one third) the one obtained with basic forwarding, which hints to a
poor optimization of MPLS processing in the software switch implementation. This

29

Network Function Modeling and Performance Estimation

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

64 128 256 512 1024 1500

Th
ro

ug
hp

ut
 (

M
pp

s)

Packet size (bytes)

Single label
Multiple labels

Estimate
Link capacity

Fig. 2.12 MPLS switch performance.

might be related to the fact that forwarding based on MPLS labels was added to
Open vSwitch relatively recently, hence the code is not as mature and optimized as
the Ethernet address-based forwarding one. The large difference between the single
and multiple labels tests shows that caching is playing an important role and in a real
scenario, with traffic with multiple different labels, the software switch performance
takes a significant hit (being almost one third of the case that takes advantage of
caching).

2.4.2 Broadband Network Gateway

We run our tests on the BNG platform provided by Intel DPPD [18] on the hard-
ware platform presented in Figure 2.2. This platform has been upgraded with one
additional Intel 82599ES network card with 2x10Gbps Ethernet ports, given that the
software requires 2 ports connected to the access network and 2 ports connected to
the core network. The Intel Packet pROcessing eXecution Engine (PROX) is run on a
second machine with the same hardware characteristics as a traffic generator. The test
is run using the Intel Dataplane Automated Testing System (DATS), which controls
one instance of PROX running on the tester machine to generate and to analyze the
traffic and one instance of the BNG on the other host. DATS generates a realistic

30

2.4 Experimental validation

 0

 5

 10

 15

 20

 25

64 128 256 512 1024 1500

Th
ro

ug
hp

ut
 (

M
pp

s)

Packet size (bytes)

Throughput
Generic estimate

Platform specific estimate
Link capacity

Fig. 2.13 Broadband Network Gateway performance.

workload simulating traffic from 32K users per port and with 8K possible routes.
The test is executed 10 times and the averaged results are presented in Figure 2.13,
where they are compared with the estimate devised in Section 2.3.2. Since DATS
reports the aggregated throughput, corresponding to the total number of packets per
second processed by the BNG, the plotted estimate is the average of the throughput
estimates in the 2 directions.

The BNG software spawns 4 load balancer threads (one per interface) distributing
the traffic among 6 packet processing threads. Therefore in the estimate we consider
that 6 cores are dedicated to packet processing. Thanks to the parallel execution
the CPU could theoretically process up to 42.5 Mpps with 78 byte packets (the
smallest packet generated by PROX). Hovewer, given the considerable number of
main memory accesses required by the BNG to process a single packet, our model
concludes that the overall throughput (for small packets) is limited by the memory
latency and only 23.74 Mpps can be processed when packets are 78 byte long. As
shown by the generic estimate line plotted in Figure 2.13, the model is quite
accurate in estimating the performance for small packets, with a 7% average error
for packets up to 204 bytes. However, the model is less accurate for larger packet
sizes. This is due to a side effect of the distributed execution of the NF.

31

Network Function Modeling and Performance Estimation

The hardware platform used in the experiments has 2 processors and 2 NICs,
each NIC connected to the socket of one of the processors. The DDIO mechanism
considered in Section 2.2.2 when mapping the I/O_mem(hdr, data) EO onto the
hardware platform, moves each packet received through a NIC to the L3 cache of the
processor it is connected to. When a packet processing thread running on the other
processor executes the I/O_mem(hdr, data) EO on a packet stored in the L3 cache
of the other processor, its cost is different than the one presented in Section 2.2.2
because the processor must read the packet from the main memory and load it into its
own L1/L2 cache before starting processing it. As a result, in this case the execution
of the EO requires:

30+5∗⌈hdr+data
64B

⌉ clock cycles+ ⌈hdr+data
64B

⌉ DRAM accesses

Note that the BNG needs to process the whole packet (i.e., hdr+data bytes), not
just the header, in order to compute the GRE checksum.

Considering that that the 4 load balancer threads are uniformly distributing
packets on the 6 packet processing threads and that the traffic load on the two
interfaces is the same, there is a 50% chance for a packet not to be in the L3
cache of the processor running the corresponding processing thread, which is taken
into account in plotting the platform specific estimate line in Figure 2.13.
When compared to the generic estimate, it provides a more accurate throughput
estimate for larger packets that cause a non-negligible wait time for the processor
retrieving them from main memory.

2.4.3 Concluding Remarks

The comparison of experimental results with the estimates produced by our model
presented in this section shows that software NF performance, and consequently the
modeling accuracy, are heavily affected by multiple quite specific factors, such as:

• The effectiveness of caching mechanisms realized in both the execution plat-
form (e.g., processor cache) and the software implementation of algorithms
and data structures (e.g., the microflow cache). Cache deployment largely

32

2.4 Experimental validation

increases the performance variability, which cannot be captured by a model
since per-packet cost strongly depends on the traffic runtime characteristics.

• The implementation of the NF. Our performance estimation approach is well
suited to NFs designed to perform a specific, well-defined, packet processing
operation at high speed. In this context, the Intel BNG proved to be a valid use
case for which the model provides a good estimation, being able to identify
the per-packet processing cost and the aspects limiting the maximum through-
put. On the contrary, general purpose implementations based on a generic,
configurable pipeline to process packets in multiple ways are not well modeled
by our approach, as shown by the tests on Open vSwitch. To provide pro-
grammability and flexibility, general purpose implementations might perform
for each packet a number of operations not specifically needed by the required
function. Our experiments showed that only when Open vSwitch is configured
to perform the simplest supported operation (i.e., basic forwarding of Ethernet
frames), the performance is more predictable and correctly modeled with our
approach.

• Parallel execution of operations. Our approach is not meant to model the inter-
actions and dependencies among components running in parallel on different
processors. As shown by the case of the BNG running 6 parallel threads on 2
processors, the model had to be specialized to take into account the specific
scenario.

In summary, our experimental evaluation demonstrates that a generic model
cannot fully capture all the aspects that can affect the performance of an NF, which
could be achieved only by delving into a level of detail that would make the model
extremely detailed and specific of a given implementation and instantiation for
execution on a specific hardware platform. Hence, the model cannot be expected
to estimate the performance of an NF with high accuracy. Such relatively loose
estimate is anyway not worthless and has at least two very valuable applications: (i)
in support of VM scheduling and VNF orchestration in cloud environments and (ii)
as a reference performance upper bound in both the design and improvement of a
NF software implementation.

33

Network Function Modeling and Performance Estimation

Moreover, the proposed NF model can also be mapped on hardware imple-
mentations, in which case we expect the performance to have less variability and
consequently the model to provide a more accurate estimate.

2.5 Related work

The work described in this chapter was initially inspired by [13] that aims to demon-
strate that the Software Defined Networks approach does not necessarily imply lower
performance compared to purpose-built ASICs. In order to prove it, the performance
of a software implementation of an Ethernet Provider Backbone Edge Bridge is
evaluated. The execution platform considered in [13] is a hypothetical network
processor, for which a high-level model is provided. Unlike our work, the authors do
not aim at providing a universal modelization approach for generic network func-
tions. Rather, their purpose is to leverage the usecase of a specific sample network
function to demonstrate that, even for very specific tasks, the NPU-based software
implementation offers performance only slightly lower than purpose designed chips.

[22] presents a modeling approach for describing packet processing in middle-
boxes and the ways they can be deployed. The approach is applied to a NAT, an L4
load balancer, and an L7 load balancer. The proposed model is inherently different
from ours in that it is not aimed at estimating performance and resource requirements,
but it rather focuses on accurately describing functionalities to support decisions in
the middlebox deployment.

Cloud platform management solutions that take into account the performance of
the network infrastructure when placing VMs [23–25] could greatly benefit from a
VNF performance estimate. For example, [25] describes the changes needed in the
OpenStack software platform, the open-source reference cloud management system,
to enable the Nova scheduler to plan VM allocation based on network properties
and a set of constraints provided by the orchestrator. We argue that in order to
enforce such constraints, the orchestrator needs a VNF model like the ones generated
by the approach presented in this chapter. However, the presented methodology
cannot be applied as such to VNFs because the additional overhead introduced by
virtualization must be considered. A few works addressed this specific aspect. [26]
presents a generic model to predict performance overheads on various virtualization
platforms, based on the evaluation of the most influencing factors, such as CPU

34

2.6 Conclusions and future work

scheduling and resource overcommitment, while in [27] the virtualization overhead
is estimated with focus on the impact of sole resource contention. Resource usage of
virtualized applications is addressed in [28] by means of regression models, starting
from benchmark results. While these studies offer ways of estimating virtualized
application performance, when considering an NFV environment it is essential to
take into account the overhead related to the virtual switch in the hypervisor, which
uses a relevant share of processor time to forward traffic to and from VNFs. Our
modelization approach can be applied to devise an estimate of the resources required
by the virtualized network function and inter-VMs traffic steering, thus enabling a
more accurate VNF performance estimate.

2.6 Conclusions and future work

In this chapter we presented a unified modeling approach aimed at performance
estimation of Network Functions when executed on different platforms. Starting
from the identification of the most relevant operations performed by the NF on
the majority of packets, the presented methodology allows to define a platform
independent model of such a NF. The model can then be automatically mapped to the
target execution platform, leveraging the characterization of hardware performance.
This methodology is especially helpful in planning VNFs placement and resources
allocation, and is valuable for integration of middleboxes in an NFV infrastructure.

The presented experiment results show that the proposed modeling approach
provides a way to obtain a usable, even though loose, estimate of NF performance,
especially for single-purpose, highly optimized, software implementations. The
results show also that a very accurate estimation cannot be obtained without taking in
consideration characteristics of the traffic. We claim that the proposed modelization
approach can be valuable for those application where the traffic profile is not known
a priori, such as VNF scheduling and orchestration. Moreover, the model can be
fine-tuned at runtime with the support of traffic and performance monitoring to
adapt to the traffic profile. We plan, as future work, to integrate the modelization
methodology with online refinement, leveraging live performance monitoring. We
also plan to investigate the application of the modeling approach to estimate the
performance of hardware NFs and to evaluate the performance cost of traffic steering
in a cloud computing enviroment.

35

Chapter 3

Enabling NFV Services on
Resource-Constrained CPEs

3.1 Introduction

While telecom operators need to have a flexible infrastructure that can rapidly
and efficiently provide dedicated, on-demand network services, so far this possibility
was available only by deploying dedicated middleboxes in the network, which is
known to be complex and costly. The ETSI NFV [10] architecture could be a possible
answer to this problem, as it proposes to exploit virtualization techniques, typical
of cloud computing, to instantiate Virtualized Network Functions (VNFs) in the
operator data centers with unprecedented agility.

While cloud providers can count on centralized data centers encompassing mainly
homogeneous servers, telecom operators feature an existing widely distributed in-
frastructure made of heterogeneous devices. In particular, although we can see clear
benefits by integrating current Customer Premise Equipment (CPE) in the Network
Functions Virtualization (NFV) infrastructure [30], those devices are usually based
on low-cost hardware that cannot support VNFs under the form of virtual machines.

However, we can note that most CPEs are based on the Linux operating system,
which includes (hence it can potentially execute) a broad set of existing software

The content of this chapter has been published in [29].

36

3.1 Introduction

network functions (e.g., firewall, NAT, virtual switch, etc) running on the bare
hardware.

To exploit this capability, we propose a software architecture that integrates
existing CPEs in an NFV domain, leaving complex VNFs in the data center while
simple Native Network Functions (NNFs) are executed in the CPE with low hardware
resources, especially on the Home Gateway, hence combining the benefits of the
cloud with the locality of the services running on local CPEs.

NNFs rely on native capabilities, i.e. software components that are already
available on the CPE and that can be executed directly on the host operating system.
In particular, the concept of “native” involves not only regular and built-in network
functions (such as a virtual switching instance), but also elements (e.g., the Linux
iptables module) that can be exploited to build network services (e.g., a firewall),
as well as possible hardware accelerators that may be available on the node itself.
As a result, native functions lead to significant improvements, in terms of memory
consumption, storage requirements and start-up time, compared to existing tech-
nologies (LXC, Docker, VMs), enabling the execution of network functions even on
resource-constrained devices. Moreover, NNFs can exploit hardware components
(e.g. crypto hardware accelerator, integrated L2 switch) already available in the CPE,
reducing power, space and required compute resources, as well as increasing security
and performance.

Our solution enables an NFV orchestrator to optimize the scheduling of the
NFs by starting the services that require network functions close to the end user
(e.g., IPsec terminator, low-latency services) directly on the user CPE, while other
components of the same service (e.g., the NAT module) are executed in a remote
data center. This requires our architecture to define an abstraction that allows the
orchestrator to understand the capabilities of the underlying infrastructure domain,
and that can handle the lifecycle of each network function independently from its
actual implementation. Furthermore, a reasonable security model has to be defined
in order to support multi-tenancy for NNF as well, as the nice properties in terms of
security and isolation guaranteed by traditional hypervisors are not available in our
context.

The rest of this chapter is organized as follows. The next section examines related
works, Section 3.3 describes the technologies this work builds upon. Section 3.4
presents and describes Native Network Functions with their abstraction. Experimen-

37

Enabling NFV Services on Resource-Constrained CPEs

tal results that validate our proposal are shown in Section 3.5, followed by some final
considerations and conclusions in Section 3.6.

3.2 Related Work

The necessity to introduce more flexibility in CPEs serving home/small office cus-
tomers has increased over the years and has become evident with the emerging
NFV paradigm. In fact, a recent trend consists in moving (part of) the CPE func-
tions in the data center with the so called virtual CPE (vCPE) such as in [31, 32];
a minimal hardware appliance is left at the edge of the network, while (most of)
the intelligence is moved to the cloud and implemented through virtual functions.
An intermediate step toward a fully virtualized CPE is proposed in [33], which is
based on the architecture defined by the Home Gateway Initiative industry alliance1.
This architecture is highly modular and implements the different CPE functions as
Java OSGi bundles, which can be dynamically loaded/discarded on demand. The
Surrogate vNF proposed by the paper extends this paradigm by defining a set of
“proxy” OSGi functions that keep compatibility with the existing architecture while
delegate most of the processing to a companion VNF running in the cloud. However,
the above solutions require excellent connectivity between the customer premises
and the data center, and may introduce excessive delay for some latency-sensitive
services. Furthermore, although in principle NFV enables a telecom operator to
orchestrate its services by exploiting the resources offered across its entire network
infrastructure, the vCPE approach cannot exploit resources that may be available on
the CPE itself as VNFs are moved to the cloud.

Edge-based services are proposed in [34], which exploits eBPF programs to
create a programmable data path in the CPE while the control plane is kept on the
cloud. The CPE is able to handle locally the traffic, hence guaranteeing its operations
also in case the connectivity toward the cloud is lost. Although this solution is
very efficient, the eBPF virtual machine is not Turing-complete and cannot support
even simple programs (e.g., string matching) that are rather common in network
services. Considering that the CPE is usually resource-constrained, [35] proposes
an optimization model that is able to select the best VNF among a set of possible
choices, hence optimizing the cost of the VNFs deployed on CPE. However, they rely

1http://www.homegatewayinitiative.org/

38

3.3 Background

Universal Node
LSI - 0

Virtual switch

OF contr.
LSI #1

OF contr.
LSI #0

Network Functions Forwarding Graph (NF-FG)

Compute controller

Native
driver

libvirt

Switch Manager

xDPd
driver

OvS
driver

OF contr.
LSI #N

NF4

DPDK
driver

Docker
driver

NF2

LSI - graph 1

NF3NF1

REST server

Virtual Link among LSIs

Network function port(s)
(between an LSI and a VNF)

OpenFlow connection

Compute control

Network control

Node resource manager

VM
driver

LSI - graph N

NF5

ERFS
driver

Network controller

UN capabilities and resources

VNF selectorVNF scheduler

VNF
resolver

Fig. 3.1 Architecture of the Universal Node.

on the existing technologies for the VNF implementation such as Linux containers
or virtual machines, thus being orthogonal with the idea proposed in this chapter.

To summarize, current NFV-compatible solutions do not support local processing
in the CPEs, while more flexible CPE architectures are still limited in terms of
supported features and are not compliant with the NFV world. Our proposal aims at
achieving both objectives, namely NFV compatibility and arbitrary traffic processing
in the CPE, while still supporting possible VNF running in the cloud, if needed.

3.3 Background

The architecture proposed in this chapter, depicted in Figure 3.1, is an extension of
the Universal Node (UN) [36] developed in the EU UNIFY project [30].

According to the ETSI NFV terminology, [37] the UN includes different compo-
nents of the reference architecture, namely an NFV orchestrator (NFVO), a Virtual
Infrastructure Manager (VIM), and an NFV infrastructure instance (NFVI). The UN
is a single box, e.g., a server, featuring a control plane able to jointly orchestrate net-

39

Enabling NFV Services on Resource-Constrained CPEs

Compute Node 3

Compute Node 1

Network
Monitor

Stealth
Firewall

NAT
VNFs

Compute Node 2

Network
Monitor

Stealth
Firewall

NAT

VNFs

NNFs

Service graph user1/user2 Service graph user 3

Global Orchestrator

Stealth
Firewall

NAT
Network
Monitor

Stealth
Firewall

NAT

Fig. 3.2 Service instantiation of a graph.

work and compute resources. Moreover, it supports multiple execution environments
and different virtual switches, and advertises functional capabilities (e.g., capability
to execute a NAT service) instead of infrastructure-like information (e.g., KVM
execution environment, available memory, etc.). The UN is a tiny infrastructure
domain that exploits locally available information to optimize the service evaluating
local resources/constraints, such as assigning VNFs to the best CPU cores.

Although service-layer requests (e.g., a new service graph that has to handle the
traffic of a specific user) can be accepted by the UN orchestrator, they are usually
issued to the global orchestrator because of its capability to leverage the resources
available on different domains and to coordinate the deployment of the composing
elements (e.g., VNFs) across the whole infrastructure. The global orchestrator, in
turn, is able to split a service graph into a set of coordinated sub-graphs, which are
passed down to the selected infrastructure orchestrators, such as in Figure 3.2.

Upon accepting a new service request from an overarching orchestrator that is in
charge of the global deployment of the service across multiple infrastructure domains,

40

3.3 Background

Table 3.1 Network abstraction in the UN

Function Description
createLSI() Create an LSI

deleteLSI() Remove an LSI

createPort() Create a port connected to a NF on an LSI

deletePort() Remove a port connected to a NF from an LSI

createTSRule() Generate a new traffic steering rule in an LSI

deleteTSRule() Remove an existing traffic steering rule from an LSI

the UN can either deploy exactly the VNFs requested by the global orchestrator or,
in case “generic” VNFs are chosen (e.g., a generic firewall instead of the one of a
specific manufacturer) it relies on an additional component, the VNF resolver, to
select the best implementation available matching the service request. Furthermore,
it creates a new Logical Switching Instance (LSI) to properly steer the traffic among
the selected VNFs.

3.3.1 Network abstraction

The network controller of the UN manages the networking paths among the deployed
VNFs through multiple levels of LSIs: a base LSI-0 and a set of LSI-N (where
N ≥ 1), each one in charge of a different deployed graph (Figure 3.2). The first
(LSI-0) dispatches the traffic from the physical interfaces of the machine to the LSIs
of the other graphs. The additional LSIs create the traffic steering paths between
the VNFs that belong to that graph. Each LSI is managed by a separate embedded
OpenFlow controller, provided by the UN, that dynamically inserts the proper rules
in its flow table(s).

A switch manager module can control different types of virtual switches by means
of the set of primitives listed in Table 3.1 and implemented by each technology-
specific driver. Basically, the abstraction allows to (i) create/delete an LSI, (ii)
create/remove a port on the LSI that is connected to a NF, and (iii) create/remove a
traffic steering rule between VNFs or ports. This allows to replace a generic virtual
switch implementation with an hardware-accelerated one, without any impact on the
rest of the software.

41

Enabling NFV Services on Resource-Constrained CPEs

Table 3.2 Compute abstraction in the UN

Function Description

createNF()
Allocate the resources to start the NF and create a
shadow (local) copy of the NF image (if needed)

startNF() Attach ports to the NF, and starts the NF

stopNF() Stop the NF, without deallocating resources

updateNF() Update the NF while running, e.g., by removing or
hotplugging new network interfaces

deleteNF() Release the resources (memory, shadow disk image)
allocated to the NF

pauseNF() Suspend the NF execution (for possible migration)

3.3.2 Compute abstraction

The compute controller is responsible for the VNF lifecycle management, such as
instantiate, terminate and update a VNF. This is achieved by defining a common
compute abstraction (Table 3.2) that is generic enough to be applicable to any type
of execution environment. This abstraction is implemented by a set of drivers, each
one in charge of a specific execution environment technology (e.g., VM, Docker,
DPDK process) with the associated required parameters. For instance, the plugin
that manages the KVM hypervisor creates on the fly the proper XML file required by
the libvirt library for the VM instantiation when the createNF() call is invoked.

Each compute driver needs also to support different types of interfaces (e.g.,
dpdkr, virtio, etc.), according to the specific execution environment, as each
execution environment supports only a subset of the available port types. In this
respect, the compute controller needs to be coordinated with the network controller
in order to attach the VNF ports, according to the required technology, to the existing
software switch.

3.3.3 Northbound interface

The northbound interface of the UN is bidirectional: the downstream direction is
based on generic service graphs that have to be instantiated on the node, while
the upstream direction is used to export the information needed by an overarching

42

3.4 Native Network Functions

orchestrator and that is used to properly instantiate the requested service across
different infrastructure domains.

The UN exports three types of information to such an upper layer orchestrator.

• Functional capabilities represent the ability to execute a specific network
function, such as a NAT or firewall service, optionally with some specific
characteristics, such as the capability to handle high amount of traffic (e.g.,
because it can exploit an hardware accelerator available in the node).

• Infrastructure-level capabilities refers lower-level characteristics, such as
the CPU architecture, the ability to execute generic VMs or Docker containers,
etc.

• Available resources refer to the about of unused hardware resources, such as
the amount of free memory or the presence of a hardware accelerator.

The capability to advertise functional capabilities is a unique feature of the UN
and it represents also the main reason we can bring the concept of Native Network
Functions in this environment. In fact, an overarching orchestrator that operates
based on functional capabilities will not decide the actual VNF implementation to
be used, but it will only tell the underlying domain (e.g., the UN) to start a specific
network function, leaving to that domain the decision about the specific VNF flavor
(e.g., VM, Docker, etc) to be used. In turn, the UN will delegate this decision to the
the VNF resolver.

3.4 Native Network Functions

This section introduces the concept of Native Network Function, i.e. a data-plane
processing component that exploits capabilities natively present on the compute node
and cannot be exploited by current NFV solutions. Our architecture allows NNFs to
work alongside traditional VNFs, giving the possibility to improve overall network
performance without losing the flexibility guaranteed by the NFV approach.

43

Enabling NFV Services on Resource-Constrained CPEs

3.4.1 NNF model and VNF template

The first step towards the integration of NNFs in an NFV architecture is to define a
model carrying all the information needed to properly execute them on a compute
node. In fact, besides all the information required for the execution of a generic VNF
(e.g., number of ports, port types), each NNF requires some additional properties to
be satisfied in order to run on a compute node, namely dependencies or requirements.
Those might refer to software packages (e.g., executables, libraries) available on the
compute node that are already installed and that are required for the NNF to operate.

In addition, our model considers also information regarding the status of the
allocated function, telling about current configuration and resource used by the
function. This data is needed in order to be able to release the resources used by the
NNF when the function stops, while in traditional VMs resources are freed along
with the deletion of the VM.

In order to cope with this data, we extended the network function template to keep
both VNF general attributes, common for all types of network function, and NNF-
specific information. Figure 3.3 contains an excerpt of an NNF template representing
a native firewall, which shows the properties of the function. In particular, it exploits
iptables as a native capability and also supports multi-tenancy. The function handlers
that will be used by the compute controller to drive its life-cycle (e.g., start, modify
and stop) are available at the given URI with a specific format. The template also
specifies basic I/O and network configuration of the function, information needed
for driving the other NF types as well, not shown in the example.

