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Abstract

Crop production vastly dominates global freshwater use, accounting for nearly
70% of the total withdrawal and around 90% of the total consumption. Human
beings are currently using 30% of precipitation-recharged soil moisture and less
than 10% (i.e., 3800 km3·yr-1) of the maximum available renewable freshwater
resources in the word. Notwithstanding, water resource availability is highly
variable in space and time, and different studies have shown a significant
mismatch between water use and availability. Accordingly, two-third of global
population live under conditions of sever water scarcity for at least one month
per year. Moreover, as a consequence of larger food demand and changing
living standards, toward more caloric and protein intense diets, global water
use has increased by 6-8 times during the past century. At the same time, areas
equipped for irrigation have doubled with actual irrigation having unavoidable
consequences for aquifers and river ecosystems. Future scenarios of climate
change are expected to worsen this picture. Indeed, the rising trends of water
demand may continue in the future, harshening the conditions in areas reaching
critical thresholds of acceptable water balance. In this context, the goals of
this thesis are (i) to identify the main determinants of water use efficiency
in agriculture; (ii) to introduce a link prediction algorithm applied to the
international trade of agricultural goods; (iii) to introduce a novel indicator to
monitor the (mis)match between water use and supply. This thesis quantifies
the crop water footprint (CWF , or amount of water use per unit weight of
crop) of nine major crops (i.e., wheat, rice, maize, soybean, barley, potatoes,
sugar cane, sugar beet, and cotton) through a daily soil water balance run on
a grid with a 5’x5’ spatial resolution. The model considers scenarios of rainfed
and irrigated crops, also exploring multi-cropping patterns. Quantitative
assessments of green and blue (separated into surface and ground) CWF

are mapped and analysed in order to identify and monitor the major local
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drivers of water use, such as climatic conditions, precipitation rate during the
growing season, cropping calendar, soil properties, crop yields and agricultural
management practises. Results show that crop yield is the most important
determinant of the total CWF . Moreover, results of a first-order sensitivity
analysis show that, e.g., wheat CWF is mostly sensitive to the length of
the growing period, rice CWF to the reference evapotranspiration depth,
soybean and maize CWF to the planting date. The CWF model has been
adopted also to validate a Fast Track approach, recently developed to study
the CWF changes in time, which are generally kept aside in Water Footprint
assessments. This approach ascribes the temporal CWF changes only to
the yield variations, while it assumes the evapotranspiration depth as time-
invariant. This thesis shows the good performance of this approach and also
provides an uncertainty analysis. Accordingly, the Fast Track approach shows
an error three times smaller than the uncertainty associated with the CWF

model. Following the yields patterns, CWF has significantly decreased along
the period 1961-2013, but with different rates depending on the crop and
the location of the production sites. In the second part of the thesis, the
crop water footprint is compared to the local water availability, to assess the
sustainability of crop production. In order to understand the size of local
(mis)match between crop water use and available water resources, we introduce
a water debt repayment time indicator (WD). The WD quantifies the time the
hydrological cycle takes to replenish the water resources used for annual crop
production, distinguishing the different sustainability levels of soil-, surface-,
and ground-water. This indicator highlights the locations and typology of
threats imposed by agricultural production on water resources. On a global
average, we found that wheat and rice production critically overuses ground
water resources, especially in China and the US, and cotton production overuses
both surface -and ground-water, particularly in the US. Locally, unsustainable
annual crop production is found over the Sabarmati basin (due to wheat) in
India, and in the Chao Phraya basin (due to rice and sugarcane) in Thailand,
where the water debt repayment time exceeds 5 years in many cultivated
areas. Including in the same framework analyses on water use efficiencies
(through the CWF ) and measure of water use (un)sustainability (through
the WD) enables screening analyses at finding specific solutions in cases of
low water use efficiencies and/or in critical situation of overuses. While local
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drivers monitor the water use for production, global drivers attempt to explore
the globalization of water resources that happens through the international
trade of agricultural goods. Why do countries become trade patterns, hence
establishing a more or less stable relation, which implies externalization of
water resources use? The third part of this thesis answers to this question
through the elaboration of a threshold-based link prediction algorithm, aiming
at finding the drivers behind link activation. Accordingly, a link is expected
to exist depending on the predicted virtual water volume traded from the
source node to the target node: the link is modelled as active when the volume
is higher than 1000 m3/y, non-active otherwise. This algorithm is able to
capture 84% of the currently active links and 93% of non-active links. Country
population, geographical distance between countries and fertilizers use are the
major drivers to explain link existence. The link prediction model may be
applied to build future scenarios of virtual water trade, in order to understand
how local consumption and production patterns could affect the trade network.
In short, the thesis contributes advancing our knowledge in the spatio-temporal
explicit water footprint assessments, virtual water trade network, sustainable
water use. The models developed in this thesis and the results shown in the
following chapters allow (i) to explore pathways toward improved water use
efficiencies and more sustainable water withdrawals, (ii) to model backward and
forward trade network dynamics, and (iii) to project future water use scenarios.
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Chapter 1

Introduction

Food production is inextricably linked and reliant upon freshwater resources:
in fact, the vast majority of global freshwater use (nearly 70% of the total
withdrawal [49] and around 90% of the total consumption [73]) is devoted
to the production of agricultural commodities [47, 100], largely for human
consumption, and water is a major factor controlling food availability [61, 133].
Rain-fed agriculture, sustained by precipitation-recharged soil moisture (the
so-called green water [44, 48]), covers 80% of the cultivated land worldwide.
On the remaining 20% of cultivated land, irrigated agriculture provides 42% of
global food production [49]. At present, nearly 30% of green water resources
and only 10% of maximum available blue water (i.e., water withdrawal from
surface- and ground-water bodies) are used [101]. Figure 1.1 shows the global
map of blue water consumption from agricultural, industrial, and domestic
sectors; the total volume is 2000 km3·yr-1 according to [144]. It is evident
that water consumption is unevenly distributed worldwide and the largest
consumption occurs in India, Pakistan, China, USA, and Mexico.
Global food demand and rising living standard increased the global water use
by 6-8 times from 1900 to 2010 [43, 142], highlighting the growing importance
of each drop of water, as water consumption gets closer to water availability
[146]. Areas equipped for irrigation have doubled in the past 50 years and
are projected to increase by 6% by 2050, with an increase of 38% of irrigated
food production [49]. Withdrawals from surface- and ground- water bodies
is intensifying, especially during precipitation shortages. Intensification of
irrigation demand has already led to alarming levels of water depletion in
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Fig. 1.1 Total blue water consumption for year 2010, expressed in million cubic meter
per year. Source: Wada et al. [144].

important aquifers [59, 33] and river systems [112, 143] worldwide. Moreover,
the world population of 7.2 billion in early 2015 is projected to increase to
9.6 billion in 2050 [139], resulting in a 70% increase in the global demand for
agricultural products [49]. Climate change is expected to worsen this picture by
increasing the spatial heterogeneity of water resource availability [49]. Similarly
to water consumption, also water availability is highly heterogeneous in space
(with two billion people currently living in highly water stressed areas [4, 46, 83]),
and time, due to evolving climate patterns [101, 3]. In a recent study, Mekonnen
et al. [93] shown global water scarcity- calculated as the ratio between net
water withdrawal and blue water availability- on a monthly basis. The map
in Figure 1.2 points out how water scarcity is often a major issue in area
with high population density or intense irrigated agriculture. Scientists, policy
makers, and the general public are realizing that meeting the competing water
needs of ecosystems and societies is a major challenge for this century [40, 64].
It is urgent to reduce and reverse depletion trends to ensure a sustainable
agricultural water use, i.e. a use that does not compromise the Earth’s water
resources for future generations [21].

In order to explore the nexus between food production and water consump-
tion, Hoekstra et al. [67, 75, 69] introduced the Water Footprint (WF ) as an
indicator of water use related to goods and services produced or consumed
by an individual (or a country), separating green water from blue water. The
notion of water footprint is tightly connected to that of virtual water content,
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which represents the amount of water that is conceptually embedded (though
not physically present) in a good [6]. The concept of virtual water content
has been used for the first time by Allan [7], who suggested that virtual water
import, i.e., the water embedded in imported goods, was a mechanism that
contributed to compensate for water shortage in Middle East countries.
In light of the fact that agriculture is the major water-consuming sector, many
studies have focused on water footprint of crops. In particular, they focused
on the efficiency of water use, expressed by the crop water footprint (CWF )
quantified as the volume of water evapotranspired during the growing season
divided by the crop yield [89, 5]. In recent years, there have been various
attempts to assess global water use for crop production at different geographic
scales, generally averaged over a specific time period. Table 1.1 summarises
the main studies on the global V WC assessment.

Table 1.1 Studies about the global V WC of crop production at different geographic
scales.

Study Scale Resolution Period Crop yield Rainfall ET0 Soil Sensitivity
Rost et al. [114] global 0.5 deg 1971-2000 - 0.5 deg 0.5 deg 0.5 deg NO
Hanasaki et al. [62] global 0.5 deg 1985-1999 country 1 deg 1 deg uniform NO
Liu et al. [85] global 0.5 deg 2000 - 0.5 deg 0.5 deg 5 arcmin NO
Siebert et al. [126] global 5 arcmin 1998-2002 5 arcmin 10 arcmin 10 arcmin 5 arcmin NO
Mekonnen et al. [89] global 5 arcmin 1996-2005 5 arcmin 0.5 deg 10 arcmin 5 arcmin NO
Zhuo et al. [153] local 5 arcmin 1996-2005 5 arcmin 0.5 deg 10 arcmin 5 arcmin YES
Bocchiola et al. [16] local 5 arcmin 2001-2010 5 arcmin 0.5 deg 10 arcmin 5 arcmin YES

Rost et al. [114] mapped (with a spatial resolution of 0.5 by 0.5 arc degree
resolution) the total consumption of green and blue water by rainfed and
irrigated agriculture for 12 crops and 9 plant functional types, for a reference
period 1971-2000. Hanasaki et al. [62] reported the global green and blue water
consumption for five crops and three livestock products at 0.5 by 0.5 arc degree
resolution, along the period 1985-1999. Liu et al. [85] made a global estimate
of green and blue water consumption for crop production at 0.5 arc degree
resolution. Siebert et al. [126] quantified the green and blue virtual water
content of 26 crops with a spatial resolution of 5 by 5 arc minute in the period
1998-2002. In a recent study, Mekonnen et al. [89] estimated the green, blue,
and grey water footprints of 126 crops with a spatial-resolution of 5 by 5 arc
minute, relative to the period 1996-2005. Overall, it has been shown that crop
water footprint is highly heterogeneous in space due, e.g., to different climate
and soil conditions, fertilizer application rates, and agricultural mechanization
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Fig. 1.2 Number of months per year in which water scarcity exceeds 1 Source: [93].

level, even at the sub-national level. All these studies depend on a large set
of assumptions about the modelling structure, input parameters, and datasets
used. Only very few studies, however, have developed a sensitivity analysis
of the water footprint estimates to define the accuracy of the final outcomes.
Their focus has been on specific regions, such as the Yellow River basin in China
[153] and the Po valley in Northern Italy [16]. To date, a global-scale sensitivity
analysis with high spatial-resolution is still missing. Filling this gap is one of
the goals of the present thesis, through (i) the development of a high-resolution
model to quantify crop water footprint worldwide and (ii) the performance of a
first-order sensitivity analysis, to understand how data uncertainty propagates
through the crop water footprint estimates and to identify the model inputs
that significantly affect the model outputs.

While a great deal of attention has been devoted to the CWF variability
in space, less attention has been paid to its variability in time even though
climatic fluctuations and yield variations have been remarkable in the past
decades [98, 134, 111]. To date, only local studies have evaluated a time-varying
crop water footprint [128, 149, 109], with particular regard to the Chinese case
[129, 155, 154]. Some studies investigating the time variability of the virtual
water embedded in trade used annual trade data of agricultural goods, i.e.,
available on the FAOSTAT database, and time-averaged crop water footprint
as provided by Mekonnen et al. [89]. At the same time, also some local studies
dealt with the time variability of the VWT with constant virtual water content
[78, 121].
However, considering a constant water footprint precludes analyses on the im-
plications of climate patterns and yield trends on the virtual water content and,
thus, on the virtual water trade. In order to keep pace with this issue, a number
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of studies have adopted a simple approach that ascribes the time variability of
virtual water content only to yield trends, leaving out the effects of evapotran-
spiration variations [81, 80, 31, 32]. Studies have adopted this approach both
for global [118, 24, 39] and local [30, 79] water footprint assessments, but the
feasibility of this approach has yet to be proved. Can this approach capture the
main CWF temporal variability? How big is the error arising from the assump-
tion of constant evapotranspiration? What is the effect of CWF variability
on the virtual water trade? The present thesis addresses these questions by
(i) providing a systematic validation of the method (here referred as the Fast
Track method), (ii) providing a comprehensive assessment of the associated
uncertainty, and (iii) giving an example of application to highlight its suitability.

As mentioned above, in a framework where water resources suffer from in-
creasing pressures from population growth, economic development and climate
change [142, 60], the international food trade is vital for food security [40, 64].
Through the international trade of agricultural goods, water resources that
are physically used in the country of production are ‘virtually’ transferred to
the country of consumption. Virtual water trade has often been recognized
for its ability to improve physical and economic access to food commodities in
water scarce regions, allowing nations to save domestic water resources through
the import of water-intensive products [26, 150]. Thus, food trade leads to a
global redistribution of freshwater resources [67], although it is recognized that
commodities are being traded, and not water.
The virtual water trade between regions has been investigated by a remarkable
variety of scientific contributions. A larger number of studies investigated the
temporal evolution and dynamics of the virtual water trade (VWT) associated
to the international trade of agricultural goods reference therein [10]. The
VWT has been recognized for its ability to improve access to water for food
production in those countries where water scarcity is a major concerning issue,
i.e. through the import of water-intensive products [27, 64]. It has been shown
how both the virtual water volume embedded in internationally-traded goods
and the number of trade relations grew significantly between 1986 and 2010
[22, 23], mainly driven by population, GDP, and geographical distances between
countries [132, 137]. Some authors (e.g., [71, 100, 72, 27, 62]) evaluated the
country virtual water balance in relation to national water needs and water
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availability. Their studies revealed that virtual water is exchanged primarily
from countries of high crop water productivity to countries of low crop water
productivity, generating a global saving in water use [150].
Recently, the analyses of virtual water trade by tools of complex network theory
[99, 15] have also attracted much attention. The idea has been to depict the
virtual water trade as a network where countries play the role of nodes and links
describe the import/export relations between any two countries (i.e., virtual
water trade network, V WTN). Important insights about the global architec-
ture of the V WTN have been provided by Konar et al. [81]: their (data-based)
analyses quantified the topology of international trade, providing evidence for
the existence of the weighted rich club phenomenon and uncovering a global
trading hierarchy in which dominant nations connect most peripheral portions
of the network. Suweis et al. [130] developed a simple model that captures the
key features of the network by assuming as sole controls each country’s gross
domestic product and yearly rainfall on agricultural areas, Tamea et al. [132]
identified population, gross domestic product, and geographical distance of
countries as major drivers of virtual water fluxes, whereas Fracasso [55] found
that also water endowments and water pressure in terms of water withdrawal
impact the bilateral import and export of virtual water.
Other contributions have investigated the time evolution of the virtual wa-
ter trade network. Such studies highlighted the dynamical and intermittent
behaviour of the network where a number of links are created and dismissed
every year [22, 23]. Dalin et al. [31] showed that the V WTN has grown
significantly between 1986-2007, with nodes becoming more interconnected
and exchanging larger virtual water volumes, although the distributions of the
main network statistics have remained stable, allowing predictive models of
the network statistical characteristics to be developed. Also the fitness model
developed by Dalin et al. [32] showed good performances in reproducing the
structural properties of the V WTN , enabling the forecasting of the structure
of the network under future political, economic and climatic scenarios.
In spite of the growing efforts devoted to unfold the virtual water network
structure and dynamics through its general features, a poorly explored problem
is to understand the single association between any pair of countries involved
in the international trade: this can be formalized as a link prediction task. Link
prediction is the problem of predicting the existence of a link between two
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nodes, based on the attributes of nodes and/or on the network topology [58].
In the context of network theory, link prediction has attracted much atten-
tion from different research communities and several algorithms are available.
The main-streaming class of algorithms are similarity-based algorithms [87],
where similarity can be defined by using the attributes of nodes; however, the
attributes of nodes are generally hidden, and thus, these algorithms are usually
based solely on the network structure or topology (i.e., structural-similarity
indices). In the framework of complex network, link prediction is generally used
to extract missing information, identify spurious interactions, and evaluate
evolving network mechanisms starting from a given network which is usually
undirected and unweighted [87]. Conversely, the specific problem addressed in
this thesis is the link prediction between any two nodes over a directed and
weighted network, without any knowledge of the network topology, but only
knowing the country attributes (e.g., population, gross domestic product, water
demand) and the link characteristics (e.g., geographical distance). Specifically,
the network topology is assessed by a threshold algorithm that establishes the
link existence on the basis of the possible weight of the link itself estimated by
means of the gravity law model: i.e., the link exists if the expected traded flow
is greater than 1000 m3 of virtual water.

A critique that has been made to virtual water studies is that they do not
account for water endowments of countries, thus ignoring the impact of food
trade (and production) on local resources. An important development of the
water footprint indicator, necessary to assess the impact of food production on
water resources across products and regions, is to relate the crop water use to
locally available renewable water resources. In the past decades, many water
indices have been developed [4, 2, 147, 144], generally comparing water use
with local availability and denoting as "highly water stressed" those areas where
the ratio is above 0.4. Recently, also the water footprint has been analysed in
the sustainability framework, showing e.g., where blue WF exceeds maximum
sustainable levels at the monthly scale [74]. Yano et al. [151] proposed a
water scarcity footprint, scaling the WF by a factor expressing local water
unavailabilities, as an indicator of water use impacts [152]. Brauman et al. [19]
recently provided a comprehensive picture of the areas vulnerable to water
shortage by the introduction of a water depletion metric. However, although the
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need to compare water use to water availability has been acknowledged and these
indicators are useful to identify areas of stress and water resource depletion,
they only provide broad pictures of agriculture sustainability [70]. In fact,
indicators generally consider all crops together, not allowing the identification
of critical crops, which may help to define alternative strategies or to track
unsustainable trade flows. In addition, most indicators do not separate the use
of surface water from groundwater use although this distinction is fundamental
because of the different renewability of such resources. and do not consider the
role of green water scarcity in sustainability assessments [45]. Moreover, some
weighted water footprint metrics often lack a physical interpretation, although
proving to be useful for country comparisons, and are less effective for critical
analyses [68]. An aim of this thesis is to fill these gaps in the evaluation of
agricultural water use sustainability, separating irrigation from surface- and
ground-water, accounting for green water use and considering crops separately.
In order to measure the sustainability of agricultural production with respect
to (local) water resources availability, the concept of "Water Debt" (WD) is
introduced. The term, borrowed from the carbon footprint literature [54] and
inspired by early considerations about sustainability [66], is used to indicate
the payback time required by the hydrological cycle to replenish or refresh the
water resources (i.e., soil moisture, surface water bodies, and aquifers) used for
annual crop production. The WD enables to compare the sustainability of crop
water use across crops and regions by including both the local water use and the
renewable availability. It allows one to identify most threatened water sources
and helps decision- and policy-makers to prioritize water saving strategies (e.g.,
increasing water use efficiency) and plan sustainable withdrawals and supply of
freshwater (both green and blue).

The overall thesis has several, but tightly connected, objectives as shown
in Figure 1.3. Motivated by the uneven spatio-temporal distribution of water
resources and considering the issue of balancing water demand with water
availability, the present study asses (both locally and globally) the main drivers
of water agricultural water use and the water resources globalization connected
to the international trade of agricultural goods. Moreover, the thesis tries to
assess the impact of water use on local resources by means of a newly developed
indicator.
The thesis has been designed into four sub-research projects, which will be



9

Fig. 1.3 Map of the main key concepts of this thesis and their relationship.

described in Chapters 2-5.
Chapter 2 assesses the water use geography of four crops- wheat, rice, maize,
and soybean- over 1996-2005. The crop water use is quantified through a daily
soil water balance, under rainfed and irrigated conditions. High-resolution
data, such as precipitation, evapotranspiration, soil properties, are used as
input parameters to the model and their associated uncertainties is explored
through a first order sensitivity analysis. Results are shown both as maps
and as regional/global averages to convey at the same time local and global
information.
Chapter 3 deals with the temporal dimension of crop water footprint over
the years 1961-2014. A Fast-Track method, which ascribes water footprint
variability only to yield changes, is described and validated, and an uncertainty
analysis is performed. The Fast-Track method is then applied to the case of
virtual water trade to show its significance and to foster its adoption in analyses
where the temporal dimension of water footprint is relevant.
Chapter 4 introduces a novel link-prediction algorithm to investigate the dynam-
ical behaviour of the virtual water network associated with the international
trade of over 300 products. The algorithm is based on the country characteris-
tics and the link properties, while it does not require the network topology as
mainstream link prediction algorithms do.
Chapter 5 focuses on the sustainability of water use in agriculture. To deal with
water use sustainability, the water uses computed in Chapter 2 are extended to
other five crops, namely barley, potatoes, sugar beet, sugar cane, and cotton,
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and the blue water use is split into surface and ground water use. The concept
of Water Debt is introduced as a measure of the impact of crop water use on
renewable resources.
Finally, Chapter 6 concludes the thesis with a synthesis of the achievements and
puts the results into future research perspectives, suggesting possible directions
and providing solutions to overcome the intrinsic limitations of the current
studies.



Chapter 2

The water footprint of crop
production worldwide

The work described in this chapter has been partially derived from paper [136].
Most of the human appropriation of freshwater resources is for agriculture.
Water availability is a major constraint to mankind’s ability to produce food.
The notion of water footprint (WF ) provides an effective tool to investigate
the linkage between food and water resources as a function of climate, soil and
agricultural practices.
Generally, the water footprint (WF ) of a good is the amount of water needed
to produce the good along the whole production chain [6], in primary crops
most water use is related to the evapotranspiration process. When applied to
agricultural goods, water footprint is often evaluated per unit of product/crop
in order to provide a measure of the efficiency of water use. The unit water
footprint (or crop water footprint, CWF ) allows for a comparison of different
commodities on the basis of their water use; hence, the concept kindles analyses
about the water use efficiency and how to improve it. Moreover, the crop
water footprint can be quantified in terms of green and blue water components,
depending on whether the water is contributed by precipitation water stored
in the (top of) soil and vegetation, or by surface and groundwater used for
irrigation and food processing. A number of studies has explored the spatial
variability of the crop water footprint, at different spatial scales, for a wide
basket of products; however, shortcomings can be found. In fact, only few
studies assessed the CWF at high spatial resolution worldwide [89, 126, 41] and
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only the study by Siebert et al. [126] considered multi-cropping periods along
the year, which are often used in crop production. Moreover, only local studies
[153, 16] performed a sensitivity analysis of the crop water footprint to major
input parameters. These main shortcomings in the literature are addressed in
this Chapter. The spatial variability of crop water footprint is explored in the
first part of the Chapter, disentangling its dependency on climate and crop
yields. To this end, we calculate the crop water footprint of four crops -wheat,
rice, maize, soybean-for the entire world developing a high-resolution (5 by 5
arc minute) soil water balance model. In the second part of the Chapter, a
sensitivity analysis is performed to study how the unavoidable uncertainties
existing in the (spatial) climate and soil data affect the calculation of the crop
water footprint.
Results suggest that food production almost entirely depends on green water
(>80%), but, when applied, irrigation makes crop production more water
efficient, thus requiring less water. The spatial variability of the CWF is mostly
controlled by the spatial patterns of crop yields with an average correlation
coefficient of 0.83. The results of the sensitivity analysis show that wheat is most
sensitive to the length of the growing period, rice to reference evapotranspiration,
maize and soybean to the crop planting date. The CWF sensitivity varies not
only among crops, but also across the harvested areas of the world, even at the
sub-national scale.

