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Abstract

As the next generation of mobile wireless standard, the fifth generation (5G) of
cellular/wireless network has drawn worldwide attention during the past few years.
Due to its promise of higher performance over the legacy 4G network, an increasing
number of IT companies and institutes have started to form partnerships and create
5G products. Emerging techniques such as Software Defined Networking and Mobile
Edge Computing are also envisioned as key enabling technologies to augment 5G
competence. However, as popular and promising as it is, 5G technology still faces
several intrinsic challenges such as (i) the strict requirements in terms of end-to-end
delays, (ii) the required reliability in the control plane and (iii) the minimization
of the energy consumption. To cope with these daunting issues, we provide the
following main contributions.

As first contribution, we address the problem of the optimal placement of SDN
controllers. Specifically, we give a detailed analysis of the impact that controller
placement imposes on the reactivity of SDN control plane, due to the consistency
protocols adopted to manage the data structures that are shared across different con-
trollers. We compute the Pareto frontier, showing all the possible tradeoffs achievable
between the inter-controller delays and the switch-to-controller latencies. We define
two data-ownership models and formulate the controller placement problem with the
goal of minimizing the reaction time of control plane, as perceived by a switch. We
propose two evolutionary algorithms, namely EVO-PLACE and BEST-REACTIVITY,
to compute the Pareto frontier and the controller placement minimizing the reaction
time, respectively. Experimental results show that EVO-PLACE outperforms its
random counterpart, and BEST-REACTIVITY can achieve a relative error of ≤ 30%
with respect to the optimal algorithm by only sampling less than 10% of the whole
solution space.
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As second contribution, we propose a stateful SDN approach to improve the
scalability of traffic classification in SDN networks. In particular, we leverage the
OpenState extension to OpenFlow to deploy state machines inside the switch and
minimize the number of packets redirected to the traffic classifier. We experimentally
compare two approaches, namely Simple Count-Down (SCD) and Compact Count-
Down (CCD), to scale the traffic classifier and minimize the flow table occupancy.

As third contribution, we propose an approach to improve the reliability of SDN
controllers. We implement BeCheck, which is a software framework to detect “mis-
behaving” controllers. BeCheck resides transparently between the control plane and
data plane, and monitors the exchanged OpenFlow traffic messages. We implement
three policies to detect misbehaving controllers and forward the intercepted messages.
BeCheck along with the different policies are validated in a real test-bed.

As fourth contribution, we investigate a mobile gaming scenario in the context of
fog computing, denoted as Integrated Mobile Gaming (IMG) scenario. We partition
mobile games into individual tasks and cognitively offload them either to the cloud
or the neighbor mobile devices, so as to achieve minimal energy consumption. We
formulate the IMG model as an ILP problem and propose a heuristic named Task
Allocation with Minimal Energy cost (TAME). Experimental results show that TAME
approaches the optimal solutions while outperforming two other state-of-the-art task
offloading algorithms.
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Chapter 1

Introduction

In the last few years the interest on the fifth generation (5G) cellular network has
been growing. Indeed, with the promise of achieving higher capacity and data rate,
shorter end-to-end latency, reduced maintenance cost, massive device connectivity as
well as consistent QoE provisioning, 5G is deemed to be the future of communication
networks [28]. To fulfil the promise of superior performance with respect to 4G
network, 5G network adopts a variety of advanced techniques including small
cells, massive MIMO, Device-to-Device (D2D) communications, Software Defined
Networking (SDN) and Fog Computing. This thesis presents a handful of approaches
to further enhance the performance, specifically with SDN and Fog Computing.

Software Defined Networking is a novel networking paradigm that keeps gaining
popularity in both industry and academia since its inception. Unlike traditional net-
works, SDN breaks the vertical bundled planes, decouples the control logic and data
forwarding, advocates centralized control and enables programmable networks [62].
5G network is believed to benefit massively by integrating SDN technique [85]. For
example, optimized resource provisioning is possible through the flexible and pro-
grammable control plane. Management of heterogeneous networks and deployment
of new services become trivial through the cognitively centralized control, which in
return reduces the operational costs. Security policies are also possible to be arranged
in finer granularity through the logically centralized control plane. Although the
myriad virtues SDN presents, integrating 5G network with SDN is still a challenging
task [48].
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The thesis is divided in two principle parts, the first devoted to SDN and the
second to gaming applications in the context of fog computing. The contributions in
each part are complementary.