3.4.2 The native compute driver

After receiving the VNF template, the compute controller has to control the native
function by using the abstraction described in Section 3.3.2. The native driver will
download the function using the URI specified in the VNF template, which points
to a .tgz file. The above archive is a very compact file that includes a set of bash
scripts that are called to perform the actions listed in Table 3.2, such as starting
a new instance of the NNF, updating, stopping and all the other actions that are
required in the VNF lifecycle management. As evident, the support for bash is the
only requirement for running a NNF, which, in turn, enables native functions to

44

3.4 Native Network Functions

{
"name" : "firewall" ,
"uri" : "http://repo/native/firewall.tgz",
"vnf-type" : "native",
"multitenancy" : true,
"dependencies" : {

"capability": [{
"name" : "iptables",
"type" : "package" ,

}],
},

}

Fig. 3.3 Excerpt of the template of a firewall NNF.

be seamlessly deployed on machines with different CPU architectures. The files
required for the execution of the NNF are:

1. a start script for the NNF instantiation;

2. a stop script to stop the NNF and to free the related resources;

3. the update script to update the NNF at runtime;

4. any other file that will be used for the configuration of the network function.

All the scripts that define the NNF are called by the plugin of the native function,
which manages its life-cycle.

3.4.3 I/O model

In the traditional NFV framework, the traffic steering among the VNFs is carried out
by a virtual switch that forwards packets according to the rules given by a network
controller. Each VNF is provided with a certain number of virtual network interfaces
that correspond to its ports, connected to the virtual switch.

In order to seamlessly support the execution of NNFs, the same I/O model must
be repeated and therefore each NNF should be connected to the virtual switch with
the appropriate number of ports. In this way, the network controller can create virtual
ports for the NNF as well as for the VNF, without any modification to its logic.

45

Enabling NFV Services on Resource-Constrained CPEs

In the NNF case, these ports are implemented as virtual Ethernet (veth) interfaces
assigned to a network namespace on which the NNF is executed. As such, each NNF
sees its own network interfaces that can use to retrieve/send its own specific network
traffic.

3.4.4 Isolation model

Differently from current virtualization technologies that natively support an isolation
model for the instantiated VNFs, the NNF driver needs to explicitly implement a
layer that provides at least some form of isolation of the NNF against the rest of the
system.

The NNF driver leverages the Linux namespaces by creating a new network
namespace before running an NNF, adds to it the virtual network ports required by
the function, and then launches the NNF inside the namespace. As a result, the NNF
sees only the incoming traffic sent by the virtual switch to its veth. The name of
the namespace is unequivocally related with the graph and the function name, thus
avoiding possible collisions. At the end of the execution of the NNF, the namespace
is deleted by the native driver and all the other related resources are freed.

Differently from Linux containers that exploit all the different types of names-
paces available in the Linux OS, NNFs use by default only the network one in order
to guarantee network isolation between different NNFs. A more sophisticated isola-
tion model, leveraging multiple namespaces that can be activated on demand (based
on the requirements of the tenant, the infrastructure owner, and NF), is currently in
progress.

3.4.5 Multitenancy

In a traditional NFV architecture in which each VNF runs on a distinct VM, multite-
nancy is an intrinsic property of the execution model. In fact, multiple instances of
the same VNF can always be launched while traffic steering primitives can set the
proper flow rules in the software switches to create the correct traffic steering paths
among VNFs.

Supposing that a NNF can be instantiated multiple times, multitenancy is achieved
by encapsulating multiple instances of the NNF in dedicated namespaces whose

46

3.4 Native Network Functions

virtual interfaces are connected to different ports of the software switches. On the
contrary, if a NNF does not support multiple instances running at the same time (e.g.,
it relies on an hardware coprocessor that cannot be shared among functions), multite-
nancy should be managed by means of an ad-hoc marking mechanism that allows the
NNF to distinguish between traffic belonging to different service graphs. Moreover,
the NNF should create multiple internal paths to process the above multiple traffic
streams disjointly.

3.4.6 Security considerations

Launching a native function, hence a script running on the bare hardware, offers less
protection than starting a software in a VM or in a container, which can leverage the
additional protection shield provided by the hypervisor or the container execution
engine. For instance, little protection exists to limit the resources used by native
functions, e.g., in terms of CPU/memory consumption or the number of occupied
CPU cores. Although the impact of the above problems could be limited by turning
on some addition Linux mechanism such as cgroup, this complicates the solution to
the extent to which other alternatives may be more appealing, such as replacing the
NNF with a container-based implementation.

In any case no protection exists that prevents a VNF, which is expected to
provide a given service (e.g., firewall), to behave differently (e.g., to launch an
attack toward a remote host) and the current solution is simply to trust the creator of
the application or the entity (e.g., app marketplace owner) that sells it. Therefore,
although we acknowledge that the problem of determining whether a NF is malicious
is emphasized in case of NNF because of their inferior degree of isolation, we feel
that the problem is rather general and should require a more generic solution that
guarantees, a priori, the goodness of the VNF, e.g., by means of novel software
verification techniques.

In this respect, a possible direction for future investigation could consist in inte-
grating remote attestation techniques [38] in our execution environment, exploiting
an external machine to verify the correctness of the running software.

47

Enabling NFV Services on Resource-Constrained CPEs

U
ni

ve
rs

al

N
od

e

CPE (device under test)

User device
(traffic source)

Corporate VPN
server Server

(traffic sink)

Corporate

LAN

IPSec client
endpoint IPSec server

endpoint

Fig. 3.4 Testbed used in the validation.

3.5 Validation

This section presents the results of a preliminary validation campaign with a transpar-
ent VPN access use case, i.e., when a user client located on a trusted local network
(e.g., home) needs to connect to its corporate VPN server. In order to avoid the neces-
sity to install the VPN client software on all user’s devices (e.g., laptop, smartphone,
etc.), the VPN client is instantiated on the user’s CPE, hence providing secure access
to the corporate network independently of the user device.

The testbed, shown in Figure 3.4, encompasses a client that generates the traffic,
a CPE executing the IPSec client NF in charge of encrypting/decrypting the traffic,
a VPN server with the opposite duty, and finally a traffic sink. All the four boxes
are connected with point-to-point 1 Gbps Ethernet links; faster speeds are usually
not available in low-end CPEs. Three powerful workstations were used respectively
as traffic source, VPN server and traffic sink in order to avoid those machines to
become the bottleneck, while different flavors of CPEs are used, namely a mid-range
server, a business CPE based on the Freescale T1040 and a domestic CPE, all with
the same version of the UN software, although compiled for the specific platform.
The specific hardware and software details are listed in Table 3.3.

The UN was configured through its northbound interface with a very simple
service graph, featuring an IPsec client NF connected to the LAN and WAN ports;
the NF was based on the well-known Strongswan [39] software, configured to
operate in IPsec tunnel mode (using IKEv2 to establish the security associations,
AES-CBC-128 for the encryption and SHA1-HMAC for verifying the data integrity).

The use of different hardware platforms was coupled with different implementa-
tions of the same NF, whenever possible. The server-based CPE was tested with three

48

3.5 Validation

Table 3.3 Characteristics of the devices used in the validation

Machine(s) Hardware and software characteristics
User device (source) Intel Core i7-4770, 32GB RAM, 500GB HD

Linux Ubuntu 14.04, Kernel version: 3.16Traffic server (sink)
Corp. VPN server

Server CPE
Intel Core i5-3450S, 8GB RAM, 200GB SSD
Linux Ubuntu 14.04, Kernel version: 3.19

Domestic CPE
Netgear R6300v2, CPU Broadcom BCM4708A0,
800MHz (2 cores), 128MB Flash, 256MB RAM
OpenWrt 15.05, Kernel version: 3.18

Business CPE

Hawkeye HK-0910, Freescale QorIQ T1040,
1.2GHz (four e5500 cores), 64MB NOR Flash,
2GB RAM DDR3L-1600
Freescale QorIQ SDK V1.7, Kernel version: 3.12

equivalent network functions based on VM, Docker and NNF, while the business
CPE and the domestic CPE supported the network function only as sofware-based
NNF.

Our experiments took into consideration (i) the throughput between the two
hosts and the associated CPU load during the experiment, (ii) the amount of RAM
consumed, (iii) the NF image size, (iv) the amount of additional libraries required
to start the requested execution environment in addition to the base Linux system
(e.g., KVM/QEM for VMs) and (v) the time required to start the NF. The first two
experiments leveraged the iperf tool installed on the source and sink machines,
configured to generate two unidirectional TCP streams at the maximum speed. We
set the packet size such that the MTU is not exceeded after the addition of the IPSec
header, in order to avoid fragmentation. All experiments were repeated 10 times and
averaged.

The throughput, in the second column of Table 3.4, shows that NNFs and Docker
bring significant performance improvements compared to VMs because of the simpli-
fied architecture that does require neither the hypervisor nor the guest OS, where the
NF is running. Their throughput is higher with a reduced CPU consumption as well.
In this respect, NNFs and Docker show the same level of performance, as expected,
given that they are based on the same technology (i.e., kernel-based processing in
the host plus namespaces).

49

Enabling NFV Services on Resource-Constrained CPEs

Table 3.4 Comparing different implementations of the IPSec client, on different machines

IPsec client implementation Thr./CPU RAM NF image
(Mbps/load) (MB) (MB)

1) Server CPE - KVM/QEMU 796 / 100% 390.6 522

2) Server CPE - Docker 1095 / 80% 24.2 240

3) Server CPE - NNF 1094 / 80% 19.4 5

4) Domestic CPE - NNF 57.2 / 100% 5 2

5) Business CPE - NNF 617 / 90% 1.9 3.7

The memory occupation, i.e., the amount of RAM required to execute the given
NF and the execution platform, showed in the third column of Table 3.4, exhibits the
same trend. In this case numbers can only be considered as qualitative measurements,
as they may change considerably by tuning the NF in a different way, particularly
for the VM case. In our test we created a guest OS with the default installation of a
Ubuntu server 14.04, installing only the packages required for our VNF to work. As
evident, the memory occupation is definitely higher in the case of VMs, while Docker
and NNF are very similar, although they slightly vary according to the hardware
platform under consideration. Note that Table 3.4 reports the application-level
throughput, i.e., measured on the source/sink machines. Packets are extended with
the additional IPsec headers required to create the tunnel, hence reaching, between
the CPE and the IPSec server endpoint, an higher throughput.

The fourth column of Table 3.4 shows the NF image size, which confirms
definitely the advantages of NNFs not only with respect to VMs, but also against
Docker, as the image size is about two orders of magnitude less than its counterparts2.
Moreover, this impacts also on the time required to download the NF image from a
remote location, which is critical when the CPE is connected to the Internet through
slow links (e.g., ADSL). An additional test was carried out in the host environment
to measure the additional disk size, required in the host, to support the execution of
the specific environment; due to the intrinsic limitations this was only possible on
the server-based CPE. Starting from a clean installation of Ubuntu server 14.04 with
default settings, we measured an additional 40 MB for the components required to
execute VMs (i.e., KVM/QEMU) and 30 MB required to execute Docker containers.

2The image size of a NNF is merely the size of the NF software, compiled for the target platform

50

3.6 Conclusions

The above numbers confirm the advantages of the NNF with resource-constrained
environments; in fact, the reason for not testing Docker on the home and business
CPEs is the disk size limitation on those platforms.

Finally, we measured also the time to start a NF in the server-based CPE, being
the only environment that can start all the NF types. The result showed about 3
seconds with VMs (which require starting the entire VM), 350 ms with Docker, and
727 ms with NNF; the baseline, i.e., the time required to launch the IPsec client on
the base system without wrapping it in any NF, was 154 ms. This confirms, once
more, the advantage of running applications in the host; the (relatively) high number
with NNF is due to some implementation-dependent delay required to attach the
network ports to the NNF and will be addressed in a future optimization.

In this preliminary evaluation we have considered a very simple service chain.
We reasonably expect that more complex chains, composed of many NFs, would
increase the advantages of NNFs over VNFs, given that resources usage, such as
main memory, would become even more critical.

3.6 Conclusions

This chapter presents the idea of Native Network Functions, an NFV abstraction
that allows to execute network functions even on resource-constrained devices by
exploiting their native (both software and hardware) capabilities. Our preliminary
validation campaign confirms that NNFs can be implemented over a reasonable
variety of hardware, ranging from standard high-volume servers to business and
domestic CPEs, with different hardware characteristics (CPU architecture and speed,
memory size, etc.). Furthermore, NNFs can export existing hardware accelerators
as network functions, hence enabling an NFV orchestrator to transparently take
advantage from the superior efficiency of the hardware compared to pure software
implementations.

Future work will aim at extending this approach to support traditional middle-
boxes as well (e.g., routers, switches, etc.), allowing their seamless integration in an
existing NFV infrastructure.

51

Chapter 4

Enforcement of Dynamic HTTP
Policies on Residential Gateways

4.1 Introduction

Modern residential gateways are widely deployed to provide broadband Internet
access to families, small and medium-sized enterprises supporting a wide range
of data rates, from a few Mbps up to 1 Gbps [41]. The architecture of residential
gateways is characterized by special purpose hardware chips that forward packets at
high speed at the data link layer, while general-purpose components, such as CPU
and central memory, are usually employed for other operations that require more so-
phisticated processing. Since all the traffic directed to Internet hosts (i.e., outside the
residential or corporate branch network) must pass through the residential gateway,
it is the ideal appliance to apply traffic filtering. Hence, its processing capabilities,
often underutilized, could be leveraged by Internet access service providers to offer
such additional service to their customers. However, the limited computing and
memory resources that residential gateways have by design make the implemen-
tation of new features working at wire-speed very challenging, particularly when
complex operations such as parsing packets up to the application layer (a.k.a. Deep
Packet Inspection or DPI) are involved. This is the case for many critical modern
filtering applications, such as malware protection, corporate policy enforcement,

The content of this chapter has been published in [40].

52

4.1 Introduction

parental control, advertisement block, that are based on inspection and filtering of
Uniform Resource Locators (URLs). In fact, users access and exchange content
mostly through mobile apps and web applications, both based on HTTP, which uses
URLs to identify data objects to be transferred.

Currently, the above URL filtering-based services are most often operated in web
proxies [42] or in end-user devices (e.g., laptop, tablet, smartphone), as a mobile
app [43] or a browser plugin [44]. None of these solutions can guarantee that all
the outgoing traffic is analyzed and filtered; in fact, a user can switch to a different
device, disable the filtering software or change the client network settings in order to
bypass a web proxy. The residential gateway is the perfect spot where to implement
services that require all the web page requests to be analyzed. This would require
matching URLs against large, dynamic blacklists, which far exceeds the limited
hardware capabilities of this category of devices. For example, an effective parental
control service, which is a valuable offer to residential customers, is based on a very
large database of URLs that cannot be stored in the limited memory of common
residential gateways (usually in the order of tens of MB). An additional challenge
comes from the fact that the database must be frequently updated. Last but not least,
URL matching cannot be limited to the hostname, but the entire URL should be
considered because the same web server can host both appropriate and inappropriate
or malicious pages. Hence, looking up a URL within a huge list of blocked resources
exceeds the processing capabilities of a residential gateway, especially if it must
be done for live traffic, which implies that the additional introduced delay must be
limited.

This chapter presents U-Filter, an efficient solution to integrate a URL filtering
service in a resource constrained device, such as a common residential gateway,
leveraging a distributed architecture. A remote policy server in charge of keeping
the URL database up-to-date provides a fast API that can be accessed through
the network in order to establish if a request for a specific URL is allowed. It
is reasonable that the above mentioned server is operated by a service provider
(or the network service provider) and can rely on powerful hardware resources to
serve multiple residential gateways with minimal response time. However, this
architecture does not necessarily require the network service provider awareness and
collaboration. The presented solution greatly alleviates the load on each residential
gateway, even though it must still perform a limited form of DPI on outgoing packets
to extract the URL from every HTTP request, and afterwards query the server in

53

Enforcement of Dynamic HTTP Policies on Residential Gateways

order to determine the policy that must be applied. We adopt specific techniques to
optimize this task and limit the latency introduced by the client-server interaction,
striking a balance between the load they introduce and the limited resources available
in residential gateways. Although the U-Filter design and the adopted optimizations
are presented here in the context of policy enforcement on HTTP traffic, they offer
a general solution for in-network policy enforcement suitable for a wide range of
network protocols, thanks in particular to the decoupling of policy checking and
enforcement phases, as detailed in Section 4.2.2.

This chapter is organized as follows. Section 4.2 presents the architecture of U-
Filter, describing the design principles that led to our solution and the optimizations
used to provide real-time policy enforcement on resource-constrained devices. In
section 4.3 we evaluate the proposed solution by discussing its limitations and
analyzing the additional delay introduced by U-Filter. We validate U-Filter in
Section 4.4 through various experiments showing the impact on the user experience.
Section 4.5 presents the state of the art of HTTP-level policy enforcement and
Section 4.6 concludes the chapter with a discussion of future research directions.

4.2 Architecture and implementation

4.2.1 Operating principles

A typical deployment scenario of U-Filter is presented in Figure 4.1. A user surfing
the web generates many HTTP requests that transit through her/his residential
gateway. These requests are analyzed by U-Filter, which extracts the requested
URL through a lightweight DPI algorithm. This allows to process line rate traffic
with a small overhead for the residential gateway. Afterwards the HTTP request
is released and can continue its journey towards the web server, while the URL is
simultaneously sent to the policy server that provides the policy to enforce. This
policy is enforced by U-Filter on the packet carrying the HTTP response by either
blocking or allowing it. Thanks to the parallelization of the policy server and web
server processing, this workflow greatly reduces the latency experienced by the user,
making it comparable with the one that can be obtained with the same hardware
without the service in place.

54

4.2 Architecture and implementation

Residential Gateway

U-Filter
Policy Server

Web Server

(1) HTTP Request (2a) HTTP Request

(3a) HTTP Response(4) HTTP Response
Client

Fig. 4.1 U-Filter workflow.

4.2.2 Architecture overview and design principles

Our prototype has been built around three objectives. First comes flexibility, as it is
essential to be able to enforce effective protection to end users in a prompt response
to newly discovered threats. Second is efficiency since the system is targeted to
resource-constrained devices. Third, we took care of ensuring an excellent user
experience, hence limiting the impact of the system in terms of possible additional
latency when inspecting traffic to apply filtering policies. The above high-level
objectives have translated in the following four design choices.

Three-tier processing architecture

As shown in Figure 4.2, U-Filter includes (i) an online module, which sits on the
data plane of the router and is mainly in charge of identifying (and extracting)
requested URLs from network traffic (more details in Section 4.2.5) and apply the
policy decisions on the return traffic, (ii) an offline module that queries a remote
policy server to know whether such URL should be allowed or not (described in
Section 4.2.6), and (iii) a remote server that implements the complex protection
logic and returns a boolean value with the result of the classification, i.e., if the
corresponding HTTP session handled by the online module has to be allowed or the
URL is malicious and the response has to be blocked. The first two modules are built
with efficiency in mind, while the latter allows to achieve the required flexibility.

55

Enforcement of Dynamic HTTP Policies on Residential Gateways

LAN
interface

WAN
interface

Linux IP forwarding (kernel)

U-Filter
online module

Web serverUser client

NF_IP_FORWARD hook

U-Filter policy
server

Internet

URL
queueKernel space

User space

HTTP
session

table

Verdict
queue

[Kernel space portion]

U-Filter offline module
[User space portion]

Fig. 4.2 U-Filter architecture.

The U-Filter online module is inserted on the path that packets being forwarded
by the residential gateway take through the system. It leverages a hook provided
by the netfilter [45] framework, as detailed in Section 4.2.3, available in the
mainline Linux kernel, to enable interaction with the IP forwarding function. To
achieve high performance, the online module is executed in the kernel space; this
allows to avoid expensive kernel-to-user context switching and enables sharing the
required data structures with the rest of the kernel (e.g., direct access to privileged
memory areas), hence minimizing communication overheads. In fact, by working
in kernel space, the online module can implement a zero-copy approach, since the
data structure containing the packet data is not copied in the user space memory
and is only referenced by the online module. On the other hand, the offline module
is invoked a limited number of times compared to the online module because it
operates only when a new URL is detected, but it requires more time to complete due
to its interaction with the (remote) policy server. As a consequence, an asynchronous
execution model is preferred for this module in order not to block the execution of
the data path. This could be implemented as either a dedicated kernel thread or as a
user-space process, which is the solution chosen in our implementation1 because of
the complexity of the tasks it executes and to avoid that any possible misbehavior

1In fact, a small portion of the offline module has to be implemented anyway in the kernel space,
as shown in Section 4.2.6.

56

4.2 Architecture and implementation

(or bug) can be propagated to the kernel, hence affecting the overall operation of the
residential gateway.

The policy server can be executed on a remote host (or on a cluster of hosts
for performance reasons), as its only interaction with the rest of the system is
through a query/response protocol. A single policy server can be queried by offline
modules running on multiple (remotely distributed) residential gateways. In our
implementation, this interaction has been implemented with the ad-hoc dedicated
protocol detailed in Section 4.2.7, but other choices (e.g., REST web service) are
surely possible.

Decoupling policy verification from HTTP operation

As introduced in Section 4.2.1, policy compliance is verified without holding out-
going packets on their ride towards the final destination. This solution makes the
system more complicated but much more efficient. In fact, keeping the HTTP request
on hold until the arrival of the response from the policy server would add additional
delay to the HTTP communication, increasing the Round Trip Time (RTT) of the
HTTP connection and hence affecting the user experience. Vice versa, the U-Filter
offline module checks the requested URL with the policy server during the normal
HTTP RTT. A temporary entry in an HTTP session table is created by the online
module in order to possibly hold a response from the web server received before the
result of the compliance check arrives from policy server. While this allows packets
to travel through the Internet also if they are part of a session that shall be stopped, the
answer from the web server never reaches the user, effectively preventing possible
unwanted data to reach the user’s host.

Efficient memory usage

Efficient memory usage is a key problem because of (i) the limited amount of memory
usually available in current residential gateways, and (ii) the bad effects in terms of
CPU cache pollution when large memory structures (with sparse access patterns)
are used. Several implementation choices have been adopted to ensure that memory
is used efficiently. According to the best practice for kernel module development,
all the memory used by the online U-Filter module is allocated at startup in order
to avoid costly memory allocations at run-time, and the structures that are used

57

Enforcement of Dynamic HTTP Policies on Residential Gateways

for the communication between online and offline modules are shared (using the
proper primitives for mapping memory between kernel and user space) for better
memory efficiency. Furthermore, all the helper structures (detailed in Section 4.2.4)
make use of contiguous memory areas in order to improve data locality and, as
a result, CPU cache efficiency, except for the packets that may need to be held
temporarily by U-Filter (while waiting for an answer from the policy server), which
have been allocated by other portions of the kernel and therefore are not under
our control. Finally, the usage of additional memory is kept at minimum: (a) the
data structure dedicated to the session table defines a “default” behavior that avoids
storing accepted sessions, and (b) the number of packets held by the router while
waiting for the answer from the policy server is limited to, at most, one per session,
hence further reducing memory requirements.

Per-packet operation

This is known to be much more efficient than per-TCP session processing while, at
the same time, reducing the latency required to extract application level information
(namely URLs). In fact, the former can be based directly on the very efficient
packet processing primitives available in the Linux kernel through the netfilter
framework, instead of requiring a full-blown HTTP proxy, whose complexity is
so high to make a kernel implementation problematic. Therefore, an additional
overhead is added for moving all packets from kernel to user space, where a proxy is
usually located, and then back to kernel for their transmission on the output interface.

As a downside, working on individual packets makes the system less robust
against malicious attacks such as HTTP requests whose URLs are split across
packets (possibly deliberately sent out of order). Such attacks could be spotted
by adding lightweight, packet-based ad-hoc anomaly detection algorithms [46–48],
which is outside of the scope of this work.

4.2.3 Netfilter

In order to gain access to live traffic, U-Filter leverages netfilter [45], a framework
provided in the mainline Linux kernel that allows analyzing and modifying all
the packets that are being received by the kernel. netfilter defines a set of
hooks that correspond to different stages in the path packets take in the system.

58

4.2 Architecture and implementation

Device Driver
(INPUT)

ROUTING

ROUTING

Local processes

Packets from local processesPackets to local processes

Packets that need
to be forwarded

U-Filter

Device Driver
(OUTPUT)

Select the next hop and the exit interface
for the packet (unless the destination is a

local process, in which case send the packet
to this process)

NF_IP_LOCAL_IN

NF_IP_FORWARD

NF_IP_PRE_ROUTING

NF_IP_LOCAL_OUT

NF_IP_POST_ROUTING

Fig. 4.3 netfilter hooks chain and U-Filter.

An application can register one or more callbacks linked to a specific hook; the
corresponding callbacks are invoked whenever a packet passes through it. The
callback receives a pointer to the system data structure containing the packet’s data
as a parameter, therefore it can read and modify the packet. Finally, the returned value
instructs the system on whether the packet can continue its journey (NF_ACCEPT),
or should be immediately dropped (NF_DROP), or should be diverted to a different
(custom) processing pipeline (NF_STOLEN), which is useful if the decision about
accepting/dropping the packet has to be postponed.