2.1 Estimating the green and blue water foot-
prints in crop production

The crop water footprint, CWF , is evaluated globally at the spatial resolution
of 5 by 5 arc minutes, corresponding to pixels of about 9 km by 9 km at the
equator. We consider both rainfed and irrigated production conditions, as
well as multi-cropping practices (i.e., a crop can be grown on the same land
more than once a year). CWF estimates are referred to the time interval from
1996 to 2005. We chose a data range of 10 years in order to have input data
independent of inter-annual fluctuations and typical of each grid cell; more
specifically, we build our reference period centred on year 2000 because this is
the most frequent reference year in the global agricultural datasets used in this
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study (e.g., crop calendar, crop yields, harvested areas).
CWF is defined in each pixel as the ratio between the water evapotranspired
by the crop during the growing seasons of a year y, ETa,y (mm), and the crop
actual yield, Ya (ton ha-1), as

CWF = 10 · ETa,y

Ya

[ m3

ton

]
, (2.1)

where the factor 10 converts the evapotranspired water height expressed in
mm into a water volume per land surface expressed in m3 ha-1.
In regions where more than one crop per year is planted and harvested (i.e.,
there are multiple growing seasons), the actual evapotranspiration of a year,
ETa,y, is calculated as the weighted average (with respect to the area An

cultivated during the growing period n with n = 1, 2, ...) of the total actual
evapotranspiration ETa,LP G,n (mm) of each growing season, as

ETa,y =
∑

n(ETa,LGP,n · An)∑
n An

[mm], (2.2)

where LGP is the length of each growing period. Depending on agricultural
practices, climate and soil properties, the crop evapotranspires green (ETg,y)
and/or blue water (ETb,y). Thus, the total water evapotranspired by the crop
during the growing seasons of a year can be written as the sum of a green and
a blue component,

ETa,y = ETg,y + ETb,y. (2.3)

2.1.1 Crop evapotranspiration over a single growing sea-
son

The total water evapotranspired by the crop in a single growing season, ETa,LGP

(mm), is obtained by summing up over the length of the growing period (LGP )
the daily actual evapotranspiration, ETa,j (mm day-1), i.e.,

ETa,LGP =
LGP∑
j=1

ETa,j [mm], (2.4)
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with j indicating the day of the growing period. LGP is delimited by
the planting (PD) and harvesting dates taken from [108]. This data set
distinguishes between rainfed and irrigated production and provides the month
in which the growing period starts and ends at 5 by 5 arc minute resolution,
considering multi-cropping practices, for year 2000. We initially assume that
the cropping period starts and ends in the middle of the month.

Daily crop evapotranspiration, ETa,j, is calculated following [8], a well-
established approach for the virtual water content assessment [89, 126, 153].
ETa,j is defined as

ETa,j = kc,j · ET0,j · ks,j

[mm
day

]
, (2.5)

where kc,j is the daily crop coefficient, ET0,j is the daily reference evapotran-
spiration (mm day-1) from a hypothetical well-watered grass surface with fixed
crop height, albedo and canopy resistance, and ks,j is the daily water stress
coefficient depending on the available soil water content, with a value between
0 (maximum water stress) and 1 (no water stress).

The crop coefficient, kc,j, depends on crop characteristics and, to a limited
extent, on climate. It is influenced by crop height, albedo, canopy resistance
and evaporation from bare soil. During the growing period, kc,j varies with a
characteristic shape divided into 4 growing stages (I: initial phase, II: develop-
ment stage, III: mid-season, IV: late season) of lI , lII , lIII , and lIV days length,
respectively, that reads

kc,j =



kc,in j∈ I stage
j · kc,mid−kc,in

j−lI
j∈ II stage

kc,mid j∈ III stage
j · kc,f −kc,mid

j−lI−lII−lIII
j∈ IV stage.

(2.6)

We use values from [8] for the constants kc,in, kc,mid, kc,f , while the length of
each stage, lst, is calculated as a fraction, pst, of the length of the growing period
(lst = pst · LGP ); pst is defined for each stage (with st = I − IV ) according to
[89], whose study provides specific values of pst for different climatic regions.
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Lengths are rounded to the nearest integer and the stage I is adjusted to
guarantee the exact length of the growing period.

Monthly long-term average reference evapotranspiration data, ET0,m, at
10 by 10 arc minute resolution are given by [52]. These data are converted to
5 by 5 arc minute data by subdividing each grid cell into 4 square elements
and assigning them the correspondent 10 by 10 values. Daily ET0,j values
are determined through a linear interpolation of monthly climatic data and
attributing the monthly ET0,m value to the middle of the month. For sake
of simplicity, we consider months 30 days long. These conversions introduce
uncertainties in the calculation of the CWF , but they are necessary because of
the lack of daily evapotranspiration data at 5 by 5 arc minute resolution.

The water stress coefficient typical of the cell, ks,j , varies during the growing
period depending on the total available water content (TAW ) and the readily
available water content (RAW ) in the root zone [8]. The water stress coefficient
is evaluated considering two different types of production: rainfed production
(R), in which crops are fed only by, and irrigated production (I), in which
crops are irrigated when necessary in order to prevent the emergence of water
stress. In the irrigated production the water stress coefficient, ks,j, is equal to
1 throughout the growth period. In the rainfed production, the computation
of the ks,j daily value is detailed in Section 2.1.2. In its evaluation, we use for
the first time in a CWF assessment (to the best of our knowledge) the 30 arc
second maps of the available water content (AWC) given by [53] and the 10
arc minute maps of monthly precipitation given by [98]. Since the daily ks,j

is different in the two production types (rainfed vs irrigated), as well as the
ET0,j (i.e., the growing period can have different planting dates in rainfed and
irrigated conditions), the daily actual evapotranspiration (green+blue), ETa,j,
calculated with equation (2.5), is different in the two production types. The
green component for rainfed crops, ET R

g,j, is equal to the total evapotranspi-
ration, ET R

a,j. The blue component for irrigated crops, ET I
b,j (notice that by

definition, ET R
b,j = 0), is obtained as the amount of irrigation water provided

to the crop; the green component is the difference between the ET I
a,j and ET I

b,j

values. The total, green and blue evapotranspiration over the growing period
are given by equation (2.4), both for rainfed (ETg,LGP ) and irrigated conditions
(ET I

g,LGP and ET I
b,LGP ).

The overall evapotranspiration of green and blue water from the cell, ETg,LGP
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and ETb,LGP , is the weighted mean of the rainfed and irrigated evapotranspira-
tion,

ETg,LGP =
ET R

g,LGP · AR + ET I
g,LGP · AI

AR + AI
, (2.7)

ETb,LGP =
ET I

b,LGP · AI

AR + AI
, (2.8)

where weights, AR and AI , are the harvested areas given by [108]. This data
set distinguishes rainfed and irrigated production, providing the harvested areas
of 26 main crops, for each growing season. The procedure to evaluate the values
of ETg,LGP and ETb,LGP is repeated for each growing season of a year; equa-
tion (2.2) is then applied to determine the green and blue evapotranspiration
of a year.

Due to peculiarities of the rice cultivation, the CWF estimates need further
details. Rice is typically cultivated in wetland or upland systems. About 85%
of the rice in the world is grown in wetland systems and about 75% of rice
production is obtained from irrigated sites [18]. In wetland rice cultivations,
paddy fields are prepared and the soil is kept saturated. Basically, in the month
before sowing or transplanting, water is used to saturate the root zone and
the amount of water needed depends on the soil type and rooting depth, we
considered a volume per unit area of 200 mm, as suggested by [18]. Moreover,
during the growing season a constant percolation of water occurs below the
root zone, whose rate is affected by a number of soil factors [148]. In this study,
we assume a 2.5 mm day-1 flux, corresponding to rather impermeable soils with
a clayey texture [25].

2.1.2 Computation of the water stress coefficient

The water stress coefficient describes the effect of soil water shortage on crop
evapotranspiration. Allet et al. (1998) [8] defined the daily water stress
coefficient as

ks,j = TAWj − Dmo,j

TAWj − RAWj

[−], (2.9)
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where TAWj (mm) is the total available water content in the root zone,
RAWj (mm) is the readily available water content, and Dmo,j (mm) is the
root zone depletion in the morning (i.e., the water shortage relative to field
capacity).

TAWj depends on the available soil water content per meter depth, AWC

(mm m-1), and on the daily rooting depth, Zrj (m) , according to

TAWj = AWC · Zrj [mm]. (2.10)

Grid based data on AWC, at 30 by 30 arc second resolution, were taken
from [53] and converted to 5 by 5 arc minutes through an average. The available
water content refers to the capacity of the soil to retain water available to plants.
It is equal to the difference between the soil water content at field capacity
(θF C) and the water content at wilting point (θW P ,i.e., the point at which plant
will permanently wilt) as shown in Figure 2.1. The rooting depth, Zrj , is given
by [8]; this value generally increases during the first two growing stages up to a
maximum value (dependent on crop type and irrigation conditions) and then it
remains constant until the harvest day.

Fig. 2.1 Water balance of the root zone along three significant days of the growing
period: the planting date (a), a typical day under water stress condition (b), and a
typical day after applying irrigation.

RAWj is the water that crops can use for evapotranspiration before water
stress and stomata closure begin. It is given by
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RAWj = ρ · TAWj [mm], (2.11)

where, ρ is the soil water depletion factor that can be depleted from the root
zone before moisture stress occurs, and it is different among species. We
assumed ρ to be constant during the growing season (ρ values are given by [8]).
The different values of TAW and RAW in rainfed and irrigated production
are due to the different rooting depth (which is deeper in rainfed production).
Root zone depletion is recorded in the morning, Dmo,j, depending on daily
precipitation, irrigation, and crop evapotranspiration.
In rainfed production (R), the root zone depletion in the morning, Dmo,j, is
equal to the one recorded at the end of the previous day (Dev,(j−1)), minus the
daily precipitation value, Prj,

Dmo,j = Dev,(j−1) − Prj

[mm
day

]
. (2.12)

Daily precipitation is obtained equally distributing the monthly climatic
precipitation along the growing period with daily frequency. For sake of
simplicity, all months are assumed 30 days long. Monthly climatic precipitation
are available in the literature at 10 by 10 arc minute resolution [98]; we convert
this data to 5 by 5 arc minute grid cells as done in Section 2.1.1 for reference
evapotranspiration. Dmo,j is equal to 0 on the planting day (see Figure 2.1a).
In the evening Dmo,j increases because of crop evapotranspiration, as

ETa,j = kc,j · ET0,j · TAWj − Dmo,j

TAWj − RAWj

, (2.13)

Dev,j = Dmo,j + ETa,j

[mm
day

]
. (2.14)

We did not consider water lost by deep percolation, and the capillary rise
was assumed equal to zero, whereas water excess (leading to negative values of
Dmo,j) were cut off at zero and the exceeding precipitation was assumed to be
lost as surface runoff. In rainfed conditions, the water volume evapotranspired
by the crop during the growth period is totally green, ETg,LGP = ETa,LGP .
Generally, during the first two stages of the growing season the crop has
sufficient water to evapotranspire, i.e., Dmo,j < RAWj. Conversely, at the
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beginning of the third stage (when the crop water requirement is higher) water
stress conditions are more frequent (Dmo,j ≥ RAWj, Figure 2.1b) and the soil
water content gets closer to the wilting point. In the rainfed scenario only
precipitation can increase the water content up to field capacity.

In irrigated production (I), irrigation is required when rainfall is insufficient
to compensate for the water loss by evapotranspiration. By calculating the
soil water balance of the root zone on a daily basis, the timing and depth of
irrigation can be planned. To avoid crop water stress, irrigation water should
be applied before or at the moment when the readily available soil water is
depleted (Dmo,j ≥ RAWj). Dmo,j is given by equation (2.12) and RAWj is
given by equation (2.11). To avoid deep percolation losses that may leach
relevant nutrients out of the root zone, the net irrigation depth should be
smaller than or equal to the root zone depletion (Ij ≤ Dmo,j). The daily net
volume of irrigation is determined with the assumption that the crop fully
evapotranspires without suffering from water stress throughout the day; the
water volume is given by the following relationship,

Ij = Dmo,j − RAWj + kc,j · ET0 [mm]. (2.15)

Irrigation increase the soil water content up to the minimum readily available
water content (i.e., Dmo,j = RAWj , see Figure 2.1c) that supplies the crop with
the water required to satisfy its evapotranspiration demand throughout the
day (namely kc,j · ET0). In the evening, the root zone depletion is given by

Dev,j = Dmo,j + ETa,j − Ij

[mm
day

]
, (2.16)

where ETa,j is given by equation (2.5) with ks,j = 1. ETa,j is the water
volume evapotranspired by the crop during the day; the water volume consists
of green and/or blue water. The blue water, ETb,j , corresponds to the irrigation
water given to the crop (namely, ETb,j = Ij); the green water, ETg,j , is evaluated
as the difference between the total and the blue water evapotranspiration.



20 The water footprint of crop production worldwide

2.1.3 Crop actual yield

Sub-national datasets of crop yields at high spatial resolution are seldom
available. Monfreda et al. (2008) [94] and the FAOSTAT database provide
good estimates of yield values. The first one refers to year 2000 providing the
observed yields and harvested areas of 175 distinct crops on a 5 by 5 arc minute
grid. This dataset has been widely used both for the CWF assessment (e.g.,
[126]; [62]) and in analyses on crop yield-gaps (e.g., [86]; [95]). The FAOSTAT
database provides annual yields at the country-scale from year 1961 to 2013. In
order to obtain high-resolution actual yields, Ya,T , referred to the investigated
period, T = [1996, 2005], we use the above mentioned data-sources combined
in the following relationship as

Ya,T (i, T ) = g(i, 2000) · f(c, T ), (2.17)

where g(i, 2000) defines the ratio of cell yield to country yield for year 2000
(i is the cell of the grid), and f(c, T ) describes the country-scale (c indicates
the country) yield in the investigated interval T . More specifically, g(i, 2000) is
defined in each cell as

g(i, 2000) = Ya(i, 2000)
Ya(c, 2000) [−], (2.18)

where Ya(i, 2000) is the yield measured in the cell in year 2000 (given
by [94]), and Ya(c, 2000) is the country-based yield in the cell for the same
year (given by FAOSTAT). The function f(c, T ) is the average of the national
yields given by FAOSTAT for each year t of the study period, T , namely
f(c, T ) = 1/10 · ∑t=2005

t=1996 Ya(c, t). In Figure 2.2, we provide the wheat yield as
an example of the gridded yield used in this thesis.

Finally, the green and blue CWF in each grid cell are determined with
equation (2.1), substituting ETa,y with ETg,y for the green component and with
ETb,y for the blue component CWF . The total virtual water content of the
cell is the sum of the green and blue content (equation 2.3).
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Fig. 2.2 Spatial distribution of the wheat yield [ton/ha] in the period 1996-2005.

2.1.4 Comparison with previous studies

The distributed results are aggregated at the country and global scale by a
weighted mean (using cell production as weight) in order to make a comparison
with the results from earlier studies. At national scale, our CWF estimates
are in good agreement with those from [62], particularly for maize production,
as can be seen in Table 4.1 for the major exporting countries. National CWF

values estimated in the present work are also in close agreement with those
from [89], as confirmed by the coefficients of determination, R2

w, that are 0.91
for wheat, 0.76 for rice, 0.90 for maize, and 0.91 for soybean (R2

w is weighted
with the countries production). At global scale, CWF averages estimated in
this study well compare with those from [126] and [89], especially for wheat
and maize production, as can be seen in Table 2.2.

2.2 Sensitivity of crop water use to variability
of input variables

A sensitivity analysis is required to understand how data uncertainty propagates
through the virtual water content estimates and to identify the model-inputs
that significantly affect the model-outputs. To this aim, a first-order sensitivity
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Table 2.1 Comparison between the crop water footprint values (CWF ) of wheat, rice,
maize, and soybean, evaluated in the major exporting-countries, from the current
study and from [62].

Crop Country Current study [m3·ton-1] [62] [m3·ton-1]
USA 2579 1359

Canada 1275 1800
Wheat France 668 366

Australia 1877 1339
Argentina 2034 1190
Thailand 2292 1831

Rice Vietnam 1675 1245
China 1087 789
USA 657 621

Maize Argentina 918 1041
China 725 715
USA 2318 1921

Soybean Brazil 2125 2220
Argentina 1870 2405

Table 2.2 Comparison between the globally-averaged crop water footprint (CWF ) of
wheat, rice, maize, and soybean from the current study and from [89] and [126].

Crop Current study [m3·ton-1] [89] [m3·ton-1] [126] [m3·ton-1]
Wheat 1523 1619 1469
Rice 1607 1486 1382

Maize 933 1028 1089
Soybean 2258 2107 2406

analysis is applied: the functional dependence of CWF on each input parameter
is expanded as a Taylor series and truncated at the first order; in this way a
linear relationship between the CWF estimate and the generic input parameter,
x, is assumed in a small neighbourhood of x. Parameters are perturbed one-
at-a-time of a very small quantity, which is arbitrarily chosen. To evaluate
and compare the sensitivity of the CWF to different parameters, we define a
normalized sensitivity index, SIx, for each parameter, x, as

SIx =
(∆CWF

CWF0

)/( ∆x

xref

)
, (2.19)
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where ∆CWF is the virtual water content variation resulting from changing
the parameter x of a quantity ∆x. Both variations are normalized: ∆CWF with
respect to the virtual water content (CWF0) estimated when all parameters
are at their baseline values, while ∆x with respect to a reference value of the
parameter, xref (see Section 2.2.1). Positive and negative variations of the
input parameters are considered to analyse the response of the CWF both in
terms of magnitude and direction of the change. The sensitivity analysis focuses
on four key input parameters, namely monthly reference evapotranspiration
(ET0,m), available water content (AWC), planting date (PD), and length of
the growing period (LGP ). The reference evapotranspiration and the available
water content are varied by ±0.01 mm day-1 and ±1 mm/m respectively, while
the planting date and the length of the growing are changed by ±1 day. The
imposed variations are different from parameter to parameter, depending on
their standard deviation, average, and range of variation. All changes are lower
than 2% of the standard deviation and lower than 1% of the range, in order to
guarantee that variations are small.
For each single variation, the new CWF value is calculated. The CWF

variation (∆CWF ) is due to a variation of the water volume evapotranspired
by the crop during the growing season (ETa,LGP ) and to a variation of the
crop actual yield (Ya). The new evapotranspiration, ET ′

a,LGP , is determined
by the equations (2.4,2.5) where the modified parameter is introduced. The
new yield, Y ′

a (whose variation is affected by the evapotranspiration change), is
determined through a modified expression of the equation by [38],

(
1 − Y ′

a

Ya

)
= Ky ·

(
1 −

ET ′
a,y

ETa,y

)
, (2.20)

where Ky is the yield response factor, representing the effect of a reduction
in evapotranspiration on yield losses, Ya and Y ′

a are the actual yields before
and after the input parameter change, respectively, and ETa,y and ET ′

a,y are
the crop actual evapotranspiration before and after the change of the input
parameter.
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2.2.1 The normalization of input parameters

The normalization of the parameter variation required by the sensitivity index
defined in equation (2.19) is different for the four parameters analysed. In detail,
the variation of the available water content (AWC) is normalized with respect
to the baseline value; the variation of the planting date (PD) is normalized
with respect to 360 days (namely the number of days of a year considering each
month 30 days long); the variation of the reference evapotranspiration (ET0,m)
and the length of the growing period (LGP ) are normalized as follow. After
changing their baseline values of a fixed quantity (0.01 mm day -1 and 1 day,
respectively), the new virtual water content of the rainfed and the irrigated
production, as well as the relative variations ∆CWF , are evaluated. The
normalized sensitivity index are separately determined for rainfed and irrigated
conditions, with specific values of xref , that are (i) the ratio between the total
reference evapotranspiration over the growing period and LGP for ET0,m, and
(ii) the length of the growing season typical of rainfed and irrigated conditions
for LGP . Finally, the overall sensitivity indexes of these parameters, SIET0,m

and SILGP , are calculated as the weighted mean of the rainfed and irrigated
sensitivity indexes, using the harvested area given by [108] as the weights.

2.3 Results of the water footprint assessment

The water footprint assessment focuses on four widely cultivated crops (wheat,
rice, maize, soybean) which provide around 50% of the global caloric content
and 47% of the proteins in global human food consumption [34]. Annual crop
production, averaged over the period 1996-2005, requires 2640 km3·yr-1 of water,
with 82% of water coming from soil moisture and 18% from surface and ground.

2.3.1 The green and blue water footprint of wheat

Figure 2.3 reports the spatial distribution of the total and blue crop water
footprint of wheat, typical of the period between 1996 and 2005. The maps
show a strong spatial heterogeneity both inside the climatic regions and at the
sub-national scale. The observed spatial variability is mainly driven by the
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yield pattern with a correlation coefficient of 0.74, while the influence of the
evapotranspiration demand (hence, climate), is lower with a correlation of 0.34.
Looking at the maps, one can immediately notice the high water efficiency (low
CWF ) of the United States (especially on the West Coast), Europe, and China,
where the virtual water content is generally lower than 2000 m3 ton-1, with a
consumption of blue water less than 10% of the total water consumption in the
United States and Europe, and between 50% and 75% in the large cropping
area in the north-east of China. South America, Africa, and Southern Asia
are less water efficient, with CWF reaching up to 6000-8000 m3 ton-1 in some
regions of Venezuela, Ethiopia, and Vietnam.