1.1 Inter-Controller Consensus and the Placement of
Distributed SDN controllers

The centralized network control of the Software Defined Networking (SDN) paradigm,
which enables the development of advanced network applications, poses two main
issues. First, limited reliability, due to the single point-of-failure. Second, the control
traffic between the switches and the controller concentrates on a single server, whose
processing capability is limited, arising scalability issues.

Distributed SDN controllers are designed to address the above issues, while
preserving a logically centralized view of the network state, necessary to ease
the development of network applications. In a distributed architecture, multiple
controllers are responsible for the interaction with the switches. Thus, the processing
load at each controller decreases, because the control traffic between the switches and
the controllers is distributed, with a beneficial load balancing effect. Furthermore,
resilience mechanisms can be implemented to improve network reliability in case of
controller failures.

Distributed controllers adopt coordination protocols and algorithms to synchro-
nize their shared data structures, enabling a centralized view of the network state
for the applications. These schemes follow a consensus-based approach in which
the coordination information is exchanged among controllers to reach a common
network state. This introduces delays that, as discussed in Sec. 2.2 and shown
experimentally in 2.5.1, can heavily affect the controller reactivity perceived by the
switches. Indeed, each read/write of a shared data structure on one controller can be
directed to a potentially different controller acting as “owner” of the data. Thus, the
inter-controller delays must be considered along with the switch-controller delays
when evaluating the control plane reactivity perceived by the switches. As a result,
the optimal placement of the controllers in a given network should contemplate
both kinds of delays. However, most of the related literature only concentrate on
the delays of switch-controller interactions, while neglecting the delay introduced
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by inter-controller communications. Our work, on the other hand, focuses on the
controller placement problem by scrutinizing the impact of both delays.

The adoption of distributed SDN controllers in Wide Area Networks (SDWANs)
is more challenging than in data center networks. In the latter case, the limited
physical distances between network devices permits the installation of a separated
network among the controllers (e.g., using dedicated Ethernet or InfiniBand con-
nections), providing an out-of-band control plane. Conversely, SDWANs adopt an
in-band control plane: the control messages and data packets share the same network
infrastructure. Furthermore, the problem of supporting a responsive inter-controller
communication is exacerbated by the geographical extension of SDWANs.

Our work in Chapter 2 provides the following contributions:

1. we discuss Pareto-optimal controller placements considering both controller-
switch and inter-controller delays for some real ISP networks, based on the
different data-ownership models;

2. we propose a low-complexity algorithm to find the approximated Pareto fron-
tier in large-scale networks;

3. we define a set of formulas to compute the control plane reactivity. The formu-
las are validated through traffic measurements on an operational SDWAN;

4. we formulate the optimal controller placement problem as a Integer Linear
Programming (ILP) problem, with the objective of minimizing the reactivity
of control plane;

5. we propose an approximation algorithm to solve the above ILP problem and
assess its performance considering topologies of real ISP networks.

1.2 On-the-fly Traffic Classification and Control with
a Stateful SDN approach

SDN controllers can execute advanced traffic control policies, implemented as appli-
cations, which not only react to slow-varying states of the network (e.g., topology,
link costs), but also to fast-varying states (e.g., congestion, incoming traffic). The
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switches are responsible to inform the controller about the network state. Thus,
applications with slow-varying network states are quite scalable, since the commu-
nication overhead to send the actual network state to the controller is negligible.
Differently, when network state changes fast, the communication overhead between
switches and controllers may become critical in terms of bandwidth and latency, thus
posing severe limitations to the scalability of the system. This is particularly true for
network applications running in real-time.

One possible way to improve the scalability of real-time network applications is
to reduce the interaction between the switches and the SDN controller, by keeping
some basic state within the switch. Thus the switch is allowed to take some simple
decisions in an autonomous way (e.g. re-routing). This approach is denoted as
stateful and there has been a growing interest towards it, as discussed in [29]. We
remark that it is different from the traditional stateful approaches adopted in Ethernet
switches and IP routers, where the state associated to the control plane can be
complex (e.g., different level of abstractions in the topology related to the different
formats of LSA messages in OSPF), but cannot be programmed in real-time.