Figure 4.3 shows the possible paths taken by packets, together with the hooks
that can be used to register callbacks. All the incoming packets are caught by the
NF_IP_PRE_ROUTING hook, before being processed by the routing task; afterwards,
packets addressed to the host itself are caught by the NF_IP_LOCAL_IN hook, while
those traversing the host on their way toward the destination hit the NF_IP_FORWARD
hook (where U-Filter is attached). The NF_IP_LOCAL_OUT hook catches packets
sent by the host’s local processes, while the NF_IP_POST_ROUTING hook catches all
the outgoing packets, whether they are forwarded or locally generated.

59

Enforcement of Dynamic HTTP Policies on Residential Gateways

Src
IP

Dst
IP

Src
port

Dst
port

skbuff

response packet

KEY VALUE

RX PACKET
(1 entry)

Kernel session table (hash map)

M
 e

n
tr

ie
s

Session entry
DROP|UNKNOWN

SESSION STATUS
FLAG

Fig. 4.4 HTTP session table, shared between online and offline modules.

4.2.4 Key data structures

The online and offline modules exchange data using three shared structures, as shown
in Figure 4.2: (i) a hash map for the status of the policy for a given session, (ii) a
queue for the URLs that have to be send to the policy server and (iii) a queue with
the verdict received from the policy server. Each of the data structures is described
in detail in the reminder of this section, while their usage will be discussed in the
following sections.

The HTTP session table (shown in Figure 4.4) stores data regarding pending
sessions. An HTTP session is considered pending when the HTTP request has been
received, but either the HTTP response from the web server or the decision from
the policy server are yet to be received. The hash map implementing the HTTP
session table is allocated in kernel space and is shared between the online and offline
module because the former needs to know (when an HTTP response arrives) whether
a decision for an URL has been received, while the latter needs to know, when the
verdict is available, whether an HTTP response is already waiting. An entry in the
HTTP session table can be deleted as soon as both the HTTP response and the verdict
from the policy server have been received.

The URL queue (shown in Figure 4.5) is shared between the online module and
the offline module user space process, while the verdict queue (shown in Figure 4.6)
is shared between the kernel thread and the user space process of the offline module.
The two queues are managed according to a FIFO policy and the access to each
queue is implemented with two pointers, pointing respectively at the first free and
the first full slot.

60

4.2 Architecture and implementation

SESSION KEY

Src
IP

Dst
IP

Src
port

Dst
port

URL

Fig. 4.5 URL queue, shared between the online module and the offline module user space
process.

SESSION KEY

Src
IP

Dst
IP

Src
port

Dst
port

ACCEPT | DROP

SESSION STATUS FLAG

Fig. 4.6 Verdict queue, shared between the offline module kernel thread and user space
process.

To correlate data in different data structures, an entry always contains a key made
by the 4 tuple identifying the TCP session (later referred as session ID):

(Source IP, Destination IP, Source TCP port, Destination TCP port)

The addresses are the ones present in the HTTP request and are inverted in the
corresponding HTTP response.

An entry in the URL queue contains also the URL that should be checked with
the policy server, while an entry in the verdict queue contains a session status flag
that assumes either ACCEPT or DROP, according to the policy to enforce. The URL
is stored in some pre-allocated memory whose size allows containing a full-length
HTTP payload (i.e., 1460 bytes), in order to avoid memory allocations at run-time.
On the other hand, an entry in the HTTP session table stores as value a session status
flag and a void pointer to a packet (skbuff structure, allocated by the operating
system). The use of this pointer is detailed in Section 4.2.5. Differently from the
verdict queue, the session status flag in the HTTP session table can assume either

61

Enforcement of Dynamic HTTP Policies on Residential Gateways

UNKNOWN or DROP. In fact, entries corresponding to an ACCEPT policy are deleted as
soon as the verdict is available in order to reduce the size of the hash table. Thus, in
the HTTP session table the absence of an entry is considered as an ACCEPT policy.

As a further optimization to reduce the allocated memory, in our prototype the
TCP session ID uses only the last byte of the source IP address, instead of the entire
4 bytes address, with no impact on the system proper execution. This optimization is
correct in our environment, since domestics LANs usually adopt a 24 bits subnet,
therefore all the clients have the same value for the first 3 bytes of the IP address.
In general this is not valid for every deployment, hence the optimization should be
adapted to the specific addressing plan in use.

4.2.5 Online module

The online module sits on the data path by intercepting all the traffic forwarded by the
router through a callback registered on the NF_IP_FORWARD netfilter hook2. As
shown by the workflow depicted in Figure 4.7, most of the processing occurs when
an HTTP request or response is detected. For each packet, the module first locates
the beginning of the TCP payload and then checks if that packet can be considered
the first segment of an HTTP request or response by matching the beginning of
the TCP payload against a few simple text strings, namely an HTTP method (i.e.,
GET, POST, PUT, etc.) in case of a request or a version string (i.e., HTTP/1.0 or
HTTP/1.1) in case of a response. This classification method is far more reliable
than checking the transport-layer port number, as investigated in [49]. All other
packets, namely HTTP packets that are not the first of the request/response message
(hence, do not match the signature), as well as non-HTTP traffic, are left to continue
their way as the online module returns NF_ACCEPT to netfilter. Notably, since
all TCP packets containing a valid payload are matched against the signature, this
algorithm is able to intercept all the HTTP requests/responses that are issued within
a connection in HTTP 1.1 persistent mode, not only the first one, as well as within
HTTP connections terminated on a non-standard TCP port. This algorithm could
raise concerns about the cost of inspecting all packets, as general DPI techniques
are normally demanding in terms of computing resources. However, our algorithm
does not perform a full-blown DPI with full parsing of all protocol headers and their

2By choice, U-Filter does not apply policies to the packets that are received and generated by the
router itself, e.g., for management purposes.

62

4.2 Architecture and implementation

Not HTTP

Check packet
(DPI)

NF_ACCEPT

HTTP responseHTTP request

New
Packet

Extract URL

Update HTTP session
table with new
session (status=

UNKNOWN)

Check
state

Store packet

Not Found

UNKNOWN

DROP

Generate HTTP
redirect

Send URL to the
offline module

NF_ACCEPT NF_ACCEPT NF_STOLEN NF_DROP

Send TCP RESET
to the server

Delete entry in
HTTP session

table

Fig. 4.7 Summarized workflow of the online module.

fields. Instead, it performs a lightweight parsing to locate the beginning of the TCP
payload and a string checking (instead of regular expressions) just on the initial bytes
of the payload, which is a reasonable assumption that is discussed in Section 4.3.1.
In fact, our experimental validation (Section 4.4.3, Figure 4.13) confirms that the
online module does not introduce noticeable overhead in the traffic processing.

In case of an HTTP request, the URL is extracted and sent to the offline module
by pushing a new entry in the (shared) URL queue (Figure 4.5), which includes
the TCP session identifier to later match the verdict from the policy server with
the corresponding HTTP session. A new entry is also created in the HTTP session
table; as shown in Figure 4.4, it includes the TCP session identifier (as a key), a
session status flag that is marked as UNKNOWN, and an additional field that is left
empty. Afterwards the packet is allowed to be forwarded by returning NF_ACCEPT to
netfilter.

When an HTTP response is received, the module checks the status in the HTTP
session table and acts according to the three possible scenarios:

• The lookup is successful and the requested URL is forbidden (DROP in the
session status flag). The HTTP response is dropped (i.e., a NF_DROP is returned

63

Enforcement of Dynamic HTTP Policies on Residential Gateways

to netfilter), and two new packets are generated: (i) a TCP RESET message
sent to the web server to forcibly close the connection and (ii) an HTTP
redirect message sent to the client in order to show the user a courtesy web
page notifying that the requested web resource was blocked. Moreover the
entry is removed by the HTTP session table.

• The lookup is successful but the system is still waiting for the policy server to
respond (UNKNOWN in the session status flag). This occurs when the response
from the web server arrives before the one from the policy server. In this
case the HTTP response packet is put on hold by returning NF_STOLEN to
netfilter and saved in the proper skbuff structure (shown in Figure 4.4) of
the HTTP session table entry, waiting for the arrival of the answer from the
policy server. This is the only case in which the user experiences an additional
delay compared to a scenario where U-Filter is not deployed; a characterization
of this delay will be provided in Section 4.3.3.

• The lookup is unsuccessful. Our algorithm interprets this condition as the URL
being allowed, hence the HTTP response is forwarded to the client. Since in
common URL filtering applications most URLs are not to be blocked, this
design choice allows considerable space savings in the HTTP session table
(Figure 4.4), as we avoid explicit entries for all the sessions that correspond to
‘accepted’ URLs.

Notably, the algorithm needs to hold (hence, store in the kernel session table) no
more than one packet per HTTP session. In fact, even if other segments of the HTTP
answer are in fact delivered to the destination, the TCP layer on the destination host
cannot reconstruct the entire message because of the missing packet, which is the first
segment of the HTTP response. This prevents the message to be actually delivered to
the application (e.g., web browser) while keeping at minimum the memory storage
requirements in the residential gateway. However, this solution also causes the
transmission of some duplicated packets, which we analyze in Section 4.4.2 and that
are discarded by U-Filter since they are equal to the packet already on hold.

64

4.2 Architecture and implementation

U-Filter
(offline module)

Worker1

U-Filter
policy server

Listening
TCP-Socket

2 TCP Connections

Worker2

URL queue

Verdict queue

Fig. 4.8 Offline module user space process.

4.2.6 Offline module

As depicted in Figure 4.2, the offline module is split in two portions, the first one
operating as a process in user space, while the other operates as a thread in kernel
space. The former is in charge of the communication with the policy server, as shown
in Figure 4.8, while the latter executes the workflow summarized in Figure 4.9.

The user space process retrieves URLs from the URL queue and sends them to
the policy server, which provides decisions stating whether they are acceptable or to
be blocked. These decisions are then pushed in the shared verdict queue, together
with the same TCP session identifier that was stored in the corresponding URL queue
entry.

The entries in the verdict queue are retrieved by the offline module thread in
kernel space, which reads the enclosed decision. In case the resource is legitimate
(the entry contains the ACCEPT flag), it checks whether a packet is stored in the
HTTP session table entry corresponding to the TCP session key present in the verdict
queue entry. This packet, if present, is injected back into the networking stack of
the operating system, exactly in the same point of the netfilter chain where it
had been stolen, so that the packet is processed by any other software relying on
netfilter (e.g., NAT). The HTTP session table is then updated by deleting the
entry since, as mentioned earlier, the absence of an entry is interpreted as an ACCEPT
verdict. The skbuff structure containing the first packet of the HTTP response is
stored in a memory location managed by the operating system, hence the offline
module leverages the kernel space thread to access it.

65

Enforcement of Dynamic HTTP Policies on Residential Gateways

Check
decision

ACCEPT
(URL is SAFE)

DROP
(URL is malicious)

New
Verdict

Check
queue

NOT EMPTY

Delete stored
packet

Send TCP RESET to
the server

Update HTTP
session table entry

(status=DROP)

Delete entry in
HTTP session table

Generate HTTP
redirect

EMPTY

Packet in
session
table

PRESENT NOT PRESENT

Send stored packet

Fig. 4.9 Summarized workflow of the offline module kernel thread.

In case the resource is not legitimate (the verdict queue entry contains the DROP
flag), if no packet is found in the HTTP session table entry, the session status flag
is updated to DROP, thus the online module will drop the response packet when it
arrives. If a packet is already stored in the HTTP session queue entry, the offline
module performs the same actions previously described for the online module in
case of a DROP policy. Additionally the packet is dropped, so that the client cannot
reassemble the HTTP response.

Additionally, the last N unauthorized URLs are cached in the offline module.
Each URL is first looked up in the ad-hoc verdict cache and, in case of a hit, there is
no need to interact with the policy server and redirection to the courtesy web page
can be immediately implemented, thus reducing the overhead for the module.

66

4.2 Architecture and implementation

4.2.7 Communication with the policy server

The U-Filter offline module exploits two different parallel threads to interact with
the policy server, each one using a distinct TCP connection as shown in Figure 4.8.
The two threads establish the TCP channels when the system starts, hence enabling
the offline module to send immediately a query to the policy server when needed,
without the overhead (and the consequent latency) of the TCP handshake3.

The offline module exploits these threads to implement an asynchronous com-
munication with the policy server, separately processing the requests and the replies
without any wait. The first thread cyclically collects every new entry present in the
URL queue and sends the URL and the TCP session identifier to the policy server,
which replies with a message on the second thread, using the second connection,
containing the same Session ID and a single binary information (ACCEPT/DROP) that
is used to push a new entry in the verdict queue. This solution allows to process as
fast as possible both new entries in the URL queue and new replies from the policy
server. The Session ID sent back and forth is used to correlate the requests with the
replies, so that there is no need to share data between the two threads. Since the
requests are sent sequentially, the policy server can adopt different techniques to
efficiently parallelize the policy checking, such as spawning new threads without the
necessity to open a dedicated TCP connection for each of them.

It is worth noting that most TCP implementations are designed to use the Nagle
algorithm by default, in order to reduce the congestion of the network and increase
bandwidth efficiency at the expense of latency [50]. This algorithm buffers applica-
tion data until all the previously sent packets are acknowledged or the data reach the
Maximum Segment Size (MSS). In this way the probability of having small packets
in the network (i.e. packets smaller than the MSS) is strongly reduced, thus limiting
the overhead of TCP headers, allowing for a more efficient use of transmission links
and reducing the burden on routers in terms of packets per second to be processed.
This behavior is particularly harmful for U-Filter, since both the offline module and
the policy server always send very small packets, that most of the time would be
delayed up to one RTT. It is therefore crucial that the offline module and the policy

3The messages sent to and received from the policy server are not intercepted by the callback of
the online module, since they are addressed to the local host and do not cross the NF_IP_FORWARD
hook, where the callback is registered.

67

Enforcement of Dynamic HTTP Policies on Residential Gateways

server disable the Nagle algorithm (typically with the TCP_NODELAY socket option)
when establishing the two connections.

4.3 Discussion

This section analyzes the proposed technique in terms of possible limitations (among
the others, its applicability to encrypted traffic), and it performs a theoretical charac-
terization of the delay that can be possibly added by U-Filter on real network traffic,
which will be validated in the next section dedicated to experimental evaluation.

4.3.1 General limitations

The proposed solution has been designed with the aim of providing small delay and
low overhead on resource-constrained residential gateways. This was traded for
some limitations compared to more complex solutions adopting a full-stack HTTP
proxy.

The matching process is meant to keep the number of string matching operations
as small as possible, and surely it has to avoid to completely inspect the entire
payload of all the packets in order to identify HTTP messages and extract URLs
in a reasonable amount of time. Therefore, this solution does not handle correctly
packets where the HTTP header is not at the beginning of a packet. This is not a
relevant limitation since the problem arises only when HTTP pipelining4 is enabled,
which is rarely the case in common browsers [51, 52]. The matching algorithm also
cannot handle sessions where the header of the HTTP request spans multiple packets
and the necessary fields (e.g., the Host field) are not on the first one. According
to [53], less than the 5% of HTTP requests are bigger than the common 1500 byte
Ethernet maximum transmission unit. Considering that large HTTP requests are
often POST messages carrying a long payload, e.g., users submitting the content of
a form to a web service5, the possibility that the URL cannot be extracted from the
first packet is presumably much smaller than this amount.

4 HTTP pipelining allows a client to send multiple HTTP requests on a single TCP connection
without waiting for the corresponding responses. It requires support in both the client and the server.

5It is worth noting that this case falls outside the scope of U-Filter, as the apparent URL submitted
in an HTTP POST request contains, in fact, user data. As a consequence, this would require a more
sophisticated filtering mechanism based on a content inspection, not just URL inspection.

68

4.3 Discussion

Moreover, various encapsulation techniques (e.g., GRE tunnels) are not supported
by the presented version of the algorithm. These limitations can be avoided at the
cost of additional complexity of the URL extraction procedure.

4.3.2 HTTPS

HTTPS uses data encryption to guarantee confidentiality, which makes traffic opaque
to a possible observer. As a result, any in-network service requiring visibility into
application layer content, such as U-Filter, becomes ineffective. Several studies [54–
56] have addressed the problem of HTTPS traffic processing in middleboxes, which
shows that this is a general open problem, not specific of U-Filter. As a sample
general solution, [54] proposes an evolution of HTTPS that supports the operation
of trusted middleboxes while retaining the security properties of HTTPS. We leave
as future work the analysis of the interaction of U-Filter with such solutions.

We can envision a number of ways to enable U-Filter to operate (possibly with
limited capabilities) on HTTPS traffic. A first option is to deploy a trusted proxy [57],
such as the one presented in [58], at the cost of a significant processing overhead,
which inevitably limits the performance on a resource constrained device like a
residential gateway, as shown in Section 4.4.4 with respect to a similar solution.

Secondly, U-Filter can be extended to inspect unencrypted messages exchanged
during the TLS session establishment, extract the domain name (from the fields
Common Name, Subject Alternative Name or Server Name Indication), and enforce
a policy according to the extracted value. With this solution it is possible to block
only an entire domain, not just a single resource. It is worth noticing that a client
can resume a previously established TLS connection with a web server by sending a
past TLS session ID in the first message, which results in an abbreviated handshake
without the exchange of the server domain name. Thus, if the initial connection was
not inspected (e.g., because it was performed on a different, unprotected network), it
is not possible to discover the server domain name by looking only at unencrypted
data. Although this happens only in a quite uncommon network setup, it is to be
kept in mind that the solution is not bullet proof.

As studied by [59], the cost of the security provided by HTTPS is non-negligible
in particular in case of mobile devices and smart objects. In addition, there are a
number of applications for which confidentiality is not strictly required, for which

69

Enforcement of Dynamic HTTP Policies on Residential Gateways

their users may not willing to pay the additional cost of the encryption. Therefore a
significant fraction of HTTP traffic is expected to remain unencrypted in the near
future. Although we leave to future work the architectural and implementation details
of a solution to support HTTPS traffic, we envision U-Filter as a low-cost solution
for URL filtering on the fast path of HTTP traffic, while HTTPS traffic can be steered
toward a slower path, where a trusted proxy is used to provide the same level of
policy enforcement.

4.3.3 Delay characterization

In this section we analyze the additional delay introduced by U-Filter to identify the
components that can be relevant and must be evaluated to quantify the impact on the
user experience.

Specifically, the delay experienced by the end user when requesting a web page
depends on: (i) the time for having a verdict from the policy server T P, (ii) the time
until the first packet of the response from the webserver is received TW , (iii) the
difference between (i) and (ii) ∆delay, as detailed in Figure 4.10. The latency in
the communication from the client to the residential gateway is not relevant in this
context since it is not affected by the presence of U-Filter.

Let’s first characterize T P. When U-Filter receives the first packet of an HTTP
request, the online module extracts the URL, pushes a new entry in the URL queue
and sends the HTTP request forward. The entry spends a time TUqueue in the URL
queue, until it is extracted by the offline module and sent to the policy server, with
a time T P

req,tx required to transmit the bits on the channel. The verdict is available
to the offline module after a Round-Trip Time RT T P, a time T P

proc required by the
policy server to check its database and choose a verdict, and a time T P

resp,tx needed to
transmit the response into the channel. At this point, the verdict is stored as a new
entry in the verdict queue. An additional queuing time TV queue lapses before the entry
is retrieved by the offline module kernel thread and the proper action is performed to
unlock the response. As a result, the total delay introduced by the policy checking
process is equal to:

T P = TUqueue +T P
req,tx +RT T P +T P

proc +T P
resp,tx +TV queue (4.1)

70

4.3 Discussion

RTTW

TW
req, tx

TW
proc

RTTP

TP
req, tx

TP
proc

TP
resp, tx

HTTP request
arrival timeTUqueue

TVqueue

TW
resp, tx

Time

TWTP

U-FilterPolicy
server

Web
server

Ddelay

Fig. 4.10 Delay characterization.

Moving now to the characterization of TW , the time required to receive the first
packet of the HTTP response from the web server is given by:

TW = TW
req,tx +RT TW +TW

proc +TW
resp,tx (4.2)

where:

• TW
req,tx is the HTTP request transmission time;

• RT TW is the Round-Trip Time with the web server;

• TW
proc is the time taken by the web server to provide the HTTP response (fetch

a file, execute server side computation, query a database, etc.);

• TW
resp,tx is the time needed to transmit the first packet of the HTTP response.

The interval:

∆delay = T P−TW (4.3)

71

Enforcement of Dynamic HTTP Policies on Residential Gateways

when positive, is the delay that U-Filter adds to any HTTP request. Experimen-
tally, we observed that TUqueue and TV queue are negligible, since the two consumer
tasks are rather fast. Moreover, T P

req,tx is always less than TW
req,tx, since the request

to the policy server contains only a small subset of the data contained in the HTTP
request. Similarly, T P

resp,tx is always less than TW
resp,tx, since the policy response packet

is very small (it consists only of the session ID and a binary flag). Consequently,
the most significant components of the U-Filter delay are the Round-Trip Times and
processing times.

In case ∆delay is negative, the user experience is completely unaffected by the
presence of U-Filter. Even when ∆delay is positive, though, thanks to the paral-
lelization described in Section 4.2.7, the overall delay in a web page load time is
not noticeable if the distance and the processing time of the policy server T P

proc are
comparable with the ones of common web servers, as shown in Section 4.4.

4.4 Experimental validation

In order to validate the proposed solution we conducted a broad range of experiments.
Specifically our goal has been to study the interaction between the presented algo-
rithm and TCP, as well as the conditions in which a web page load time is increased,
quantifying to what extent the user experience is affected.

4.4.1 Testbed setup

We deployed U-Filter on a commercial low-cost residential gateway, a TP-Link
Archer C7 (single core MIPS32 CPU clocked at 720MHz, 16MB Flash, 128MB
RAM) running OpenWrt 12.09 [60] with the version 3.3 of the Linux kernel. Open-
Wrt is an open source operating system specifically optimized for the execution
on resource constrained residential gateways. As shown in Figure 4.11, multiple
workstations (whose number and setup varies according to the specific test) acting as
clients are connected on a Gigabit Ethernet LAN representing the “domestic side”
of the residential gateway. Another 1 Gbps interface (“WAN side”) hosts the policy
server and the traffic sink of our experiments, which is represented by a web server
during TCP interaction and throughput experiments or a vanilla Internet connectivity
when evaluating browsing experience. All the workstations and the servers are

72

4.4 Experimental validation

Residential Gateway

Workstation

Web Server

WANLAN
U-Filter

Policy Server

(a) Testbed to analyze the interaction
with TCP and to evaluate the maximum
throughput.

Residential Gateway

WANLAN
U-Filter

Policy Server

Workstation 2

VM4 VM6VM5

VM1 VM3VM2

Workstation 1

INTERNET

(b) Testbed to evaluate the browsing expe-
rience.

Fig. 4.11 Testbed setup.

equipped with an Intel Core i7-4770 CPU and 32GB of main memory in order to
guarantee not to become the bottleneck.

Since a production-grade policy server is not in the scope of this work, we use
a policy server that gives always a positive verdict, with a customizable delay in
order to simulate the processing time. Moreover, in the policy server we use Linux
Traffic Control (tc) to add a custom delay to any outgoing packet in order to simulate
various network RTTs.

To generate single HTTP requests we use curl and ab [61], while for real-life
simulations we start multiple VMs on the workstations to emulate multiple end-users.
Each VM runs an instance of WebTrafficGenerator6, an automation tool that can
drive a web browser to replay a user browsing history. For every entry in the provided
browsing history, the browser loads a complete web page (i.e. retrieving the web
page with all the associated resources such as images, javascript files, etc.)7. In
this respect, WebTrafficGenerator can also issue HTTPS requests, which happens
when a page, appearing in HTTP in the browsing history, includes content that has
to be retrieved using an encrypted connection. The time between multiple web page
requests, a.k.a. the Thinking Time, is randomly selected using a random variable with
the same statistical distribution as the actual thinking time of the user as measured
from his/her browsing history. A realistic thinking time is required not only to
simulate a real user behavior, but also to avoid that web services (e.g. Google)
recognize that the client is an automaton and thus provide a different response web

6https://github.com/netgroup-polito/WebTrafficGenerator
7The community have not yet reached a consensus on when a web page should be considered

completely loaded. Particularly, WebTrafficGenerator considers a page complete when the javascript
“onload” event is fired on the “body” HTML tag.