Asia. China and India are the largest producers of wheat in the study

Fig. 2.3 Spatial distribution of the crop water footprint (CWF ) of wheat in the period
1996-2005: (a) total CWF , expressed in m3 ton-1 and (b) blue CWF , expressed as
percentage of the total CWF .

period, accounting for 21% and 12% of the global production, respectively.
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Wheat is grown throughout China with virtual contents range between 500
and 6000 m3 ton-1, but production is mostly located in the North-East of
the country, where CWF s are around 1000 m3 ton-1, thanks to the higher
yields achieved (around 6 ton ha-1) and lower evapotranspiration demand than
the rest of the area. This region falls, in fact, in the temperate belt where
yearly ET0 is approximately 1000 mm [98]). In this region more than 75% of
the total CWF is blue (2.3(b)), meaning that water from precipitation gives
only a small contribution to meet crop water requirement, while irrigation
plays a strategic role in determining high crop water productivity (e.g., tons
of wheat produced per volume of water used). Water productivity decreases
in Central and Southern China where CWF s are within 2000-6000 m3 ton-1.
Indian wheat production is more water consuming than Chinese one. The
different climatic conditions and the local lower yields, in fact, make India
less water efficient. Even though wheat is grown almost everywhere in India,
about 90% of the total production lies in the Ganges and Indus basins, which
are the wheat baskets of India and Pakistan. Both the basins have a higher
water productivity, as shown by the low CWF (1800 m3 ton-1 on average),
than other wheat producing areas (2.3 1(a)), thanks to the higher yields and
lower evapotranspiration demands. Moreover these lands are mostly irrigated,
allowing the crop to fully evapotranspire with blue water generally higher than
50% of the total water content. The rest of Asia is characterized by CWF s
in the range of 2000-6000 m3 ton-1 or even higher in the tropical zone, where
yields are lower. A possible explanation of such low yields can be found in the
wheat-rice double cropping. Since wheat tends to be less profitable than rice,
farmers may prefer to achieve an optimal harvesting date for rice, planting
wheat later than the optimal time [29]. This is the case of Pakistan, for example,
where about 50% of wheat production is grown after rice or cotton.
America. The United States is the third main wheat producer (11% of the
global production). Production is mostly located in the North American plains
–the Wheat Belt– where the CWF shows the highest spatial variability of the
region. Yields are around 2 ton ha-1, and crop evapotranspirations range from
300 mm in the North to 700 mm in the South, following the climate pattern
(correlation coefficient of 0.44).
The cropping areas extends throughout in the USA, showing CWF s of 1000-
4000 m3 ton-1 in the East Coast (where a net separation between the temperate
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and sub-tropics zone can be notice) and 500-2000 m3 ton-1 in the West Coast.
The sharp differences in coastal virtual water content reflect the differences in
yields –around 3.5 ton ha-1 in the East and over 5 ton ha-1 in the West– and
evapotranspiration pattern –that shows an average value of 750 mm in the East
and 450 mm in the West. The West Coast registers lower ET values because
wheat is planted later than in the East Coast and the growing period is shorter.
In Central America the only countries with significant production are Mexico
and Guatemala [29]. In Mexico, all wheat is produced under irrigation, as
shown by the high percentage of blue water contents in 2.3(b), reaching 80% in
many cells. In Guatemala, wheat is mostly produced in highland valleys under
rainfed conditions. Here, diseases adversely affect the crop under the usually wet
production conditions, and weeds can significantly constrain production [29], as
a consequence yield is as low as 1 ton ha-1 and CWF reaches 8000 m3 ton-1 in
some cells. In South America the spatial variability of the CWF is remarkable,
and mostly driven by yield (correlation of 0.90): from 2000 m3 ton-1 in Brazil
and Argentina (Ya = 3 ton ha-1 on average) to 8000 m3 ton-1 in Venezuela and
Bolivia (Ya < 0.5 ton ha-1), with intermediate values in Peru and Colombia.
The generally low values are due to many production constraints, such as
moisture availability, diseases, poor cultural practices, and lack of fertilizers,
pesticides and farm implements [29]. Only few Brazilian cells show virtual
water contents around 1000 m3 ton-1 thanks to the improved cultural practices
and disease resistance.
Europe. European lands present very low CWF values with only few excep-
tions. The temperate-oceanic zone (i.e., Northern and Western Europe) shows
values lower than 1000 m3 ton-1 (e.g., France, Germany, and Northern Italy),
or even lower than 500 m3 ton-1 (e.g., United Kingdom, Sweden, and Norway).
These lands present yields around 7-8 ton ha-1 (the highest in the world) and
total evapotranspiration of about 500 mm. The spatial distribution of CWF

is one of the most homogeneous in the world since the local ET0 variations
are small and the yields are mostly the same in all countries. In Eastern and
Southern Europe values are generally around 2000 m3 ton-1, with the exception
of Portugal where CWF reaches 4000 m3 ton-1, being the yield lower than
1 ton ha-1. Generally, in Europe the virtual water content of wheat is mostly
green (blue CWF is always lower than 10% of the total content). It follows
that Europe is not only very efficient in term of water productivity (it has
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the lowest CWF of the world), but it is able to produce wheat with a limited
depletion of blue water.
Oceania. Australian tropics land is only harvested in the Eastern coast with
virtual water contents around 1000 m3 ton-1, thanks to low ET and average
yield of 3 ton ha-1. Most wheat is grown in the arcuate belt of land curving
across the eastern and southern regions where winter rainfall generally satisfy
crop water requirement (blue CWF is only 5% of the total one, as shown in
2.3(b)).
Wheat is a major crop in New Zealand with very low CWF thanks to the high
yields: 6 ton ha-1 on a country average.
Africa. The African continent is really heterogeneous, with virtual water
contents ranging from 1000 to 8000 m3 ton-1. Algeria, Egypt, Ethiopia, Kenya,
Morocco, South Africa, and Tunisia are the main producers, with production
around 5·105 tonnes in 2010 [50]. These countries exhibit very different CWF s,
determined by significantly different yields and reference evapotranspiration
(correlation of 0.75 for yield and 0.40 for evapotranspiration). Algeria and Mo-
rocco show different virtual water contents –3350 and 1500 m3 ton-1 respectively–
mainly because of the different yields. Both countries, in fact, have increased
their productions of about 15% during the last decade [50], but while the
performance of Morocco was due to improving yields up to 5 ton ha-1, resulting
in lower V WCs, Algeria’s larger production was due to increasing harvested
areas with a constant average yield of 2.5 ton ha-1 and higher V WCs.
Kenya and Ethiopia have similar yields, 2 and 3 ton ha-1 respectively, but really
different V WCs, 1500 m3 ton-1 for Kenya (100% green) and 4200 m3 ton-1 for
Ethiopia (100% green). The reason lies in the crop actual evapotranspiration
distribution that shows homogeneous values of about 700 mm in Ethiopia and
in the range of 200-500 mm in Kenya. Ethiopian growing season is, in fact,
50 days longer than Kenyan one. Among the main producers, South Africa is
the most heterogeneous country with values from 1000 to 8000 m3 ton-1. Both
yield and evapotranspiration have remarkably high spatial variability, from 0.5
to 6 ton ha-1 for Ya, and from 200 to 700 mm for ET . A possible explanation
is the different irrigation conditions of the harvested area, shown in 2.3(b).
Finally, Egypt shows the smallest V WC of all African lands, 1100 m3 ton-1,
with the blue component accounting for 100% of the total V WC. Wheat is, in
fact, grown only in the Nile basin where, thanks to the silt deposits from the
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Nile, average yield is 7 ton ha-1 (similar to the one achieved in North and West
Europe).

2.3.2 The green and blue water footprint of rice, maize,
and soybean

Rice. The spatial distribution of the virtual water content of rice is reported in
Figure 2.4. More than 90% of the world’s rice comes from Asia, with China and
India as the lead producers (42% and 21% of the global production). Similarly
to wheat, China is much more water efficient than India: i.e., 904 m3 ton-1

(40% blue) and 1894 m3 ton-1 (38% blue). Both countries show a significant
blue virtual water content that together with the hybrid species used makes
rice better performing than wheat. In the central and southern Chinese wheat-
growing areas, where more moisture is available, rice-wheat rotation is common
[29]. Other producing areas are located in the Eastern and Southern Asia (e.g.,
Indonesia, Bangladesh, and Vietnam), where virtual water contents are around
2000 m3 ton-1, or higher. In America, rice production is limited to the South
of the continent (there are only few harvested areas in Northern and Central
America, e.g. i the Mississippi river basin), where all 13 countries grow rice.
The average yield is approximately 5 ton ha-1 [51], but there is a large variability
between and within the countries, that makes the spatial distribution of CWF

really heterogeneous (correlations coefficient of 0.94). The yield gap observed
is the result of numerous deficiencies, as explained for wheat. Similarly to
wheat, European rice production shows low and homogeneous virtual water
contents, which are generally lower than 1000 m3 ton-1, with blue water playing
a significant role, as shown in Figure 2.4(b). With the exception of few
cells located in Morocco, Algeria, Egypt, and Madagascar, Africa exhibits high
virtual water contents. Insufficient technologies, ineffective farmers organization,
and environmental constraints are the main factors limiting rice yields. In
particular, weed is the most important biotic factor reducing rice production
in Sub-Saharan Africa, followed by rice blast disease caused by a fungus [119].
Moreover, the share of irrigated rice area in Africa is very small, resulting
in a significant water stress during the growing season. Egypt is again an
exception with 100% of the cultivated area irrigated. Australia is harvested
only in a small region in the South East, with virtual water content lower
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Fig. 2.4 Spatial distribution of the crop water footprint (CWF ) of rice in the period
1996-2005. Total CWF , expressed in m3 ton-1 (a); Blue CWF , expressed as
percentage of the totalCWF (b).

than 1000 m3 ton-1. Australia is the region of the world with the highest yield
(9 ton ha-1), thanks to the high yielding rice varieties that use less water and
to the excellent water management practices. According to the Government
(Department of Agriculture), the Australian rice industries lead the world in
water use efficiency since they use 50% less water than the global average.
Maize. Maize production is much more widespread worldwide; in fact, it can
be cultivated in extremely cool, moderate, and very hot climate, under very
different moisture regimes [123]. Along the temperate belt, maize has the highest
water use efficiency as shown in Figure 2.5(a) by the CWF<1000 m3 ton-1;
conversely, across the tropics belt the virtual water content are larger due to
lower yields. In these areas, maize goes under water stress conditions more
often due to the absence of irrigation, which feeds maize less than 10% of the
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water requirement. The main production is given by the United States (40% of
the global production), that is characterized by virtual water contents around
645 m3 ton-1 or even smaller, followed by China (18%) where the average
CWF is 767 m3 ton-1. Brazil is the third largest producer (5% of the global
production) in the world, with average CWF of 1670 m3 ton-1. Differently from

Fig. 2.5 Spatial distribution of the crop water footprint (CWF ) of maize in the
period 1996-2005. Total CWF , expressed in m3 ton-1 (a); Blue CWF , expressed as
percentage of the total CWF (b).

the US and China, Brazil shows larger spatial variability of water use efficiency:
CWF s are higher along the east coast, and lower in the South. Mexico gives
also a significant contribution to the global production, with an average CWF

of 1312 m3 ton-1) and yield values smaller than 3.5 ton ha-1. Also for maize,
Asia results really heterogeneous, but, differently from the case of wheat, it
shows a smaller range of variability. Maize is mainly grown in China, where
virtual content, as well as yields, are homogeneously distributed.
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France is the biggest European producer (25% of the European production in
year 2000, according to [51]) with an average CWF lower than 500 m3 ton-1

(the blue component is 12% of the total content). All Europe is characterized
by values lower than 1000 m3 ton-1. Australia grows maize in the same lands of
wheat, but maize achieves bigger yields, resulting in slightly lower virtual water
content. South Africa (CWF of 1606 m3 ton-1, 1% blue) is the biggest African
producer, with the second biggest yield after Egypt (CWF of 860 m3 ton-1,
87% blue) that contributes to half the South African production. The rest of
Africa mostly presents CWF in the range of 4000-6000 m3 ton-1.
Soybean. From the map in Figure 2.6(a), it is clear that soybean is typically
characterized by higher water contents than other crops. Abiotic and biotic
stresses, in fact, may limit soybean production worldwide. The United States is
the main producer (47% of the global production), with cultivated areas mostly
located in the north plains and on the East Coast, where virtual water content
reaches 4000 m3 ton-1. Soybean is mostly reliant upon green water, but close
to the High Plain aquifer around 25-50% of the water content is contributed
by the groundwater (see Figure 2.6(b)). The yield is almost the same in all the
American continent (around 2-3 ton ha-1) and the highest values are observed
in Brazil and Venezuela. In particular, Venezuela presents a lower CWF than
Brazil because it is characterized by a shorter growing period and thus a lower
evapotranspiration demand. American virtual water content distribution is
correlated to yield and evapotranspiration with the same correlation coefficient
of 0.70. Europe shows virtual water contents similar to South America, or even
lower in countries like France and Italy where larger yields are achieved and
where irrigation accounts for 25% of the crop water use. Asia appears largely
heterogeneous with CWF s ranging from 1000 to 8000 m3 ton-1. China and
India are again the leading producing countries of Asia, but, differently from
the other crops, their water efficiency is lower. This is particularly evident
for China where the national average CWF is about 2500 m3 ton-1, which is
higher than the global average. On the other hand Kazakhstan, Turkey, and
Iran show lower virtual water contents thanks to the higher yields. Virtual
water contents are much higher in Africa where peaks over 8000 m3 ton-1 are
found in Nigeria (primary African producer of soybean) and Tanzania.
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Fig. 2.6 Spatial distribution of the crop water footprint (CWF ) of soybean in the
period 1996-2005. Total CWF , expressed in m3 ton-1 (a); Blue CWF , expressed as
percentage of the total CWF (b).

2.3.3 Distribution of CWF related to the production of
wheat, rice, maize, and soybean

We evaluated the distribution of CWF as a function of yearly crop production
typical of the study period (Figure 2.7), where crop production is given by
the multiplication of crop actual yield and harvested area. At the global
scale, the histograms of wheat and rice are skewed towards the right with
tailing off after 5000 m3 ton-1. Both crops show a high water productivity, but
wheat has a larger water consumption since its production is bigger and more
widespread worldwide (the average global water consumption in the considered
period is about 900 Gm3 yr-1, 86% of which is green). Rice presents a lower
water consumption of 870 Gm3 yr-1 (64% is green). Maize exhibits a skewed
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right pattern with tailing off after 4000 m3 ton-1. Its production, which is
the biggest one among all of these four crops, is the most efficient in terms of
water consumption (830 Gm3 yr-1, 95% is green). Soybean is the most water
consuming crop per tons of product; however, since it is less produced than
other crops, it contributes to the smallest total water consumption (400 Gm3

yr-1, 97% is green). Figure 2.7(a) shows that Asia is the main wheat producer
(3 ·108 ton yr-1), and exhibits the highest virtual water variability. Europe and
North America are also important contributors to the global wheat production
(46% and 27% of Asian production), with a smaller CWF range. Asia and
Europe are the most efficient regions in terms of water consumption since their
production is mostly characterized by low CWF values: the histograms are,
in fact, skewed towards the right. However, while Europe uses nearly no blue
water for wheat production (99.5% is green water), in Asia about 20% of the
water footprint of wheat is contributed by blue water. North America appears
to be less water efficient, because the core of its production has a higher water
footprint; for example, it produces 6 ·107 ton/y less than Europe using 3%
more water. Finally, Africa, Oceania, and South America are minor wheat
producers (around 7% of Asian production).

In the case of rice (Figure 2.7(b)), Asia is not only the main producer, but its
production is significantly larger than that from all the other geographic areas
(it accounts for 93% of the global production). Asian rice production is rather
water efficient: its histogram pattern is skewed towards the right, with virtual
water content mostly lower than 2000 m3 ton-1. This high efficiency is mostly
due to China (which is the biggest producer), where high yields –6.5 ton ha-1

on average– are achieved by many varieties and hybrids with good quality and
resistance to diseases and insects [84]. Among the other geographical areas,
only America and Africa give an appreciable additional contribution to world
production (5.2% and 2.4% of Asian production). In particular, 40% of North
America water consumption for rice production is blue, while in South America
and Africa blue water contributes to the water footprint of rice only for 10%
and 13%, respectively, and have an overall lower water efficiency. In relative
terms, in Oceania the blue water footprint of rice is higher than in all the other
continents, with more than 70% of the water consumed coming from irrigation.

Ninety percent of the global production of maize is located in Asia and
America (Figure 2.7(c)), with the United States leading the water efficiency
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Fig. 2.7 Distribution of the total crop water footprint (CWF ) related to yearly
production: (a) wheat; (b) rice; (c) maize and (d) soybean.
In each histogram the abscissa reports the CWF grouped in classes of 300 m3 ton-1

width; the height of the rectangle gives the yearly production typical of the period
1996-2005 (i.e., crop actual yield multiplied by harvested area) for each class and
geographical area, rectangle area indicates the volume of water used. We separate
the contribution of North and South America in correspondence of Panama.
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of the region with an average water footprint of 645 m3 ton-1. The CWF of
North America shows a small spatial variability, with values generally lower
than 1000 m3 ton-1 and mostly contributed by green water. Conversely, Asia
is characterized by a higher heterogeneity similarly to the one of wheat and
rice. Europe (where 15% of the global production is located) exhibits an
efficiency similar to the one observed in North America both in terms of total
consumed water and in terms of green contribution. The Americas are the
biggest producers of soybean (Figure 2.7(d)). North and South America present
similar CWF distributions, with a higher variability in North America. Asia is
also an important producer, with an overall symmetric distribution of virtual
water contents, indicating a lower water efficiency compared to other crops.

2.3.4 Statistical distribution of CWF related to the pro-
duction of wheat, rice, maize, and soybean

Box-plots in Figure 2.8 compare the average CWF of different crops, grouping
data at a continental and global scale, and highlight the associated variability
as a function of production. The CWF values calculated at the pixel level (see
equation 2.1) within each continent are sorted in an ascending-order vector
which is then used to sort the cumulated percentage of cell production values.
Quartiles are determined in correspondence to 25%-50%-75% of the cumulated
production. The continental and global averages are obtained as a production
weighted mean of the pixel values (i.e., cell production is used as the weight
in the average). At a global scale, maize is the crop with the lowest CWF ,
927 m3 ton-1 on average. Except for the case of Africa, all geographic areas show
a CWF lower than 1500 m3 ton-1 for, at least, 75% of total production, or even
lower than 800 m3 ton-1 in Europe, Oceania, and North America. Moreover,
most of the areas exhibit a relatively low spatial variability (with Europe and
North America being the most homogeneous regions). On the contrary, African
virtual water contents range from 1000 (e.g., Egypt, Kenya, Madagascar, and
South Africa) to over 3000 m3 ton-1 (e.g., Ethiopia, Nigeria, and Congo). The
lowest CWF s are found in those regions where irrigation prevents the crops
from water stress and yield reduction, or in those areas where high-yielding
genetically modified maize is planted, as in South Africa [123].
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Fig. 2.8 Boxplots and weighted means (represented by cross markers) of the virtual
water content of wheat, rice, maize, and soybean aggregated by continents. Boxplots
have been obtained considering virtual water content cell values in ascending order
together with the relative cumulative production and quantiles have been determined
in correspondence to 25%-50%-75% of total production.
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Rice shows an average virtual water content of 1435 m3 ton-1. As expected,
its global CWF range is very similar to the one found for Asia (which is the
biggest producer). Similarly to maize, Africa presents the largest virtual water
content (2700 m3 ton-1) and the widest interquartile range (1000-4000 m3 ton-1).
Europe, Oceania and North America exhibit a very low spatial variability,
which is explained by their homogeneous harvested areas where little differences
in yields and evapotranspiration demands can be observed.

Wheat shows an average virtual water content of 1529 m3 ton-1. In this case,
all the geographical areas show a quite similar CWF spatial variability (as
shown by the similar interquartile ranges in Figure 2.8): wheat is, in fact, the
most widely cultivated cereal in the world with more than 220·106 ha planted
annually [124]. Thus, wheat is grown under a wide range of climatic conditions
(i.e., evapotranspiration patterns), soil properties, and production methods (i.e.,
yield patterns), which determine the wide range of CWF s. North America
shows the highest CWF . African water efficiency is mostly determined by
Egypt (i.e., leading the African production). Thanks to the fertility of the Nile
Valley, Egypt can achieve wheat yields similar to those of Europe, the region
where wheat production has the highest water efficiency.

Finally, soybean exhibits the highest virtual water content, 2243 m3 ton-1

on global average. Such a high value is mostly due to North and South America
and, to a lesser extent, Asia. All the geographical areas have an average CWF

shifted above 2000 m3 ton-1, except for Europe that appears to be the most
water efficient region, similarly to the cases of wheat and maize. Conversely,
African values are really high, with an average CWF value of 4250 m3 ton-1.

2.4 Results of the sensitivity analyses

The sensitivity analysis gives important insights into the model performance in
terms of key input parameters. Positive and negative variations of the input
parameters are found to produce CWF variations of the same magnitude, but
in opposite directions. Therefore, here we provide the sensitivity indexes, SIx

for parameter x, only with respect to positive variations. In Figure 2.9, we
report the average sensitivity indexes, SIx, (evaluated with equation (2.19)) at
the global scale, box-plots quantiles are referred to production with the same
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approach used for the box-plots in Figure 2.8 (see Section 2.3.4). Figure 2.12
shows the sensitivity of wheat CWF to the LGP variation, SILGP .

2.4.1 Available water content

The available water content (AWC) is the difference between the water content
at field capacity and wilting point. It varies across the grid cells with values from
3.75 to 150 mm m-1, depending on the soil properties. This parameter, together
with the rooting depth (Zrj) and the depletion fraction (ρ), defines the readily
available water content (RAW ) that the crop can use to evapotranspire without
experiencing water stress (see the equations (2.10,2.11)). Thus, RAW is the
water content defining incipient stomata closure and transpiration reduction
(ks < 1, see equation (2.9)). In the sensitivity analysis, the available water
content is varied by ±1 mm m-1. The variation in AWC produces a variation
of RAW , and thus a shift of the initial stomata closure to different water
contents. For example, an increment of AWC implies that crop becomes
water stressed later during the growth season, resulting in a larger actual
evapotranspiration (ETa,LGP ). In detail, green evapotranspiration increases
while blue evapotranspiration decreases. The reduction of the blue component
is explained by the lower irrigation requirement, since the condition Dmo,j ≤
RAWj is satisfied for a longer period; as a consequence, the green component
increases.

All crops (see Figure 2.9) exhibit negative sensitivity indexes (SIAW C); a
negative SIAW C means that an increment of the AWC produces a reduction
of the crop V WC due to the higher achieved yields (see equation 3.5) through
the higher evapotranspiration rates. The virtual water content of rice is the
least sensitive to AWC variations. Rice water stress is, in fact, controlled by
irrigation (75% of the total harvested area is, in fact, equipped for irrigation),
thus the positive effect of increasing the available water content is limited
and the increase of ET and Ya is merely appreciable. For wheat, maize, and
soybean the water content is more substantially influenced by the AWC and
precipitation. In fact, these crops are less frequently irrigated (<30% of the
total harvested area), and thus they are more influenced by the soil water
conditions.



40 The water footprint of crop production worldwide

Fig. 2.9 Boxplots and average values (represented by cross markers) of the sensitivity
index (SIx) of each parameter x. AWC: available water content, ET0,m: reference
evapotranspiration, LGP : length of the growing period, PD: planting date.
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2.4.2 Reference evapotranspiration

Monthly reference evapotranspiration, ET0,m, is cell specific and represents the
daily average evapotranspiration during a given month. The linear interpolation
of ET0,m gives the daily temporal evolution of the reference evapotranspira-
tion, ET0,j, during the year, with j being the day of the year. Planting and
harvesting date, which are crop and cell-specific, define the range of j. The
ET0,j value, multiplied by the daily crop coefficient (kc,j), determines the daily
evapotranspiration demand, which directly influences the crop virtual water
content.

In the sensitivity analysis, ET0,m is varied by ± 0.01 mm day-1 (with respect
to the baseline values given by [98]) and the new daily ET0,j is determined.
For the sake of simplicity, we discuss here only the changes in virtual water
content associated to positive variations of ET0,m.
Depending on the soil water content and irrigation conditions, the new ET

demand can be totally or partially satisfied. In the irrigated production, the
new water requirement can be partly met by irrigation, with larger evapo-
transpirations of blue water. In the rainfed production, the ability of the new
evapotranspiration demand to be met depends on the water available from
precipitation. Higher evapotranspiration demand can take better advantage
of precipitation (i.e., higher evapotranspiration of green water), if available,
thereby limiting runoff and water losses. The CWF variations have opposite
directions for different crops as shown by the sensitivity indexes in Figure 2.9.
Soybean exhibits a positive sensitivity index around 0.08, indicating that a
positive variation of ET0,m increases the crop water footprint. A possible
reason lies in the yield response factor, Ky – that relates Y reductions to ET

reductions in equation (3.5) –, which is equal to 0.85. According to [38], Ky < 1
implies that the crop exhibits a less-than-proportional increase in the yield
with increased actual evapotranspiration. Figure2.10 shows the SIET0,m spatial
variability with a high resolution map. Considering the biggest producers, the
United States (located in the temperate belt) exhibits lower sensitivities to
ET0,m variations than Brazil and India (located in the tropical zone), where
the SIET0,m reaches values around 0.15. Wheat, rice, and maize show negative
sensitivity indexes; for these crops, an increased evapotranspiration reduces
the virtual water content due to increased yields. These crops, in fact, are very
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sensitive to water surplus, as shown by their yield response factor which is equal
or higher than 1, indicating that the yield increases more-than-proportionally
when ET increases. The CWF of rice is the most sensitive to evapotranspira-
tion variations, as shown by a SIET0,m value of -0.4 on average. The sensitivity
index of rice is quite heterogeneous at sub-national scale (Figure 2.11), with
values between -0.10 and-0.60 (e.g., South Sudan, Ethiopia, Tanzania).

2.4.3 Length of the growing season

The length of the growing period, LGP , defined by the planting and the
harvesting date, is used to calculate the length of the 4 growth stages (lst)
defining the shape of the piecewise crop coefficient curve.