In our work we address the integration of traffic control policies, that are specifi-
cally driven by a traffic classifier with an SDN approach. The addressed scenario
is an SDN network in which flows are classified in real-time and the traffic control
application applies some actions to them. E.g., if the traffic is classified as video-
streaming, it is sent through a path with better bandwidth and/or delays. Or, if the
traffic is classified as file-sharing, it is tagged as low priority. In this chapter we show
that a stateful approach reduces the interaction between the switches and the SDN
controller, which in turn is no more involved in a continuous interaction with the
traffic classifier.

The main contribution of our work is to exploit the stateful approach, enabled
by the OpenState [36] extension of OF, to integrate (i) the switches, (ii) the SDN
controller and (iii) a traffic classifier in order to minimize the number of packets that
are mirrored to the classifier by the switch, without the SDN controller’s intervention.
As shown in [39], relying on just a few packets (e.g., the first ones of a flow) for
flow classification can improve the scalability of the overall system and achieve high
data rates (e.g., Gbit/s).

We propose two solutions based on OpenState to configure the flow tables in
different ways. The benefit of our approach is not only for the reduced load on
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the SDN controller and on the traffic classifier, but also for the switches. Indeed,
the memory occupancy of the internal flow tables is minimized. This result is
relevant since flow tables are efficiently implemented with TCAMs (Ternary Content
Addressable Memories), which are very fast, but much smaller (around 105-106

bytes) than standard RAM memories. As additional contribution of our work, we
validate our solutions in a testbed with a Ryu controller interacting with an OF 1.3
switch (emulated with Mininet) and evaluate experimentally the actual memory
occupancy typical of each of our solutions, in function of the number of concurrent
flows. Thanks to our results, we can compute the maximum number of concurrent
flows compatible with a maximum TCAM memory size.

1.3 Misbehaving SDN controllers

Unlike traditional IP networks, software-defined networking (SDN) decouples the
network control logic and the forwarding functions. SDN controllers act as the
“brain" of the network by making routing decisions and configuring the underlying
simple forwarding devices in a logically centralized fashion. This refinement greatly
simplifies network configuration and programmability.

However, just like any complex systems, SDN controllers are susceptible to
misbehaviors, exacerbated by the centralized approach. Software bugs (e.g., per-
sistent loops, synchronization failure, inconsistent state, response omission etc.)
have been discovered in many popular SDN controllers. According to [51], the load
balancer of Floodlight [4] may fail to distribute flows consistently and the POX [23]
forwarding modules can delete rules installed by other modules. Furthermore, exper-
iments in [40] detected totally 11 bugs on merely 3 applications of NOX [15]. Even
the most practically relevant open source SDN controllers, namely OpenDaylight
(ODL) [16] and ONOS [34], are not immune to bugs. According to [67], ODL can
face flow deletion and instantiation failure bugs while link detection inconsistency
and flow rules pending bugs are spotted in ONOS. These bugs can give high risk
to misbehaving controllers. To make things worse, various security attacks to the
control plane increases the possibility of misbehaving controllers. According to [49],
SDN controllers including POX, Maestro [9], OpenDaylight and Floodlight are all
susceptible to a diversity of security attacks on network topology and data forwarding.
In addition, malicious network administrators can also misconfigure SDN controllers
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to sabotage the network [70]. Most of the previous works improve the reliability
and security of SDN control plane either by verifying the controllers’ behaviors
through complicated analysis such as model checking, or by advocating secure and
dependable design of SDN controllers. Few of them provides solutions for real-time
detection of misbehaving controllers.

In this paper, we present a behavioral checker, denoted as BeCheck, which is
a module that relay the OpenFlow (OF) traffic between the controllers and the
network switches, and detects misbehaving controllers in real-time, by comparing
the instructions received by the controllers, which operate in locksteps. BeCheck
resides transparently between the SDN controllers and the data plane, and neither
the controllers nor the forwarding devices need to be modified for its presence. We
propose a misbehavior detection policy, combined with different forwarding policies,
and investigate experimentally the possible tradeoffs between the detection reliability
and the reactivity of the application as perceived by the network switches.