73

Enforcement of Dynamic HTTP Policies on Residential Gateways

page with the intent of testing whether or not the user is human. In the event that a
new request must start before the previous web page is completely loaded, the tool
creates a different browser window, in order to load multiple web pages in parallel
(which simulates multi-tabbing).

4.4.2 Interaction with TCP

This section shows how the TCP algorithm reacts when one specific packet (the first
packet of an HTTP response) is repeatedly lost on its way to the destination, for a
certain amount of time. The aim of this analysis is to show that U-Filter has been
designed taking into mind the peculiar characteristics of the TCP protocol, hence
our algorithm that possibly delays the first packet of the HTTP response does not
cause additional delay in the TCP data exchange.

To reduce external interferences, in this test we use a web server directly con-
nected to the WAN interface of the gateway (as shown in Figure 4.11a) running the
Apache HTTP Server 2.4.7; TW measured in this setup is less than 1 ms, thus we
can consider ∆delay = T P. Moreover, in this test tc is disabled in the policy server,
hence the RTT is negligible and we can consider T P = T P

proc. A client workstation
runs curl to request a 512 KB web page stored on the webserver. The gateway
executes U-Filter with a fixed T P

proc ≈ 100 ms delay in the policy server response.
As detailed in Section 4.2.5 and 4.2.6, only the first packet of any HTTP response is
buffered by U-Filter. In the scenario created for these experiments, such packet is
eventually forwarded to the client about 100 ms after the HTTP GET request traverses
the residential gateway. All subsequent packets are forwarded correctly. We capture
the traffic on both the LAN and WAN links of the residential gateway and extract the
sequence numbers (SEQ) of the TCP segments from the web server to the client and
the acknowledgment numbers (ACK) of the ones from the client to the webserver,
together with their timestamp. The resulting data are presented in Figure 4.12 (the
SEQ and ACK numbers are relative).

This experiment enables us to observe how a TCP connection progresses during
the U-Filter operation. The presented results show that, while the first TCP segment
of the HTTP response is blocked, the server TCP endpoint sends the subsequent
segments as well as duplicates of the first segment (visible only on the WAN side, in
Figure 4.12a), until the TCP window is full. As expected, the TCP receiver repeatedly

74

4.4 Experimental validation

 0
 20
 40
 60
 80

 100
 120
 140

 0.1 1 10 100

Time (milliseconds)

WAN link

Server-Gateway Seq. number (x1000)

(a) Response packets timing on the WAN link

 0
 20
 40
 60
 80

 100
 120
 140

 0.1 1 10 100

Time (milliseconds)

LAN link

Gateway-Client Seq. number (x1000)

(b) Response packets timing on the LAN link

 0
 20
 40
 60
 80

 100
 120
 140

 0.1 1 10 100

Time (milliseconds)

LAN link

Client-Gateway ACK number (x1000)
Client-Gateway SACK number (x1000)

(c) Acknowledgement packets timing on the LAN link

Fig. 4.12 Progress of a TCP session.

75

Enforcement of Dynamic HTTP Policies on Residential Gateways

acknowledges the segment arrived before the one missing (Figure 4.12c); specifically
one ACK is sent for each of the subsequent segments received out of sequence.
All the modern TCP implementations include the TCP selective acknowledgment
(SACK) option [62] in the duplicated ACK, which is used to selectively acknowledge
correctly received segments logically following the missing one(s). Thanks to the
selective acknowledgments, these segments are not re-transmitted, as it happens
for the blocked segment, as the traditional Go-Back-N algorithm would require.
When the blocked packet is released (after 100 ms in our experiment, as shown
in Figure 4.12b) and properly delivered, all the previously received segments are
cumulatively acknowledged and the transmission can continue from a new segment
(Figure 4.12c).

Abiding by TCP Fast retransmit [63] algorithm, the web server re-sends the
blocked segment for every 3 duplicated acknowledgments. These re-transmitted
segments are the only overhead induced by U-Filter. In our test these duplicates
amount to 12.8% of the packets sent by the server during ∆delay, and half that
number if we consider all the packets transmitted during the same interval; however,
considering the entire lifespan of the TCP connection, this overhead accounts (in
average) no more than 1.6% of all the packets, which can be considered negligible.

From the point of view of the users’ experience, selective acknowledgments
are particularly beneficial because, even if the policy server replies after the web
server (i.e. ∆delay is positive), the actual delay perceived by the user is smaller than
∆delay because several TCP segments are correctly received during the ∆delay interval
and are ready to be used to render the web page as soon as the missing segment is
delivered.

4.4.3 Browsing experience

This section presents the results of several tests executed in a realistic scenario to
show how much a real user browsing experience is affected by U-Filter. Using the
testbed in Figure 4.11b, we launched WebTrafficGenerator in 6 VMs (running on 2
workstations) in order to simulate 6 users simultaneously browsing the Internet. This
number of concurrent users is reasonable for a residential gateway. Moreover, with
a large number of users, the browsing experience would be limited by the network

76

4.4 Experimental validation

Table 4.1 Inferred RTT values with the policy server in different locations (RT T P).

Location Type of measure RTT

POP
Median 25 ms

90th percentile 100 ms

Data Center (DC)
Median 45 ms

90th percentile 200 ms

speed. As expected, the latency of the policy server proved to be the parameter that
has the greater impact on the user-perceived performance of U-Filter.

In every test, a single VM browses 600 web pages collected from the browsing
histories of 30 anonymous users (we consider only web pages downloaded using
HTTP, since those using HTTPS are irrelevant for U-Filter). In order to use realistic
values for the policy server processing time and RTT, we analyzed several traffic
traces captured using Tstat [64] during 24 hours in 4 different points of presence
(POPs) of an Internet Service Provider (ISP) and extracted the median and 90th

percentile values for the RTT of HTTP requests and processing time of web servers.
Tstat infers the RTT from the POP to an endpoint by measuring the inter-arrival
time of a packet and its acknowledgment and infers a web server processing time by
measuring the interval between the arrival of the acknowledgment for the request
and the arrival of the first response packet. In fact, a host’s operating system usually
sends a TCP ACK as soon as a packet is received.

Table 4.1 shows the statistical values for the RTTs from a client to the POP and
from a client to the destination server, supposedly in a data center (DC). We use
these values in our tests to simulate the RTT in the case that the policy server is either
in the POP or in a remote data center. Additionally Table 4.2 shows the statistical
values of the processing time for web servers. These values are used to simulate the
processing time of the policy server: since the operations performed are somewhat
similar (parsing of a request, look up in a database, preparation of a response), we
assume the complexity to be comparable with (or even lower than) the one of any
web server.

At the end of a test, WebTrafficGenerator provides a file containing a summary
of various aspects of every request. Among the provided values, we are interested

77

Enforcement of Dynamic HTTP Policies on Residential Gateways

Table 4.2 Inferred policy server latency values (T P
proc).

Type of measure Latency

Median 2 ms

90th percentile 80 ms

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

100 101 102 103 104

C
D

F

Resource waiting time (milliseconds)

Baseline
No delay

POP Median
DC Median

POP 90th perc.
DC 90th perc.

Fig. 4.13 Waiting time for a single HTTP resource - Cumulative distribution function.

in the complete page load time (the time needed to load the web page with all its
resources, such as pictures, libraries, etc.) and the timings of the individual HTTP
requests issued to get the main HTML page and the associated resources.

Individual HTTP requests

The timing of an HTTP request is the sum of multiple components, such as the
queuing time, the DNS resolution time, the connection setup time, etc. The only
component that can be affected by U-Filter is the time spent waiting for a response
from the server (waiting time), equal to max{T P,TW}, if the RTT between the client
and the gateway is negligible. Figure 4.13 shows the cumulative distribution of the
waiting time for HTTP requests with different values of RTT and processing time

78

4.4 Experimental validation

100

101

102

103

104

105

100 101 102 103 104 105

R
e
so

u
rc

e
 w

a
it

in
g

 t
im

e
 w

it
h
 U

-F
ilt

e
r

(m
s)

Resource waiting time without U-Filter (ms)

10-3

10-2

10-1

100

101

102

103

R
a
ti

o

Fig. 4.14 Resource waiting time considering the 90th percentile of the processing time and
RTT with the policy server in a data center.

(latency) for the policy server, together with the baseline (i.e., the latency without
U-Filter) and the case in which the policy server immediately provides verdicts (in
which case the delay T P is negligible), as if U-Filter and the policy server are on the
same LAN.

These results show that U-Filter adds a negligible delay if the policy server
provides an immediate response, therefore proving our claim that the online module
does not introduce noticeable overhead in the traffic processing. On the other hand,
when the policy server response is received after a certain amount of time, the
cumulative distribution is shifted toward that value, since all the HTTP responses
that arrived earlier are delayed by U-Filter. In summary, the impact of U-Filter on
the single resource loading time is highly dependent on the distance from the policy
server and its processing time.

Considering only the worst case (i.e., the 90th percentile of the processing time
and RTT with the policy server in a data center), we show in Figure 4.14 the waiting
time for each requested HTTP resource, with and without U-Filter. The figure shows
a cluster of requests on the horizontal line corresponding to the delay T P, supporting
the conclusion that this delay highly influences the loading time of a single resources.

79

Enforcement of Dynamic HTTP Policies on Residential Gateways

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

100 101 102 103 104 105

C
D

F

Page loading time (milliseconds)

Baseline
No delay

POP Median
DC Median

POP 90th perc.
DC 90th perc.

Fig. 4.15 Complete page loading time cumulative distribution.

Both figures show that, even with U-Filter, some resources are received before
the policy server delay (T P ≈ RT T P +T P

proc). This happens because some resources
are retrieved through HTTPS, even if the main HTML page is on HTTP, therefore
they do not experience the policy server delay.

Complete pages

Figure 4.15 shows the cumulative distribution function of the complete web page
load time, while Figure 4.16 shows for every requested URL the relation between
the complete page loading time with and without U-Filter, in the worst conditions
(policy server in the data center, 90th percentile values for RTT and latency). These
results show that the impact caused by the presence of U-Filter is not noticeable,
therefore we can assert that the overall page loading time is not affected by U-Filter
and also the browsing experience is unaltered.

This is justified by the fact that multiple resources are requested in parallel by
the browsers, hence the policy server processes all the requests concurrently. As
a result, the increase in the overall time for loading the complete web page is not
dependent on the number of resources and is, in any case, approximately equal to a
single policy server delay T P. Since the time needed to receive, parse and render the

80

4.4 Experimental validation

101

102

103

104

105

101 102 103 104 105

Pa
g

e
 l
o
a
d

in
g

 t
im

e
 w

it
h
 U

-F
ilt

e
r

(m
s)

Page loading time without U-Filter (ms)

10-3

10-2

10-1

100

101

102

103

R
a
ti

o

Fig. 4.16 Complete page loading time considering the 90th percentile policy server processing
time with the policy server in a data center.

main HTML web page and all its resources is usually an order of magnitude greater
than the policy server delay, the added latency (and the impact of U-Filter on the
browsing experience) is in effect negligible.

4.4.4 Residential gateway aggregated throughput

In this section we evaluate the overhead introduced by U-Filter by comparing the
average aggregated throughput of the residential gateway in 3 scenarios: (i) without a
URL filtering service in place, (ii) with U-Filter and (iii) with Tinyproxy [65], a URL
filtering solution for OpenWrt based on a lightweight HTTP proxy that intercepts and
analyzes all the outgoing web traffic and can operate in either explicit or transparent
(a.k.a. man-in-the-middle) mode. These experiments assess the impact of U-Filter
with respect to the maximum forwarding capabilities of the residential gateway,
which is basically limited by the CPU consumption of the on-board software.

These experiments employ the testbed setup depicted in Figure 4.11a; the policy
server is configured to simulate a deployment in a data center with the median pro-
cessing time and RTT, while the web server has the same RTT. The client workstation
uses ab to request files of different sizes from the web server; each file is requested

81

Enforcement of Dynamic HTTP Policies on Residential Gateways

256K

1M

4M

16M

64M

256M

1G

1KB
8KB

64KB
256KB

512KB

1MB
8MB

64MB
256MB

512MB

1GB

Th
ro

ug
hp

ut
 (

bp
s)

File size

Tinyproxy
U-Filter

Baseline

Fig. 4.17 Application-level throughput when downloading files of different sizes.

101

102

103

104

105

106

1KB
8KB

64KB
256KB

512KB

1MB
8MB

64MB
256MB

512MB

1GB

D
ow

nl
oa

d
tim

e
(m

s)

File size

Tinyproxy
U-Filter

Baseline

Fig. 4.18 Download time when requesting files of different sizes.

82

4.4 Experimental validation

100 times. As suggested by the HTTP/1.1 standard [66] with respect to persistent
HTTP connections, each client issues two concurrent requests toward the server. The
goal of this experiment is to evaluate how much packet inspection and policy check-
ing in the residential gateway affects the download speed and the latency. We show
in Figure 4.17 the minimum, maximum and average application-level throughput
for the 3 scenarios, while in Figure 4.18 we show the time needed to download the
entire file.

These results show that the throughput and the download speed reached with
U-Filter are higher than with Tinyproxy for files larger than 8 KB, while for small
files the two solutions show the same level of performance. In fact, with very small
files, we experience an additional small delay with U-Filter, compared to the baseline.
We ascribe this delay to the time needed for the context switch between the online
and offline module, given that the residential gateway has a single core. This delay is
negligible for larger files, for which U-Filter provides almost the same performance
reached without the filtering service in place. We expect that a residential gateway
with at least a dual core processor would not experience this delay, therefore U-Filter
would provide the same level of performance as the baseline. However, even with a
single core gateway, the impact of U-Filter on the download time is only 3% with
large files and never exceeds 54%, while Tinyproxy has an overhead ranging from
44% to a remarkable 322%. As an example, the download of a 1 GB file requires
approximately 1 minute and 12 seconds without a filtering service, 6 seconds longer
with U-Filter and more than 5 minutes with Tinyproxy.

It is worth mentioning that U-Filter can easily implement a whitelist containing
the addresses of trusted devices or applications whose traffic should not be filtered.
This is a useful feature that allows to avoid the additional delay for delay-sensitive
clients. Similarly, the user can define an explicit blacklist, listing the type of traffic
that should be immediately blocked.

4.4.5 Memory footprint

Given the limitations in terms of available memory in current residential gateways,
we extracted the number of pending entries in the HTTP session table every time a
new HTTP request was received and plotted the resulting probability distribution in
Figure 4.19 in order to assess the impact of U-Filter in terms of memory consumption.

83

Enforcement of Dynamic HTTP Policies on Residential Gateways

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80

C
D

F

Number of pending requests

No delay
POP Median
DC Median

POP 90th perc.
DC 90th perc.

Fig. 4.19 U-Filter load.

Clearly, the memory footprint is proportional to the rate of issued requests and
the measurements made in the realistic scenario confirm the small memory footprint
of U-Filter: even in the worst case, the number of pending entries are always less
than a hundred. In the case in which every entry stores a packet (usually 1518 bytes
at most), together with IP addresses (8 bytes), TCP ports (4 bytes) and a binary
session flag, the HTTP session table requires less than 200 KB of main memory,
a value far below the memory size of low-end residential gateways (usually in the
order of at least tens of MB).

4.5 Related work

Currently several solutions for filtering traffic based on URLs are available com-
mercially or as open source packages, often used as parental control or ad block.
Many are based on software executing on the client machine to control outgoing
traffic. Among them, it is worth mentioning k9 Web Protection [67], a powerful free
software for URL filtering that comes with a large database of URL categorization
data. New websites are categorized in real-time and their information published on a

84

4.5 Related work

server that is used to update the local database. This software needs to be installed
on any device that must be protected and is tuned to run on common PC hardware.

Among existing parental control solutions that do not require execution of a
software agent on clients, some are based on applying the filtering policing in the
DNS server [68]. While this is a low complexity and efficient solution that enables
achieving high performance, it is not effective as it can be easily bypassed choosing a
different DNS server. Moreover, filtering is based on server domain names rather than
URLs, as required when the same server or name domain can deliver both appropriate
and inappropriate content, such as in case of public services like facebook.com.

As an alternative approach, filtering policies can be applied by network appli-
ances on the path of the protected client traffic. Blue Coat WebFilter [69] is a
sophisticated URL filtering solution that runs on business level network appliances
and provides policy enforcement on web traffic, blocking malware downloads and
web threats. WebFilter combines URL filtering and anti-malware technologies, ex-
ploiting an engine with a local rule database continuously updated from a remote
master database. The engine detects hidden malware and provides reputation and
web content categorization based on input from actual users.

None of the above-mentioned solutions is designed to run on resource-constrained
devices, such as a typical residential gateway, which would not ensure acceptable
performance when executing computationally intense tasks. Among the efforts to
integrate web filtering service in low-end residential gateways, the ones related to
the OpenWrt platform are noteworthy, such as Tinyproxy [65]. Tinyproxy can filter
HTTP requests checking their URL against a list of regular expressions contained in
a local file, which may be rather big and needs to be frequently updated. A similar
technology has been proposed in [58], where an access gateway performs mobile app
policy enforcement deploying a transparent HTTPS proxy to gain access to encrypted
traffic, extract relevant field values, and pass them to an external policy-checking
module. However, deployment of an HTTP proxy is critical on resource-constrained
devices since it must terminate all the TCP connections, pair them with new TCP
connections with the remote endpoint, parse every packet, identify and extract
patterns of interest, and match them against a large blacklist. Therefore it becomes
easily a bottleneck with high traffic loads, thus impacting user experience.

The work presented in [70] represents an attempt to perform efficient HTTP
traffic filtering in OpenWrt. The authors propose a two-tier architecture, with a

85

Enforcement of Dynamic HTTP Policies on Residential Gateways

kernel module that intercepts and analyzes HTTP traffic and a user-space process
in charge of policy compliance checking. The computational load of the user space
module, that performs string matching on URLs, grows with the length of the list
of rules, and so does the introduced delay. Consequently, when this approach is
implemented on a residential gateway with limited resources, only short lists can be
supported without user experience degradation, thus limiting the effectiveness of the
policy enforcement system. Moreover, the proposed architecture makes it difficult
for a trusted third-party to push real-time updates to the local database in order to
ensure prompt detection of newly discovered threats. Finally, the URL analysis is
performed by each edge systems in isolation, hence excluding the possibility of a
(centralized) cross-correlation mechanism that identifies new threats by analyzing
URLs requested from different sources.

Traffic processing in residential gateways has been proposed also in the context of
Network Function Virtualization (NFV) [33, 71]. An existing NFV infrastructure can
employ residential gateways to deploy lightweight Native Network Functions [11]
or eBPF data plane programs [34], in order to provide delay-sensitive services to the
user, while computation intensive services are hosted in the data center of the service
operator. This solution offers flexibility in the type and number of network services
that can be provided and represents an interesting target platform for the deployment
of U-Filter.

4.6 Conclusions

This chapter presents U-Filter, a distributed system for efficient HTTP traffic filtering
in resource-constrained residential gateways. Leveraging an external policy server
and an intelligent combination of kernel and user space processing (and a careful
implementation), U-Filter is able to inspect the URL in every HTTP request and block
unwanted web pages with a very small memory footprint and processing overhead.
This makes U-Filter appropriate for the deployment on resource-constrained devices
and also reduces at a minimum the additional delay introduced on page download,
which leaves the overall browsing experience of the user practically unaltered.

Since U-Filter operates on a packet-by-packet basis, it assumes that the entire
HTTP header is on the same packet. This makes URL extraction easier and avoids
to have to store additional information to correlate subsequent packets. Since the

86

4.6 Conclusions

maximum size of an IP packet is usually 1500 bytes, this does not represent a
problem in a real scenario, as confirmed by [53].

The policy server, where multiple mechanisms and optimizations can be im-
plemented, was purposely kept outside of the scope of this work as it involves a
completely different set of challenges and solutions. Similarly, we did not address
how providing additional information to the residential gateway can increase its
efficiency in caching verdicts, thus reducing the number of interrogations. The study
of such improvements is left to future work.

Future research could also study how this technique can be applied to enforce
different security properties. U-Filter can extract an appropriate fingerprint from the
first packet of a flow and forward it to the policy server for further analysis in order
to block possible malware or Denial-Of-Service traffic, or curb data exfiltration.

87

Chapter 5

Packet processing in the core: a
Massively Distributed Network Data
Caching Platform

5.1 Introduction

Network Service Providers are usually forced to deploy multiple middleboxes in
various locations of their network in order to obtain a comprehensive perspective
of traffic and activities behind it. These devices monitor packets independently of
each other, thus leading to redundant processing, duplicated reports and inefficient
use of resources, which are required in large amounts given the sheer volume of
traffic in today’s broadband networks. Moreover, when an overall view of the
global network and correlation of distributed events are required, these devices must
forward captured traffic to a Network Operations Center (NOC) for a complete
analysis, which significantly increases the amount of traffic in the network and leads
to high resource requirements for the NOC. The situation is exacerbated by the fact
that multiple copies of the same packet are captured and sent to the NOC where
resource intensive de-duplication should be performed. The cost of eliminating
duplicates is so hefty [73, 74] that some network administrators explicitly choose to
skip it and accept the error that duplicates introduce in statistics and analytics.

The content of this chapter has been published in [72].

88

5.1 Introduction

To address the above issues and improve the efficiency of network-wide traffic
monitoring, we propose MEDINA, a highly distributed and decentralized traffic
capture and processing platform. MEDINA significantly reduces the storage and pro-
cessing requirements at the NOC and traffic overhead by capturing, pre-processing,
and storing raw packet data directly on the packet routing nodes themselves. The aim
of MEDINA is to take advantage of a recent trend followed by networking hardware
manufactures towards systems combining networking, computing and storage [75],
to enhance traffic forwarding devices with the capability to capture and process pack-
ets along a path in the network. MEDINA proposes a limited overhead coordination
and self-adaptation algorithm to distribute tasks across multiple devices. Using such
algorithm, nodes converge to a shared load distribution plan such that each packet
is always captured precisely n times (where n is a parameter of the algorithm) by
different nodes along the route to its destination, which ensures complete visibility
on the traffic as well as fault tolerance. Different packets are processed by a different
set of n nodes, which ensures distribution of the load among network nodes. The
algorithm also automatically adapts to the changing traffic characteristics, thus the
shared distribution plan is always aligned with the actual load of each node. Cap-
turing traffic n times ensures that each packet is processed with the required level
of redundancy: the results of the processing are stored on multiple nodes and are
available even if some nodes fail or become unavailable.

Furthermore, the proposed algorithm can distribute packet capture among MED-
INA nodes with custom granularity controlled by specific parameters of the distribu-
tion algorithm. For example, packets of different flows, or even chunks of individual
packets, can be captured by separate nodes. Capturing chunks instead of full packets
guarantees that in the event of an attacker taking control of one (or more) MEDINA

network devices, he/she will not be able to gain access to the full content of the
traffic, unless a large number of devices is compromised.

By applying MEDINA, packets or the outcome of their analysis do not need to be
transferred to a NOC or the cloud, which avoids large additional traffic that can affect
the network operation. The results of packet processing are instead stored locally on
the network node(s) that captured them. Network nodes provide a push/pull interface
to offer direct and efficient access to the data based on a configurable search key that
can be associated to the corresponding metadata extracted from protocol headers.
Such metadata can be extracted as part of the capturing process and exported to a
NOC to serve as a basis to execute queries and analytics; once packets of interest

89

Packet processing in the core: a Massively Distributed Network Data Caching
Platform

are identified as the outcome of such analysis, they can be retrieved, possibly during
periods of low network utilization, through the direct access interface using the
associated search key.

MEDINA nodes can implement data reduction strategies to keep the full packet
data only for the a given amount of time (directly based on the available storage
resources) and discard it when outdated. Ideally, this amount of time will be long
enough to enable identifying an anomaly and properly counteracting it.

Existing centralized approaches [76, 77] for node coordination rely on a controller
that, besides being a single point of failure, requires a large amount of resources
to cope with large topologies. Moreover, such approaches limit the capacity of the
system to rapidly react to unexpected traffic variations. In fact, to adapt the load
distribution to a new traffic condition, the controller must gather load profiles from
all the devices in the network (which also results in a large amount of traffic in the
vicinity of the controller) and only afterwards can compute the optimal distribution
and send the new configuration to the nodes. The additional delay, due to the round
trip time with the controller, can cause a late reaction. MEDINA does not experience
such delay since the approach is decentralized, where a subset of nodes cooperate to
rapidly converge to a new load distribution.