The sensitivity of CWF to LGP is evaluated by varying LGP of ±1 day.
The variation makes a stage of the growing season 1 day longer or shorter than
the nominal value, while the other 3 stages are shifted of one day (i.e., the crop
is harvested later or earlier), maintaining their initial length. Such translation
changes the daily crop water requirement because kc is differently associated
with daily ET0 values, impacting the virtual water content.

Wheat exhibits a sensitivity index of -0.05 on average (see Figure 2.9). The
negative values of SILGP indicate that the virtual water content has decreased
due to the increased yields. In fact, a one day longer growing season implies
a higher ET demand, which can be partially or totally met by precipitation
or irrigation, depending on the cultivation conditions. The spatial variability
of the wheat SILGP (Figure 2.12) ranges between the tropical zone where the
sensitivity indexes are around -0.05 and the temperate belt and the sub-tropical
(summer rainfall) zones where these indexes reach values around -0.25. In these
areas, in fact, the yield increases more than elsewhere (about 1.5-2.5% with
respect to the baseline value) because the increased ET demand is totally met
by irrigation in the Nile Basin, in the North of India, and in the North-East
of China, and by precipitation in Belgium, Netherlands, Northern Italy, and
Mongolia. Rice, maize, and soybean show negative sensitivity indexes of -0.18,
-0.09, -0.03, respectively.
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Fig. 2.10 The sensitivity index of the CWF of soybean to the reference evapotran-
spiration (ET0). ET0 is varied of 0.01 mm day-1.

Fig. 2.11 The sensitivity index of the CWF of rice to the reference evapotranspiration
(ET0). ET0 is varied of 0.01 mm day-1.

Fig. 2.12 The sensitivity index of the CWF of wheat to the length of the growing
period (LGP ). The length of the growing period is varied of 1 day.
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2.4.4 Crop planting date

Crop planting dates were taken from [108]. This database provides the months
when the growing season starts and ends, making a distinction between rainfed
and irrigated production. The intermediate day of the month is taken as the
planting date. Varying the planting date (±1 day), with constant length of the
growing period, implies a rigid translation of the growing season to higher or
lower daily reference evapotranspirations. Therefore, the SIP D depends on the
month of the year in which the crop is planted and on the temporal evolution
of ET0 during the growing season, and it may also include negative values. On
global average, rice, maize, and soybean exhibit positive sensitivity indexes:
0.08, 0.18, 0.1, respectively, with cells showing strong spatial heterogeneity,
especially for rice harvested areas where some cell show negative sensitivity
indexes (see Figure 2.9). For these crops, a 1 day shift in the growing period
increases the virtual water content. Rice, maize, and soybean are, in fact, spring
or summer crops, thus a positive variation of the planting date implies a shift of
the growing period to lower reference evapotranspiration periods, and thus lower
crop water requirement and virtual water content. The map in Figure 2.14
better specifies the spatial variability shown by the boxplots; for example,
focusing on the main rice producers (e.g., China, India, Vietnam), the SIP D

values vary from -1 to 1 depending on the water conditions of each harvested
area. Southern India shows a SIP D value of -1 indicating an attenuation of
the crop water footprint due to the increased yield of 0.5%; Northern India
exhibits a positive sensitivity index around 0.8 due to a decreased yield, which
reaches -2% in those cells under rainfed conditions. The map in Figure 2.15
shows the SIP D values of maize and help to localize the positive SIP D values;
the temperate zone is positively sensitive to planting date changes due to yield
reductions caused by ET attenuations. The SIP D value presents a significant
within-countries spatial variability, which is particularly evident in Brazil, India,
and China. The sensitivity index of wheat CWF goes in the opposite direction
with an average value of -0.05. This means, that delaying the planting date
of wheat (which is mostly a winter crop) helps to reduce its water footprint.
However, in some wheat producing areas (located in the tropical belt for
example) the behaviour is the opposite one, with positive SIP D values.
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Fig. 2.13 The sensitivity index of the CWF of maize to the length of the growing
period (LGP ). The length of the growing period is varied of 1 day.

Fig. 2.14 The sensitivity index of the CWF of rice to the planting date (PD). The
planting date is varied of 1 day.

Fig. 2.15 The sensitivity index of the CWF of maize to the planting date (PD). The
planting date is varied of 1 day.
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2.5 Concluding remarks

The high resolution maps of the crop water footprint CWF of the main
cultivated crops have been obtained using recently high-resolution data and
accounting for multi-cropping practices, thus taking into account precipitation
and temperature variabilities along the year, and also accounting for different
irrigation requirements. The CWF values differ substantially among crops and
across production regions, exhibiting strong spatial heterogeneity even at the
sub-national scale. The spatial heterogeneity in the V WC is mainly driven by
the yield patterns with a correlation coefficient higher than 0.7 for all the crops.
This suggests that the crop V WC is influenced by agricultural practices more
than climatic conditions. This is an important result, especially in terms of
indicating a strategy toward virtual water content reduction; [113], for example,
have shown that there is a great opportunity to improve water productivity
(and thus reduce CWF ) through the improvement of yield levels within the
available water balance in rainfed agriculture, without requiring additional blue
water resources. Furthermore, considering the logarithmic relationship existing
between CWF and yield, the largest water productivity gains can be achieved
in the two main hot-spot regions of the world in terms of poverty and water
scarcity, i.e. sub-Saharan Africa and South Asia, where the CWF estimates
are generally above the global average due to the low crop yields.

Aggregate analyses at the continental scale provide a global view of the
CWF value in relation to crop production. From the histograms in Figure 2.7
and from the boxplots in Figure 2.8, it is clear that wheat, rice, and maize
are characterized by a higher water productivity (and thus lower virtual water
content) than soybean, due to their higher yields. However, soybean yield, as
well as the production area, is expected to increase with the help of genetic
resources which may provide the solution needed to overcome abiotic and biotic
constraints [65]. The results of the aggregate analysis also show the global
consumptive water use of the four grains, which is about 3300 km3 yr-1 in
the period from 1996 to 2005. Green water contributed to 90% of the global
consumptive water use in the crop growing periods; this high proportion of
green water is partly due to the dominance of rainfed agriculture. In addition,
in irrigated lands, green water contributed to 25%-80% of the total consumptive
water use as also shown, at the grid cell scale, by the maps of blue CWF . In



2.5 Concluding remarks 47

fact, only in some regions and countries (e.g., Egypt, Pakistan, Saudi Arabia)
crop production depends primarily on blue water. The important role of green
water in crop production highlights the need for a better management of this
water resource.

Most notably, to our knowledge this is the first study assessing, at the global
scale, the sensitivity of the CWF estimates to the model-inputs. The results
of the sensitivity analysis show that wheat is the most sensitive crop to the
length of the growing period, rice to the reference evapotranspiration, maize
and soybean to the crop planting date. Virtual water content shows different
sensitivity to input parameters not only among crops, but also across the
harvested areas of the world, even at the sub-national scale. These results may
inform future efforts aiming at the refinement of data used in the assessment
of agricultural water requirements and lend themselves to the identification
of the parameters that farmers and land managers can modify to effectively
reduce the water cost for crop production. Crop water footprint estimates and
sensitivity studies will need to be extended towards other crops and other water
using processes, at different spatio-temporal scales, to have a complete picture
of this effective tool to tackle water and food security.



Chapter 3

A Fast-Track approach to deal
with temporal dimension of
CWF

The work described in this chapter has been partially derived from paper [138].
Population growth, socio-economic development and climate changes are placing
increasing pressure on water resources. Crop water footprint is a key indicator in
the quantification of such pressure. It is determined by crop evapotranspiration
and yield value, which can be highly variable in space, as shown in Chapter
2, and time providing the significant trends that have been shown for yields
[111, 110]. While a great deal of attention has been devoted to the CWF

variability in space, less attention has been paid to its variability in time. To
date, only local studies have evaluated a time-varying crop water footprint
[128, 149, 109], with particular regard to the Chinese case [129, 155, 154].
Recently, a number of studies have adopted a simple approach that ascribes
the time variability of crop water footprint only to yield trends, leaving out the
effects of evapotranspiration variations [81, 80, 31, 32]. However, the feasibility
of this approach, we call "Fast-Track approach", has yet to be proved. This
approach has been adopted bothe for local and global studies, but its feasibility
is yet to be provided. Can this approach capture the main CWF temporal
variability? How big is the error arising with the assumption of constant
evapotranspiration? In the first part of the Chapter, the Fast-Track method is
described and validated. In the second part of the Chapter, the uncertainty of
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the method is assessed and an example of application is provided, pertaining
the virtual water trade of wheat, maize, rice, and soybean. Results show and
confirm the hypothesis that water footprint changes are mainly driven by yield
trends. The error associated with the Fast-Track method due to considering
constant evapotranspiration is three-times smaller than the uncertainty of the
model used to compute the crop water footprint.

3.1 The Fast-Track approach: assumption and
validation

Recent literature on virtual water testifies a growing application of a Fast-Track
(FT) approach for introducing the time dependency in crop water footprint
assessment, with the main objective of calculating the volumes of virtual water
embedded in internationally-traded agricultural goods.
According to the FT approach, the crop water footprint of country c in year
t, CWFc,t(Y ), is only driven by crop yield variations, Yc,t [ton·ha-1], while
evapotranspiration depth, ET c,T [mm], is kept constant to an average value
typical of a reference year or period (T ), namely

CWFc,t(Y ) = 10 · ET c,T

Yc,t

[ m3

ton

]
, (3.1)

where, 10 is a corrective factor to convert the evapotranspiration depth from
mm to m3·ha-1. With this formulation of time-varying CWF , it is implicitly
assumed that the variations of crop evapotranspiration have negligible effects
on the crop water footprint when compared to the effects of yield variations
and thus the ET c,T value can be fixed for any year t. The advantage behind
equation (3.1) is that yield time-series data are easily available at the country
scale (e.g., FAOSTAT database), and thus the CWF variability can be obtained
without the adoption of computational-demanding models that are generally
used to estimate evapotranspiration. Equation (3.1) has been adopted in
previous studies to include time variations in the analyses of virtual water trade
[81, 80, 31, 32], but without testing the suitability nor the uncertainty of the
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adopted methodology. Validation of the FT approach is one of the purpose of
this Chapter.

The FT approach allows one to exploit average crop water footprint estimates
previously determined over a period T , CWF c,T . Literature accounts a number
of CWF estimates at different spatial scale and averaged over different time-
intervals [126, 89, 136]. These time-averaged crop water footprints can be
scaled through yield trends following

CWFc,t(Y ) = CWF c,T · Y c,T

Yc,t

[ m3

ton

]
, (3.2)

in order to make them time-dependent. Y c,T is the average crop yield over
T while Yc,t is the country-yield of year t. Equation (3.2) has been recently
applied by Duarte et al. [39] to compute annual virtual water flows from 1965
to 2010 for 133 products.
To date, equations (3.1,3.2) have been applied only at the country scale.
However, they can be applied at any spatial resolution, depending on the goals
and data availability. Thus, symbol c can refer also to a region, a province or
a cell and the time-interval T can indicate both a single year or a temporal
window of two or more years length.

3.1.1 Validation of the Fast-Track approach

Here we test and validate the assumption of constant evapotranspiration that
grounds the FT approach. The aim of validation is twofold: (i) to support
previous studies that have applied the method without examining in depth its
feasibility and (ii) to foster its adoption to deal with temporal variability in
future water footprint assessment. In order to test the method, we compare
the CWF estimates obtained with the FT approach with the estimates accom-
plished through a more refined model accounting for both the inter-annual yield
values and the evapotranspiration changes. The two different estimates are
obtained as detailed in the following for wheat, rice, maize, and soybean. These
crops provide more than 50% of the global caloric content of human diet [34],
they contribute for more than 50% to the global water footprint [89] and they
account for over 30% of the global virtual water trade of agricultural goods
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[132]. The validation could be accomplished for any other product, provided
that data are available (see below).

3.1.2 Evaluation of the crop water footprint through the
FT approach

Annual CWF estimates are carried out according to equation (3.2) applied at
the country scale for the period 1961-2013. Equation (3.2) requires as input
the average crop water footprint over a reference period T (CWF c,T ), the
average yield values over T (Y c,T ), and the annual yield data from 1961 to 2013
(Yc,t). The average crop water footprint values are provided by Tuninetti et
al. [136] for the period T=1996-2005 at 5x5 arc minute resolution. To obtain
country-averages, these gridded estimates are aggregated through a production-
weighted mean (see Tuninetti et al. for further details). The country-yield
averages Y c,T are obtained by averaging the annual FAOSTAT data available
for each producing-country from 1996 to 2005; finally, the annual country-yield
values Yc,t are derived from the same database with t running from 1961 to
2013. We remark that the annual CWFc,t(Y ) estimates obtained with the FT
approach are easy and fast to be computed once the CWF c,T values are known.

3.1.3 Evaluation of the crop water footprint with the
detailed method

The CWFc,t(Y ) estimates obtained with the FT approach are compared with
the annual water footprint estimates achieved when both the yield and the
evapotranspiration changes are taken into account. To this purpose, we adapted
equation (2.1) used for time-fixed assessments, by introducing the time vari-
ability of both yield and evapotranspiration.
The yield-and evapotranspiration-dependent annual crop water footprint in cell
i of year t belonging to the range 1961:2013, CWFi,t(Y, ET ), reads

CWFi,t(Y, ET ) = 10 · ETi,t

Yi,t

[
m3

ton

]
. (3.3)
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In this case, both the crop evapotranspiration, ETi,t, and the crop yield,
Yi,t, are time-dependent, differently from equations (3.1,3.2) where ET values
are assumed constant and averaged over T .
The annual ETi,t value is the water depth actually evapotranspired by the crop
during the growing season of year t. It is determined [8] as the product between
the potential evapotranspiration (ET0), a crop coefficient (which is characteristic
of the crop height, canopy resistance, and soil evaporation rate), and a water
stress coefficient obtained through a daily water balance (see Section 1.1.2). We
assume that crop properties (e.g., planting date, length of the growing period)
and soil characteristics (e.g., available soil water content) remain constant along
the study period due to lack of more detailed data. Differently, we account
for inter-annual fluctuations of potential evapotranspiration and precipitation
integrating the annual climatic data provided by the CRU database [140] and
the GAEZ database [98]. The CRU database covers the period between 1961
and 2013 providing for each year gridded potential evapotranspiration and
precipitation at 30x30 arc minute resolution on monthly basis. The values given
by the GAEZ database cover the period between 1961 and 2000 with yearly
temporal resolution on a 5’x5’ grid. The combination of the two databases
allows one to achieve the best spatio-temporal resolution in the estimation of
the ET0 values.
For the crop yield, time series of gridded yield data are not available at the
spatial resolution required by equation (3.3) for the period 1961-2013. Therefore,
in order to obtain time-variable gridded data, we adjust the values provided by
Monfreda et al. [94] at 5’x5’ resolution for year t=2000, i.e., Y Mo

i,t=2000 with two
factors, namely

Yi,t = αcl
i,t · αman

c,t · Y Mo
i,t=2000

[
ton

ha

]
. (3.4)

The factor αcl
i,t accounts for climate-driven yield changes while the factor

αman
c,t accounts for the yield changes induced by technological advances and

agricultural improvements, ascribable to the anthropic (man) role in agriculture.
Depending on data availability, αcl

i,t can be defined at the cell level while αman
c,t

can only be defined at the country scale.
The factor αcl

i,t accounts for yearly fluctuations of crop yield at the cell level, due
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to year-to-year changes in crop evapotranspiration. Such changes are assumed
to impact the yield according to the relation proposed by Doorenbos et al. [38],

1 −
Y cl

i,t

Yi,t=2000
= ky ·

(
1 − ETi,t

ETi,t=2000

)
, (3.5)

where, Y cl
i,t is the yield in year t when only variations in crop evapotranspi-

ration are considered. Thus, cl marks the new yield determined by climatic
changes only. Equation (3.5) relates the relative change in evapotranspiration
to the relative change in crop yield through the yield response factor, ky [38].
We refer the changes to year t=2000 because the yield dataset by Monfreda et
al., Y Mo

i,t=2000, is representative for that year. The value of αcl
i,t is determined by

equations (3.4) and (3.5) assuming αman
c,t = 1 and thus Yi,t = Y cl

i,t , namely

αcl
i,t = 1 − ky ·

(
1 − ETi,t

ETi,t=2000

)
. (3.6)

When only climatic variations are taken into account, the yield value reads

Y cl
i,t = αcl

i,t · Y Mo
i,t=2000, (3.7)

Gridded yield values obtained with equation (3.7) are then aggregated at
the country scale through a weighted mean, i.e.,

Y cl
c,t =

∑
i∈c Y cl

i,t · Ai,t=2000∑
i∈c Ai,t=2000

, (3.8)

using the gridded harvested area of year 2000, Ai,t=2000, provided by Port-
mann et al. [108] as the weights. These country-values are used in the following
to determine the αman

c,t factor.
The αman

c,t factor expresses the yield variability due technological and mechanical
advances in the agricultural management (e.g., use of pesticides, application
of fertilizers, extensive irrigation). Essentially, αman

c,t is thought as a correction
factor to the Y cl

c,t values in order to account for all other aspects beyond climate.
It is defined as the ratio between the FAO country-scale yield, Y F AO

c,t , and the
national Y cl

c,t values calculated with equation (3.8)
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αman
c,t =

Y F AO
c,t

Y cl
c,t

. (3.9)

With the adoption of equations (3.3,3.4) it is now possible to determine the
annual crop water footprint in each cell. Country-estimates, CWFc,t(Y, ET ),
are then obtained through a production-weighted mean of the gridded values,
where cell production is given by the product between the Yi,t values (expressed
in ton·ha-1) and the harvested area Ai,t=2000 (in ha) provided by Portmann et
al. [108].

3.1.4 Comparison between the two methodologies

In Figure 3.1 we compare annual CWF estimates achieved through the Fast-
Track approach (CWFc,t(Y )), only accounting for the yield variability, with
those accomplished by the detailed method (CWFc,t(Y, ET )) accounting not
only for yield but also for the evapotranspiration variability. Each point in the
scatter represents the national crop water footprint in year t within the period
1961-2013. The estimates obtained with the two approaches compare well for
all crops: in fact all points are mostly aligned along the 1:1 line with limited
scatter, as confirmed by the values of the coefficient of determination, R2 (that
read 0.977 for wheat, 0.965 for rice, 0.973 for maize, and 0.914 for soybean).
The overall agreement between the two methods confirms that the temporal
variability of the crop water footprint is mainly driven by yield variations, while
the variability of crop evapotranspiration, that is kept constant over time in
the FT method (and not in the refined method), appears to play a negligible
role. We remark that this does not correspond to neglect the relevance of the
climatic variations on the CWF : in fact, the climatic signature remains in
the yield time series. For example, Ray et al. ([110] have found that around
30% of the wheat, rice, maize and soybean yield variability is explained by
climate variability through the inter-annual fluctuations of precipitation and
temperature values.
Moreover, the FT method performs well independently of the presence of yield
trends. In fact, there are countries in the database where yield has improved
over time inducing the decrease in CWF ; whereas, in other countries, yield has
stagnated or decreased, making the CWF values remain constant or increase.
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Fig. 3.1 Comparison of the annual crop water footprint (CWF ) estimates obtained
by the Fast-Track approach, CWF (Y ), with the values obtained with the de-
tailed methodology accounting for both yield and evapotranspiration variations,
CWF (Y, ET ). The comparison is made at the country scale across the period be-
tween 1961 and 2013 for wheat (a), rice (b), maize (c), and soybean (d). The R2

value indicates the coefficient of determination between the two estimates. The inset
of each panel reports the global trend of the average crop water footprint evaluated
with the FT method. Such annual global value is obtained through a weighted mean
of the country-estimates, using the annual country production as the weight.
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According to Ray et al. [111], wheat, rice, maize, and soybean are experiencing
yield increases in around 70% of their harvested areas, resulting in a decrease
of crop water footprints, stagnation in over 20% of the areas and collapse in
the remaining areas. Despite the strong spatial heterogeneity of CWF trends
worldwide, the global average water footprint of each crop has sharply decreased
from 1961 to 2013, as shown by the red lines in the insets of Figure 3.1.

3.2 Uncertainty of the FT approach

The uncertainty of the FT approach is now assessed and decomposed in its
main components. Denoting the real (unknown) crop water footprint of country
c in year t as CWF r

c,t, the error structure is here assumed to be multiplicative
to account for the fact that crop water footprint is positive-valued, namely

CWFc,t(Y ) = CWF r
c,t · ϵc,T · ϵ′

c,t. (3.10)

The ϵc,T error is due to the type of model adopted to calculate the crop
water footprint; it impacts the ET value in equation (3.1) and the CWF

value in equation (3.2). The ϵ′
c,t error arises from the assumption of constant

evapotranspiration in the FT approach.
The ϵc,T error can arise for different reasons, depending on the model and data
used to estimate the crop evapotranspiration (e.g., the data regarding cultivated
and irrigated areas, growing periods, crop parameters, soil, climate), and the
yield data. In order to quantify such error, we compare the average CWF

estimates obtained in Chapter 1 and already used in equation (3.2) at the
country scale, with the country-estimates given by Mekonnen et al. [89] which
constitutes the overriding reference study in the literature of water footprint
assessment. Both estimations are referred to the period T=1996-2005; we
denote as CWF

Me

c,T the estimates by Mekonnen et al. and CWF
T u

c,T the values
derived from Chapter 1.
We calculate, for each country and for each crop, the corresponding ϵc,T error,
as
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Fig. 3.2 Frequency distribution of the empirical error associated with the model
adopted to compute the crop water footprint, i.e., ϵ, (blue line) and fitted log-normal
distribution (red curve).

ϵc,T =
CWF

T u

c,T

CWF
Me

c,T

, (3.11)

We thus obtain four samples of ϵc,T values, one for each crop (the length of
each sample is reported in Table 3.1). We find that each sample is fitted by a
two-parameter log-normal distribution (see Figure 3.2), with parameters µ and
σ representing the average and standard deviation of the log-transformed data,
given in Table 3.1.

Overall, µ is around 0 for all crops while σ is between 0.25 and 0.30. These
relatively large σ values imply a high sensitivity of the crop water footprint
to the model parameters and input data used, as previously shown in other
studies [89, 153].

In Figure 3.3 we compare the CWF
T u

c,T and CWF
Me

c,T estimates; each circle
represents a producing-country and the size of the circle indicates the share
of the country in the global production. The largest producer of each crop
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Table 3.1 Statistics of the error, ϵ, associated to the methodology described by
Tuninetti et al. [136] and statistics of the error, ϵ′, associated to the FT method
assumption of invariable evapotranspiration. The l(ϵ) and l(ϵ′) values indicate the
length of the error samples available for each crop.

log(ϵ) log(ϵ′)
l(ϵ) µϵ σϵ l(ϵ′) µϵ′ σϵ′

wheat 5689 -0.001 0.296 107 -0.022 0.093
rice 5405 0.012 0.286 97 -0.016 0.099
maize 6958 0.036 0.266 126 -0.066 0.104
soybean 3680 0.041 0.254 73 -0.086 0.135

is highlighted by a red circle. Generally, the estimates compare well for all
crops with average coefficients of determination, R2, always higher than 0.7.
However, when weighted by country production the R2

w values suggest better
or worse agreement between the estimates provided by Tuninetti et al. and
Mekonnen et al. depending on the crop. For rice and maize (panels (b,c)), the
agreement between the two studies is particularly high, with R2

w equal to 0.89
and 0.83, respectively. Conversely, for wheat and soybean the R2

w values are
lower, particularly for soybean (R2

w=0.41).