1.4 Task Allocation for Integrated Mobile Gaming

In the second part of the thesis, we focus on D2D communications and fog computing
as 5G enabling technologies. In D2D framework, communication can be guaranteed
through cooperation of mobile devices in the vicinity, even without the facilitation of
base stations. With the fast growth of mobile game industry, topics such as mobile
gaming become increasingly interesting.

Mobile Cloud Gaming (MCG) [90] offers the possibility of running sophisticated
games on thin mobile devices by offloading heavy tasks to the cloud. In this way,
mobile games can be accessed on any device from anywhere with a simple setup.
During the last few years, MCG has sharply motivated the expansion of mobile game
industry. According to the report by Newzoo [13], in 2016 game users generated
$99.6 billion of revenues, with an increase of 8.5% compared with 2015, and mobile
games began to take a larger market share than their PC counterpart for the first
time. Additionally, the Asia Pacific cloud gaming market is expected to witness
a compound annual growth rate of 22% between 2016-2022 [26]. Finally, as a
prevalent gaming model, MCG is widely supported by many famous online gaming
platforms including Onlive [17], GaiKai [5] and GamingAnywhere [56].
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In spite of the increasing popularity of MCG, several important challenges
still need to be faced. First, offloading tasks to the remote cloud imposes extra
communication latency, which may degrade users’ quality of experience (QoE) and
limit user coverage due to strict requirements on the response delay [64, 44]. Second,
a large amount of bandwidth is required in order to guarantee high game quality,
which in turn increases the costs for gaming service providers [90]. Third, cloud
infrastructure requires more and more resources to cater the ever increasing demands
of large scale mobile games (e.g., World of Warcraft) [66].

In this paper, we propose a general mobile gaming platform named Integrated
Mobile Gaming (IMG), which combines the available resources of both the cloud
and the neighbor mobile nodes, denoted as mobile fog, to run a game on behalf
of the player’s device. This new model shares MCG’s idea of augmenting mobile
devices with computation offloading, whereas it overcomes the intrinsic drawbacks
of traffic offloading such as long response latency, wireless bandwidth consumption
and limited available energy and computational resources. By partitioning a game
into fine-granularity tasks and offloading part of them to either the cloud or neighbor
nodes cognitively, not only the player’s local device can save energy but also the
available resources of the network can be better utilized. Similar to [60, 46], we
partition games at both object and method level for the sake of offloading flexibility.
Then we determine the offloading strategy by solving an integer linear programming
(ILP) problem as well as by devising an approximation algorithm exhibiting excellent
scalability.

As an example, consider the IMG scenario depicted in Fig. 1.1, including the
player’s device (denoted by n0) and some mobile devices in proximity, a Point of
Access (PoA) and a cloud server. Notably, the PoA can be a standard Wi-Fi AP or
can be the access node of a cellular network. Beside the connection with the cloud
server through the PoA, each of the mobile devices can exploit device-to-device
(D2D) communications with the neighboring nodes, enabled by Bluetooth or Wi-Fi
Direct technologies. According to the IMG model, the game running on n0 is firstly
partitioned into tasks, part of which can be offloaded to the neighboring devices (e.g.,
n1 and n2) or the cloud server, without degrading gameplay experience. Through
task offloading, we aim to minimize the maximum energy consumption across all
mobile nodes, instead of just at the player’s device, since, as shown in [42], the case
of multiple players in the network minimizing unilaterally the energy cost for their
own devices may end up with a lose-lose situation.
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Cloud
server

PoA

n0
n1 n2

Fig. 1.1: Exemplifying scenario of Integrated Mobile Gaming (IMG).

To the best of our knowledge, this is the first work that exploits both cloud and
mobile fog for energy-efficient mobile gaming. In mode detail, we provide the
following contributions:

1. we formulate the optimal energy-aware task offloading problem for mobile
gaming under the IMG model;

2. we devise an approximate algorithm, named Task Allocation with Minimal
Energy cost (TAME), which is able to account for both computation and
communication costs;

3. we evaluate the performance of TAME under synthetic and realistic scenarios,
and show that it approximates very closely the optimal solution and outper-
forms other state-of-the-art offloading algorithms.
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Control plane optimization in SDN