The main challenges we faced in building MEDINA is the design of a decentral-
ized coordination algorithm with minimum need to add information within packets
and low control traffic overhead. We addressed this challenge by using an hash
based selection mechanism and leveraging path awareness achieved through routing
protocols (anyway executed by routers) or, when not possible, ad-hoc messages.
Moreover, the proposed solution does not require significant changes to the data
plane. In fact, the coordination is performed within the control plane and traffic
selection is enforced by pushing rules in match-action tables, commonly deployed
by traditional data plane hardware.

Although the MEDINA coordination and self-adaptation algorithm is presented
here in the context of packet capture and processing, it offers a general solution for
distributing across multiple (virtual) processors the execution of a task that operates
on data flowing through a network of nodes with processing and storage capabilities.
Such scenario is typical of several paradigms currently considered as having very
high potential, such as Fog Computing [78], microservice architectures and the
Internet of Things [79].

90

5.2 MEDINA Design

The contributions of this chapter are: (i) the design of a decentralized solution
for traffic acquisition that fairly distributes the load among multiple network devices,
while avoiding duplicated capture, and (ii) its validation through experiments and
simulations. In Section 5.2 we explain our general approach and then, in Section 5.3,
report on a set of experiments in a realistic scenario to validate it. Section 5.4
compares the presented solution with existing work. Finally, Section 5.5 draws
conclusions and outlines future work.

5.2 MEDINA Design

MEDINA implements network-wide coordination to ensure that all the traffic in the
network is captured, eliminating redundant acquisition (or limiting it to a speci-
fied replication factor) of the same packets in multiple nodes. Other approaches to
network-wide coordination demand either an external static configuration [80] or a
continuous communication between network nodes and a centralized entity that de-
termines the subset of the traffic each node is responsible for [81]. Instead, MEDINA

deploys a novel, fully distributed, traffic assignment algorithm that enables each
node to autonomously1 determine the subset of network traffic it will be responsible
for. The algorithm leverages routing information collected by each node in support of
their regular forwarding operation to achieve implicit coordination among nodes, i.e.,
ensure that subsets of different nodes are mutually exclusive and that the union of all
subsets includes all network traffic. When a MEDINA node forwards a packet, it uses
a hash-based selection mechanism to determine whether the packet belongs to its sub-
set of traffic. The hash based approach allows different nodes to autonomously and
coherently select a subset of the network traffic. Moreover, hash-based approaches
to packet processing are known to be efficient, scalable and suitable to hardware
implementation, which is key in enabling wire speed operation [82].

Each component of the solution is presented in the reminder of this section after
an overview of how MEDINA can be deployed.

91

Packet processing in the core: a Massively Distributed Network Data Caching
Platform

MEDINA
DOMAIN

MEDINA
OVERLAY

Fig. 5.1 MEDINA overlay.

5.2.1 Deployment model

The solution presented in this chapter does not require all routers in the network
to be MEDINA-enabled: as shown in Figure 5.1, non-adjacent MEDINA nodes in a
MEDINA domain form a MEDINA overlay working together to capture the traffic
in a coordinated fashion. Hence, the solution can be deployed in an incremental
way enjoying the corresponding benefits after just a fraction of network nodes have
been upgraded, scaling up the capabilities of the infrastructure as the MEDINA

domain becomes larger and MEDINA-enabled nodes denser. A larger number of
MEDINA-enabled nodes allows to capture more traffic and/or reduce the load on all
the MEDINA nodes. How the size of the deployment affects the system performance
is an interesting topic that we leave for future work.

Note that while the MEDINA overlay is used for coordination and only nodes in
the MEDINA overlay capture, process and store packets, the data plane is unchanged
with packets being forwarded according to the physical topology. MEDINA nodes
leverage topological knowledge to distribute traffic acquisition among themselves.
They acquire information on the network topology and the paths that packets follow
in the network by either leveraging the existing routing information base (if individ-
ual nodes operate as regular IP routers, a routing protocol based on the link state

1Communication among nodes is limited to the discovery phase and, optionally, the occasional
exchange of constraints to adapt to variable traffic characteristics.

92

5.2 MEDINA Design

algorithm, such as OSPF and IS-IS, is commonly deployed) or by exchanging ad-hoc
messages2. Starting from this knowledge, MEDINA nodes infer the path of packets
through the MEDINA overlay, on which packet assignment depends.

MEDINA nodes discover the overlay, i.e., which other nodes support MEDINA,
either by instructing the routing protocol to add this information in routing messages
or by multicast messages. Through this mechanism, MEDINA nodes also share
pertinent information, such as their capabilities and constraints, throughout their
operation, to adapt to variable traffic conditions. The virtual links in the MEDINA

overlay correspond to possible paths between MEDINA nodes. The path that a
packet follows in the overlay is the basis to determine the set of MEDINA nodes that
can possibly process it. Moreover, MEDINA nodes constantly monitor the network
topology to promptly react to routing changes.

5.2.2 Hash-based coordinated packet selection

During their forwarding operation, MEDINA nodes compute an N bit hash H(k) on a
subset k of each packet. We call this subset hash key. The packet is captured only if
the computed hash value falls within a specific range determined through the traffic
assignment algorithm. The hash range is different depending on the route the packet
is traveling through within the MEDINA domain: generally speaking, the larger the
number of MEDINA nodes a flow of packets travels through, the smaller the number
of packets each node needs to capture. Moreover, the hash range in each node might
be affected by policies and available resources (in the node itself and in other nodes
on the path of the packets). Specifically, a MEDINA node determines its hash range
as follows:

1. All possible Ingress-Egress (IE) pairs3 in the MEDINA domain are determined
starting from the available topological information. If B is the number of edge
nodes in a directed graph, the number of IE-pairs is B(B−1).

2. For each IE-pair, the node computes the forwarding path from ingress node
to egress node. It is worth noting that, because of the operating principle of

2Details of the operations of MEDINA nodes and an analysis of the trade-offs among different
options is beyond the scope of this chapter and is left as future work.

3While [81] and [76] denote a path as Origin-Destination pair, we prefer the name Ingress-Egress
pair to highlight the difference between the original source (destination) of the packet and the ingress
(egress) node in the MEDINA overlay.

93

Packet processing in the core: a Massively Distributed Network Data Caching
Platform

the shortest path algorithm that is deployed by routing protocols, a packet that
is forwarded to its destination through an IE-pair follows the same route as
packets coming from the ingress node and addressed to the egress node.

Using the Dijkstra’s algorithm the single-source shortest path can be computed
with worst-case performance O(E +V logV) [83] (E and V are the number of
links and nodes, respectively). Therefore, the computation for all the IE-pairs
can be done in O

(
B(E +V logV)

)
.

3. If the node is associated to an IE-pair (i.e., it is included in the IE-pair forward-
ing path), it computes the range for packets on that path by executing a traffic
assignment function that, in addition to the number of nodes on the path, takes
into account a set of constraints, such as policies and resource availability.
Given that the number of IE-pairs containing the node are at most B(B−1)
and the number of nodes in a path are at most V , this operation has complexity
O(B2V).

The algorithm for the computation of the hash ranges is summarized in Figure 5.2.
The traffic assignment function divides the hash space among all the MEDINA nodes
in a path. One possible solution is to split the hash space in different ranges with
size proportional to the hardware resources of each node. However, it is possible
to devise more complex functions that consider both the hardware capabilities and
the expected traffic forwarded by each node. In Section 5.3 we show that even a
simple heuristic that considers these two parameters results in a fair load distribution.
The outcome of the assignment is a manifest: a table that assigns to each IE-pair
associated to the node a hash range used to identify the packets forwarded on that
path that the node is responsible for capturing. Coherence among the manifests in all
MEDINA nodes associated to an IE-pair (namely, associations that avoid redundant
capture as well as missing some packets) is ensured by the fact that all nodes on
an IE-pair run the assignment function with identical input parameters (other than
the specific position of the node in the path). The relatively high complexity of
the manifest computation O

(
BE +BV logV +B2V

)
(which is O

(
V 3) in the worst

case) is acceptable given that this operation is performed fully only once; subsequent
topology updates require only a partial re-computation that involves only affected
paths. If a certain degree of redundancy n must be supported in the capture of packets
transiting through an IE-pair, the assignment function ensures that any hash H(k)
falls within the hash range of exactly n nodes associated to the IE-pair. MEDINA

94

5.2 MEDINA Design

Compute
all IE-pairs

Is there a
new IE-pair?

Start

End

NO

Get next
IE-pair

Compute shortest path
from ingress to egress

YES

Is this node in the
shortest path?NO

Run the traffic
assignment function

YES

Add
IE-pair Hash range

to the manifest

Fig. 5.2 Offline manifest
computation

New packet

End

Select the egress
node (EID)

Is the packet
from outside the MEDINA

domain?

NO

Compute the
reverse path

YES

Mark the packet
with this node ID

Compute shortest path from
current node to the destination

Is current node
the egress node of the

reverse path?

NO

Is the packet
marked?

Compute the
reverse path

Extract the
ingress ID (IID)

NO

Select as IID the egress
node of the reverse path

YES

Extract hash key from
the packet

Apply the hash function

Extract the hash range
from the manifest

Is the hash
value within the

range?
Capture the

packet

YES
YES

NO

Fig. 5.3 Inline packet processing

offers a valuable contribution when n is much smaller than the number of nodes
associated to an IE-pair, which is the case in common deployment scenarios.

Because the hash computed must be the same across all the nodes associated to
an IE-pair, the portion of the packet k used as hash key must not change along the
path. Thus, in order to achieve a balanced distribution of packets across different
hash ranges (i.e., across network nodes), the hash key shall include high entropy,
path-invariant fields of the L3/L4 headers and all the bytes of the packet payload,
while fields that might be modified on a hop-by-hop basis (e.g., IP TTL, MPLS label)
and fields that frequently have the same value in different packets (e.g., IP version)
shall be excluded.

Fragmentation by routers internal to the MEDINA domain is not supported since
the hash function applied on the whole packet would return different values than
on the fragments, which would result into packets captured by multiple nodes
or not captured at all. This limitation is compatible with IPv6 networks (where
fragmentation is performed by the source) and is practically irrelevant in IPv4

95

Packet processing in the core: a Massively Distributed Network Data Caching
Platform

networks (where fragmentation most commonly happens at the network edge [84]).
Morever, fragmentation can be avoided through a careful configuration of the MTU
in the nodes of the MEDINA network.

5.2.3 Traffic assignment granularity

While the previous discussion has focused on the assignment of individual packets
to MEDINA nodes, the selection process can be equally applied to flows, packets
or chunks, depending on security and privacy requirements. For example, if the
assignment policy specifies all the data carried in one flow to be stored on the same
node, flow specific fields of the IP header (i.e., the 5-tuple) can be used as key for
the hash function. Some assignment policies might require pre-processing of data
extracted from the packet before using it as a hash key. For example, if the data
in both directions of a flow must be processed by a single node (e.g., to perform
session level analysis), it is necessary to combine source and destination addresses
with a commutative function before applying the hash function. In this regard, the
XOR function has been demonstrated to have useful properties in terms of ensuring
the uniformity of the resulting hash on the hash range [85] and could be applied as
follows:

(src IP⊕dst IP)||(src port⊕dst port)||L4 protocol

Finally, to have packets acquired in chunks by different nodes, a packet (path-
invariant fields and payload) can be split into multiple chunks that are considered
separately by the traffic assignment function. In this case, since some chunks do not
contain header fields, the entire chunk must be used as hash key.

5.2.4 Path discovery

A MEDINA node must identify the IE-pair each packet is being forwarded through to
lookup in the manifest the corresponding hash range and compare it with the packet
hash. Since the IP protocol forwards packets according to their destination, given
the topology and the destination IP address the node can devise the path the packet
will take from itself to the edge of the domain, thus identifying the egress node.

On the other hand, the ingress node a packet has entered the MEDINA domain
through cannot be easily inferred. Some approaches are discussed in [86], but they

96

5.2 MEDINA Design

Algorithm 1 Packet processing algorithm
Require: Node_ID and Manifest

1: p← new packet
2: path← COMPUTE_PATH(Node_ID→ p[dst])
3: EID← EGRESS_NODE(path)
4: if p is from outside the MEDINA domain then
5: r_path← COMPUTE_PATH(EID→ p[src])
6: if EGRESS_NODE(r_path) ̸= Node_ID then
7: p[IID]← Node_ID ▷ Mark the packet with the Ingress ID
8: end if
9: end if

10: if p contains IID then
11: IID← p[IID]
12: else
13: r_path← COMPUTE_PATH(EID→ p[src])
14: IID← EGRESS_NODE(r_path)
15: end if

16: key← EXTRACT_KEY(p)
17: if HASH(key) ∈Manifest[IID][EID] then
18: CAPTURE(p)
19: end if

rely on information that is usually not available to all network nodes (e.g., ACLs,
address block assignments, etc.). As presented in Algorithm 1 (and graphically
specified in Figure 5.3), the ingress node of a packet is inferred by considering the
egress node of the reverse path (i.e., the path from egress node to source).

• If the ingress node does not correspond to the egress node of the reverse path,
the ingress node must provide its identity to internal nodes by marking the
packet with a unique Ingress ID (IID).

• If a packet is received without an Ingress ID, internal nodes compute the
reverse path and the last hop in the MEDINA domain is assumed to be the
ingress node of the packet.

For every packet received from a router outside the MEDINA domain, an ingress
node:

97

Packet processing in the core: a Massively Distributed Network Data Caching
Platform

1. computes the egress node based on its routing information and the destination
IP address,

2. computes the path of a packet in the reverse direction (i.e., from the egress
node to the source IP address), and

3. marks the packet with its own Ingress ID if it is not the last hop on such path.

The computation of the shortest path performed by an ingress node in steps (1) and
(2) above, as well as an internal node to determine the egress router and possibly
the ingress one, has a worst-case complexity O(E +V logV). Nodes can maintain a
table with the IE pairs for the most recent source-destination pairs. Consequently, the
shortest path algorithm is executed only for the first packet of a flow. We reasonably
expect that the manifest lookup is performed in hardware using TCAMs, thus with
time complexity O(1). Also the most recent entries of the IE pair table can be
stored in the TCAM to handle the active flows. Moreover, additional optimizations
can be introduced in the implementation to reduce the complexity of the algorithm
computation per flow and the delay incurred by the first packet of the flow when
Algorithm 1 is executed. For example, the egress node for each IP subnet can be
pre-computed as soon as the subnet is discovered by routing protocols, i.e., before
packets going to or coming from the subnet are received. Such information can be
used by internal nodes to devise IE pairs with the complexity of a table lookup, rather
than the execution of the shortest path algorithm. This comes to the additional cost
of a ternary table containing destination subnets and the corresponding egress routers
addresses. If the MEDINA implementation is integrated with the routing protocol
implementation, the egress node for each destination can be computed with no added
cost when the shortest path algorithm is applied to compute the shortest path to the
destination. The egress node can thus be stored in the routing table at the additional
cost of one IP address (4 bytes in IPv4) per entry.

Packet marking can leverage unused fields in the IP header (e.g., IP identification
field, DS field), network specific fields (e.g., MPLS labels) or tunnelling techniques
(e.g., GRE). Given how routing is commonly configured and operated in today’s
networks, it is reasonable that packet marking is rarely needed. It is worth mentioning
that MEDINA can also be deployed in layer 2 networks, such as IXP networks [87],
where a path can be identified using source and destination MAC addresses, without
requiring packet marking.

98

5.2 MEDINA Design

5.2.5 Data storage

Since a high traffic rate could result in large numbers of packets captured, an index is
built by MEDINA nodes in order to provide fast access to the data. Both the index and
the stored traces can be accessed remotely through a set of ad-hoc push/pull APIs.
Aggregation of data stored by multiple MEDINA nodes allows for the reconstruction
of a detailed and comprehensive image of the overall traffic that can be then further
processed and presented through a User Interface (UI). Additionally, every MEDINA

node implements a specific eviction policy to manage the available storage space.
This policy is used to establish which packets to erase to provide space for the ones
being captured. For example, an eviction policy could be to keep a trace for at least
the amount of time needed by the system manager to detect an event of interest.
In this example, the eviction policy does not guarantee that there is always space
available for produced data, hence the available storage space is a parameter that
must be considered by the traffic assignment function to assign a smaller portion
of the hash space to stressed, resource-limited nodes. Alternatively, a FIFO policy
could be used (older data are deleted first), so that new data can always be stored.

5.2.6 Resource allocation

To ensure fair load distribution among the nodes, the traffic assignment function
must take into account long-term and short-term traffic dynamics. Different paths
transport traffic at different rates and with variable characteristics that affect the
capturing effort required by each node. These characteristics vary according to
long-term trends (e.g., diurnal traffic is usually higher than nocturnal) and short-term
trends (e.g., a one minute traffic burst). Therefore, the parameters used by the traffic
assignment function must be adjusted to the variable traffic load forwarded on each
path in a certain time period.

Global knowledge of each path’s traffic load allows for better load distribution
among nodes because it allows nodes to relieve each other from the burden of
capturing heavy flows, even if those nodes are not capturing the same flows. For
example, if node A is capturing flow 1 and flow 2 and node B is capturing flow 2
and flow 3 (flow 2 is partitioned among node A and B), node B’s knowledge of node
A’s flow 1 allows for node B to take on an additional share (increase its hash range)
of flow 2 in case flow 1’s processing becomes resource intensive. As a result, node

99

Packet processing in the core: a Massively Distributed Network Data Caching
Platform

A has to process less traffic belonging to flow 2 and can dedicate more resources to
flow 1. This implies that every node must consider not only the traffic present on its
own paths, but also the amount of traffic on the other paths indirectly.

5.2.7 Online fine-tuning

The traffic assignment algorithm guarantees that the load is fairly shared among the
nodes assuming that the the allocated resources match the live traffic within a certain
tolerance. However, to cope with less predictable short-term traffic variations, a
MEDINA node constantly monitors the resources used by each path to notice any
significant deviation from the allocated amount (both in the case of excessive or
scarce traffic).

When the current traffic and the allocated resources differ by a value above a given
tolerance threshold, the allocation plan is re-evaluated to adapt to the current state. As
a result, this triggers an update to the local constraints which are then sent to all the
nodes involved in the relative path, triggering an update of the manifests throughout
the network. The tolerance must be selected as a trade-off between the level of
fairness in the load distribution and the frequence of the updates (influencing the
amount of additional synchronization traffic). Additionally, it should also consider
the time needed to disseminate the updates, which can vary with network congestion.

Moreover, MEDINA nodes constantly monitor the network topology (piggyback-
ing on routing protocols or, when this is not possible, through ad-hoc keepalive
messages) to promptly react to routing changes. Failures of MEDINA nodes are
immediately detected, so that the remaining nodes can re-evaluate the allocation plan
to divide among them the hash ranges of a failed node.

5.3 Evaluation

In order to evaluate the benefits provided by MEDINA in a realistic scenario, we
simulate its deployment on the Internet2 network, considering its publicly available
PoP-level topology and static link weights. In our experiment in each PoP there is a
MEDINA node and the amount of storage in the node is proportional to the population
of the city that it serves with a ratio of 1 GB for each 100 people (from 2 TB for Salt

100

5.3 Evaluation

Lake City to 84 TB for New York). We expect that in a real deployment populous
cities would be served by multiple nodes, but we preferred to keep the simulation
simpler while still having the algorithms operate in an equivalent situation.

Reproducing the evaluation performed in [81], we apply a gravity model to
a baseline traffic volume Tb of 8 million IP flows per 5-minute interval to obtain
the traffic volume TVi,e for each IE-pair (B is the set of edge nodes and Pj is the
population served by the edge node j):

TVi,e = Tb ∗
Pi ∗Pe

∑ j,k∈B Pj ∗Pk

Specifically, we assume that the total traffic between 2 PoPs is proportional to the
product of their population sizes. We assume that the flow size (number of bytes per
minute transferred) is Pareto-distributed with shape 0.606 and scale 92 [88] and that
a single flow cannot transfer over 750 MB per minute (corresponding to a 100 Mbps
rate).

The traffic assignment function implements a simple heuristic to distribute the
load among the nodes considering for each one of them: (i) the amount of available
storage, (ii) the number of IE-pairs the node is associated to, (iii) the expected traffic
through each associated IE-pair (based on the forwarded traffic). Specifically, the
storage available to a node is divided among the associated IE-pairs proportionally to
the expected traffic in each IE-pair. The result of this allocation is a set of constraints
that are shared with the other nodes involved in the same IE-pair. Finally, the hash
space for the IE-pair is divided among the nodes in the path proportionally to the
constraints advertised by them. Moreover, each MEDINA node constantly monitors
the used storage space and, whenever it concludes that the available space is reducing
excessively fast, it recomputes the contraints (with new traffic estimates) and sends a
message to the other MEDINA nodes associated to the same IE-pairs to recompute a
more fair assignment. As a result, if traffic through the various IE-pairs matches the
expectation (within a predefined threshold), the algorithm converges to a steady state
that does not require further communication among the nodes. Exceptional changes
in the traffic characteristics trigger the computation of new constraints to converge to
a different distribution plan.

Figure 5.4 and Figure 5.5 present the results of this simulation. Figure 5.4
shows that, even with our simple heuristic, most nodes’ used storage increases at

101

Packet processing in the core: a Massively Distributed Network Data Caching
Platform

 0

 20

 40

 60

 80

 100

 29 0 5 10 15 20 25

U
se

d
sp

ac
e

(%
)

Hours

HOUS
LOSA
SEAT

WASH
NEWY
CHIC
SALT
KANS
ATLA

Fig. 5.4 Per node used storage.

a similar pace over time. However, as shown in Figure 5.5, some nodes forward
less traffic than others, hence nodes cannot all capture the same fraction of their
traffic. Specifically, as the storage space becomes a critical resource, these nodes
take a larger share of the traffic they forward compared to nodes traversed by a larger
number of flows, thus lessening the capture burden on the latter. Even with this
simple heuristic, it takes around 29 hours to reach a point where all the nodes in a
path are completely full and successive flows cannot be captured. As a result, in this
scenario the captured traffic can be available to the NOC for offline processing (e.g.,
network forensics) for more than a day. Presumably, with that amount of time, the
raw data of interest can be retrieved by the NOC during periods of limited network
activity.

Figure 5.5 shows the amount of traffic that each node forwards and the fraction
they capture. On average a node captures only around 25% of the traffic it forwards,
thus MEDINA allows to reduce by a factor of 4 the amount of resources needed
for processing and storing the traffic in each node compared to the case of capture
happening independently in selected nodes. Consequently, MEDINA also allows
reducing the amount of additional traffic in the network if all the captured packets
are to be sent to a NOC. Moreover, the NOC does not have to identify and remove
duplicated packets. It is worth noting that in a real scenario the gain is even greater

102

5.4 Related Work

 0

 20

 40

 60

 80

 100

 120

 140

HOUS LOSA SEAT WASH NEWY CHIC SALT KANS ATLA

Fl
ow

s
(T

B)

Nodes

Forwarded
Captured

18.6%

45.8%

29.5% 7.3%

66.3%

33.4%

8.2% 8.6% 5.2%

Fig. 5.5 Per node captured and forwarded traffic.

than in our experiment where a PoP-level topology is considered: core routers could
also support MEDINA and share the traffic capture burden.

A more complex heuristic could provide a more equal load distribution among the
nodes, but it also would come at the cost of a larger amount of information exchanged
among the nodes and a longer computation time to obtain the assignment.

5.4 Related Work

A number of techniques have been proposed to distribute the traffic processing
load among network devices in a coordinated fashion, especially for monitoring
tasks. The work presented in [89] proposes to distribute monitors in the network that
determine the monitoring target by periodically sharing information on the monitored
flows. This information is shared as an aggregate by means of counting bloom filters.
This solution aims at reducing duplicate monitoring, however, since frequently the
first monitor in the path is responsible for the flow, the load is not fairly distributed
among all the monitors. Moreover, since each monitor must be constantly aware
of the flows others are responsible for, bloom filters must be exchanged frequently,

103

Packet processing in the core: a Massively Distributed Network Data Caching
Platform

as well as stored and processed by each monitor, which limits the scalability of the
solution.

Sonata [90] proposes an SDN approach to network monitoring, where a controller
defines a set of flow rules used to sample the traffic processed by various network
devices. The samples are sent to a centralized stream processor, which analyzes the
data and refines the sampling policy. This approach is applicable for monitoring
persistent events, such as Denial Of Service attacks. In fact, the iterative refinement
allows to zoom-in on successive sets of packets, assuming that the features of interest
continue to be present in the traffic. On the contrary, MEDINA allows to zoom-in
also on past, terminated, events, given that the processed traffic is stored and indexed
by network devices themselves.