The ϵ′
c,t error is determined as the ratio between the CWFc,t(Y ) values,

estimated with the Fast-Track approach according to equation (3.2), and the
CWFc,t(Y, ET ) values achieved with the refined method, i.e.,

ϵ′
c,t = CWFc,t(Y )

CWFc,t(Y, ET ) . (3.12)

As for the ϵc,T errors, we find that the ϵ′
c,t values follow a log-normal

distribution (see Figure 3.4); the µ and σ values are shown in Table 3.1 together
with the length of the ϵ′

c,t samples. For all crops, the precision of the estimates
is high, with a standard deviation of the error around 0.1, confirming the good
agreement between the two estimators previously shown in Figure 3.1.
The uncertainty in the annual CWF estimates ascribable to the assumption
of constant evapotranspiration (in the FT approach) results three-times lower
than the model uncertainty, evaluated as a comparison between the outcomes
provided by Mekonnen et al. and those derived from Tuninetti et al. . Therefore,
the FT approach is appropriate to deal with the time variability of crop water
footprint.
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Fig. 3.3 Comparison of the average crop water footprint as estimated with the
methodology provided by Tuninetti et al. [136], CWF

T u
c,T , with the values taken from

Mekonnen et al. [89], CWF
Me
c,T , for wheat (a), rice (b), maize (c), and soybean (d).

The area of each circle in the graph is proportional to the share of the country to
the global annual production, while the red circles highlight the greatest producing
countries. R2 indicates the overall coefficient of determination and R2

w stands for
the coefficient of determination weighted by countries annual production along the
time-window of interest.



60 A Fast-Track approach to deal with temporal dimension of CWF

Fig. 3.4 Frequency distribution of the empirical error associated with the Fast Track
approach, i.e., ϵ′, (blue line) and fitted log-normal distribution (red curve).

3.3 Example of application: the case of virtual
water trade

The time-dependent CWFc,t(Y ) estimates, obtained for wheat, rice, maize, and
soybean with the FT approach, are now used to assess the temporal variations
of the virtual water volumes embedded in the international trade. To this
aim, we calculate the annual virtual water embedded in each crop exported
by country c in year t, V Wc,t, as the product between the weight of crop,
Wc,t, (in tonnes) exported by country c and the annual water footprint of the
crop, CWFc,t(Y ), for the period between 1986 and 2011. The Wc,t values are
available from the FAOSTAT database, whereas the crop water footprint values
have been estimated by equation (3.2). The total virtual water trade, V WTt,
is then built by summing up the V Wc,t of all crops and countries, and shown
by the solid line in Figure 3.5. During the period 1986-2011 countries have
been moving growing volumes of virtual water, embedded in the four study
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crops, worldwide: from 300 km3 in 1986 to 540 km3 in 2011 (refer to the solid
line, Figure 3.5).

In order to provide evidence of the importance of using time-dependent
CWF values, we report in the same graph the annual virtual water trade
data obtained using the annual trade from the FAOSTAT database and the
average CWF

T u
c,T values over the period 1996-2005 taken from Tuninetti et al.

[136]. In this case, the virtual water content of each crop is kept constant
over time and the V WT trend is only driven by the amount of products that
are internationally-exchanged over time, i.e., Wc,t. We observe significant
differences between the trend obtained with time-variable CWFc,t(Y ) and the
time-averaged CWF

T u

c,T virtual water content: e.g., in year 2011 the difference
is around 100 km3. Such comparison exemplifies for the four study crops the
gap existing in the VW trade estimations between the two approaches.

Finally, the green area in Figure 3.5 depicts the 90% confidence interval of the
V WT estimation. The confidence interval is determined as V WTt ± z∗ · σV W T ,
where z∗ is the 95th percentile of a standard normal variate and σV W T is the
standard deviations of the total virtual water flow. The square σ2

V W T value
is equal to the sum of the variance associated to the virtual water trade of
each crop cr (assuming independence of the four virtual water flows). Such
variance is calculated as the product among (i) the variance of the ϵ′ errors (see
equation (3.12) and Table 3.1), σ2

ϵ′
cr

, (ii) the square of the total trade of each
crop averaged over the period 1986-2011, overlineWcr

2, and (iii) the square of
the global average crop water footprint over the same period, CWF

2
cr, i.e.,

σ2
V W T =

cr=4∑
cr=1

σ2
ϵ′

cr
· W

2
cr · CWF

2
cr =

cr=4∑
cr=1

σ2
ϵ′

cr
· V W

2
cr. (3.13)

The product between W cr (expressed in ton) and CWF cr (expressed in
m3·ton-1) gives the average water volume virtually embedded in the traded
crops, i.e., V W cr.
The width of the 90% confidence interval with respect to the distance between
the CWFc,t(Y ) line and the CWF c,T line suggests that assuming constant
evapotranspiration over time has less impact on the V WT estimates than the
adoption of a time-constant crop water footprint.
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Fig. 3.5 Temporal trend of the virtual water volume associated to the international
trade of wheat, rice, maize, and soybean in the period between 1986 and 2011. The
black dashed line represents the virtual water trade evaluated with the time-averaged
CWF c,T values; the black solid line refers to the V WT obtained using the annual
CWFc,t(Y ) values estimated with the FT method. The green area displays the 90%
confidence interval of the FT method error, due to the assumption of constant crop
evapotranspiration.
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Fig. 3.6 The efficiency of virtual water trade in 1986 (a) and 2013 (b). Link color
stands for the CWF of wheat in the country of export: green indicates CWF ≤ 1000
m3·ton-1, yellow indicates a CWF in the range (1000;2000] m3·ton-1, red indicates
that the CWF is higher than 2000 m3·ton-1. Countries are represented through nodes:
blue circles stand for exporting countries, red circles signify importing countries.

Finally, Figure 3.6/ shows the efficiency of the wheat international trade
in years 1986 and 2013. The link efficiency is equal to that of the exporting
country (the blue circle). While in 1986 most links are identified by the red
color suggesting a virtual water content higher than 2000 m3 per traded tonne,
in 2013 the trade results more water efficient with most links showing an average
associated virtual water content lower than 2000 m3·ton-1 or even lower than
1000 m3·ton-1, such as for the links departing from the US. Thanks to the CWF

improvements in many producing and exporting countries, the global trade
of wheat in 2013 is less water intensive than the trade in 1986; in fact, along
this period the amount of traded tonnes increases of 84% while the amount of
embedded virtual water increased of only 42%.
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3.4 Crop water footprint over 1961-2013

The annual CWF estimates obtained considering both yield and evapotran-
spiration patterns (Section 3.1.3) are here analysed. Globally, all the crops
experience CWF decreases (Figure 3.7) along the period 1961-2013, mainly as
a consequence of yield increases. Maize is the most water efficient crop across

Fig. 3.7 Production-weighted global CWF in the period 1961-2011 for wheat, rice,
maize, and soybean.

the entire study period with a CWF of 2000 m3·ton-1 in 1961 and around 800
m3·ton-1 in 2013. Maize global trend results regular with small fluctuations
from year to year. Similarly, rice production is characterized by a regular
negative trend of crop water footprint that overlaps that of wheat CWF from
year 1992. Before this year, wheat exhibits higher water footprint than those
of rice and maize, and its trend results significantly variable with some CWF

peaks in 1963, 1965, 1974. In these years wheat water footprint overcomes
the soybean water footprint, which is generally larger than all the other crops.
Soybean production also shows a negative water footprint trend suggesting an
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Fig. 3.8 Crop water footprint of wheat, rice, maize, and soybean in year 1961.

increasing water use efficiency. However, in 2013 soybean water footprint still
remains more than twice that of maize.
Despite the global picture of water use efficiency improvements, the high-
resolution maps in Figures 3.8, 3.9 suggest that there are areas where CWF

is still very high: e.g., in Africa, in the North East India for soybean pro-
duction, in Central India for wheat production, and in North East Brazil for
maize production. In particular, we find that wheat, maize, rice, and soybean
crops experience water use efficiency improvements in 70, 90, 74, 83% of their
harvested areas.

Wheat experienced CWF decreases in around 70% of its harvested areas
worldwide (Figure 3.10,a), with an average annual rate of -2,-0.1%/year. China
and India show the largest annual rate of CWF decreases (-2%/year and
-1.2%/year, respectively), followed by Chile, Turkey, and Pakistan (rate of
-1%/year). In the United States and Europe, CWF decreases at lower rates,
around -0.5%/year or it remains constant as in Colorado, New Mexico, Spain,
and Russia. Africa is mostly dominated by constant or increasing crop water
footprint (e.g., Morocco, Nigeria) with the exceptions of Ethiopia, Egypt,
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Fig. 3.9 Crop water footprint of wheat, rice, maize, and soybean in year 2013.

Mauritania, and South Africa where the CWF decreases at a rate of 1%/year.
Also Australia exhibits a constant crop water footprint.

Rice CWF decreased in 74% of global areas: in large parts of Brazil, China,
and Indonesia (Figure 3.10,b) with rates -1.5,-2%/year. CWF decreases in
Benin and Burkina Faso, but at lower rates (-0.3%/year), similar to those found
in Argentina, Peru and Pakistan. West Europe does not experience CWF

decreases, while in East Europe some areas (e.g., Ukraine) improve the water
use per unit production at a rate similar to that of India (-1%/year).
Around 90% of global maize-growing areas present crop water footprint decreases
(Figure 3.10,c). In the Americas, maize CWF decreases almost everywhere, but
at different rates: -1.2%/year in Brazil and Mexico, 0.05%/year in the US and
Argentina. The largest rate is found in Chile, i.e., -1.4%/year. Differently from
wheat, African production of maize is mostly characterized by a constant or
increasing crop water footprint, similarly to India and Eastern Europe. Spain,
Turkey, and Greece show the fastest CWF negative rates among the European
countries (around -1.5%/year). Pakistan and China present average rates of
-1.2%/year.
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Fig. 3.10 Average annual rates of crop water footprint (CWF ) changes for wheat (a),
rice (b), maize (c) and soybean (d) production along the period 1961-2014. Negative
values indicate a decrease in the water amount used to produce a unit crop; positive
values indicate a constant or increasing CWF .
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Soybean crop water footprint improved in 83% of global areas (Figure 3.10,d).
Vietnam, China, and Thailand lead such increases with an average annual
CWF decreasing rate of -1.5%/year-2%/year. Tanzania as well exhibits a
significant decrease in crop water footprint, which is even faster of that in
the US and Brazil (around -1%/year), which are ones of the biggest soybean
producers. India, Indonesia, and Australia do not present any improvements in
the water use efficiency.

The United States, India, and China are the top-three producers of wheat.
All these countries improved the water use efficiency along the study period as
shown in Figure 3.10. However, they show different decreasing trends, both in
terms of rates and relatively to the initial conditions of crop water footprint in
1961 (Figure 3.11). At the beginning of the study period, in fact, the United
State is the most water efficient country among the top producers, with a
CWF of 3000 m3·ton-1. Conversely, China and India are less water efficient:
i.e., CWF of 5000 and 5700 m3·ton-1, respectively. From year 1972, China
becomes more water efficient than the US: in just 12 years China reduced its
CWF of 3000 m3·ton-1. Then from 1973 to 1983, China further decreased its
CWF at a faster rate than the US; from 1984 the improvement continues, but
at a lower rate. India improvement along the study period was as intense as
that found for China, and it continues till the Nineties when the trend slowed
down. From 1991 Indian water use efficiency is really similar to that of the US,
with some years presenting also an inversion of the two countries (e.g., 1995,
2002). The US CWF improvement is less marked than that of the other two
producers, passing from an initial CWF of 3000 m3·ton-1 to a CWF of 1500
m3·ton-1.

The CWF negative trends shown in Figure 3.11 are mostly explained by
the yield positive trends (Figure 3.12). For all countries, yields show increasing
trends over time, but the rate is different. China witnesses the fastest yield
improvement: from 0.5 ton·ha-1 in 1961 to 5 ton·ha-1 in 2013, with an average
annual rate of 0.09 ton·ha-1 per year. Wheat yield increased at 0.03 ton·ha-1

per year in the US and 0.05 ton·ha-1 per year in India. In year 2009 Indian
yield overcomes the US yield.
Performing a Student t-test to determine the goodness of the linear model
fit against the null hypothesis of a constant model, we found that the yield
trends are significant for all the three countries with a significance level of 10%.
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Fig. 3.11 Annual crop water footprint (CWF ) of wheat in the United States, India,
and China.

The evapotranspiration trend is significant in the US and China, while it is
not significant in India. We found that in the US the crop evapotranspiration
increases at only 0.33 mm/year in the US and 0.47 mm/year in China, though
the trend significance.

Figure 3.14 shows the coefficient of variation of annual CWF at the grid
level. It expresses the extent of crop water footprint variability in relation to
the time-averaged CWF . Indeed, in each cell we considered the CWF time
series from 1961 to 2014, and we calculated the ratio between the standard
deviation and the mean.
The coefficient of variation is highly variable across countries and crops. Major
variations are observed in Peru, Brazil, South Africa, India, and China for
wheat production. Rice, maize, and soybean result more stable over time:
in many countries the variation is lower than 25% of the mean (e.g., Latin
America, India). However, Spain, some African countries and China show
variation around 40% for maize production. Soybean CWF is particularly
unstable in South Africa, Eastern Europe, and Australia; conversely, in the
US and Brazil the soybean water footprint shows a coefficient of variation of
10-20%.
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Fig. 3.12 Annual wheat yield in the United States, India, and China. The solid lines
are the linear regression model fits to data and coloured according to the countries.
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Fig. 3.13 Wheat evapotranspiration depth over the growing season in the United
States, India, and China. The solid lines are the linear regression model fits to data
and coloured according to the countries.

3.5 Concluding remarks

In this Chapter, we demonstrate the feasibility of the Fast-Track approach
to provide estimates of time dependent crop water footprint. The method is
tested by comparing the annual CWF country-values of wheat, rice, maize, and
soybean obtained through the FT approach with those obtained by a detailed
model accounting for the changes of both yield and evapotranspiration over
time. The two estimates compare well with a coefficient of determination close
to 1 for all crops. This suggests that inter-annual variations of crop water
footprint is mostly driven by yield variability, while the effects of evapotranspi-
ration not embedded in yield variations [111, 110] seem to be marginal when
compared to yield, thus confirming the assumption of the FT approach.
To accomplish the assessment of the FT approach, the uncertainty of the
FT method, due to considering time-constant evapotranspiration, has been
assessed finding a general low uncertainty of the CWF estimates with a stan-
dard deviation of the error around 0.1. Such uncertainty is three-times lower
than that of the model used to estimate the crop water footprint. Finally, the
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Fig. 3.14 Coefficient of variation of the annual crop water footprint over the period
1961-2014. The ratio of the standard deviation over the entire study period to the
average CWF over the same period.
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time-dependent crop water footprint estimates have been applied to evaluate
the virtual water volume associated to the international trade of wheat, rice,
maize, and soybean over the period 1986-2011. Comparing this pattern with
the one obtained using constant CWF values, as previous studies did [22],[132],
confirms the importance of including time-dependent crop water footprint in the
computation of virtual water trade. The results prove the suitability of the FT
approach, which represents a very useful tool thanks to its low computational
cost, and its easy and fast applicability.



Chapter 4

The Water Debt repayment
time

Agriculture vastly dominates global freshwater consumption, drawing water
resources from soils, surface and underground water sources, which are naturally
renewed at different rates. As above mentioned, water resources are danger-
ously stressed and overexploited due to human water consumption. Particularly,
in some regions people are living in highly water-stressed areas [83], and two
thirds of the global population lives under severe water stress conditions for at
least one month a year [93]. The General Assembly of the United Nations has
set seventeen Sustainable Development Goals (SDGs) to stimulate action to
protect the planet toward year 2030 [11]. Specifically, SDG number 6 (target
6.4) aims at ensuring sustainable use of water resources in order to reduce
the number of people suffering from water scarcity [69, 141]. In this Chapter,
a quantitative answer to this urgent matter of promoting sustainable water
use is proposed through a new metric, which we call "water debt repayment
time". This indicator builds upon a broad context of well-known water shortage
and water scarcity metrics, and aims at providing a physical quantification
of water use sustainability, measured by the time required to replenish the
water resource used, splitting the role of soil, surface, and groundwater. This
indicator also assess major responsibilities behind the overuse of water resources
in agriculture, through a crop-specific and spatially-explicit analysis.
In the last decades, a large number of indicators has been introduced to moni-
tor the (mis)match between water demand and availability [63, 147, 144, 141].
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These studies underpinned regions with major water insecurity through anal-
yses at country [120] or grid level [93, 127], on annual [144] or monthly basis
[74, 117], also integrating the two temporal scales [19] and providing outlooks to
possible future scenarios [144]. Most water scarcity metrics, or criticality ratios,
are based on risk categories, such as "high water stress" if the use-to-availability
ratio is higher than 0.4 and "very high water stress" if greater than 0.8 [4].
Risk categories metrics lack impartiality because the critical level of stress is
arbitrary and is not coherent across studies.
In the framework of life cycle assessment, other indicators have been introduced
to assess the potential environmental impact of water use [82]. These indicators
quantify the potential impact based on freshwater use inventory schemes [17],
weighted by local characterization factors which transform inventory flows into
environmentally equivalent flows [104]. All these indicators have proven useful
to assess the geographic and temporal mismatch between water demand and
availability under different perspectives. However, each indicator has some
shortcomings. First, water scarcity metrics generally focus only on blue water
resources, without considering the interplay between blue and green water
scarcity [141]. Moreover, only in few recent studies blue water use has been
splitted into surface -and ground-water use [144]. Second, these indicators
mostly lack a physical interpretation, being generally based on risk categories
or potential impact factors. Third, the causes of the scarcity are rarely traced
back to their specific determinants, i.e., the particular crop generating the
mismatch between water use and availability. The study by Dalin et al. [33] is
the first to analyse crop-specific responsibilities behind groundwater depletion
embedded in international food trade, but it did not consider surface water use
or green water use. The concept of water debt repayment time addresses all the
above mentioned issues, and summarizes, in a single metric all the advances
introduced by recent studies. This indicator takes into account green, surface
and ground water resources and enables source-specific analyses across crops
and locations.
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4.1 Water Debt repayment time: definition

Water use for annual crop production is unsustainable when it exceeds the
amount of water annually available from the local water cycle. When local
availability is exceeded, a certain time is required to replenish the water resource
that has been used to achieve the annual crop production. We call this the
"water debt repayment time". The water debt repayment time (WD) is
calculated as the ratio of the source-specific water footprint in a grid cell (5
arc minute resolution), to the amount of water annually available in the same
cell. In particular, this indicator measures the time required to replenish the
water source s used by crop cr in cell l, i.e. WDs,cr,l, and results from the ratio
of the water depth evapotranspired in the cell during all growing seasons in a
year (i.e., the cell water footprint, WFs,cr,l [m3]) and the annual renewability
rate of the same source in cell l, Rs,l [m·yr−1] (see Section 4.3), multiplied by
the cell area, Al [m2], that is,

WDs,cr,l = WFs,cr,l

Al · Rs,l

[yr]. (4.1)

WFs,cr,l can be obtained as the product of local crop water footprint by source
and the crop production (PRc,l) in tonnes, that is

WFs,cr,l = CWFs,cr,l · PRcr,l. (4.2)

When the water used for crop production is lower than (or equal to) the
renewability rate, the WD is recovered within the hydrological year, i.e. WD ≤
1 yr and, thus, the water use is sustainable; otherwise, the water depletion is
repaid by next hydrological cycles, i.e. WD > 1 yr, indicating an unsustainable
water use. The WD of source s, arising from all cultivated crops at location l,
WDs,l, equals the sum of debts generated by each crop and reads

WDs,l =
cr=9∑
cr=1

WDs,cr,l. (4.3)

Owing to the simultaneous replenishment of soil, surface- and ground-water by
precipitation, the total WD across the threes sources, WDcr,l, is given by the
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maximum WD value obtained with equation 4.1), i.e.,

WDcr,l = max(WDsm,cr,l, WDsw,cr,l, WDgw,cr,l) (4.4)

where sm, sw and gw indicate the soil moisture, surface water and groundwater,
respectively. We took the maximum water debt instead of the sum of the three
water debts because every year precipitation recharge all the sources at the
same time.
The water debt in a given area, being it a river basin, a country or the whole
world, referred to a single crop cr and source s is evaluated as a production-
weighted mean, i.e.

WDs,cr,L =
∑

l∈L WDs,cr,l · PRcr,l∑
l∈L PRcr,l

, (4.5)

in order to highlight hotspots of large WD generated by large production. L is
the ensemble of cells in the area of interest. In turn, if all crops are considered
together, the WD in the area (equation 4.3) is weighted by the water volume
used by all crops in the cell (or cell water footprint), i.e.

WDs,L =
∑
l∈L

(
WDs,l · WFs,l∑

l∈L WFs,l

)
, (4.6)

given the unfeasibility of production sum across crops.
These averages are considered instead of the simpler ratio of cumulated WF

and cumulated availability over the area L because we account for spatial
heterogeneity and acknowledge that consumption and availability of water may
occur in different portion of the area, without the possibility of redistributing
the resource.

4.2 Green and blue crop water use

The green and blue water footprint computed in Chapter 2 are here extended
to barley, potatoes, sugar cane, sugar beet, and cotton. All the nine crops
together account for over 70% of the global caloric content and 66% of the
proteins in global food consumption [34].
Crop water use can originate from soil moisture, i.e. green water, and surface-
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or ground-water bodies, i.e. blue water. Rain-fed and irrigated areas are
available from the MIRCA dataset [108] and they are specific for each study
crop. While usually the two sources of blue water are computed together [5],
here we partition the two contributions proportionally to the areas equipped for
irrigation with surface water (AEIsw,l) and groundwater (AEIgw,l). We thus
assume that the ratio of CWFgw,cr,l (CWFsw,cr,l) to total blue water footprint
(CWFb,cr,l) is equal to the ratio of AEIgw,l (AEIsw,l) to AEIl, i.e.

CWFs,cr,l = AEIs,l

AEIl

· CWFb,cr,l, (4.7)

with s = sw, gw. This assumption may bring uncertainty in the estimation
of surface- and ground-water uses if actual and potential use of irrigation
in equipped areas differ, or if the ratio of ground- to surface-water irriga-
tion varies across crop plots or seasons in the same area [125]. However,
multiple studies have used the AEI ratio to compute the irrigation crop
water use per water source [125, 37, 35] although no differentiation among
crops has been proposed. Results of groundwater use for irrigation purposes
at the country scale obtained in this study have been compared with the
estimates provided by Wada et al. [145] for total crop production (Fig-
ure 4.1). Each circle represents a country and the size is proportional to
the importance of the irrigation sector in each country with respect to the
other blue water uses (e.g., manufacturing and municipal uses). Such impor-
tance is evaluated as the ratio between the agricultural water withdrawals
and the total water withdrawals derived from the AQUASTAT database
(http://www.fao.org/nr/water/aquastat/data/query/index.html?lang=en). Hence,
the smaller circles are for countries where irrigation water is less important;
the bigger circles, instead, are for those countries where the irrigation sector
is more important. Smaller circles are generally over the bisector given that
the groundwater volume computed in this study only refers to the 9 crops
production. Conversely, larger circles are closer to the bisector line. The circle
color is intended to add another information about the importance of the nine
crops irrigated area in respect to the total irrigated area. The darker is the
circle the most important is the 9 crops groundwater demand with respect to
that of other crops. The estimates from the two studies compare well, especially
for the major groundwater-consuming countries (e.g., India, the US, Pakistan).
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It should be noted that indications of actual irrigation volume at the global
scale are generally lacking, but if local data were available, they could be used
to derive a specific and more precise measure of surface- and ground-water use.

Fig. 4.1 Country scale comparison of the groundwater volume computed in this study
for the 9 study crops with the groundwater volume obtained by [145] for all water
uses (i.e., irrigation, manufacturing, and municipal uses). Circle size is proportional
to the importance of the irrigation sector in each country with respect to other uses.
Circle color represents the fraction of the irrigated area of the nine crops in respect
to the total irrigated area.