Chapter 2

Inter-Controller Consensus and the
Placement of Distributed SDN
Controllers

In this chapter, we consider a distributed Software Defined Networking (SDN) ar-
chitecture adopting a cluster of multiple controllers to improve network scalability
and reliability. We focus on the control traffic exchanged among the instances of
controllers running in a cluster. There are two kinds of control traffic: namely
the traffic exchanged between the switches and the controllers, as well as those
exchanged between the controllers. The control traffic are exploited by the coordi-
nation and consensus algorithms to keep the shared data structures synchronized
across all the physically distributed controllers. We advocate a careful placement
of the controllers, that should take into account both the two kinds of control traffic.
We evaluate, for some real ISP network topologies, the delay trade-offs for the
controllers placement problem and we propose a novel evolutionary algorithm to
find the corresponding Pareto frontier. Furthermore, we develop a simple model to
estimate the reaction time perceived by the switches, which is accurately validated
in an operational Software Defined WAN (SDWAN). Last but not least, we also
formalize the optimization problem to minimize the reaction time and devise a novel
approximation algorithm, whose performance is assessed against the optimal solver
in real ISP network topologies.
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Our work provides novel quantitative tools to optimize the planning and the
design of the network supporting the control plane of SDN networks, especially
when the network is very large and in-band control plane is adopted. We also show
that for distributed controllers (e.g. OpenDaylight and ONOS), the location of the
controller which acts as a leader in the consensus algorithm has a strong impact on
the reactivity perceived by switches. The results and conclusions of this chapter are
also reported in [99, 102].

This chapter is organized as follows: In Sec. 2.1 we provide an overview of
distributed SDN architectures. In particular, we describe the interaction in the
control plane, highlighting the importance of the inter-controller communications.
In Sec. 2.2 we define two data-ownership models and explain the trade-offs for
communication delays. In Sec. 2.3 we describe the controller placement problem
and discuss the Pareto optimal solutions in real ISP topologies. In Sec. 2.4 we
propose two simple analytical models to evaluate the reaction time based on the
adopted data-ownership model. Section 2.5.1 applies the models to a real reactive
forwarding application in OpenDaylight and provides an accurate experimental
validation in an operational SDWAN. In Sec. 2.6 we formulate the ILP problem
to minimize the average reaction time and numerically investigate its effects. To
address the limited scalability of the optimal ILP solvers, we devote Sec. 2.7 to an
evolutionary algorithm for optimized controller placement, and numerically evaluate
their performance in real ISP topologies. In Sec. 2.8 we discuss the related work. In
Sec. 2.9 we summarize the chapter.

2.1 Distributed SDN controllers

For a network under the administration of distributed SDN controllers, two control
planes can be identified. First, the switch-to-controller plane, denoted as Sw-Ctr
plane, supports the interaction between any switch and its controller (denoted as
master controller for a given switch) through the controller “South-bound” interface.
This interaction is usually devoted to data plane commands (e.g., through the Open-
Flow (OF) [71] protocol) as well as to configuration and management of network
switches (e.g. through OF-CONFIG or OVSDB protocols). Second, the controller-
to-controller plane, denoted as Ctr-Ctr plane, allows the direct interaction among the
controllers through the “East-West” interface. Indeed, SDN controllers exchange
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heart-beat messages to ensure liveness. Controllers also need to synchronize the
shared data structures to guarantee a consistent global network view.

2.1.1 Data consistency models

The traffic exchange on the Ctr-Ctr plane is crucial to achieve a consistent shared
view of the network state. The network state (e.g., topology graph, the mapping
between any switch to its master controller, the list of installed flow rules) is stored
in shared data structures, whose consistency across the SDN controllers can be
either strong or eventual. Strong consistency implies that simultaneous reads of
some data occurring in different controllers always lead to the same result. Eventual
consistency implies that simultaneous reads may eventually lead to different results,
for a transient period. Different levels of data consistency heavily affect the reactivity
and resilience of the control plane, as highlighted by [37, 80]. In OpenDaylight
(ODL) [72] and Open Network Operating System (ONOS) [34], two state-of-the-art
SDN controllers, strong consistency for the shared data structures is achieved using
the Raft consensus algorithm [78]. For instance, the most recent version of ODL
(e.g., Beryllium) provides a clustering service to support multiple instances of the
controller, and the clustering module is built with a customized Raft algorithm [76],
whose code is available in [25]. ODL clustering service organizes data of different
modules into “shards”, each of which is replicated to a configurable odd number
of ODL instances. Similarly, ONOS release (2015-17) adopts the Raft algorithm
for distributed data stores and mastership maintenance [81, 18], according to which
data is shared across multiple shards, each of which is managed by an independent
instance of Raft algorithm, thus ensures that operations on different shards can
proceed independently.