Many of the solutions that provide coordinated distribution and load balancing
are based on a centralized controller, possibly running in the NOC, responsible for
setting the target traffic for each node. In cSamp [81] a centralized system assigns
sampling responsibilities to routers to optimize network-wide monitoring objectives.
As in MEDINA, each router has a table with a hash range for each path on which
it lies. The router computes on each packet the hash of the 5-tuple and processes
the flow only if the hash falls in the range associated to the path followed by the
packet. However, cSamp requires to mark all the packets upon entering the network
with an identifier of the path they take in the network, while MEDINA does not
require any additional information to be included in most packets (i.e., those for
which the ingress node corresponds to the egress node of the reverse path, which
is the case for the vast majority of packets since routing is normally symmetric).
An updated version of cSamp is presented in cSamp-T [91], where packet marking
is limited at the cost of possible duplicate processing and sub-optimal results in
terms of load distribution and coverage of packets. In cSamp-T, instead of using
per-path hash ranges, routers deploy hash ranges that depend on a 3-tuple consisting
of previous hop, current router, and next hop. Since the 3-tuple can be inferred using
only local information, packet marking is not required. However, it is not possible to
control the number of hash ranges a packet traveling through the network will fall
into. As a results, a packet might be processed more than once or not at all, which
makes cSamp-T applicable only in applications involving flow sampling. It is worth
noting that the technique used to split responsibilities across multiple network nodes
proposed in cSamp has been deployed also for WAN optimization [92], which proves

104

5.4 Related Work

that the approach (whose underlying principles are similar to the ones of MEDINA)
can be successfully applied to different traffic processing services.

Leisure [76] deploys a centralized architecture that uses global network-wide in-
formation to allocate disjoint sets of flows to be measured. The framework distributes
traffic measurement tasks evenly across coordinated routers, leveraging a heuristic
aimed at minimizing the variation of monitoring load among nodes. MEDINA nodes
instead share the load fairly according to node capabilities, therefore more powerful
nodes can receive a larger share, relieving other nodes from the load on a set of paths,
providing the opportunity to use their resources on other paths. The authors of [77]
apply a coordinated approach to distribute remote packet capture. In the proposed
solution the controller increases the number of sensors in the network only when the
load grows and the deployed sensors are close to their utilization limit, thus does not
favor a fair load distribution.

In wide-area deployments centralized approaches suffer from the additional
latency required to convey topology and resource utilization information to the
centralized controller and to communicate the new allocations produced by the
controller back to the various nodes. This, as discussed in Section 5.1, prevents
prompt reaction. A decentralized coordination for flow monitoring is introduced with
Decon [93], where a peer-to-peer overlay of multiple controllers, called rendezvous
points (RPs), is responsible for monitoring decisions on new flows. Specifically,
Decon’s RPs decide which probes in the network should monitor which set of flows
going through them. The objective is to increase coverage, in terms of number of
flows monitored during a given time period, by spreading the load across the available
resources. Even though the control is decentralized, the controller and the monitor
are separate entities, thus each monitor must actively report to a RP the detection of
new flows to request an assignment decision, with a considerable amount of control
traffic in the network on a large scale. A similar solution is presented in Decor [94]
where egress nodes decide the optimized resource arrangement. Kamiyama et al. [95]
propose an autonomous load-balancing method for flow monitoring where monitors
exchange information on their load only with adjacent monitors. Hence, each node
independently adapts the monitoring target based on data received from its neighbors
only, which favors a local optimum. Instead, in MEDINA constraints are exchanged
with all the nodes in the overlay; however, this is done only when the load exceeds
the estimate in order to contain the amount of service traffic.

105

Packet processing in the core: a Massively Distributed Network Data Caching
Platform

5.5 Conclusions and future work

This chapter presented MEDINA, a highly distributed and decentralized traffic capture
and processing platform. Although the principles underlying MEDINA could be
applied to generic processing and storage of data units forwarded through a network,
this work focuses on traffic monitoring, with the goal of fairly distributing the
resulting load among nodes through decentralized coordination. The load distribution
is autonomously adapted to changing traffic conditions, leveraging data shared by all
the nodes in a path. Different security and privacy requirements are met by selecting
a custom granularity in the traffic assignment to individual nodes that can operate on
a per-flow, per-packet and even per-packet chunk basis. Moreover, nodes process and
store traces and metadata with a configurable amount of redundancy for increased
reliability. A distributed index, queried through ad-hoc APIs, provides fast access to
the stored data for offline processing and analytics. With the experimental evaluation
of a naive implementation of MEDINA we show that in realistic scenario it is possible
to reduce by a factor of 4 the amount of processing required in each node, compared
to independent packet capture.

As future work we plan to analyze the impact of extending the approach to
generic processing (beyond packet capture) in a network of generic entities (rather
than routers) and to study the tradeoff between the achievable load balance, the
amount of additional information exchanged by the nodes and the computation time
needed to define the distribution plan. Future work will also be aimed at proving the
theoretical correctness of the distribution algorithm and finding an optimal traffic
assignment function that minimizes the variation of load among MEDINA nodes.

106

Chapter 6

In-network computation with
programmable data plane

6.1 Introduction

With flexible networking hardware [97] and expressive data plane programming
languages [98, 99] the functionality of networks can now be enriched without
hardware changes while retaining the capability of processing packets at very high
rates, even above Terabits per second. Emerging programmable network devices are
paving the way for new services to better support data center applications [100, 101]
and improve network monitoring [102–106].

Programmable networks create the opportunity for in-network computation, i.e.,
offloading a set of compute operations from end hosts into network devices such as
switches and smart NICs. In-network computation can offer substantial performance
benefits, as it is for example the case with consensus protocols [107, 100] and
in-network caches [108, 109]. Although traditional networks are not capable of
computation, the idea of using the network not just to move data, but also to perform
computation on transmitted data is reminiscent of Active Networks [110], which
proposed to replace packets with small programs called “capsules” that are executed

The content of this chapter has been published in [96].

107

In-network computation with programmable data plane

at each traversed switch. However, for the past two decades the hardware capabilities
were lacking. This appears to be changing.

The recently proposed RMT architecture [97] and its upcoming incarnation in the
Barefoot Networks’ Tofino [111] switch chip has a flexible parser and a customizable
match-action engine. To process packets at high speed, this architecture has a multi-
stage pipeline where packets flow at line rate. Each stage has a fixed amount of
time to process every packet, allowing for lookups in memory (SRAM and TCAM),
manipulating packet metadata and stateful registers, and performing boolean and
arithmetic operations using ALUs. Other vendors are also introducing new classes
of programmable chips with similar capabilities [112]. We believe that with this
new generation of flexible data plane hardware it is worth revisiting a fundamental
question: as networks become capable of computation, what kinds of computation
should networks perform?

In this chapter, we will consider this question in the scope of data center applica-
tions because it is likely that data centers will be early adopters of programmable net-
works and many of these applications have stringent performance requirements. On
the one hand, in-network computations can be broadly useful in several performance-
oriented contexts to reduce latency and/or increase throughput of certain operations.
Furthermore, it can help reducing network traffic, so as to alleviate congestion,
which is a major cause of application performance degradation. In particular, a
computation that happens on-path and at line rate is appealing since it bears no
cost to the application, which can spare CPU cycles for other tasks instead. On the
other hand, despite recent technological advancements, network devices have limited
compute power and little storage to support general computation. Moreover, systems
designers are prescribed by the end-to-end principle [113] to avoid implementing
application-specific logic in the network and are generally wary about raising the
overall system complexity. Additionally, in-network computation must not affect the
application correctness.

We posit that in-network computation must be used judiciously. Towards this
goal, we seek to identify what type of computation can be done in-network such
that: (i) network traffic is significantly reduced, (ii) only a minimal change at the
application level is required and (iii) the correctness of the overall computation is
not affected.

108

6.1 Introduction

We find that a plausible class of applications that satisfy the above desiderata
are those applications that follow a partition/aggregate workload pattern. These
applications cover a wide spectrum of data-intensive frameworks including big data
analytics as in MapReduce [114] and machine learning [115–117], graph process-
ing [118, 119] and stream processing [120]. Generally these frameworks scale
applications by distributing data and computation across many worker servers. Each
worker performs some computation on a data partition, which is followed by a com-
munication phase to update shared state or finalize the computation. This process
can be performed iteratively until a stopping condition is met.

These applications are sensitive to network performance and the communication
cost can be one of the dominant scalability bottlenecks as large volume of data
need to be moved routinely in many to many patterns. Already several distributed
frameworks like MapReduce [114], Pregel [118] and DryadLINQ [121] allow for
user-defined aggregation functions. These functions enable application developers
to reduce the network load (e.g., by summing all individual messages to a common
graph vertex) and consequently, the job execution time. However, the aggregation
functions are only applied at the worker-level, missing the opportunity of achieving
better traffic reduction ratios when applied at the network level.

These aggregation functions have several characteristics that make them appeal-
ing and suitable to be partially executed in-network. First, they usually reduce the
amount of data (e.g., sum the inputs, or find the minimum). Thus, it is beneficial
to apply these functions as early as possible to decrease the amount of network
traffic and lessen congestion. Second, they are usually characterized by simple
arithmetic/logic operations, which make them amenable to parallelization and ex-
ecution on programmable switches. Third, in many algorithms [118, 119], they
are commutative and associative functions, which implies that they can be applied
separately on different portions of the input data, disregarding the order, without
affecting the correctness of the final result. Fourth, they are often readily available,
meaning that they could be transparently supported without requiring the developer
to write new application logic. As we will show, implementing certain aggregation
functions inside the network is possible and beneficial since programmable switches
can aggregate intermediate data, thus reducing the traffic as well as the processing
load at the destination. However, the limited resources, restricted compute power
and stringent constraints on packet processing time create several challenges and call
for a judicious system design.

109

In-network computation with programmable data plane

To contribute a concrete point in the design space, we propose DAIET, a system
for data aggregation in-network. While our design is still incomplete and likely to
change, this represents an example of a system that can be built using the P4 pro-
gramming language [98] to offload computation to the data plane. Our experimental
results with an initial prototype supporting a MapReduce application show that this
approach provides a large data reduction (86.9%-89.3%) and a similar decrease in
worker’s computation time.

A number of recent research efforts [122–124] have proposed in-network ag-
gregation techniques for a variety of applications. However, these systems either
required to change the network architecture [122, 124] or build a switch chip with
a fixed set of aggregation functions [123]. We demonstrate that similar benefits
can be reaped using flexible and programmable data planes. That said, we envision
that practical deployments for our proposal might be better suited within clusters
and racks specialized for certain workloads such as deep learning or data analytics
where the benefits of in-network aggregation are substantial without requiring data
center-wide adoption.

We note that aggregation functions, though they are a generic primitive applicable
to a number of applications, are not the sole type of in-network computation possible
and we hope that our work will trigger a broader discussion around the driving
question behind our work: what should networks compute?

6.2 Background

The idea of using the network not only as a passive mover of bits, but also as a more
general computation engine, where information injected into the network may be
modified, stored, or redirected, has been the subject of extensive research within the
field of Active Networking [110]. Active networks proposed to let the user choose
the functions that the network would perform on its traffic by inserting directly in the
packets the specific function ID and the required parameters. We advocate that this
approach can be revisited thanks to the introduction of flexible dataplane hardware.

Many data center applications scale by combining phases where work and input
data are partitioned across many independent worker threads executed in parallel by
different servers with phases where partial or intermediated results are aggregated

110

6.2 Background

by one or many servers and are subjected to further processing, in order to compute
the final set of results. One example of such applications is MapReduce [114], a
data-parallel programming model designed for scalability and fault-tolerance that
scales to large data volumes on thousands of machines. The same pattern appears in
a variety of applications like graph processing [118], machine learning [116, 117],
stream processing [125], and others.

The distribution of intermediate results requires one or several many-to-one
communications among servers, which stress the underlying network, given the
sheer amount of data and possibly oversubscription within the network. Moreover,
the large number of uncorrelated flows in many-to-one communications may overrun
the buffers of top-of-rack switches (TCP incast [126, 127]), causing TCP throughput
to drop, which in turn increases job completion times.

In many cases, the aggregation phase applies application-specific aggregation
functions that reduce the amount of data (e.g., sum the inputs, or find the minimum).
Thus, it is beneficial to apply these functions as early as possible to decrease the
amount of network traffic. Moreover, in many algorithms [119], the functions are
commutative and associative, which implies that they can be applied separately on
different portions of the input data, disregarding the order, without affecting the
correctness of the final result. These properties are crucial to perform in-network
aggregation.

6.2.1 P4 Programming Language

P4 [98] is a data plane programming language to define customizable packet pro-
cessing in network devices. It has been designed around three goals: (i) protocol
independence: new protocols can be supported without hardware modifications; (ii)
target independence: starting from a generic P4 program, a compiler generates the
final code specific for a particular target platform (e.g., reconfigurable hardware
switches [97, 128], smart NICs [129] or software switches); and (iii) reconfigurabil-
ity: packet parsing and processing can be redefined in the field.

As in a classical SDN scenario, the control plane can configure the P4 data plane
by pushing MATCH-ACTION flow rules in a set of tables. These flow rules can
match custom protocols and execute custom compound actions. Actions can modify
the packet, update local state variables and then drop the packet or forward it to

111

In-network computation with programmable data plane

the next hop. P4 actions can also clone packets (e.g., to support multicasting) and
resubmit it to the ingress port for a new round of processing.

A P4 program is made of five constructs: (i) packet headers defining the order
and the size of data carried by the packet; (ii) parsers: stating how to transform
packets to a parsed representation by specifying the sequence of headers that can be
present in a packet; (iii) tables: describing the header fields that the rules in these
tables can use to select packets. They also describe how these fields are matched (e.g.,
exact match, Longest-Prefix Match, etc.) and the list of possible actions performed
on matching packets; (iv) actions: defining a sequence of primitive operations;
e.g., add or remove headers, modify headers fields, update the local state, clone,
drop or packet forwarding; and finally (v) control blocks specifying the sequence
of tables that must be applied to each packet. Unlike typical SDN approaches (e.g.,
OpenFlow [130]), flow rules cannot state to submit packets to a different table (i.e.,
goto-table action), only control blocks can select the tables to apply.

P4 programs can keep per-packet state by defining a list of metadata. These
metadata are discarded as soon as the packet leaves the switch, while persistent state
is kept using registers, which are byte arrays whose size must be defined at compile
time.

6.3 Judicious Network Computing

We focus on in-network computation enabled by the recent developments in recon-
figurable, protocol-independent switch ASICs such as RMT [97]. Their network ma-
chine architecture is based on a multi-stage pipeline of packet processing logic [131].
Computing on these devices corresponds to executing streaming algorithms that have
stringent constraints on the number and type of operations that can be performed.
This is due to the following limitations:

Limited memory size. Packet processing at high speed requires a very fast memory,
such as TCAMs or SRAM, which is expensive and usually available in small capaci-
ties. As an example, the upcoming Barefoot Tofino [111] switch chip is expected
to process a remarkable 6.5 Tb/s while still providing the flexibility of data plane
programmability. To match this processing speed, packets can be processed by a

112

6.3 Judicious Network Computing

limited number of lookup tables and the expected available SRAM is in the range of
few tens of MBs.

Limited set of actions. Programmable devices support a small set of actions, usually
simple arithmetic, data manipulation, and hashing operations. Some switches can
also provide limited support for floating point operations [123].

Few operations per packet. To guarantee execution at line rate, programs have
only tens of nanoseconds to process a single packet. As a result, they cannot use
constructs that do not have an upper bound on the number of performed operations
(e.g., loops). Some devices allow to recirculate a packet in the ingress queue for
further processing, thus allowing to implement loops. But this comes at the cost of
additional processing latency and lowers the forwarding capacity.

Furthermore, offloading functionality to the network faces several challenges.
First, the underlying target imposes restrictions as discussed above and resources
are limited. As such, in-network computation must live within these confines.
Second, applications correctness is paramount. Data center networks have multiple
paths and failures of links and devices are not uncommon. As such, in-network
computation should provide benefits even if traffic follows different paths or an
application experiences failures. Alternately, an application should be no worse
than without in-network computation even when this is executing. Third, offloading
functionality raises complexity not only because certain packet processing logic is
executed in the network but also due to the required integration with applications
or libraries. As such, in-network computation should focus on primitives that are
broadly applicable to a class of applications and workloads, and identify reusable,
high-level abstractions that promote easy adoption.

Since we are just at the onset of programmable data plane hardware, it is hard
to gauge how far in-network computation can go and what possibilities the next
technological enhancements will enable. As an analogy, the spectrum of applications
of GPUs has evolved significantly since when they first became programmable, and
today’s GPGPUs have usages for deep learning and mining cryptocurrencies, that
are far beyond the computer graphics domain.

In the rest of this chapter, we follow through our earlier premise and explore in-
network aggregation as a concrete example of in-network computation. Consequently,
a main challenge to address when delegating data aggregation to the network is to

113

In-network computation with programmable data plane

account for all the constraints above while providing high data reduction ratios
without affecting the correctness of the final results.

6.4 Data Aggregation in Data Center Applications

Data aggregation is a common task in several distributed data center applica-
tions [114, 117, 118, 125]. It also satisfies the characteristics discussed in Sec-
tion 6.1. Therefore, it represents a good candidate for tasks that can be delegated to
the network. In this section, we study a set of algorithms that can utilize aggregation
functions to improve their performance. Specifically, we consider two classes of
algorithms: machine learning and graph analytics. The goal of this analysis is to
show the potential traffic reduction that can be achieved when aggregating the traffic
inside the network.

For machine learning algorithms, we use TensorFlow [117] to run two applica-
tions: a Soft-Max Neural Network using mini-batch Stochastic Gradient Descent
(SGD) and Adam optimization [132] (Adam). We use a mini-batch of size 3 for the
former and 100 for the latter. In these experiments, we use the MNIST1 database of
handwritten digits. The model is trained to correctly identify the digits present in
each image. We deployed TensorFlow on six machines: one acts as the parameter
server while the other five machines run as many worker processes. Each machine is
equipped with 128GB of RAM and two 2.20GHz Intel Xeon E5-2630v4 CPUs.

Workers are responsible for compute-intensive tasks while the parameter server
stores and maintains a set of shared parameters that comprise the trained model. In
this setting, each worker is training the same model on different mini-batches of the
data. In each iteration, the worker sends its parameter updates to the server which
aggregates the local updates from each worker. Then, the parameters at each worker
are updated according to their values at the parameter server.

In TensorFlow, the parameters are tensors, which are represented as large n-
dimensional arrays. Parameter updates are deltas that change only a subset of the
overall tensor and can be aggregated by a vector addition operation. We evaluate the
overlap of the tensor updates, i.e., the portion of tensor elements that are updated by
multiple workers at the same time. This overlap is representative of the possible data

1http://yann.lecun.com/exdb/mnist/

114

http://yann.lecun.com/exdb/mnist/

6.4 Data Aggregation in Data Center Applications

 34

 36

 38

 40

 42

 44

 46

 48

 50

 0 50 100 150 200

O
v

er
la

p
 (

%
)

Step

(a) Stochastic Gradient Descent

 62

 64

 66

 68

 70

 72

 0 50 100 150 200

O
v

er
la

p
 (

%
)

Step

(b) Adam optimization

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 2 3 4 5 6 7 8 9 10

T
ra

ff
ic

 R
ed

u
ct

io
n

 R
at

io

Iteration

PageRank
SSSP
WCC

(c) Graph Analytics Algorithms

Fig. 6.1 Potential traffic reduction ratio for two machine learning applications and various
graph analytics algorithms.

reduction achievable when the updates are aggregated inside the network. A high
overlap means that aggregating the local updates of each worker inside the network
could reduce the network traffic significantly.

Figures 6.1a and 6.1b show the amount of overlap among workers updating
the same portion of tensors in the same iteration for SGD and Adam applications,
respectively. Note that the overlap percentage is consistent among different iterations.
The average overlap percentage is around 42.5% and 66.5% for SGD and Adam
applications, respectively. Also note that the results in this experiment represent a
lower bound of the possible overlap as the applications could be tuned to schedule
communication to maximize overlap. In both applications, there are other tensors
communicated over the network with a higher overlap percentage, or even fully
communicated (100% overlap). We also experimented while increasing the number
of workers from two to five (without changing the mini-batch size), and observed
that the overlap increases.

115

In-network computation with programmable data plane

We further consider graph analytics algorithms. We used the LiveJournal dataset,2

which consists of 4.8M vertices and 68M edges. To run these algorithms, we
deployed GPS [133] – an open-source Pregel clone – on four machines, each with
3.40GHz Intel Core i7-2600 CPU and 16GB of RAM. We consider three algorithms
with various characteristics: PageRank, Single Source Shortest Path (SSSP) and
Weakly Connected Components (WCC). The three algorithms are associated with a
commutative and associative aggregation function.

Figure 6.1c shows the potential traffic reduction ratio for various graph algorithms
using the LiveJournal graph. Each graph algorithm exhibits a different traffic volume.
In PageRank, each vertex starts by sending its PageRank value to all its neighbours.
Then, each vertex in the next iteration receives and sums the various values from
its neighbours and calculates a new PageRank value. The traffic reduction ratio
is calculated by combining all the messages sent to the same destination into a
single message by applying the aggregation function used by the algorithm, i.e.,
sum, inside the network. In each iteration, all vertices are active and send messages
to their neighbours; hence, the traffic reduction ratio is almost the same across all
iterations. SSSP starts by sending a smaller number of messages from the source
vertex. In the following iteration, the number of messages increases exponentially
and hence a higher traffic reduction ratio is achieved. On the other hand, WCC
starts by sending large number of messages from all vertices which decrease as the
algorithms converges. The potential traffic reduction ratio in all the three applications
ranges from 48% up to 93%. In summary, applying in-network aggregation functions
could significantly reduce the traffic of these applications.

6.5 Solution sketch

As a proof-of-concept, we propose DAIET, a system for in-network aggregation
designed to address the challenges presented in Section 6.3 [134]. While it has
been designed with P4 and programmable ASICs in mind, it is general enough
to be possibly implemented on different programmable data plane platforms. For
the sake of presentation, we describe DAIET when applied to MapReduce-based
applications. However, the proposed solution is generic enough and works well for
various partition/aggregate data center applications.

2https://snap.stanford.edu/data/

116

https://snap.stanford.edu/data/

6.5 Solution sketch

A B C D

E

G

F

. . .

. . .

. . .

MAPPER

REDUCER

A

G

B

E

F

D

C

Fig. 6.2 Aggregation Trees: example of physical and logical view for traffic aggregation in a
data center network.

To perform in-network aggregation, DAIET requires a close collaboration be-
tween the application and the network. Prior to starting a job, the master allocates
the map and reduce jobs to the workers. This allocation information is exchanged
with the network controller. Then, the controller defines the aggregation trees. An
aggregation tree (Figure 6.2) is a spanning tree covering all the paths from all the
mappers to a reducer. There is one tree rooted at each reducer. The network con-
troller then configures the network devices, pushing a set of flow rules, to perform the
per-tree aggregation and forward the traffic according to the tree. Specifically, each
network device needs to know (i) the tree ID (i.e., reducer ID) that is embedded in
packets addressed to one reducer, (ii) the associated output port to forward the traffic
to the next node in the tree, and (iii) the specific aggregation function to perform.
Moreover, for each tree a network device is configured with the number of children
nodes it receives traffic from, so that the aggregated data are flushed to the next node
when all the children have sent their intermediate results.

When the map phase is completed, each map task produces an intermediate data
set consisting of key-value pairs, which is partitioned among the reducers. These
partitions are sent to the reducer using UDP packets containing a small preamble
and a sequence of key-value pairs. In the current prototype, we do not address the
issue of packet losses, which we leave as future work. The abstraction of key-value
pairs can be mapped on the messages exchanged in various data center applications;
e.g., they can represent updates to shared parameters in a machine learning job or
exchanged messages among vertices in graph processing.

117

In-network computation with programmable data plane

The preamble specifies the number of pairs present in the packet and the tree ID
the packet belongs to. We have carefully defined how the output of the map task is
serialized in the local file, so that packets are transmitted without partial pairs. In
fact, data cannot be deserialized during packetization, since it would greatly affect
the execution time, therefore we use a fixed-size representation for the pairs, so that
it is easy to calculate the offsets of pairs in the file and extract a number of complete
pairs. This serialization and deserialization modification is not required in those
applications that do not store intermediate results on disk. Finally, the end of the
transmission is marked by a special END packet.