4.3 Renewability of water by source

Renewable freshwater is the water flow generated from precipitation that is
available to meet human and ecosystem needs [77]. In this study, it is considered
in the form of soil moisture, surface water, and aquifers and data have been
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Fig. 4.2 Schematic representation of the major water fluxes (arrows) and storages
(boxes). Ptot is the total precipitation that reaches the cell, ET is the actual
evapotranspiration of the cell, Peff is the effective precipitation, Rl is the total
runoff, Rgw is the portion of runoff that recharges the groundwater, and Rsw is the
surface runoff. The figure has been adapted from [96].

derived from the WaterGAP 2.2b dataset [96] obtained in a “no use” setting to
simulate the natural recharge rates of each source. Figure 4.2, which has been
adapted from [96], shows a schematic representation of the major water fluxes
and storages considered in this study.
Renewable soil moisture is the fraction of effective precipitation, net of

surface runoff and groundwater recharge (Rl in Figure 4.2), that infiltrates into
the upper soil layer and recharges the soil water storage, becoming available
for root water uptake and evapotranspiration.
Renewable surface water is the net surface runoff (Rsw), produced from
precipitation at a certain location, that flows to surface water bodies minus the
evaporation from lakes and wetlands. It is negative when evaporation is larger
than runoff, which happens occasionally (3% of the cultivated cells worldwide)
in the dry regions of Egypt, Botswana, and Malawi, where precipitation is
lower than the overall evapotranspiration/evaporation losses from land and
water bodies. Negative monthly values of net runoff are set to zero in order to
avoid computational problems in the WD evaluation.
Renewable groundwater is the recharge (Rgw) originated from precipitation
that deeply percolates the soil layers and reaches the aquifer. The recharge
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can be both local (coming from surface water) and diffuse (coming from the
unsaturated soil) [36]. The renewability rates of each water source are taken as
the annual volumes of renewable water. Data from the WaterGAP 2.2b dataset
are given as gridded data at 30’x30’ spatial resolution, then values (in m3/m2)
are considered uniform over each cell and downscaled to the finer (5’x5’) grid.
Monthly values from 1987 to 2013 (centered around year 2000) have been used
to construct long-term average monthly values, then cumulated over the year
to define the annual renewability rates.

4.4 Results

4.4.1 Global assessment of water use sustainability

Over the 1996-2005 period, the production of the nine crops required annually
3313 km3·yr-1 of water, with 82% coming from soil moisture and 18% from
surface-(60%) and ground-(40%) water (Figure 4.3(b)). The commodities ana-
lyzed here exhibit different levels of water-related sustainability (Figure 4.3(c)).
According to the global averages, maize, soybean, barley, potatoes, and sugar
crops (providing 32% of the global food calories [34]) are water sustainable,
while wheat and rice (providing another 36% of the global food calories [34]) are
water unsustainable (Figure 4.3a). On a global average, cotton, rice, and wheat
show WD with groundwater larger than 1 yr, pointing out an unsustainable
groundwater use. This indicates that these crops are irrigated with relatively
slowly-replenished aquifers, particularly cotton (WD of 4 yr). Cotton is also
depleting surface water resources, with an associated WD of 2 yr although it
consumes about 30 km3 of water globally (Figure 4.3b), which is much lower
than the water consumption of wheat (56 km3) and rice (196 km3) that show
a sustainable use of surface water on a global average. The water debt, WD,
mainly depends on the water use efficiency (CWF , Figure 4.3b), on the volume
of water used from different sources (WF , Figure 4.3c), and the local water
renewability rate. The efficiency of water use varies significantly across the
nine crops (Figure 4.3c). Cotton is by far the most water-intensive crop (nearly
4000 m3·ton-1), but sums to a relatively small global water use (192 km3),
because it is not grown as much as less water-intensive crops such as rice (1435
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m3·ton-1, 790 km3 total), wheat (1529 m3·ton-1, 845 km3 total) and soybean
(2243 m3·ton-1, 368 km3 total). Over seventy percent of the irrigation water
used to grow the nine crops is used to produce rice (289 km3) and wheat (120
km3). Barley, potatoes and sugar crops are all relatively less water-intensive
and lead to a relatively lower global water use (Figure 4.3c), making their pro-
duction sustainable in terms of water use (Figure 4.3a). The global-scale values
of water use and water debt give a first insight into the water sustainability
of different crops. However water debts are heterogeneous across and within
countries, underpinning areas of higher or lower sustainability related to the
use of different water resources (Figure 4.6).

Fig. 4.3 Globally-averaged crop water footprint (CWF , a), global volume of water
use (WF , b), and globally-averaged water debt (WD, c) for each of the nine crops
and three water sources. Note that the y-axis is shown in log-scale.

4.4.2 The water footprint of crop production

Figure 4.4 shows the total green water footprint of crop production at 5’x5’
arc minute resolution. This map underpins locations where water use from soil
moisture is higher. The highest green water volume are found in the US core
production where WFg is higher than 25 million m3 in many cells; maize and
soybean production exploit the biggest portion of available green water during
the year. Also Brazil and Argentina show high green water use especially for
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Fig. 4.4 Map of green water footprint of crop production in year 2000.

Fig. 4.5 Map of blue water footprint of crop production in year 2000.

the soybean and sugar cane production. Large green water footprints are also
found in India and China for wheat, maize, and rice production.
Figure 4.5 depicts the total blue (surface plus ground) water footprint of crop
production. Similarly to WFg, WFb is unevenly distributed in space, with
larger water use closer to the most important aquifers (e.g., the California
Central Valley and the High Plain aquifer in the US) and major river basins
(e.g., the Mississippi river basin and the Indus River basin). Large blue water
footprints are also found along the river courses: e.g., the Amu Darya river that
has been transformed into an irrigation channel to watering cotton production
in Uzbekistan, the Yellow river which mostly sustains rice and maize production,
the Tarim river that feeds rice.
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4.5 Geography of the water debt repayment
time

Figure 4.6 shows the water debts with soil moisture, surface, and ground water
bodies associated to the production of the nine study crops.

The sustainability of green water use The water debt arisen by green
water use, WDsm, measures the number/fraction of years during which water is
not available to satisfy other competing demands for soil moisture, e.g., watering
other crops, grazing lands, forestry, or to sustain the terrestrial ecosystems.
WDsm associated with the production of the nine study crops, is always lower
than one year (Figure 4.6a), denoting a fully sustainable rain-fed production;
particularly, 60% of the cultivated cells show WDsm values lower than 0.25
years. Nonetheless, we found cells where WDsm is close to one year, mainly due
to an intense agricultural production. The largest green water exploitation is
located in the US core production area (black circle, Figure 4.3(a)) where nearly
40% of the (nine crops) national production is located. Here precipitation is the
most important water source for crops (mostly, for soybean and maize), making
it not available for other uses for 6-8 months per year. Similar conditions
are found in some areas of France, Germany, and Italy, where soil moisture
exploitation is more spread out across the country. Northern India presents
WDsm higher than 8 months due to wheat, sugarcane, and rice production,
while Eastern China exhibits WDsm higher than 6 months mostly because of
maize production.

The sustainability of surface water use Annual crop production incurs
water debt with surface water resources when irrigation demand for surface
water irrigation exceeds the locally generated runoff. Since we focus on the
local sustainability of water use, we do not consider upstream flows as available
sources in downstream cells. This assumption may lead to overestimates of
WD in downstream cells, but it allows to clearly underpin all the areas that
are not locally sustainable because of (i) the overexploitation of local water
resources, (ii) the low renewability rate of local water resources, or (iii) the
dependence on upstream water resources, which is transboundary in some cases
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Fig. 4.6 Water Debt (WD) associated with the production of nine major crops. The
WD value in each cell (5’x5’ spatial resolution) is expressed as the number of years
required to replenish the water source used for crop production: soil moisture (a),
surface water (b), and groundwater (c).
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(e.g., Nile and Rio Grande [97]). In order to stress the different levels of water
use sustainability, we calculate the surface water footprint and the WD both
at the grid and basin level. These two different outputs could highlight the
importance of scale in water resources management. In fact, the surface WD

at the basin scale is calculated as the basin’ surface water footprint divided by
the total runoff generated within the basin, which may be provided by water
infrastructures.
At the basin level, all basins sustainably feed the production of the nine crops
examined as shown in Table 1; though, sustainability issues may arise due to
the water used by other crops/sectors and if considering environmental flows
requirements. The basins of Sabarmati in India and Chao Phraya in Thailand
show the least sustainable surface water footprint, showing longer WD than
to all the other basins: i.e., 0.33 and 0.22 year (Table 1, or 120 and 79 days,
respectively). The surface water footprints of these basins are 24 and 7.8 km3,
respectively. The surface water footprint of the Sabarmati basin is smaller
than that of Indus and Yangze basins, but a longer WD is required because of
the lower surface water availability. Sugarcane and rice are the crops mostly
responsible for the large repayment time there. Locally, the replenishment
time is longer than 1 year in the North West and South of the basin, but WD

values are always shorter than 8 years. Conversely, longer WDs are found
across the Nile Delta, where WD reaches 20 years, due to the cultivation of
rice, maize, and wheat (Figure 2B). Here, irrigation demand is mainly reliant
upon upstream cells as confirm by the study by Munia et al. 2017 [97] and
by the low WD of the whole basin. Crop production spread over the Indus
River Basin generates locally unsustainable water use, with WD longer than
20 years in some cells in the East of the basin. We found that wheat, rice, and
sugarcane production draws most of the water annually available from locally
generated runoff. The local reduction of river flow due to withdrawals and the
low renewability rates are responsible for such large WD values. However, when
we consider the water debt at the basin scale we obtain an average WD of 0.15
year (or 53 days, Table S1). Other vulnerable areas are found in China, along
the Tarim River, where the largest WDs are mainly due to rice production,
and along the Yellow River, where rice and maize are most responsible for the
overuse of surface water. Finally, due to the diversions of the Amu Darya and
Syr Daria rivers to grow cotton and rice in an arid region, the areas close to
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the Aral Sea have undergone serious environmental damages [103] and show
long WD.

Table 4.1 Surface water footprint and water debt of major river basins, which sustain
50% of the global surface water footprint due to the cultivation of the nine crops.
Basin delimitation is provided by the GRDC repository [1].

Basin name Surface WF [km3] Surface WD [yr]
Sabarmati 24.3 0.33

Chao Phraya 7.8 0.22
Caspian Sea, East Coast 6.1 0.16

Indus 36 0.15
Tarim Interior 6.5 0.14

Krishna 9.8 0.12
Amu Darya 9.8 0.10
Syr Darya 7.3 0.08
Java-Timor 12.3 0.08
China Coast 23.5 0.08
Gobi Interior 5.2 0.08

Huang He 4.9 0.06
Nile 19.3 0.06

The sustainability of groundwater use The water debt with groundwater,
WDgw, occurs when groundwater use by crops exceeds ground water recharge
(i.e., deep percolation, not including irrigation return flow). Over half of the
groundwater used worldwide for the nine crops originates from just four major
aquifers, namely the Indo-Gangetic plain (41%), U.S. High Plain (8%), North
China plain (5%), and the California Central Valley (1.6%) aquifers. The
highest groundwater use is found in the Indo-Gangetic plain (100 km3/yr),
where 64% of the Indian and Pakistan crop production is located. The average
WDgw over the I-G plain aquifer is around 13 years, but some zones also reach
WDgw of 100 years. This means that water use for irrigation is markedly
depleting the aquifer and the time required to replenish it extends to future
generations. In particular, the highest WDgw are found in the Upper Ganges,
while the Lower Ganges appears to be sustainably exploited, due to lower
water use and higher recharge rates [59]. Transferring the production in Lower
Ganges might be a possible solution to lower the water debts, but not to achieve
full sustainability. In order to improve the sustainability of crops produced
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in these areas, water withdrawals could be reduced by improving water use
efficiency. Over the U.S. High Plain area, the groundwater exploitation is
significant [88] and the average WDgw is around 7.2 years, but even higher
WDgw values are found in the central and southern part of the HP (i.e., Kansas
and Texas mostly), where the renewability rate is lower than that in the North
[116]. Among the study crops, maize and cotton are the main responsible for
the groundwater depletion, as Dalin et al. 2017 [33] also pointed out. Over the
California Central Valley water debt increases form North (2 yr, due to rice and
maize production) to South (9 yr, due to cotton production). Groundwater-fed
crop production in the North China Plain appears to be unsustainable as well,
but the WD caused by the crops production (mainly wheat and rice) is smaller
than that found over other aquifers, i.e. WDgw=1.5 yr. Northern China shows
higher WDgw, mostly associated to rice production (e.g., Xinjiang province).
Our estimates of unsustainable use of groundwater resources are in accordance
with previous studies, e.g. the groundwater footprint indicator developed by
Gleeson et al. (2012) [59], and the crops highlighted in Figure 4.6c compare
well with the groundwater depletion responsibilities found by Dalin et al. (2017)
[33]. The WDgw found in the North China Plain also compares well with the
over-exploitation ratio proposed by Shi et al. (2011) [122].

4.5.1 Water debt of single crops

We observe important differences in WD across crops and among their top-
producing countries (Figure 4.7). On average, global wheat production sus-
tainably relies on soil moisture and surface water, but the groundwater use
is unsustainable both in China (2.2 yr) and India (1.5 yr), which together
account for over 30% of the global production. Global rice production also
contributes to the over-exploitation of aquifers, particularly in China and India.
Indian groundwater use (46 km3) is unsustainable with a WD of 1.5 yr, Chinese
groundwater use is much more unsustainable (WD of 7.5 yr) even though the
groundwater use is half of that in India. In this case, the water use sustainability
is related to the different water availability and renewability. Another 10%
of rice production is located in Indonesia, where the water use is sustainable
thanks to the large fraction of green water use (soil moisture accounts for over
75% of total use). Surprisingly, wheat and rice production in India generate
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Fig. 4.7 Country-values of the water debt (WD) arisen by crop production in the top
three producing countries for each of the nine crops. The national level WD values
have been obtained as production-weighted averages of the gridded WD values for
each water source (equation 4.5). Note the different (logarithmic) scale of the y-axis
in each panel.

the same WDgw although rice uses nearly twice as much groundwater as does
wheat. This highlights the uneven water availability within the country and
the importance of choosing the location of crop production based not only on
the soil suitability and climatic conditions, but also on the water availability.
Over 60% of global maize production is located in the United States, China,
and Brazil. The United States produce twice more maize than China with
a three-times larger groundwater use per unit weight, but generate a lower
debt with the ground water resources (0.5 yr versus 2.8 yr), highlighting the
different renewability rates of aquifers in the two countries. However, despite
the sustainability on a national average, maize production is responsible for
major WD hotspots over the California Central Valley (WD=1.6 yr) and the
High Plain aquifer (WD=2 yr). Soybean, barley, and potatoes production is
completely sustainable in the top-three producing countries: i.e., WD is lower
than 0.3 year for all sources, because production is almost entirely rain-fed
(Figure 4.3(c)) and sufficient soil moisture is available during the growing season
to satisfy the crop water requirement. Notably, Russia, Canada, and Germany
produce nearly the same amount of barley, but with very different impacts on
the soil moisture. Indeed, Russian barley production generates a WD (number)
much lower than those of Canada (number) and Germany (number), despite
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a water use per ton of crop (2500 m3· ton−1) five times larger than those of
Canada and Germany. Similarly, sugar crops production is sustainable overall,
except for the groundwater use in India that generates a WD of 1.2 yr. The
sustainability of sugar crops’ water use in Brazil is ensured by the reliance
of sugarcane on soil moisture (nearly 90%). Finally, over 40% of cotton pro-
duction, located in China and the US, is not sustainable and deplete aquifers.
Particularly, in the US the WDgw is close to 7 yr due to the large fraction of
groundwater use with respect to the total volume, because of insufficient soil
moisture availability during the growing season. The water debts arisen in
different countries are due to both the domestic and foreign demand for crops.

4.5.2 Discussion

The water debt is a physically-based, crop-specific, and locally-defined indicator,
assessing the impact of agricultural water use on renewable water resources.
By definition, the WD depends on (i) the water use efficiency (CWF ), (ii)
the volume of water used from different sources (WFsm,sw,gw), and (iii) the
renewability rate of each water source. With respect to traditional assessments
of WF , the WD enables to discriminate between two countries that, for
example, consume the same amount of water to produce a given crop, but
with different impacts on the hydrological cycle depending on the type and
location of the water source used. For instance, India and the US produced
nearly the same amount of wheat (calculated as an annual average over the
period 1996-2005), both with an average CWF of 1700 m3· ton−1, but Indian
production generated an average WDgw of 1.5 yr on groundwater resources,
which is 5 times larger than that in the US (see Figure 4.7). This happens
because thirty percent of Indian production relies on groundwater, while only
5% of American production is sustained by aquifers. However, these two
countries show an opposite behaviour when cotton production is considered:
i.e., cotton WDgw in the US is close to 8 yr, while it is about 0.5 yr in India,
despite American cotton being less water intensive than Indian cotton (CWF

of 4300 m3· ton−1 vs 8500 m3· ton−1). Such an inversion of impacts is due to
both the larger production of cotton in the US and the relatively lower soil
moisture availability than in India during the growing season, which increases
the irrigation requirement. Water debts quantification gives insights on water
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depletion responsibilities and identifies critical points where interventions are
more urgent. Long-term changes of the Aral Sea level, due to the diversion
of the Amu Darya and Syr Darya rivers, have been shown by Pekel et al.
[103]. We find that the highest WDs along the southern inflow of the Sea
are mostly caused by cotton production that over-exploits the local surface
water resources, with some cells depleting the resource 40 times faster than it
is recharged (Figure 4.8). Crop production in Turkmenistan shows an average
WDsw of 21 yr. The Northern inflow of the Aral Sea (i.e., Sir Darya River)
is also over-exploited for agricultural production, but lower WDs are found
because surface water use is lower given that it is mostly provided to rice, which
is less water intensive than cotton (i.e., 2560 m3·ton-1 versus 5455 m3·ton-1).
Both rice production in Kazakhstan and cotton production in Turkmenistan
could reduce their WDsw by cutting the crop water use to benchmark values
[90]. In fact, cotton production in Turkmenistan uses 40% more water per
unit weight than the global average, while rice production in Kazakhstan uses
80% more than the global average. However, cutting the water footprint is
not always the most appropriate solution. As shown in the following example
of wheat production in China, the local (un)availability of renewable water
resources can make a very efficient use of water still unsustainable. Indeed,
some provinces where water use efficiency is already high compared to both
the country and the global average (Figure 4.9), still show large WDs. For
example, in the Xinjiang province, crop water-efficiency is very high (i.e., 460
m3·ton-1), but groundwater use is largely unsustainable (WDgw=4.7 yr) due
to the low recharge rate of the aquifer owing to scarce precipitation (less than
100 mm·yr-1). Similarly, in the North of the Ningxia province (Figure 4.9(b)),
water use for wheat production is unsustainable (WDsw=1.1 yr) even though
the water use efficiency (600 m3·ton-1) is better than the national average. In
the case of Ningxia province, a way to reduce WD could be to transfer the
wheat cultivation from North to South East where runoff is much higher, or
to increase the production e.g., in the Eastern provinces where soil moisture
is widely available during the growing season. Nevertheless, in making these
considerations the availability of arable land and adequate labour force should
also be taken into account.
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4.6 Concluding remarks

The water debt repayment time quantifies the mismatch between water use
and availability. It provides results detailed by water source and crop, at
the grid cell and basin scale; allowing for comparisons among different crop
types, different water sources, across countries and water basins. Hence, its
analysis may provide useful insights for the resource planning and management
in critical areas. Importantly, the WD allows to distinguish two countries
showing the same water use efficiency and producing nearly the same amount
of crop, but which can incur different water debts with the hydrological cycle,
depending on the local availability of the source used for production.

The results obtained with the WD indicator highlights the locations and
typology of threats imposed by agricultural production on water resources.
Therefore, it can be a tool to monitor food- and water-related targets of the
Sustainable Development Goals [13], such as the sustainable food production
systems, resilient agricultural practices (Goal 2) and responsible consumption
and production patterns (Goal 6). In fact, it may enable informed policy and
decision-making for a future agricultural water use that can be locally and
globally more sustainable. It is also worth noticing that, in general, water
debts are due to the domestic, but also to the foreign, demand for crops, with
international food trade playing a role in the increase or decrease of water
resources exploitation. The WDs will thus be useful in characterizing the
sustainability of the trade of water embedded in food trade.
The WD indicator enables to fairly compare the sustainability of crop produc-
tion related to water resources across regions, based on the local information
of water availability and different source renewability. Other water-consuming
sectors (e.g., domestic and industrial) should be considered in future studies to
complete the picture of sustainability. [20]. Finally, measuring the water use
sustainability through the repayment time can help connecting and integrating
water resource management with other environmental issues, such as the eco-
logical and the carbon footprint [75]. It is also worth noticing that, in general,
water debts are due not only to the domestic, but also to the foreign demand for
crops, with international food trade [132, 33] playing a role in the harshening
or loosening of water resources exploitation. The water debt will thus be
useful in characterizing the sustainability of the trade of water embedded in
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food trade. The WD indicator enables to fairly compare the sustainability of
crop production related to water resources across regions, based on the local
information of water availability and different source renewability. We note that
this study only focuses on a portion of agricultural production (which provides
about 70% of the global caloric content and 66% of the proteins in global human
consumption [34]). Other crops, as well as other water-consuming sectors (e.g.,
domestic and industrial) should be considered in future studies to complete
the picture of sustainability in the assessment of whether current human water
use is "meeting the needs of the present generation without compromising the
ability of future generations to meet their own needs" [20].
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Fig. 4.8 Surface water debt (WD) associated with the nine study crops in the Amu
Darya and Syr Darya river basins. The color of each circle corresponds to the
average WD in the circled area, and the linked crop name indicates the crop mostly
responsible for the water debt in each area.

Fig. 4.9 Gridded crop water footprint (volume of water per ton of crop) of wheat in
China and histograms of average water debt (WD) at the province level (a). Gridded
groundwater debts in the Xinjiang Uygur province (b), and gridded surface water
debts in the Ningxia province (c).



Chapter 5

Link prediction in the virtual
water trade network

The work described in this chapter has been partially derived from paper [137].
International trade of agricultural products has increased substantially in recent
decades, due to both food surpluses in some countries [57] and to the central
role of import strategies in other countries where food demand overcomes
supply [107]. Through the international trade of agricultural goods, water
resources that are physically used in the country of production are ‘virtually’
transferred to the country of consumption. The volume of water virtually
transferred is known as ‘virtual water’ [6, 10] and the transfer is called virtual
water trade. The virtual water trade has been studied by a remarkable numbers
of studies mostly assessing the water saving and water inter-dependence behind
the international exchange of agricultural products. Recently, the analyses of
virtual water trade through the tools of complex network theory [99, 15] have
also attracted much attention. The idea has been to depict the virtual water
trade as a network where countries play the role of nodes and links describe
the import/export relations between any two countries (i.e., virtual water
trade network, V WTN). Important insights about the global architecture
of the V WTN have been provided by Konar et al. [81]: their (data-based)
analyses quantified the topology of international trade, providing evidence for
the existence of the weighted rich club phenomenon and uncovering a global
trading hierarchy in which dominant nations connect most peripheral portions
of the network. Suweis et al. [130] developed a simple model that captures
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the key features of the network by assuming as sole controls each country’s
gross domestic product and yearly rainfall on agricultural areas, Tamea et al.
[132] identified population, gross domestic product, and geographical distance
of countries as major drivers of virtual water fluxes. Such studies highlighted
the dynamical and intermittent behaviour of the network where a number of
links are created and dismissed every year [22, 23]. In spite of the growing
efforts devoted to unfold the virtual water network structure and dynamics,
an unexplored problem is to understand the single association between any
pair of countries involved in the international trade: this can be formalized
as a link prediction task. Link prediction is the problem of predicting the
existence of a link between two nodes, based on the attributes of nodes and/or
on the network topology [58]. This Chapter addresses the specific problem of
predicting the existence of a link between any two nodes over a directed and
weighted network, without any prior knowledge of the network topology, but
only knowing the country attributes (e.g., population, gross domestic product,
water demand) and the link characteristics (e.g., geographical distance). The
proposed methodology allows us to unfold the drivers of link activation and
deactivation along the period 1986-2011. The first part of the Chapter describes
in details the methodology adopted to predict the link existence between any two
countries in the network of virtual water trade. Starting from the assumption of
having links between any two countries, we estimate the associated virtual water
flows by means of a gravity-law model using country and link characteristics as
drivers. We consider the links with estimated flows higher than 1000 m3/y as
active links, while the others as non-active links. Flows traded along estimated
active links are then re-estimated using a similar but differently-calibrated
gravity-law model. The second part of the Chapter reports an application of
the link prediction methodology and provides the accuracy of the methodology
both at global and country scale through the evaluation of the associated
error. Finally, in the last section, the proposed methodology is put in the
context of complex network theory by comparing its performance with other
link prediction algorithms available in literature.
The model is able to correctly predict 84% of the existing links observed
in year 2011 (16% of the existing links are “missed"), and 93% of the non-
existing ones (7% of the non-existing links are spuriously introduced in the
network). Although the number of missed links might seem large, the associated
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virtual water flow is negligible (1% of the global flow); the links lost by the
model, in fact, are mainly those where a minimum volume of virtual water is
exchange. We found that geographical distances between countries, population,
and fertilizer use are the fundamental drivers of link activation/deactivation.
Binary information (e.g., common languages, common religions) and regional
trade agreements are also important, while the other variables, pertaining
economical and productive aspects, do not give a significant contribution to
the link prediction.