For each tree, network devices store two arrays, one for the keys and one for
the values. These two arrays are managed as a hash table with buckets of only one
element. Specifically, a hash function is used to convert a key to an index in the array.
The index is used to access the two arrays and store the key and its corresponding
value in the relative cells. If a collision is detected (a key generates the same hash
of a different, already stored, item), then the new pair is not used for aggregation,
and is stored in a different spillover bucket. This bucket is a queue of pairs with as
many entries as the number of pairs that can fit in one packet. When this bucket is
full, the entries are immediately sent to the next node in the tree. If the hash function
distributes hash values evenly across the available range, this solution better employs
the available memory (a scarce resource in data plane devices) without affecting the
correctness of the final result. In fact this solution saves the allocation of multiple
collision buckets that have a low probability to be used. The non-aggregated values
in the spillover bucket are the first to be sent to the next node, so that they ware more
likely to be aggregated if the next node is a network device and has spare memory.
Additionally, an index stack is kept in the device memory to store the indices of the
used cells in the two arrays. This facilitates flushing the results to the next node,
avoiding a costly scan of the arrays.

Algorithm 2 summarizes the steps performed by the network device for each
received packet. When a new packet containing key-value pairs is received, each pair
in the packet is processed to update the local state. First, the hash function is applied
to the key to obtain the corresponding index. This index is then used to access the
keys array and check if: (i) the cell is empty, (ii) the same key has been received
before, or (iii) a different key with the same hash value is already stored in the cell.
In the first case, the new key-value pair is stored and the index is saved in the index
stack. In the second case, the value is aggregated with the previously stored value

118

6.5 Solution sketch

Algorithm 2 Packet Processing Algorithm
Require: Network Packet P

1: header← PARSEHEADER(P)
2: if header.type = DATA_PACKET then
3: entries← PARSEPAYLOAD(P, header.num_entries)
4: for all pair ∈ entries do
5: idx← HASH(pair.key)
6: if keyRegister[idx] is empty then
7: keyRegister[idx]← pair.key
8: valueRegister[idx]← pair.value
9: indexStack.PUSH(idx)

10: else if keyRegister[idx] = pair.key then
11: UPDATEVALUE(valueRegister[idx],pair.value)
12: else
13: STORE(spilloverBucket,pair)
14: if spilloverBucket is full then
15: FLUSHDATA(spilloverBucket)
16: end if
17: end if
18: end for
19: else if header.type = END_PACKET then
20: remaining_children = remaining_children - 1
21: if remaining_children = 0 then
22: FLUSHDATA(keyRegister, valueRegister)
23: end if
24: end if

and the result is stored in the array. In the latter case (i.e., a collision), the pair is
stored in the spillover bucket. If this bucket is full, all its pairs are sent to the next
node.

When an END packet is received, marking the end of one partition, the number
of pending children (initialized by the controller) is decremented. When this value
reaches zero, all the aggregated pairs in the two arrays can be sent to the next node
towards the destination.

While usually a reducer receives the intermediate results from each mapper sorted
according to the key, DAIET cannot preserve the order, thus the reducer receives
unordered, aggregated, intermediate results. As a consequence, the intermediate
results must be sorted at the reducer rather than at the mapper, which usually reduces

119

In-network computation with programmable data plane

the amount of parallelism. However, as shown in Section 6.6, the reduction in the
amount of data to sort makes this overhead negligible.

6.6 Preliminary Evaluation

Our current implementation of DAIET is built using P4 and is available as open
source3. As in a traditional SDN approach, the controller can configure a P4 data
plane by pushing flow rules to a set of tables. These flow rules can match custom pro-
tocols and execute custom actions. We found that P4 imposes two main constraints
affecting the implementation of DAIET: (i) a table can be applied at most once per
packet, therefore it is not possible to apply the same table to all the headers in a stack
of multiple headers of the same type, and (ii) the absence of variable-length data
structures.

The first constraint, which is meant to avoid loops during packet processing,
forces the programmer to manually perform loop unrolling, at the expenses of code
readability and size. The second constraint is relevant in case of variable-length keys
(e.g., strings). In fact, in this case the programmer is forced to reserve for each key
as many bytes as the largest expected key, increasing the memory footprint, which in
turn causes the allocation of arrays with fewer cells, thus increasing the possibility
that a pair is not aggregated.

We present preliminary results from our prototype implementation. We focus
on quantifying the reduction of traffic received by the root node of each tree (i.e.,
reducers) and the corresponding decrease in completion time at reducers. We
believe this reduction, in a deployment with hardware switches, is expected to be
proportional to the reduction in the job completion time, since each reducer will
receive and process less data. However, as P4 hardware was not yet available to
us, we obtain results using the bmv2 software switch,4 which is not designed for
line-rate packet processing. Thus, we cannot directly measure an improvement in job
completion time but our results, which show around 88% median traffic reduction
are still indicative of the expected benefits.

3https://sands.kaust.edu.sa/daiet/
4https://github.com/p4lang/behavioral-model

120

https://sands.kaust.edu.sa/daiet/
https://github.com/p4lang/behavioral-model

6.6 Preliminary Evaluation

 80

 81

 82

 83

 84

 85

 86

 87

 88

 89

 90

 91

Data
volume

Reduce
time

packets
(UDP baseline)

R
e

d
u

c
ti
o

n
 [

%
]

 10

 15

 20

 25

 30

 35

 40

 45

 50

packets
(TCP baseline)

Fig. 6.3 Reduction on the amount of data, running time and number of packets received at
reducers.

We run the experiments on a single server with two Intel Xeon E5-2680v2 CPUs
with 40 logical cores in total and 768 GB of RAM. We run the bmv2 switch in a
container on 4 dedicated cores, while 12 more containers, each with 2 dedicated
cores, are used as workers to run 24 mappers (one per core) and 12 reducers (one
per worker). An additional container is used to run the master. The 12 workers
execute a WordCount benchmark on an implementation of MapReduce adapted to
send the map results using DAIET. The input dataset is a 500 MB file containing
random words that are not causing hash collisions.5 We do not test with a larger
dataset because the network aggregation is performed by bmv2 using mainly a single
core. We configure P4 registers to store 16K key-value pairs, so that, with words of
maximum 16 characters and a 4 B integer value, the total SRAM required would
be around 10 MB, which is a reasonable amount of memory for a hardware P4
switch. To quantify the reduction, we run the same benchmark in two other baseline
scenarios without in-network aggregation: (i) using the original TCP-based data
exchange and (ii) using UDP and the DAIET protocol, but without executing data
aggregation in the switch.

Figure 6.3 shows a box plot of the reduction, across all the workers, in the total
data volume and execution time at the reducers observed with DAIET compared to
the first baseline. We observe that in-network aggregation provides a 86.9%-89.3%
reduction of the amount of data received by the reducers. Because the smaller the

5Our current prototype does not manage collisions.

121

In-network computation with programmable data plane

data the less processing time at the reducer, we measured a median decrease of
83.6% in the execution time at the reducer, despite the received data are not sorted
and require a complete sort operation.

Because current P4 hardware switches are expected to parse only around 200-
300 B of each packet6, we consider that one DAIET packet can contain at most 10
key-value pairs. Thus, our implementation generates more packets compared to the
TCP baseline. However, the data volume reduction due to in-network aggregation
is greater than the overhead caused by the additional packets. Figure 6.3 presents
the reduction in the number of packets received by the reducer compared to the two
baselines. We observe a median and maximum reduction of 90.5%, with a minimum
of 88.1% compared with the baseline using UDP without in-network aggregation.
Even considering the TCP baseline, we still measured a median 42% reduction in
the number of packets. It is worth noting that an additional overhead in the data
volume and number of packets is given by the fixed-size length of strings in our
implementation, that forces a 16 B key even for smaller strings. This limitation will
be removed in a future version of DAIET.

6.7 Related Work

Data Plane Applications. Emerging network devices offering data plane pro-
grammability paved the way for a whole new set of services that can be provided by
these devices to support data center applications [100, 101] and improve network
monitoring [102–105]. As an example, NetPaxos [107, 100] proposes a solution to
implement the Paxos consensus protocol using programmable network devices. This
is a valuable service that can help distributed data center applications to share a com-
mon state. In [135] programmable switches are used to implement approximate ver-
sions of several popular algorithms for network allocation. DC.p4 [136] shows how
specific data-center switch features can be implemented with P4. SwitchKV [101]
is a scalable key-value store, which enables content-based routing and efficient
dynamic load balancing leveraging the switch hardware to match keys and forward
the traffic to the right node at line rate. As these works showed, the programmable
data plane can even execute fairly complicated algorithms, therefore we advocate

6According to private conversations with a P4 hardware vendor.

122

6.7 Related Work

that the network can be used to execute also computation that, in the past, was only
reserved to servers.

In-Network Aggregation. Several research efforts [124, 123] have been devoted
for providing in-network aggregation for a variety of applications. NetAgg [124] is a
software middlebox platform that provides an on-path aggregation service. NetAgg
middleboxes are deployed on servers directly attached to network switches through
high-bandwidth links, composing an aggregation tree in the network. It uses shim
layers at edge servers to transparently intercept application traffic and redirect it to
aggregation nodes. This requires changes in the network architecture which can be
infeasible for already deployed data centers. Furthermore, for computation-bound
applications the middleboxes can become a performance bottleneck. SHArP [123] is
designed to offload MPI collective operation processing to the network. Reduction
operations are performed on the data as it traverses a reduction tree in the network,
reducing the volume of data as it goes up the tree. The nodes of the reduction tree
are SHArP network devices that collect data from all their children and perform
the aggregation operation once all the expected data is available. The results of
the aggregation are distributed from the root of the reduction tree to the leaf nodes
(i.e., the hosts), down the tree, or to a target InfiniBand Multi-cast group. SHArP
suffers from a set of limitations: (i) it works only for MPI-based applications and
does not support MapReduce, BSP or ML applications, (ii) it supports only a limited
set of combiners, since they are directly implemented in the switch ASIC, and (iii)
it always assumes that the aggregation root is the ToR switch, missing reductions
opportunities that can be made at different levels of the network.

Unlike NetAgg and SHArP, DAIET does not modify the network architecture and
provides more flexibility to support a variety of applications, including MapReduce,
BSP, MPI and Machine Learning. Moreover, data plane programmability provides a
greater flexibility, since support for new combiner functions can easily be added to
the network. Similar to NetAgg, Camdoop [122] also supports on-path aggregation
for MapReduce-based applications. It leverages the capabilities of Camcube [137]
which uses direct-connect protocols where all traffic is forwarded between servers
without switches. Thus, it requires a custom topology and it is incompatible with the
common tree-based data center network infrastructure.

Besides data aggregation, IncBricks [108] is an in-network caching fabric with
basic computing primitives. It leverages programmable switches and smart NICs.

123

In-network computation with programmable data plane

It uses a key-value store as the application interface and allows to offload common
compute operations on key-value pairs; e.g., increment, compare and update. Their
design shifts the computation towards smart NICs since switches have limited storage.
A specialized, in-switch key-value store for network measurement collection and
aggregation also appears in Marple [106].

6.8 Conclusions

Programmable network hardware is finally emerging and provides the opportunity to
revisit the idea of performing computation inside the network. Given ever more strin-
gent requirements for data center applications facing hardware scalability bottlenecks
and the end of Moore’s law, programmable hardware appears to be the next frontier
for achieving higher levels of efficiency and speed. Google’s Tensor processing
unit and Microsoft’s Catapult projects are just two examples of this ongoing trend.
We believe that the time has come to entrust network devices with part of the tasks
typically executed by software. However, programmable networking devices have a
distinct network machine architecture with stringent constraints. Determining the
kinds of in-network computation, streaming algorithms and workloads that are going
to be feasible under these architectural model is a major open challenge. As in the
case of TCP offloading [138], we might need to see a period where variants are
proposed, tested, evolved, and sometimes discarded. Data aggregation appears as a
natural fit for in-network computation and our results are promising. But we view
our work merely as an initial step towards the larger goal of judicious in-network
computing.

We presented an early prototype of DAIET, a system that performs on-path aggre-
gation for network-bound partition/aggregate data center applications. A preliminary
evaluation shows that DAIET results in promising performance improvements for
such applications, with the potential to significantly reduce job completion times.
Differently from other approaches [124, 123], DAIET requires moderate modifica-
tions in the application software to support the communication protocol and deal with
unordered intermediate results. Moreover, while the correctness of the final results
is preserved, there is no guarantee that all the intermediate results are aggregated.
Thus, the final worker still has to perform an aggregation function, albeit on a smaller
amount of data.

124

6.8 Conclusions

While our current approach has several limitations, its prototype implementation
allowed us to evaluate DAIET and determine the main challenges to address. As
future work, we plan to extend this approach in multiple ways. First, reliability must
be addressed, defining a protocol to identify and recover packet losses. Secondly, we
intend to extend DAIET to support a wide range of partition-aggregate applications,
such as deep learning, graph and stream processing. Finally, we plan to extensively
evaluate DAIET on these applications using hardware programmable devices.

125

Chapter 7

Conclusions

This dissertation shows how the different components of a modern NSP infrastruc-
ture can be used to provide several services designed factoring in their different
characteristics and constraints. Some of these characteristics (e.g., being traversed
by network traffic) favor a class of services that can be deployed locally, while the
specific limitations, especially in term of computational power, require a judicious
design of the service architecture.

We show different novel solutions to distribute services on different parts of the
heterogeneous NSP infrastructure. In chapter 3 we introduce the concept of Native
Network Functions, software components that can be executed on CPEs with low
hardware resources taking advantage of the proximity to the user to provide low
latency services. More complex functionalities can be executed remotely in a data
center in the form of VNFs. An overarching orchestrator manages the lifecycle
of both NNFs and VNFs, possibly moving them from the CPE to the data center
(or viceversa) at runtime when the live traffic and expected performance require an
higher computational power (or lower latency).

An estimate of the performance of NFs on the different available platforms
is of paramount importance to the decision-making process of the orchestrator,
especially for the choice of the best placement plan that would reduce the possibility
of migration of services at runtime. We present in chapter 2 a novel approach to
NF modeling that takes into account the functionality of the NF at hand. Moreover,
we show how this model can be mapped on different platforms to get performance
estimates that take into account the different hardware features.

126

In chapter 4 we show U-Filter, an instance of distributed service that exploits
both the proximity to the user of the CPE and the higher computation capabilities
of the data center to perform URL filtering with low impact on the user experience.
Considering the limitations of common CPEs, we present an efficient solution that
performs a limited form of DPI in the kernel of the residential gateway OS and
delegates the complex policy checking process to a remote server. This server is in
charge of keeping the large URL database up-to-date and can serve multiple CPEs.
The operation of U-Filter is carefully designed to reduce the impact of the policy
checking on the web page loading speed. Our experiments showed that the browsing
experience is unaltered in a typical deployment scenario.

Chapter 5 focuses on the access and core network, typically solely dedicated to
traffic forwarding. Our proposal shows that, leveraging the favorable position in the
path of the traffic and an intelligent traffic assignment algorithm, a network of nodes
can also perform packet processing to extract additional data from the traffic itself.
The straighforward application is traffic inspection and monitoring, but our approach
is general enough that can be used for different scenarios where data flowing through
a network of nodes require processing, such as the analysis of sensors data in an IoT
environment.

Finally in chapter 6 we consider the data center network fabric and the recent
trend of programmable data plane hardware. We want to encourage the community
to think of new solutions to offload part of the computation on the modern pro-
grammable networking hardware and to co-design data center distributed systems
with their network layer. We show one proof-of-concept that shows the feasibility
and the benefit of this approach. Our solution performs an in-network aggregation
service that is useful to various typical data center workloads. However, our work is
just an initial step in the direction of providing in-network services in the data center.

In conclusion, this thesis shows that, with modern networks, many opportunities
arise for deploying services throughout the network infrastructure. NFV and pro-
grammable dataplane are two of the key enabler to provide additional distributed
services that can ease network management, reduce network overhead and be a new
source of revenues for service providers. However, the architecture of these ser-
vices must be careful designed and new algorithms are needed to match the diverse
challenges that in-network computing poses.

127

References

[1] AT&T DirectTV. https://www.att.com/bundles/data-free-tv.html. [Online;
accessed 14-Feb-2018].

[2] Orange TV. https://boutique.orange.fr/tv. [Online; accessed 14-Feb-2018].

[3] TIM Vision. https://www.tim.it/smart-life/tv-entertainment/tv/timvision. [On-
line; accessed 14-Feb-2018].

[4] Vodafone Rete Sicura. http://www.vodafone.it/portal/
Privati/Vantaggi-Vodafone/La-nostra-Rete-Veloce/Rete-Sicura/
Vodafone-Rete-Sicura. [Online; accessed 14-Feb-2018].

[5] Binge On. https://www.t-mobile.com/offer/binge-on-streaming-video.html.
[Online; accessed 14-Feb-2018].

[6] Comcast Stream TV. https://www.theverge.com/2015/11/21/9776052/
comcast-stream-tv-data-cap-exemption-net-neutrality. [Online; accessed
14-Feb-2018].

[7] Mario Baldi and Amedeo Sapio. A network function modeling approach
for performance estimation. In 1st International Forum on Research and
Technologies for Society and Industry (RTSI). IEEE, 2015.

[8] Amedeo Sapio, Mario Baldi, and Gergely Pongrácz. Cross-Platform Estima-
tion of Network Function Performance. In EWSDN. IEEE, 2015.

[9] Mario Baldi and Amedeo Sapio. Network Function Modeling and Perfor-
mance Estimation. International Journal of Electrical and Computer Engi-
neering, 2018.

[10] ETSI ISG for NFV, ETSI GS NFV-INF 001, Network Functions Virtuali-
sation (NFV); Infrastructure Overview. http://www.etsi.org/deliver/etsi_gs/
NFV-INF/001_099/001/01.01.01_60/gs_NFV-INF001v010101p.pdf. [Online;
accessed 18-February-2017].

[11] Mario Baldi, Roberto Bonafiglia, Fulvio Risso, and Amedeo Sapio. Modeling
Native Software Components as Virtual Network Functions. In SIGCOMM
Conference. ACM, 2016.

128

https://www.att.com/bundles/data-free-tv.html
https://boutique.orange.fr/tv
https://www.tim.it/smart-life/tv-entertainment/tv/timvision
http://www.vodafone.it/portal/Privati/Vantaggi-Vodafone/La-nostra-Rete-Veloce/Rete-Sicura/Vodafone-Rete-Sicura
http://www.vodafone.it/portal/Privati/Vantaggi-Vodafone/La-nostra-Rete-Veloce/Rete-Sicura/Vodafone-Rete-Sicura
http://www.vodafone.it/portal/Privati/Vantaggi-Vodafone/La-nostra-Rete-Veloce/Rete-Sicura/Vodafone-Rete-Sicura
https://www.t-mobile.com/offer/binge-on-streaming-video.html
https://www.theverge.com/2015/11/21/9776052/comcast-stream-tv-data-cap-exemption-net-neutrality
https://www.theverge.com/2015/11/21/9776052/comcast-stream-tv-data-cap-exemption-net-neutrality
http://www.etsi.org/deliver/etsi_gs/NFV-INF/001_099/001/01.01.01_60/gs_NFV-INF001v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-INF/001_099/001/01.01.01_60/gs_NFV-INF001v010101p.pdf

References

[12] Anil Rijsinghani. RFC 1624 - Computation of the Internet Checksum via In-
cremental Update. https://tools.ietf.org/html/rfc1624, 1994. [Online; accessed
19-December-2016].

[13] Gergely Pongrácz, László Molnár, Zoltán Lajos Kis, and Zoltán Turányi.
Cheap silicon: a myth or reality? picking the right data plane hardware for
software defined networking. In HotSDN. ACM, 2013.

[14] Intel 64 and IA-32 Architectures Optimization Reference Manual.
http://www.intel.com/content/www/us/en/architecture-and-technology/
64-ia-32-architectures-optimization-manual.html. [Online; accessed
18-February-2017].

[15] Intel DPDK: Data Plane Development Kit. http://dpdk.org. [Online; accessed
19-March-2017].

[16] Intel Ivy Bridge Benchmark. http://www.7-cpu.com/cpu/IvyBridge.html.
[Online; accessed 18-February-2017].

[17] Pankaj Gupta, Steven Lin, and Nick McKeown. Routing lookups in hardware
at memory access speeds. In INFOCOM. IEEE, 1998.

[18] Intel Data Plane Performance Demonstrators. https://01.org/
intel-data-plane-performance-demonstrators. [Online; accessed 18-
February-2017].

[19] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan J Jackson, Andy Zhou, Jarno
Rajahalme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar, et al. The
Design and Implementation of Open vSwitch. In NSDI. USENIX, 2015.

[20] Ntop PF_RING. http://www.ntop.org/products/packet-capture/pf_ring/. [On-
line; accessed 19-March-2017].

[21] Open vSwitch Manual - ovs-ofctl. http://openvswitch.org/support/dist-docs/
ovs-ofctl.8.txt. [Online; accessed 19-March-2017].

[22] Dilip Joseph and Ion Stoica. Modeling middleboxes. IEEE Network, 2008.

[23] Aaron Gember, Anand Krishnamurthy, Saul St John, Robert Grandl, Xiaoyang
Gao, Ashok Anand, Theophilus Benson, Aditya Akella, and Vyas Sekar.
Stratos: A Network-Aware Orchestration Layer for Middleboxes in the Cloud.
arXiv preprint arXiv:1305.0209, 2013.

[24] Joao Soares, Miguel Dias, Jorge Carapinha, Bruno Parreira, and Susana Sar-
gento. Cloud4NFV: A platform for Virtual Network Functions. In CloudNet.
IEEE, 2014.

[25] Francesco Lucrezia, Guido Marchetto, Fulvio Giovanni Ottavio Risso, and
Vinicio Vercellone. Introducing Network-Aware Scheduling Capabilities in
OpenStack. In NetSoft. IEEE, 2015.

129

https://tools.ietf.org/html/rfc1624
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
http://dpdk.org
http://www.7-cpu.com/cpu/IvyBridge.html
https://01.org/intel-data-plane-performance-demonstrators
https://01.org/intel-data-plane-performance-demonstrators
http://www.ntop.org/products/packet-capture/pf_ring/
http://openvswitch.org/support/dist-docs/ovs-ofctl.8.txt
http://openvswitch.org/support/dist-docs/ovs-ofctl.8.txt

References

[26] Nikolaus Huber, Marcel von Quast, Michael Hauck, and Samuel Kounev.
Evaluating and Modeling Virtualization Performance Overhead for Cloud
Environments. In CLOSER, 2011.

[27] Ravi Iyer, Ramesh Illikkal, Omesh Tickoo, Li Zhao, Padma Apparao, and Don
Newell. VM 3: Measuring, modeling and managing VM shared resources.
Computer Networks, 2009.

[28] Timothy Wood, Ludmila Cherkasova, Kivanc Ozonat, and Prashant Shenoy.
Profiling and modeling resource usage of virtualized applications. In Interna-
tional Conference on Middleware. Springer-Verlag, 2008.

[29] Roberto Bonafiglia, Sebastiano Miano, Sergio Nuccio, Fulvio Risso, and
Amedeo Sapio. Enabling NFV services on resource-constrained CPEs. In
CloudNet. IEEE, 2016.

[30] András Császár, Wolfgang John, Mario Kind, Catalin Meirosu, Gergely Pon-
grácz, Dimitri Staessens, Attila Takács, and Fritz-Joachim Westphal. Unifying
Cloud and Carrier Network: EU FP7 Project UNIFY. In UCC. IEEE, 2013.

[31] Zvika Bronstein and Eyal Shraga. NFV virtualisation of the home environment.
In CCNC. IEEE, 2014.

[32] Tiago Cruz, Paulo Simões, Nuno Reis, Edmundo Monteiro, Fernando Bastos,
and Alexandre Laranjeira. An architecture for virtualized home gateways. In
IM. IEEE, 2013.

[33] Nicolas Herbaut, Daniel Negru, George Xilouris, and Yiping Chen. Migrating
to a nfv-based home gateway: introducing a surrogate vnf approach. In NOF.
IEEE, 2015.

[34] Fernando Sanchez and David Brazewell. Tethered Linux CPE for IP service
delivery. In NetSoft. IEEE, 2015.

[35] Giuseppe Faraci and Giovanni Schembra. An analytical model to design and
manage a green SDN/NFV CPE node. Transactions on Network and Service
Management, 2015.