5.1 The global Virtual Water Trade Network

In the virtual water trade network, each country participating in the food trade
is represented by a node. Links between nodes are directed, discriminating the
direction of trade flows, and weighted by the volume of virtual water embodied
in the traded commodities. The virtual water volume is contributed by a green
and a blue component, which refers to the precipitation stored in the soil and
vegetation and to the water used for irrigation, respectively. The network is built
using information on the trade of agricultural goods between all nations and
the virtual water content of each good produced by the nations. The bilateral
trade flows are given by the FAOSTAT database (http://faostat.fao.org/),
while country-specific virtual water contents for crops and animal products are
provided by [89, 91]. Given all virtual water contents and considering exporting
countries as producing countries, trade data for each product are converted
into virtual water data and summed up over all goods to obtain the total
virtual water transfer between trade partners in a given year. Further details
about the matrix construction are available from [23] and [132]. The virtual
water trade data of each year (from 1986 to 2011) are organized in a matrix,
F, whose Fi,j element represents the virtual water flux (or link weight) from
country i to country j. This means that rows represent exporting countries,
whereas columns stand for importing countries. The matrix is non-symmetrical
because of the network directionality, that is flux from i to j is different than
flux from j to i. The adjacency matrix, A = (ai,j), associated to the virtual
water network is a binary matrix in which the entry ai,j = 1 if i and j are
directly connected, ai,j = 0 otherwise. The number of countries, n, and thus
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Fig. 5.1 Representation of the virtual water trade network in year 2011. Links are
directed from the node of export to the node of import, the link size is proportional
to the traded amount of virtual water: e.g., the link from the US to China trades
100 km3 of virtual water. Node colors discriminates net importing (i.e., yellow) and
net exporting (i.e., blue) countries while the node size is proportional to the export
degree, which expresses the number of exporting relation of each country. Link colors
is determined by the color of the sourcing node.

the matrix size, changes from year to year according to political-administrative
arrangements (e.g., the collapse of USSR). Figure 5.1 shows the virtual water
network in year 2011, associated with the international trade of agricultural
goods.

5.2 Link prediction methodology

The link prediction algorithm predicts the links between any countries involved
in the international virtual water trade, only considering the country and
link characteristics (such as population, gross domestic product, geographical
distances, etc.), without any prior knowledge of the network structure and
topology. Figure 5.2 outlines the overall methodology by providing an illus-
tration of the main steps involved. In STEP 1 (Figure 5.2), we assume that
every country is linked with all the other countries with both an import and an
export trade relation (i.e., bilateral trade, with ai,j = aj,i = 1). Links between
nodes belonging to S2 are not taken into account (ai,j = 0) due to missing
information about node properties; self-connections as well are excluded from
our calculations (ai,i = 0). We estimate the link weights, F̂ (i, j), by means of a
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Fig. 5.2 Model approach. Definition of a set of potential links in STEP 1, estimation
of the link weights (i.e., virtual water flows) in STEP 2, distinction between active
and non-active links through a threshold-based classification in STEP 3, prediction
of the V WTN structure in STEP 4, evaluation of the model accuracy in STEP 5.

gravity-law model (STEP 2), using the node-specific and link-specific drivers.
Then, in STEP 3, the links with an estimated flow, or weight, higher than a
threshold value (highlighted by the red line) are labelled as active links, while
the others as non-active links. The predicted active links of the V WTN are
shown at STEP 4, while at STEP 5 we asses the model accuracy comparing the
real network with the predicted one by differently colouring the links: active
links can be correctly predicted (black solid lines) or incorrectly predicted (blue
solid lines, “spurious"); non-active links as well can be correctly predicted (black
dashed lines) or incorrectly predicted (red dashed lines, “missed").

5.2.1 The gravity-law model

The gravity-law model has often been used to study bilateral international-trade
flows [102, 56]. Its original formulation, inspired by Newton’s gravity equation,
states that the total trade between any two countries is directly proportional
to the product of country masses and inversely proportional to their geographic
distance [9, 12]. From an empirical perspective, the basic gravity-law has been
expanded from its original definition to improve the fit by taking into account
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country or trade characteristics that may influence bilateral trade flows in
addition to masses and distance [102, 42].
Here, we adopt the gravity-law model to get estimates of the virtual water
flows associated to the trade of agricultural goods. Given the complexity of the
virtual water network, specific laws describing the virtual water import and
export of each country are necessary since a global relationship describing all
the exchanged fluxes proved to be inadequate [132]. The import-law, F̂imp(i, j),
describes the trade flow from country i to country j as a function of source
characteristics (i denotes the exporting country), while the export-law, F̂exp(i, j),
expresses the trade flow as a function of destination characteristics (j denotes
the importing country), i.e.

F̂imp(i, j) = β0,j · R
β1,j

i,1 · R
β2,j

i,2 · R
β3,j

i,3 · R
β4,j

i,4 ..., (5.1)

F̂exp(i, j) = β0,i · R
β1,i

j,1 · R
β2,i

j,2 · R
β3,i

j,3 · R
β4,i

j,4 ..., (5.2)

where R contains the drivers (Section 5.2.2) and β = (β0, β1, β2, ...) is the
matrix of the model parameters.
We fit bilateral-trade flows along all the assumed links (STEP 1, Figure 5.2)
managing the gravity-law equations as linear multivariate regressions between
the logarithm of fluxes and the logarithm of drivers. In order to avoid problems
with the logarithm of null fluxes (which are those corresponding to non-existing
links), we assign to them a fictitious virtual water flux of 1 m3 per year; this
assignment does not compromise the original matrix, F, where the smallest
flux is around 70 m3 in year 2011 and the average flux is about 1·107 m3/year.
Model parameters are interpreted as regression coefficients and estimated with
the ordinary least square method. Significant variables are then identified
applying a Student’s t-test with a 5% significance level. Finally, new regression
coefficients are determined using only statistically-significant variables; when
none of the variables is significant, only the β0 coefficient is taken as the
modelled flux.
When the flow from i to j is between nodes that belong to subset S1, the flow
is fitted by both the export law of i (equation (5.2)) and the import law of j

(equation (5.1)) because both nodes have all the drivers available, and a mean
flow, F̂ (i, j), is then calculated by averaging the import, F̂imp(i, j), and the
export, F̂exp(i, j), estimates. Averaging the flows obtained with the two laws
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Table 5.1 Possible drivers of the gravity-law model, with their source and spatio-
temporal availability.

Label Description Source n◦ of countries Time interval
1 P Population FAOSTAT (http://faostat.fao.org/) 228 1961-2011
2 wd Virtual water of national consumption in m3/cap [22, 23, 132] 175 1986-2011
3 Pr Annual on cultivated area Our computation on GAEZ dataset and [98] 182 1960-2000
4 ET0 Annual evapotranspiration on cultivated area Our computation on GAEZ dataset and [98] 182 1960-2000
5 A Arable area in ha/cap FAOSTAT 219 1960-2000
6 AI Area equipped for irrigation in ha/cap FAOSTAT 184 1960-2000
7 N Nitrogen fertilizers in tonnes of nutrients FAOSTAT 160 1986-2012
8 K Potash fertilizers in tonnes of nutrients FAOSTAT 155 1986-2012
9 Ph Phosphate fertilizers in tonnes of nutrients FAOSTAT 154 1986-2012
10 AP Agricultural population FAOSTAT 154 1986-2012
11 GDP Gross domestic product in $/cap http:// unstats.un.org/unsd/snaama/dnlList.asp 208 1970-2011
12 AV Agricultural value of production FAOSTAT 205 1986-2013
13 wp Virtual water of agricultural production in m3/cap [22, 23, 132] 216 1986-2011
14 vwv Virtual water value in $/m3 This study 150 1986-2011
15 rta Regional trade agreements CEPII (http://www.cepii.fr) 208 -
16 D Distance CEPII 255 1986-2011
17 b language, colony relation, contiguity, religion Our computation on CEPII dataset - -

results in an improvement over the single law. Otherwise, if the flow is from
node i, belonging to S1, to node j, belonging to S2, (or vice versa) the flow
is fitted only with the import or export law of node j by taking into account
all the properties of node i. In this case, the export law of node i cannot be
estimated because j lacks of the drivers to set equation (5.2). Finally, if both
i and j belong to S2, the flow is not estimated by the model. In this latter
case, since we are not able to estimate the link weight, we cannot predict the
existence of the link. However, it is worth noting that the flow traded along
links connecting nodes in S2 only constitutes 0.5% of the global virtual water
flow (see Table 5.2), thus allowing to model almost the total volume of virtual
water trade. Moreover, modelling links between S1 and S2 allows to cover the
96.2% of the flows to/from countries in S2.

5.2.2 Possible drivers of the virtual water trade

We analyse as possible drivers of the virtual water trade 17 factors (or drivers)
variably determining food demand/supply, water availability, and trade flows.
We consider both node-specific and link-specific country attributes.

Node-specific attributes affect food demand, water availability, agricultural
productivity potential, and economic power of each country. In particular,
Food demand is determined by population (P ) and per-capita demand of water
embedded in agricultural goods (wd). Water availability depends on climatic
conditions, that are described here by annual rainfall (Pr) and cumulative
reference evapotranspiration (ET0) over cultivated areas. Productivity potential
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is influenced by per-capita arable area (A), per-capita irrigated area (AI), use
of fertilizers (such as nitrogen (N), potassium (K), and phosphate (Ph), and
agricultural population (AP ); Economic power depends on per-capita gross
domestic product (GDP ), agricultural value (AV ) which measures the output
of the agricultural sector, virtual water value (vwv), virtual water of per-capita
agricultural production (wp), and trade relations such as the regional trade
agreements (rta).
Trade relations are also strongly impacted by link-specific attributes, such
as the geographical distance (D) between two nodes and aggregated binary
information (b), including common official language, colony relation, contiguity,
and common religion.
Sources and spatio-temporal availability of the variables adopted in this study
are given in Table 5.1, while details on data characteristics and pre-processing
are provided as on-line Supplementary material. The spatial coverage of data
is variable over the studied period, as every year there are few countries lacking
one or more drivers. Therefore, we group the countries in two subsets: the first
one (S1) contains countries that have all the variables available in the studied
years, while the other one (S2) contains the countries that lack one or more
variables. Properties of the n1 nodes from subset S1 are reported in a n1 x
17 matrix, R, while all properties of subset S2 are left out from the analyses
because they are incomplete. By doing so, we ensure that all the link weights
are estimated with exactly the same data sources.
Food demand. Food demand is determined by population (P ) and per-capita
demand of water embedded in consumed agricultural goods (wd). The popula-
tion for each country and for each year is taken from the FAOSTAT database
(http://faostat.fao.org/). The mean values of the per-capita water demand
for each country in the period 1996-2005 are taken from Mekonnen et al. [92].
The water demand represents the water footprint of national consumption and
it is defined as the total volume of water that is used to produce the goods
and services consumed by the inhabitants of the nation. It consists of two
components: the internal and external water footprint of national consumption
[92]. The internal water footprint expresses the use of domestic water resources
to produce goods and services consumed by the country’s population; the
external water footprint is defined as the volume of water resources used in
other nations to produce goods and services consumed by the population in



5.2 Link prediction methodology 103

the nation under consideration. The water demands accounts for the green,
blue, and grey water consumption.
Water availability. Water availability depends on annual rainfall (Pr) and
cumulative reference evapotranspiration (ET0) over cultivated areas. The
values of Pr and ET0, expressed in mm/month, are available from CRU CL
2.0 [98] at a global scale at 10 arc minute latitude/longitude resolution. We
aggregated these values at the country scale by a weighted average of the annual
values, using as weights the cultivated areas taken from the GAEZ database
(http://www.gaez.iiasa.ac.at/).
Productivity potential. Productivity potential is influenced by the per-
capita arable land (A) and the per-capita irrigated land (Ai), the use of
nitrogen (N), potassium (K), and phosphate (Ph), and the agricultural popu-
lation (AP ).
The arable and irrigated lands are available for each country and each year
on the FAOSTAT database. The arable area represents the area cultivated
with temporary agricultural crops, temporary meadows for mowing or pasture,
and land temporary fallow (less than five years). The irrigated land is the area
equipped for irrigation that can be totally or partially irrigated in a specific
year. Both A and AI , expressed in hectares, are divided by the population to
obtain the per-capita values.
Fertilizers are available from the FAOSTAT database as well. In particular, we
focused on the consumption of nitrogen, potassium, and phosphate expressed
as tonnes of nutrients consumed in each country for each year along the study
period; they represent proxies for the agricultural efficiency and high crop yields.
The agricultural population represents the population employed in agriculture
in each country across the study period.
Economic power. Economic power is related to the gross domestic product
(GDP ), the agricultural value of production (AV ), the per-capita water pro-
duction (wp), the virtual water value (vwv), and the regional trade agreements
(rta).
Per-capita gross domestic product for each country and year is available from the
National Accounts Main Aggregates Database (http://unstats.un.org/unsd/snaama/dnlList.asp).
Further details are available in [132]. Per-capita agricultural value of produc-
tion represents the gross production value expressed in US$ divided by the
population for each year and country; it is a measure of the production in
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monetary terms at the farm gate level.
The virtual water of agricultural production of each country and year is evalu-
ated by multiplying the quantity (expressed in tons) of each agricultural good
produced in a country by the national virtual water content (expressed in
m3/ton), and summing up over all good to have the national virtual water
volume of the agricultural production. For more details, refer to Tamea et al.
[131].
The virtual water value stands for the price of the virtual water used for the
production of agricultural goods; it is the ratio between the gross domestic cost
of the agricultural production (expressed in US$), provided by FAOSTAT, and
the national the virtual water of per-capita agricultural production, expressed
in m3, provided by Tamea et al. [132].
The number of regional trade agreements for each country is available from the
World Trade Organization database (http://rtais.wto.org/UI/PublicMaintainRTAHome.aspx).
Link-specific attributes are those characterizing a link instead of a node and
include the geographical distance between countries and the binary information.
The distance between countries, which is taken from the CEPII dataset
(http://cepii.fr/CEPII), is organized in a matrix of geographical distances
measured between the most populated cities of the countries.
The binary information, b, can be see as a multiple-dummy variable, derived
from the aggregation of four different types of binary information, including
common official language, colony relation, contiguity, and common religion,
derived from the CEPII database. First, we construct a time-invariant (1-10)
matrix for each dummy variable, bx with x = 1, 2, 3, 4. We set the matrix values
to 1 instead of 0 and to 10 instead of 1 in order to avoid problems with the
logarithms. Then, we aggregated the dummy variables in a single matrix, b,
according to equation (5.3). The elements of b run from 1 (no relation between
the nodes) to 10000 (four different relations between the nodes).

b = b1 · b2 · b3 · b4 (5.3)

5.2.3 Threshold evaluation

The proposed methodology grounds the link activation between any two coun-
tries (i and j) on the link weights estimated by the gravity-law model (equa-
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tions (5.1,5.2)). The frequency distributions of the weight estimations expressed
in logarithm are shown in Figure 5.3(a), where the light grey histogram refers
to the non-existing links and the dark grey histogram refers to the existing
links. In order to efficiently distinguish among active and non-active links,
a binary classifier (or threshold) is introduced: links are classified as active
if their estimated weight is higher than the threshold, non-active otherwise.
Depending on the threshold values (the blue, red, and yellow lines in panel (a)
indicate some examples of threshold values), the model correctly identifies a
number of existing or non-existing links. In order to determine the threshold
with the best accuracy both for existing and non-existing links, we evaluate the
true positive rate or sensitivity, TPR, and the false positive rate or specificity,
FPR, for every possible threshold value in the flux domain, according to

TPR = TP

TP + FN
, (5.4)

FPR = FP

TN + FP
. (5.5)

The true positive rate (equation (5.4)) is determined by the number of
true positive (TP ) that refers to the existing links correctly Identified by the
model and the number of false negative (FN) that refers to the links which are
“missed" by the model because their estimated weights fall under the threshold.
The false positive rate (equation (5.5)) depends on the number of false positive
(FP ), namely the “spurious" links that the are erroneously classified as active
links even though they are non-existing, and the number of true negative
(TN) that indicates the correctly identified non-active links. The sum of the
FPR (that can be seen as the percentage of “spurious" links) and the false
negative rate, i.e., FNR = 1−TPR, (which is the percentage of “missed" links)
quantifies the link prediction error, E, associated to the proposed methodology,
that reads

E = FP

TN + FP
+ FN

TP + FN
(5.6)

The graphical plot of the TPR and FPR values for the three threshold
values (namely,1.8, 3.0, 4.0) shown in panel (a) with the blue, red, and yellow
lines, are marked in panel (b), where the resultant dashed curve is called ROC
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Fig. 5.3 Threshold evaluation. (a) Frequency histograms of the estimated weights,
expressed in logarithm, associated to existing (in dark grey) and non-existing (in
light grey), and three examples of threshold logarithmic values (that are 1.8, 3.0, 4.0)
in blue, red, and yellow. (b) The dashed Receiving Operating Characteristic curve
illustrates the performance of the binary classifier as the threshold is varied; each
point along the curve indicates the True Positive Rate, TPR, and the False Positive
Rate, FPR, of a threshold that can be selected in the flux domain. The blue, red,
and yellow points represent the classifier accuracy for the three thresholds shown in
panel (a).

curve (i.e., Receiver Operating Characteristic curve). The area under the
ROC curve is a measure of the correct classification probability; therefore, by
comparing the trapezoidal area, A, defined by (0,0), (FPR,TPR), (1,1), (1,0),
as shown in Figure 5.3(b) for every possible threshold, we can determine the
most suitable value. It must be noticed that the area complementary to A

is equal to half of the link prediction error and, thus, maximizing A means
minimizing E.
The evaluation of the most suitable threshold is repeated for each year from
1986 to 2011 and we find logarithmic values in the range of 2.74 and 3.12, thus
we fixed the model logarithmic threshold equal to 3, namely 1000 m3/year.

5.2.4 Virtual water flows assessment

Once the structure of the unweighted virtual water network has been recon-
structed (see Figure 5.2, STEP 4), we apply the gravity-law equations (5.1,5.2)
to assess the virtual water volume traded along (predicted) active-links. We
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adopt the same procedure as in STEP 2 (Section 5.2.1), with a modified calibra-
tion of the regression coefficients; in fact, now we only fit the trade flows of the
predicted active links (or the true positive). Depending on the number of trade
partners (i.e., node degree, K), the gravity-law equation of each country is
calibrated on a different number of flows, as in the network there are countries
with very few links (i.e., the most peripheral ones) and other with more than
a hundred links (i.e., highly connected nations). Consequently, it may not be
possible to fit a complete regression for every country, but, depending on the
node degree one can use a most appropriate regression. Selecting a null model
and a simplified model (with only 3 regressors) besides the complete model
(with 17 regressors), the following function is built:

F̂ (i, j) =


β0 K < 10
β0 · Rβ1

1 · Rβ2
2 · Rβ3

3 10 ≤ K < 25
β0 · Rβ1

1 · Rβ2
2 · Rβ3

3 · ... · Rβ17
17 K ≥ 25

, (5.7)

where K equal to 10 links and 25 links are taken as minimum sets, in the
simplified and complete model, to avoid overfitting issues. The thresholds on K

have been chosen based on a trial-and-error procedure to find the best balance
between accuracy and robustness.
When the flow can be fitted using both gravity-laws (i.e., i and j belong to S1),
a mean flux, F̂ (i, j), is calculated by a weighted mean of the logarithms of the
import (F̂imp(i, j)) and the export (F̂exp(i, j)) estimated flow, according to

Log(F̂ (i, j)) = Log(F̂imp(i, j)) · Kimp(j) + Log(F̂exp(i, j)) · Kexp(i)
Kimp(j) + Kexp(i) , (5.7)

where, Kimp and Kexp are the vectors of import and export node degrees, re-
spectively. In this way, the flow estimated with the most robust law contributes
to the weighted mean to a greater extent.
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5.3 Application and Results

This section presents the application of the link prediction methodology to the
network of virtual water trade. We propose an initial focus on year 2011 with
the aim of showing the model accuracy and identifying the major factors driving
the link activation/deactivation, followed by the application of the model to
the whole period (1986-2011) to show the temporal dynamics of the network
drivers. Then, we asses the model accuracy at the country scale to identify the
regions where the model works best. Finally, we discuss the application of the
gravity-law model to the import and export flows traded along predicted active
links to investigate the entities of the exchanged flows along the study period
and their main controlling factors.

5.3.1 Drivers of link activation and deactivation

VWTN in year 2011

In year 2011, the 213 nodes of the V WTN are linked by 16254 links, which
exchange 2720 km3 of virtual water, while the number of non-existing links
(that could have been active in the previous years or could activate in the
future) is 28902.
In order to select the drivers of the link activation/deactivation among all
the possible variables (presented in Section 5.2.2) to predict the network
configuration, we perform a stepwise regression which involves (i) starting
with no variables in the model, (ii) testing the addition of each variable,
using as comparison criterion the link prediction error calculated according to
equation (5.6), (iii) adding the variable that improves the prediction accuracy
the most, and repeating this process until all variables are included.
In this analysis, the subset S1 includes 117 countries having all the 17 drivers
available and representing a major portion of the global population (92%)
and of the traded virtual water flow (87%), as shown in Figure 5.4(c). The
characteristics of the modelled network and the partition of the nodes in subsets
S1 and S2 are reported in Table 5.2.

Figure 5.4(a) shows separately the components of the link prediction error
for year 2011: the red lines stand for the percentage of “missed" links at each
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Table 5.2 V WTN characteristics in year 2011. The partition of the nodes in the
subsets S1 and S2 is determined by the drivers availability for each country; S1 con-
tains all the countries having the 17 considered drivers available, while S2 constitutes
the complementary subset to S1. The percentage of traded virtual water volume
reported in the table refers to the global flow of 2720 km3/y.