[36] Ivano Cerrato, Alex Palesandro, Fulvio Risso, Marc Suñé, Vinicio Vercellone,
and Hagen Woesner. Toward dynamic virtualized network services in telecom
operator networks. Computer Networks, 2015.

[37] ETSI ISG for NFV, ETSI GS NFV-MAN 001, Network Functions Virtualisa-
tion (NFV) Management and Orchestration. http://www.etsi.org/deliver/etsi_
gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf.
[Online; accessed 7-March-2016].

[38] Tao Su, Antonio Lioy, and Nicola Barresi. Trusted computing technology and
proposals for resolving cloud computing security problems. Cloud Computing
Security: Foundations and Challenges, 2016.

130

http://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf

References

[39] Strongswan. https://www.strongswan.org/. [Online; accessed 7-August-2016].

[40] Roberto Bonafiglia, Amedeo Sapio, Mario Baldi, Fulvio Risso, and Paolo C.
Pomi. Enforcement of dynamic HTTP policies on resource-constrained resi-
dential gateways. Computer Networks, 2017.

[41] Google Fiber. https://fiber.google.com. [Online; accessed 17-March-2017].

[42] DansGuardian. http://dansguardian.org. [Online; accessed 17-March-2017].

[43] Mobile Fence - Parental Control. http://www.mobilefence.com. [Online;
accessed 17-March-2017].

[44] Cloudacl WebFilter. http://www.cloudacl.com. [Online; accessed 17-March-
2017].

[45] The netfilter.org project. http://netfilter.org/. [Online; accessed 17-March-
2017].

[46] Matthew V. Mahoney. Network Traffic Anomaly Detection Based on Packet
Bytes. In Symposium on Applied Computing. ACM, 2003.

[47] Sungkornsarun Longchupole, Noppadol Maneerat, and Ruttikorn Varakul-
siripunth. Anomaly detection through packet header data. In ICICS. IEEE,
2009.

[48] Seong Soo Kim and A. L. Narasimha Reddy. Statistical Techniques for
Detecting Traffic Anomalies Through Packet Header Data. Transactions on
Networking, 2008.

[49] Andrew W. Moore and Konstantina Papagiannaki. Toward the accurate
identification of network applications. In PAM. Springer, 2005.

[50] William Richard Stevens. UNIX Network Programming: Networking APIs,
volume 1. Prentice-Hall, Inc., 1997.

[51] Fabian Schneider, Bernhard Ager, Gregor Maier, Anja Feldmann, and Steve
Uhlig. Pitfalls in HTTP traffic measurements and analysis. In PAM. Springer,
2012.

[52] Bryce Thomas, Raja Jurdak, and Ian Atkinson. SPDYing up the web. Com-
munications of the ACM, 2012.

[53] Liang Shuai, Gaogang Xie, and Jianhua Yang. Characterization of HTTP
behavior on access networks in Web 2.0. In ICT. IEEE, 2008.

[54] Justine Sherry, Chang Lan, Raluca Ada Popa, and Sylvia Ratnasamy. Blind-
box: Deep packet inspection over encrypted traffic. In SIGCOMM CCR.
ACM, 2015.

131

https://www.strongswan.org/
https://fiber.google.com
http://dansguardian.org
http://www.mobilefence.com
http://www.cloudacl.com
http://netfilter.org/

References

[55] Xingliang Yuan, Xinyu Wang, Jianxiong Lin, and Cong Wang. Privacy-
preserving deep packet inspection in outsourced middleboxes. In INFOCOM.
IEEE, 2016.

[56] David Naylor, Kyle Schomp, Matteo Varvello, Ilias Leontiadis, Jeremy Black-
burn, Diego R López, Konstantina Papagiannaki, Pablo Rodriguez Rodriguez,
and Peter Steenkiste. Multi-context tls (mctls): Enabling secure in-network
functionality in tls. In SIGCOMM CCR. ACM, 2015.

[57] Salvatore Loreto, John Mattsson, Robert Skog, Hans Spaak, Gus Bourg, Dan
Druta, and Mohammad Hafeez. Explicit trusted proxy in http/2.0. https:
//tools.ietf.org/html/draft-loreto-httpbis-trusted-proxy20-01, 2014. [Online;
accessed 17-March-2017].

[58] Amedeo Sapio, Yong Liao, Mario Baldi, Gyan Ranjan, Fulvio Risso, Alok
Tongaonkar, Ruben Torres, and Antonio Nucci. Per-user Policy Enforcement
on Mobile Apps Through Network Functions Virtualization. In MobiArch.
ACM, 2014.

[59] David Naylor, Alessandro Finamore, Ilias Leontiadis, Yan Grunenberger,
Marco Mellia, Maurizio Munafò, Konstantina Papagiannaki, and Peter
Steenkiste. The cost of the s in https. In CoNEXT. ACM, 2014.

[60] OpenWrt: Linux distribution for embedded devices. https://openwrt.org.
[Online; accessed 17-March-2017].

[61] ApacheBench. http://httpd.apache.org/docs/2.2/programs/ab.html. [Online;
accessed 17-March-2017].

[62] Matt Mathis, Jamshid Mahdavi, Sally Floyd, and Allyn Romanow. RFC 2018 -
TCP Selective Acknowledgment Options. https://www.ietf.org/rfc/rfc2018.txt,
1996. [Online; accessed 17-March-2017].

[63] Mark Allman, Vern Paxson, and Ethan Blanton. TCP Congestion Control.
https://www.ietf.org/rfc/rfc5681.txt, 2009. [Online; accessed 17-March-2017].

[64] Marco Mellia, Renato Lo Cigno, and Fabio Neri. Measuring IP and TCP
behavior on edge nodes with Tstat. Computer Networks, 2005.

[65] Tinyproxy. http://tinyproxy.github.io. [Online; accessed 17-March-2017].

[66] Roy T. Fielding, James Gettys, Jeffrey C. Mogul, Henrik Frystyk Nielsen,
Larry Masinter, Paul J. Leach, and Tim Berners-Lee. Hypertext Transfer
Protocol – HTTP/1.1. https://tools.ietf.org/html/rfc2616.txt, 1999. [Online;
accessed 17-March-2017].

[67] K9 Web Protection. http://www1.k9webprotection.com. [Online; accessed
17-March-2017].

[68] Cisco Umbrella. https://umbrella.cisco.com/use-cases/web-filtering. [Online;
accessed 17-March-2017].

132

https://tools.ietf.org/html/draft-loreto-httpbis-trusted-proxy20-01
https://tools.ietf.org/html/draft-loreto-httpbis-trusted-proxy20-01
https://openwrt.org
http://httpd.apache.org/docs/2.2/programs/ab.html
https://www.ietf.org/rfc/rfc2018.txt
https://www.ietf.org/rfc/rfc5681.txt
http://tinyproxy.github.io
https://tools.ietf.org/html/rfc2616.txt
http://www1.k9webprotection.com
https://umbrella.cisco.com/use-cases/web-filtering

References

[69] Blue Coat WebFilter. https://www.bluecoat.com/products/webfilter. [Online;
accessed 17-March-2017].

[70] Li-Der Chou, Zheng He, David Chunhu Li, Hui-Fan Chen, Jun-Jie Su, Ching-
Yung Chen, Hsu-Chuan Wei, and Chia-Jen Li. Design and implementation
of content-based filter system on embedded linux home gateway. In ICACT.
IEEE, 2012.

[71] Richard Cziva, Simon Jouet, and Dimitrios P Pezaros. Roaming edge vnfs
using glasgow network functions. In SIGCOMM Conference. ACM, 2016.

[72] Amedeo Sapio, Mario Baldi, Fulvio Risso, Narendra Anand, and Antonio
Nucci. Packet Capture and Analysis on MEDINA, A Massively Distributed
Network Data Caching Platform. Parallel Processing Letters, 2017.

[73] Nagapramod Mandagere, Pin Zhou, Mark A Smith, and Sandeep Uttam-
chandani. Demystifying Data Deduplication. In Middleware Conference
Companion. ACM/IFIP/USENIX, 2008.

[74] Dutch T. Meyer and William J. Bolosky. A Study of Practical Deduplication.
In FAST. USENIX, 2011.

[75] Cisco UCS E-Series Servers. http://www.cisco.com/c/en/us/products/
servers-unified-computing/ucs-e-series-servers/index.html. [Online; accessed
27-January-2017].

[76] Chia-Wei Chang, Guanyao Huang, Bill Lin, and Chen-Nee Chuah. Leisure:
Load-balanced network-wide traffic measurement and monitor placement.
Transactions on Parallel and Distributed Systems, 2015.

[77] Ruediger Gad, Martin Kappes, and Inmaculada Medina-Bulo. Monitoring
traffic in computer networks with dynamic distributed remote packet capturing.
In ICC. IEEE, 2015.

[78] Luis M. Vaquero and Luis Rodero-Merino. Finding Your Way in the Fog:
Towards a Comprehensive Definition of Fog Computing. SIGCOMM CCR,
2014.

[79] Alexandr Krylovskiy, Marco Jahn, and Edoardo Patti. Designing a smart city
internet of things platform with microservice architecture. In FiCloud. IEEE,
2015.

[80] Ruediger Gad, Martin Kappes, Robin Mueller-Bady, and Inmaculada Medina-
Bulo. Header field based partitioning of network traffic for distributed packet
capturing and processing. In AINA. IEEE, 2014.

[81] Vyas Sekar, Michael K. Reiter, Walter Willinger, Hui Zhang, Ramana Rao
Kompella, and David G. Andersen. CSAMP: A System for Network-wide
Flow Monitoring. In NSDI. USENIX, 2008.

133

https://www.bluecoat.com/products/webfilter
http://www.cisco.com/c/en/us/products/servers-unified-computing/ucs-e-series-servers/index.html
http://www.cisco.com/c/en/us/products/servers-unified-computing/ucs-e-series-servers/index.html

References

[82] Adam Kirsch, Michael Mitzenmacher, and George Varghese. Hash-based tech-
niques for high-speed packet processing. In Algorithms for Next Generation
Networks. Springer, 2010.

[83] Michael L Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses
in improved network optimization algorithms. Journal of the ACM, 1987.

[84] Colleen Shannon, David Moore, and K. C. Claffy. Beyond Folklore: Observa-
tions on Fragmented Traffic. Transactions on Networking, 2002.

[85] Bing Xiong, Kun Yang, Feng Li, Xiaosu Chen, Jianming Zhang, Qiang Tang,
and Yuansheng Luo. The impact of bitwise operators on hash uniformity in
network packet processing. International Journal of Communication Systems,
2014.

[86] Anja Feldmann, Albert Greenberg, Carsten Lund, Nick Reingold, Jennifer
Rexford, and Fred True. Deriving traffic demands for operational IP networks:
Methodology and experience. Transactions on Networking, 2001.

[87] Marco Chiesa, Christoph Dietzel, Gianni Antichi, Marc Bruyere, Ignacio
Castro, Mitch Gusat, Thomas King, Andrew W Moore, Thanh Dang Nguyen,
Philippe Owezarski, et al. Inter-domain networking innovation on steroids:
empowering ixps with SDN capabilities. IEEE Communications Magazine,
2016.

[88] Matevz Pustisek, Iztok Humar, and Janez Bester. Empirical analysis and
modeling of peer-to-peer traffic flows. In MELECON. IEEE, 2008.

[89] Manish R Sharma and John W Byers. Scalable coordination techniques for
distributed network monitoring. In PAM. Springer, 2005.

[90] Arpit Gupta, Rüdiger Birkner, Marco Canini, Nick Feamster, Chris Mac-
Stoker, and Walter Willinger. Network Monitoring As a Streaming Analytics
Problem. In HotNets. ACM, 2016.

[91] Vyas Sekar, Anupam Gupta, Michael K Reiter, and Hui Zhang. Coordinated
sampling sans origin-destination identifiers: algorithms and analysis. In
COMSNETS. IEEE, 2010.

[92] Ashok Anand, Vyas Sekar, and Aditya Akella. SmartRE: an architecture
for coordinated network-wide redundancy elimination. In SIGCOMM CCR.
ACM, 2009.

[93] Andrea Di Pietro, Felipe Huici, Diego Costantini, and Saverio Niccolini.
Decon: Decentralized coordination for large-scale flow monitoring. In INFO-
COM. IEEE, 2010.

[94] Shan-Hsiang Shen and Aditya Akella. Decor: a distributed coordinated
resource monitoring system. In IWQoS. IEEE, 2012.

134

References

[95] Noriaki Kamiyama, Tatsuya Mori, and Ryoichi Kawahara. Autonomic load
balancing of flow monitors. Computer Networks, 2013.

[96] Amedeo Sapio, Ibrahim Abdelaziz, Abdulla Aldilaijan, Marco Canini, and
Panos Kalnis. In-Network Computation is a Dumb Idea Whose Time Has
Come. In HotNets. ACM, 2017.

[97] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown,
Martin Izzard, Fernando Mujica, and Mark Horowitz. Forwarding Metamor-
phosis: Fast Programmable Match-action Processing in Hardware for SDN.
In SIGCOMM Conference. ACM, 2013.

[98] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. P4: Programming Protocol-independent Packet Processors.
SIGCOMM CCR, 2014.

[99] Anirudh Sivaraman, Alvin Cheung, Mihai Budiu, Changhoon Kim, Moham-
mad Alizadeh, Hari Balakrishnan, George Varghese, Nick McKeown, and
Steve Licking. Packet Transactions: High-Level Programming for Line-Rate
Switches. In SIGCOMM Conference. ACM, 2016.

[100] Huynh Tu Dang, Marco Canini, Fernando Pedone, and Robert Soulé. Paxos
Made Switch-y. SIGCOMM CCR, 2016.

[101] Xiaozhou Li, Raghav Sethi, Michael Kaminsky, David G Andersen, and
Michael J Freedman. Be Fast, Cheap and in Control with SwitchKV. In NSDI.
USENIX, 2016.

[102] Mojgan Ghasemi, Theophilus Benson, and Jennifer Rexford. Dapper: Data
Plane Performance Diagnosis of TCP. In SOSR. ACM, 2017.

[103] Srinivas Narayana, Ori Rottenstreich, S Muthukrishnan, and Jennifer Rexford.
Heavy-Hitter Detection Entirely in the Data Plane. In SOSR. ACM, 2017.

[104] Diana Andreea Popescu, Gianni Antichi, and Andrew W Moore. Enabling
Fast Hierarchical Heavy Hitter Detection using Programmable Data Planes.
In SOSR. ACM, 2017.

[105] Changhoon Kim, Anirudh Sivaraman, Naga Katta, Antonin Bas, Advait Dixit,
and Lawrence J Wobker. In-band Network Telemetry via Programmable
Dataplanes. In SOSR. ACM, 2015.

[106] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh Goyal,
Venkat Arun, Mohammad Alizadeh, Vimalkumar Jeyakumar, and Changhoon
Kim. Language-Directed Hardware Design for Network Performance Moni-
toring. In SIGCOMM Conference. ACM, 2017.

[107] Huynh Tu Dang, Daniele Sciascia, Marco Canini, Fernando Pedone, and
Robert Soulé. NetPaxos: Consensus at Network Speed. In SOSR. ACM, 2015.

135

References

[108] Ming Liu, Liang Luo, Jacob Nelson, Luis Ceze, Arvind Krishnamurthy, and
Kishore Atreya. IncBricks: Toward In-Network Computation with an In-
Network Cache. In ASPLOS. ACM, 2017.

[109] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate
Foster, Changhoon Kim, and Ion Stoica. NetCache: Balancing Key-Value
Stores with Fast In-Network Caching. In SOSP. ACM, 2017.

[110] David L. Tennenhouse and David J. Wetherall. Towards an Active Network
Architecture. SIGCOMM CCR, 1996.

[111] Barefoot Networks. Barefoot Tofino. "https://barefootnetworks.com/products/
brief-tofino/". [Online; accessed 14-Feb-2018].

[112] Cavium. XPliant Ethernet Switch Product Family. "http://www.cavium.com/
XPliant-Ethernet-Switch-Product-Family.html". [Online; accessed 14-Feb-
2018].

[113] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end Arguments in System
Design. Transactions on Computer Systems, 1984.

[114] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing
on Large Clusters. In OSDI. USENIX, 2004.

[115] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed,
Vanja Josifovski, James Long, Eugene J Shekita, and Bor-Yiing Su. Scaling
Distributed Machine Learning with the Parameter Server. In OSDI. USENIX,
2014.

[116] Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen, Matthieu Devin,
Quoc V. Le, Mark Z. Mao, Marc’Aurelio Ranzato, Andrew Senior, Paul
Tucker, Ke Yang, and Andrew Y. Ng. Large scale distributed deep networks.
In NIPS, 2012.

[117] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard,
et al. TensorFlow: A System for Large-Scale Machine Learning. In OSDI.
USENIX, 2016.

[118] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert,
Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: A System for
Large-scale Graph Processing. In SIGMOD. ACM, 2010.

[119] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos
Guestrin. PowerGraph: Distributed Graph-Parallel Computation on Natural
Graphs. In OSDI. USENIX, 2012.

[120] Wei Lin, Zhengping Qian, Junwei Xu, Sen Yang, Jingren Zhou, and Lidong
Zhou. StreamScope: Continuous Reliable Distributed Processing of Big Data
Streams. In NSDI. USENIX, 2016.

136

"https://barefootnetworks.com/products/brief-tofino/"
"https://barefootnetworks.com/products/brief-tofino/"
"http://www.cavium.com/XPliant-Ethernet-Switch-Product-Family.html"
"http://www.cavium.com/XPliant-Ethernet-Switch-Product-Family.html"

References

[121] Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu, Úlfar Erlingsson,
Pradeep Kumar Gunda, and Jon Currey. DryadLINQ: A System for General-
Purpose Distributed Data-Parallel Computing Using a High-Level Language.
In OSDI. USENIX, 2008.

[122] Paolo Costa, Austin Donnelly, Antony Rowstron, and Greg O’Shea. Camdoop:
Exploiting In-network Aggregation for Big Data Applications. In NSDI.
USENIX, 2012.

[123] Richard L. Graham, Devendar Bureddy, Pak Lui, Hal Rosenstock, Gilad
Shainer, Gil Bloch, Dror Goldenerg, Mike Dubman, Sasha Kotchubievsky,
Vladimir Koushnir, Lion Levi, Alex Margolin, Tamir Ronen, Alexander
Shpiner, Oded Wertheim, and Eitan Zahavi. Scalable Hierarchical Aggregation
Protocol (SHArP): A Hardware Architecture for Efficient Data Reduction. In
COM-HPC, 2016.

[124] Luo Mai, Lukas Rupprecht, Abdul Alim, Paolo Costa, Matteo Migliavacca,
Peter Pietzuch, and Alexander L Wolf. NetAgg: Using Middleboxes for
Application-Specific On-path Aggregation in Data Centres. In CoNEXT.
ACM, 2014.

[125] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jig-
nesh M. Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong
Fu, Jake Donham, Nikunj Bhagat, Sailesh Mittal, and Dmitriy Ryaboy.
Storm@Twitter. In SIGMOD. ACM, 2014.

[126] Vijay Vasudevan, Amar Phanishayee, Hiral Shah, Elie Krevat, David G An-
dersen, Gregory R Ganger, Garth A Gibson, and Brian Mueller. Safe and
effective fine-grained TCP retransmissions for datacenter communication. In
SIGCOMM CCR. ACM, 2009.

[127] Haitao Wu, Zhenqian Feng, Chuanxiong Guo, and Yongguang Zhang. ICTCP:
Incast congestion control for TCP in data-center networks. Transactions on
Networking, 2013.

[128] Lavanya Jose, Lisa Yan, George Varghese, and Nick McKeown. Compiling
Packet Programs to Reconfigurable Switches. In NSDI. USENIX, 2015.

[129] Netronome. Agilio CX SmartNICs. "https://www.netronome.com/products/
agilio-cx/". [Online; accessed 27-Mar-2017].

[130] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry
Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. OpenFlow:
enabling innovation in campus networks. SIGCOMM CCR, 2008.

[131] Barefoot Networks. The World’s Fastest & Most Pro-
grammable Networks. "https://barefootnetworks.com/resources/
worlds-fastest-most-programmable-networks/". [Online; accessed 14-
Feb-2018].

137

"https://www.netronome.com/products/agilio-cx/"
"https://www.netronome.com/products/agilio-cx/"
"https://barefootnetworks.com/resources/worlds-fastest-most-programmable-networks/"
"https://barefootnetworks.com/resources/worlds-fastest-most-programmable-networks/"

References

[132] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Opti-
mization. CoRR, 2014.

[133] Semih Salihoglu and Jennifer Widom. GPS: A Graph Processing System. In
SSDBM, 2013.

[134] Amedeo Sapio, Ibrahim Abdelaziz, Marco Canini, and Panos Kalnis. DAIET:
a system for data aggregation inside the network. In SoCC. ACM, 2017.

[135] Naveen Kr Sharma, Antoine Kaufmann, Thomas Anderson, Changhoon Kim,
Arvind Krishnamurthy, Jacob Nelson, and Simon Peter. Evaluating the Power
of Flexible Packet Processing for Network Resource Allocation. In NSDI.
USENIX, 2017.

[136] Anirudh Sivaraman, Changhoon Kim, Ramkumar Krishnamoorthy, Advait
Dixit, and Mihai Budiu. Dc.p4: Programming the forwarding plane of a
data-center switch. In SOSR. ACM, 2015.

[137] Hussam Abu-Libdeh, Paolo Costa, Antony Rowstron, Greg O’Shea, and
Austin Donnelly. Symbiotic Routing in Future Data Centers. In SIGCOMM
Conference. ACM, 2010.

[138] Jeffrey C Mogul. TCP Offload Is a Dumb Idea Whose Time Has Come. In
HotOS. ACM, 2003.

138

	Contents
	List of Figures
	List of Tables
	Nomenclature
	1 Introduction
	2 Network Function Modeling and Performance Estimation
	2.1 Introduction
	2.2 Methodology
	2.2.1 Elementary Operations
	2.2.2 Mapping to Hardware

	2.3 Modeling Use Cases
	2.3.1 L2 Switch
	2.3.2 Broadband Network Gateway

	2.4 Experimental validation
	2.4.1 L2 Switch
	2.4.2 Broadband Network Gateway
	2.4.3 Concluding Remarks

	2.5 Related work
	2.6 Conclusions and future work

	3 Enabling NFV Services on Resource-Constrained CPEs
	3.1 Introduction
	3.2 Related Work
	3.3 Background
	3.3.1 Network abstraction
	3.3.2 Compute abstraction
	3.3.3 Northbound interface

	3.4 Native Network Functions
	3.4.1 NNF model and VNF template
	3.4.2 The native compute driver
	3.4.3 I/O model
	3.4.4 Isolation model
	3.4.5 Multitenancy
	3.4.6 Security considerations

	3.5 Validation
	3.6 Conclusions

	4 Enforcement of Dynamic HTTP Policies on Residential Gateways
	4.1 Introduction
	4.2 Architecture and implementation
	4.2.1 Operating principles
	4.2.2 Architecture overview and design principles
	4.2.3 Netfilter
	4.2.4 Key data structures
	4.2.5 Online module
	4.2.6 Offline module
	4.2.7 Communication with the policy server

	4.3 Discussion
	4.3.1 General limitations
	4.3.2 HTTPS
	4.3.3 Delay characterization

	4.4 Experimental validation
	4.4.1 Testbed setup
	4.4.2 Interaction with TCP
	4.4.3 Browsing experience
	4.4.4 Residential gateway aggregated throughput
	4.4.5 Memory footprint

	4.5 Related work
	4.6 Conclusions

	5 Packet processing in the core: a Massively Distributed Network Data Caching Platform
	5.1 Introduction
	5.2 Medina Design
	5.2.1 Deployment model
	5.2.2 Hash-based coordinated packet selection
	5.2.3 Traffic assignment granularity
	5.2.4 Path discovery
	5.2.5 Data storage
	5.2.6 Resource allocation
	5.2.7 Online fine-tuning

	5.3 Evaluation
	5.4 Related Work
	5.5 Conclusions and future work

	6 In-network computation with programmable data plane
	6.1 Introduction
	6.2 Background
	6.2.1 P4 Programming Language

	6.3 Judicious Network Computing
	6.4 Data Aggregation in Data Center Applications
	6.5 Solution sketch
	6.6 Preliminary Evaluation
	6.7 Related Work
	6.8 Conclusions

	7 Conclusions
	References