S1 S1-S2 S2
nodes 117 96
active links 8767 6688 799
non-active links 4805 15776 8321
traded volume [%] 87 12.5 0.5
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Fig. 5.4 Results of the link prediction exercise for the virtual water trade network
in year 2011. (a) The red lines represent the percentage of missed links, while the
blue lines stand for the percentage of spurious links; solid lines refer to the case in
which the size of S1 is fixed to 117 nodes (those with all the 17 drivers available)
and the multivariate regression has always 17 variables, while thin lines are for the
case of a variable size of S1, depending on the number of variables considered in the
multivariate regression. The abscissa reports the driver sorted as a function of the
minimum attainable link prediction error. (b) Number of nodes having all the 17
drivers available (thick line) and number of nodes for an increasing number of drivers
(thin line). (c) Percentage of global population and virtual water flow representative
of the selected nodes. In all panels, thick lines refer to the case of a complete
regression (with all the 17 regressors), whereas thin lines stand for regressions with a
variable number of regressors, from 1 to 17.
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selection step, while the blue lines are for the percentage of “spurious" links;
the abscissa reports the drivers ordered according to their progressive insertion
in the regression. It is clear from panel (a) that the progressive insertion of
variables improves the model ability to predict links by correctly discriminating
between active and non-active links: the percentage of missed links progressively
decreases from 22% to 16% (red solid line) and the spurious links decreases
from 12% to 7% (blue solid line). Both for missed and for spurious links, the
main reduction of the associated error is mostly due to very few variables,
such as the use of fertilizers (N), the distance between countries (D), the
population (P ), the binary information related to the countries (b), and the
regional trade agreements (rta). Distances and binary information allow the
most relevant reduction of missed links (as shown by the higher steps of the
line), while population is the most relevant driver for spurious links. The other
variables, instead, are less incisive in determining a further improvement of
model performance. For example, among the 17 possible drivers, 5 variables
are sufficient to correctly identify 84% of the existing links and 93% of the
non-existing links.
In order to analyse the model accuracy along the study period, we include in
the regressions all the 17 drivers to estimate the fluxes and distinguish among
active and non-active links. We observe that the percentage of missed links
decreases from 19.5% (in year 1986) to 16% (in year 2011), while the percentage
of spurious links increases from 4.5% to 7%. The time evolution of the link
prediction error, split in its component, is shown in the Supplementary material
(Figure S2).
Despite being similar in their behaviour, missed and spurious links are quite
different in absolute terms: in fact, considering a 17-variables regression (whose
associated error correspond to the last position in abscissa of Figure 5.4(a)),
the method loses 2525 active links and adds to the network 1507 spurious links.
Although the missed links are more than spurious links, the total virtual water
flow traded along them is negligible (1% of the global virtual water flow). The
links lost by the model, in fact, are mainly those between small importer or
exporter countries, and, thus, the error is considered acceptable.
Once all the drivers have been classified and ordered according to the abscissa
in Figure 5.4(a), it is possible to chose a proper subset of variables depending
on the portion of the network that one decides to model. For example, if only
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Fig. 5.5 Time evolution of the fundamental variables driving the link activations.
Years run in clockwise direction. Node-specific variables are grouped in four classes,
starting from the center with Food demand (1-2), Water availability (3-4), Productivity
potential (5-10), and Economic power (11-15); link-specific variables are those out
of the coloured zones, with position 16 and 17. The red line indicates which is the
variable that most minimizes the link prediction error when a univariate regression
is considered; the green and yellow lines refer to multivariate regressions, with two
and three variables, respectively.

the driver N is taken into account, the predicted network will loose 24% of
active links and spuriously add 9% of non-active links (according to the red and
blue thin lines in Figure 5.4(a)); N is available for 163 countries (Figure 5.4(b)),
covering 98% of the global population and 96% of the global virtual water flow
(Figure 5.4(c)). Then, by adding other drivers, the model accuracy improves,
but the number of considered countries decreases (thin lines in panel (b,c))
according to the definition of S1 given in Section 5.2.2.

Temporal variability

Considering the temporal variability of the V WTN over the studied period, the
stepwise regression described in Section 5.3.1 produces, every year, a different
sorting of the drivers. This is due to the different structure of the network,
but also to the different spatial coverage of the country-specific variables (see
Section 5.2.2). For the sake of simplicity, we report in Figure 5.5 only the
sorting of the best three variables.
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From 1986 to 2011, years run along the circle in clockwise direction and the
drivers, (from 1 to 17, see Table 5.1) are indicated at different radial distance,
from the center to the periphery of the circle. Nodes-specific variables are
shown grouped in their categories (Section 5.2.2): in position 1 to 2 there are
Food demand variables (P and wd), in 3 to 4 there are Water availability drivers
(Pr and ET0), Productivity potential drivers (A, AI , N , K, Ph, and AP ) are
in positions from 5 to 10, and Economic power variables (gdp, AV , wp, vwv,
rta) occupy positions from 11 to 15. Finally, link-specific characteristics (D, b),
are in positions 16 and 17, out of the coloured zones. Considering a univariate
regression (Figure 5.5, red line), one observes that the most significant variable
for link prediction is always the one from the Productivity potential category,
with the only exception of year 2008, when water availability (i.e., ET0) is
more informative. Looking at a bivariate regression (green line), link-specific
variables add the most significant information to the univariate regression for
most of the years (1991-2011), but the Food demand (P ) is the most informative
from 1986 to 1990. Differently from the first and the second regressor, it is
more difficult to identify a clear trend over time for the third driver: only from
1986 to 1990 one can note a continuity in the role of link properties, that clearly
compensate a lack in the bivariate regression. From this temporal analysis, the
economic power of nodes seems not to consistently influence the link prediction
accuracy, with only few exceptions.

Accuracy at the country scale

After having analysed the accuracy of the model at the global scale, results
are now presented in terms of percentages of missed and spurious links at the
country scale. Figures 5.6(a,b) refer to exporting relations, while Figures 5.6(c,d)
refer to importing relations; missed links are in the scale of red, spurious links
are in the scale of green. Existing links are well-captured by the model, and
countries with a number of missed links in the range of 5-15% prevail in the
map of exporting and importing relations. The model predicts very well the
links of the Americas, North Europe, Russia and Kazakhstan, South-East Asia,
Indonesia and Australia, with a number of missed links generally lower for the
exporting relations. Instead, links pertaining to African countries are not well
captured (apart from the export of Botswana), especially for exporting relations,
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Fig. 5.6 Percentage of missed and spurious links at the country scale, relative to
exporting (left) and importing (right) countries. Missed links are in the scale of red,
spurious links are in the scale of green.

and results for this region are highly heterogeneous. The scarce performance of
the model for African countries may be due (i) to the small number of active
links and (ii) to the small volume of the virtual water flows. In fact, with a low
number of active relations, the gravity-law coefficients are mostly calibrated
on the unitary flows traded along null links, and only partially calibrated on
the small virtual flows traded along active links; therefore, the model tends
to underestimate the link weights of African countries and a major portion of
them falls under the threshold of 1000 m3. This is also a possible explanation
to the fact that the model performs better for the African imports than for the
exports.
Looking at the percentage of spurious links (Figure 5.6 (b,d)), the model
performs better in the identification of non-active links; in fact, the threshold
spuriously adds to the real network from 5 to 10% of the null links. It must be
noted that some regions where spurious links are lower than 5% (such as some
exporting countries in Africa) are those with a corresponding percentage of
missed links higher than 25%; the opposite behaviour of the error associated to
missed and spurious links reflects the choice of the threshold at the global scale
which is suboptimal in minimizing the link prediction error in these regions.
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The definition of country-specific (or region-specific) thresholds would enable
better predictions at the price of a lower generality and increased need for
calibration.

5.3.2 Virtual water fluxes: stepwise regression

Here, we adopt the gravity-law model (Section 5.2.1) to fit the virtual water
flows traded along the predicted active links and investigate the fundamental
drivers of the virtual water fluxes. Similarly to Section 5.3.1, we order the
drivers with the help of a stepwise regression using (as a comparison criterion)
the adjusted coefficient of determination, R2

adj , evaluated at the global scale. At
each step, we add to the regression the variable that mostly improves the value
of R2

adj, namely the model fitting ability. We find that population, distance,
and gross domestic product are the most important variables: their progressive
insertion in the regression, in fact, improves the value of R2

adj from 0.39 to 0.52
as shown in Figure 5.7. This finding is confirmed by previous studies on the
drivers of the virtual water trade [132]. Adding further variables increases the
value of R2

adj up to 0.65 and up to 0.90 when we measure an R2
adj weighted

with the (non-logarithm) virtual water volumes traded along active links. The
remaining virtual water flows, associated to the missed links, constitute only
the 1% of the global flow (refer to Table 5.2).

In the inset of Figure 5.7, we show the temporal variability of R2
adj values

over the study period, considering two different subsets of drivers: one subset
contains all the 17 variables, the other contains only the 5 variables that mostly
contribute to improve the model fitting ability (i.e., population, distance be-
tween countries, gross domestic product, water production, and water demand).
In the case with 17 variables, the value of R2

adj along the studied period reaches
0.65 in year 2011; in the case with 5 variables, the performance is worse with
a final R2

adj equal to 0.60. Even if the 17-variables model outperforms the
5-variables one, it is worth noting that the second one is more robust in terms
of model parameters, since they are calibrated on a larger number of fluxes
and also on a larger number of countries given that S1 is larger in the case of a
5-variables model.
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Fig. 5.7 Stepwise selection of the major drivers of the virtual water flows in year 2011
for a network of 117 nodes, by adopting the R2

adj value as the comparison criterion,
using a 17-variables regression. The inset reports the temporal trend of the worldwide
adjusted coefficient of determination, considering a 17-and a 5-variables regressions.

5.4 Discussion

Prior studies have analysed the global architecture of the V WTN , highlighting
the dynamical and intermittent behaviour of the network [22, 23]: new trade
relations keep developing between countries over time. In order to understand
the evolution of the whole network, it is necessary to analyse the association
between each pair of nodes across time. In the present study, we have addressed
this problem as a link prediction task in the virtual water network.
The accuracy of the proposed methodology is illustrated by the red ROC curve
shown in Figure 5.8, whose points represent the accuracy of all the possible
thresholds that can be employed to distinguish among active and non-active
links.

In the context of link prediction, it is of interest to compare our methodology
with other link prediction algorithms generally used in the field of complex
network theory. In particular, we report the ROC curves of four local similarity
indices (namely, the Common Neighbors, CN , the Salton index, Salton, the
Hub Depressed index, HDI, and the Preferential Attachment, PA) that are
solely based on the network topology ([87]). These indices (or scores) indicate
the similarity between node i and node j (refer to Table 5.3). For example,
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Fig. 5.8 ROC curves to quantify the accuracy of the proposed methodology (i.e.,
multi-linear regression model, MLR, in red) in comparison with other prediction
algorithms (i.e., local similarity indices) from the field of complex network theory.
The blue solid line stands for the Common Neighbor index (CN), the blue dashed
line is for the Salton Index (Salton), the green solid line indicates the Preferential
Attachment index (PA), and the green dashed line is for the Hub Depressed Index
(HDI). Each point along the curves refers to a possible value of the threshold to
distinguish among active and non-active links, and it denotes the True Positive Rate
(TPR) and the False Positive Rate (FPR).
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Table 5.3 Definition of the link score, as the local similarity between node i and node
j, according to different indices: Common Neighbors (CN), Salton (Salton), Hub
Depressed index (HDI), Preferential Attachment (PA).

score
CN |Γ(i) ∩ Γ(j)|

Salton |Γ(i)∩Γ(j)|√
ki·kj

HDI |Γ(i)∩Γ(j)|
max(ki,kj)

PA ki · kj

CN indicates the number of trade partners that node i and node j have in
common; it is calculated as the intersection between the neighbors (or trade
partners) of node i indicated by the set Γ(i) and the neighbors of node j (Γ(j)).
All links are then ranked according to their scores, and the links connecting
more similar nodes are supposed to be of higher existence likelihood. Indeed,
all the links with a value of higher than a threshold are considered active links,
while the others are labelled as non-active links.

By comparing the accuracy of our methodology with the one achieved by
the local similarity indices, only the Common Neighbours and the Preferential
Attachment (whose accuracies are represented by the blue and the green solid
curves in Figure 5.8) perform as well as our model. But, despite performing
similarly, these indices are based on the network structure that is supposed to
be known and, thus, every time we evaluate the score of a link between any two
nodes, we need to know all the other relations between the considered nodes and
the rest of the network. Differently, our methodology has the great advantage
to reconstruct the network architecture without any prior knowledges of the
network, since it only requires country attributes. More generally, our study
provides a new link prediction framework which can be used for small networks,
where the number of nodes is limited and the node and link properties can be
easily reconstructed.

5.5 Concluding remarks

In this Chapter, a novel methodology has been developed for modelling the exis-
tence of a trade relation between any two countries involved in the international
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trade of agricultural goods, solely based on the country attributes and link char-
acteristics (such as population, gross domestic product, geographical distance,
etc.), without any knowledge about the network structure and topology. More
explicitly, applying the methodology to the virtual water trade network, we
established that a link is expected to exist depending on the modelled virtual
water volume that could be traded along it: a link is considered active when
the traded volume is higher than 1000 m3/y, non-active otherwise.
We found that the model is able to correctly predict 84% of the existing links
observed in year 2011 (16% of the existing links are "missed"), and 93% of the
non-existing ones (7% of the non-existing links are "spurious"). Although the
number of missed links might seem large, the associated virtual water flow is
negligible (0.1% of the global flow); the links lost by the model, in fact, are
mainly those where a minimum volume of virtual water is exchanged.
In order to select the drivers of the link activation, we have performed a stepwise
regression; we found that geographical distances between countries, population,
and fertilizer use are the fundamental drivers of link activation/deactivation.
Binary information (e.g., common languages, common religions) and regional
trade agreements are also important, while the other variables, pertaining
economical and productive aspects, do not give a significant contribution to
the link prediction. These findings extend those of [132] and confirm the im-
portance of geographical distances between countries and population in driving
not only the intensity of virtual water flows between pair of countries but also
the presence of the link itself.
In the context of analysing the implication of international trade on water
resources, the proposed methodology can be applied to predict future evolution
of the VWT network taking advantage of the projection already existing for
nodes’ attributes, such as the gross domestic product [28], the population
[115], nitrogen inputs [51] and land-use scenarios [76]. Moreover, the proposed
methodology is intended to assess the structure of any weighted network, for
which it is possible to get estimates of the link weights only using the node and
link characteristics. For instance, the same methodology can be applied to the
international trade weighted by different units, such as the food tonnage, the
dietary energy equivalent, or the economic value of goods. Although detached
from the reality of international trade in a sense (i.e., countries exchange food),
all these weights can be exploited to interpret food exchanges. Another possible
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application of the link prediction methodology is the backward reconstruction
of the bilateral trade matrix before 1986. In fact, the FAO database provides
country import and export data since 1961, but bilateral trade flows are not
available over the period 1961-1985. The analysis of trade evolution over this
period may give important insights given that that these years testify a quick
increase of crop yields, through the process known as Green Revolution.



Chapter 6

Conclusion

The present thesis contributes to the literature of water footprint assessment,
virtual water trade, and water use sustainability in different ways.
The first part of the thesis (Chapter 2) accomplishes the water footprint as-
sessment for different crops under two water use scenarios (i.e., rainfed and
irrigated). To this end, a daily soil water balance model has been developed to
track the green and blue crop water use at 5’x5’ spatial scale. The model makes
use of advanced and up-to-date open-access datasets on climatic parameters,
soil properties, agricultural practises, and it is applicable to any crop in any
year depending on data availability. Moreover, considering multi-cropping
patterns enabled improved computations of crop water use by accounting for
the different precipitation rates and evapotranspiration demands across the
growing seasons. This is particularly important for wheat, maize, and rice that
are cultivated twice a year in many regions. The CWF assessment also includes
a first-order sensitivity analysis of the estimates to the input parameters, which
was missing in the global studies concerning water footprint accounting. The
results of the sensitivity analysis show that wheat is mostly sensitive to the
length of the growing season, rice to the reference evapotranspiration, maize
and soybean to the crop planting date. CWF values are sensitive to input
parameters also depending on the location of cultivated areas. The sensitivity
analysis performed in this thesis represent a possible way to identify those
parameters that farmers and land managers should modify to improve the water
use efficiency in order to diminish the pressure exerted on water resources.
The model developed in the first part of the thesis has also been used to validate



121

the Fast-Track approach recently adopted in the literature of water footprint
to deal with the temporal dimension of water footprint (see Chapter 3). The
Fast-Track approach assumes the CWF variability as only influenced by the
crop yield variations, while it considers the evapotranspiration demand as a
constant. In order to test this assumption, the annual CWF estimates obtained
with the FT approach have been compared with those obtained through the
CWF model (Chapter 2) run on an annual basis from 1961 to 2014. The com-
parison with coefficient of determination always higher than 0.9 between the
two estimates supports and validates the methodology. Also, the uncertainty
analysis shows an average error of 10% in the FT approach with respect to the
detailed methodology. Providing that this error is three time lower than the
error of the model used to estimate the crop water footprint, the FT approach
is validated. Once validated, the FT method has been applied to assess the
virtual water volumes embedded in the international trade of wheat, rice, maize,
and soybean along the period 1986-2011.
The second part of the thesis (Chapter 4) puts the crop water footprint in the
context of water use sustainability by comparing it to the local water resources,
available from soil moisture, surface water bodies and aquifers. To do so, the
water footprint assessment accomplished in Chapter 2 has been extended to
other significant crops (i.e., barley, potatoes, sugar cane, sugar beet, and cotton)
and the blue water footprint has been computed separated and split into a
surface- and ground-water footprint. Such separation is important as surface
and ground water resources are differently available across regions and exhibit
highly different renewability rates. In order to evaluate the impact of water
use on water resources, the green, surface, and ground water footprints have
been compared with the renewable water availability, namely water resources
annually available from precipitation at the location of crop production. As
mentioned earlier in the thesis, literature counts a remarkable variety of con-
tributions that assess agriculture-induced water stress by comparing water
consumption to water availability. However, these indicators generally consider
all crops together, they do not separate surface water from ground-water, and
they often lack a physical interpretation, preventing critical analyses beyond
comparisons. The introduction of the Water Debt concept as a new measure of
water use sustainability, aims at enriching tools for impact assessment. The
Water Debt quantifies the payback time the hydrological cycle takes to replen-
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ish the water resources: water debts higher than one year point out threaten
regions, where water use critically exceeds water availability. Results show an
overall sustainability of green water resources, only some intensively cultivated
regions show a water debt of 6-8 months indicating the period of the year
during which soil moisture is not available for, e.g., forestry, grazing lands
and terrestrial ecosystems. Surface -and ground-water resources appear to be
unevenly over-exploited worldwide with water debts ranging from 1 year to
over 20 years, underpinning areas of higher impacts, such as over the California
Central Valley and the High plain aquifers in the US, the Indo-Gangetic plain
between India and Pakistan, in the Amu and Syr Daria basins, and in the
Indus river basin.
The last part of this thesis (Chapter 5) focuses on the temporal dynamics of
virtual water trade, and in particular on the reconstruction of the network
topology. Topology is, in fact, significantly unstable with nearly 30% of links
appearing and disappearing from the network year by year. In order to assess
the link activation/deactivation, a threshold-based algorithm has been pro-
posed. Differently from the most common link prediction methodologies, the
proposed method grounds the link existence on the link weight (i.e., traded
volume) estimated as a function of countries properties. Weight estimates
have been obtained through a multi-linear regression model that makes use
of 20 different regressors. All the links with an estimated weight greater than
1000 m3 are labelled as active links, and non-active otherwise. The algorithm
only misses 16% of the existing links and it spuriously adds to the estimated
network 7% of non-existing links. Hence, the methodology has proven to be
suitable for the objective. Moreover, it has been shown that geographical
distances between countries, country population and fertilizers use are the most
important drivers of the network topology. Multivariate-linear regressions have
also been used to get estimates of the link weights once the topology was known.

Limitations and future outlook The results presented in this thesis
are derived on the basis of a number of statistics, input data, and model
assumptions. Source of uncertainty are related to the climatic data used
to compute the crop water footprint. These data, in fact, are available on
10’x10’ grids obtained by New et al. [98] through a spatial interpolation of
station monthly measures. Given that the model works on a daily scale, a
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linear interpolation of the monthly data has been performed. However, such
interpolation may hide fluctuations of evapotranspiration demand and extreme
rainfall events. Both the spatial and temporal resolution could be improved in
future studies by, e.g., integrating global data with local measures and remote
sensing information increasingly available, and through the adoption of daily
climatic data in the regions where they are available. Another limitation in
the water footprint assessment relies in the hypothesis of optimal irrigation
timing and quantity every time rainfall is not sufficient to meet the crop water
demand (in all the areas equipped for irrigation). Such assumption may lead
to overestimate irrigation volumes as blue water may be not available at the
site/time of need. Future studies should consider different irrigation scenarios
and techniques in order to explore both the sensitivity of crop water footprint
to irrigation availability and, particularly, to produce estimates that are as
close as possible to the reality.

The water use sustainability assessment provided in the context of this
thesis is intended to be a first step in the direction of quantify agricultural
impacts on water resources. Specifically, the idea of measuring the sustainability
through the payback time is twofold. On the one hand, this measure gives a
physical meaning to the more widespread water scarcity indexes, on the other
hand it may help connecting and integrating water resources management with
other environmental issues, such as the carbon footprint. At the present state,
the water debt concept exhibits some limitations that need further develop-
ments. Limitations concern, specifically, surface water renewability, which
is now considered equal to the locally generated runoff, without considering
the upstream generated runoff running in the rivers. Other limitations relate
to the uncertainty in the water renewability data derived from WaterGAP.
Future researches, while expanding the assessment to other crops and including
withdrawals by sectors different from the agricultural one, should focus on the
water use sustainability of consumption, considering both the production and
the trade of products.

Finally, the present thesis also examines the virtual water trade dynamics
considering over 300 products all together over 1986-2011. Given that the
link prediction methodology has proven to be useful in predicting the network
topology, it can be adopted to reconstruct the past virtual water (bilateral)
trade to better understand how it was at the beginning when the US created
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an overwhelming preponderance in the world agricultural and food production
and trade. Moreover, the methodology can also be used to build possible future
scenarios of trade and virtual water trade. It would be very interesting also to
disaggregate crops across categories or considering single crop by means (e.g.,
[135]), e.g., of the tools developed to study multilayer networks [14], which
have been recently applied to the ecological networks [106, 105].

Summary The present thesis accomplishes different objectives in the
context of the "water-food" nexus and the sustainability of water use. The
developed framework is inherently connected and allows to analyse the problem
of water resources management under three main aspects. First, the water
balance model developed to quantify the crop water footprint at a high spatial
resolution provides useful insights and strategies to target improvements of the
water use efficiency over production sites. The model allows to study the factors
impacting water use efficiency, both the climatic and anthropogenic ones, on
a daily basis, and splitting the contribution of green-, surface-, and ground-
water sources to the crop water requirement. Moreover, this model is adopted
to validate a recently developed Fast-Track methodology to deal with the
temporal variability of crop water footprint. Accordingly, we demonstrate how
the crop yield is the leading factor of the water footprint temporal evolution.
The second important aspect of water management is linked to the global
inter-dependence of water resources, which happens through the international
trade of agricultural goods. Analysing the implications of trade for water
resources is essential to properly manage local water resource and to adopt
import strategies when water resources are not sufficient to, e.g., grow food.
The novel link prediction algorithm explores the reasons why a link begins or
ceases to exist, as a function of, e.g., food demand, land availability, nutrient
inputs, gross domestic product. This algorithm allows one to insert the local
water management into a more global context. The third aspect focuses on
the sustainability of water use, which is a function of both water consumption
and local availability. Differently from previous studies, which deal with water
use over water availability metrics, with the introduction of the water debt
repayment time we try to give a more physical shape to the mismatch between
water use and supply. This aspect of the water management is directly linked
to both the first and the second aspect of water resource management. On the
one hand, it can help prioritizing water efficiency improvement in areas with
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scarcer resources; on the other hand, it can be useful to better project crop
production intensity and, in some cases, to limit the export of local products
to mitigate water stress, or in other cases even to stimulate imports from other
regions.
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