Raft consensus algorithm is based on a logically centralized approach, in which
any update is always forwarded to the single controller defined as leader. The leader
then propagates the update to all the other controllers defined as followers. The
update is considered committed whenever the majority of the follower controllers
acknowledge the update. Sec. 2.4.2 provides a comprehensive description of the
adopted protocol, based on the description provided in [78]. Note that the role of
leader/follower controller for a data structure is a different concept from the role of
master/slave controller for a switch.
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In ONOS, some data can also be synchronized according to an eventual consis-
tent model. Eventual consistency is achieved through the so called “anti-entropy”
algorithm [18, 75], according to which local updates are propagated periodically
in the background with a gossip approach: each controller picks at random an-
other controller and compares the replicas. The differences are reconciled based on
timestamps.

2.2 Data-ownership models and delays trade-off

The controller reactivity as perceived by a switch depends on the availability of
the data necessary for its master controller. We can identity two distinct operative
models.

In a single data-ownership (SDO) model, a single controller (denoted as “data
owner”) is responsible for the actual update of the data structures. Any read/write
operation on the data structures performed by other controllers must be forwarded
to the data owner. In this case, the Ctr-Ctr plane plays a crucial role for the interac-
tions occurring in the Sw-Ctr plane, because some Sw-Ctr request messages (e.g.,
packet-in) trigger transactions with the data owner on the Ctr-Ctr plane. Thus, the
perceived controller reactivity is also affected by the delay in the Ctr-Ctr plane. As
discussed in Sec. 2.1.1, the SDO model is currently adopted in ODL and ONOS, for
all the strong-consistent data structures managed by Raft algorithm: a local copy of
the data structure is stored at each controller, but any read/write operation is always
forwarded to the leader. With this centralized approach, data consistency is easily
managed and the distributed nature of the data structures is exploited only during
failures.

In a multiple data-ownership (MDO) model, each controller has a local copy of
the data and can run locally read/write operations. A consensus algorithm distributes
local updates to all other controllers. This model has the advantage of decoupling the
interaction in the Sw-Ctr plane from the one in the Ctr-Ctr plane, thus improving the
reactivity perceived by the switches. The main disadvantage is the introduction of
possible update conflicts that must be resolved with ad-hoc solutions, and of possible
temporary data state inconsistencies leading to network anomalies (e.g. forwarding
loops) [80]. This model applies to generic eventual-consistent data structures, as the
ones adopted in ONOS.



2.3 The controller placement problem 15

We now focus on the delay trade-off between Sw-Ctr and Ctr-Ctr planes. For the
MDO model, the two planes are decoupled. Thus, small Sw-Ctr delays imply high
reactivity of the controllers, whereas small Ctr-Ctr delays imply lower probability of
network state inconsistency. But for the SDO model, the Ctr-Ctr delays also affect
the perceived reactivity of the controllers, as shown in Sec. 2.4. Thus, reducing Ctr-
Ctr delays is as important as reducing Sw-Ctr ones. Due to topological constraints,
reducing one kind of delays may imply maximizing the other. The effects of such
delays are particularly exacerbated in large networks, where propagation delays are
not negligible. These observations motivate the exploration of possible trade-off in
the following section.

2.3 The controller placement problem

Let N be the total number of switches in the network and C be the total number of
controllers to deploy. The output of any placement algorithm can be represented by
the vector π denoted as placement configuration:

π = [πc]
C
c=1 (2.1)

where πc ∈ {1, . . . ,N} identifies the switch at which controller c is physically con-
nected to. We assume in-band control traffic and all the controllers should be
connected to distinct switches (equivalently, two controllers cannot be connected
to the same switch), i.e. πc ̸= πc′ for any c ̸= c′. For the scope of our work, many
controllers connected to a switch is equivalent in terms of delay trade-off as placing
just one single controller to the same switch.

Let Ω be the set of all placement configurations; thus, the total number of possible
placements is

|Ω|=
(

N
C

)
(2.2)

The optimal controller placement problem consists of finding the π ∈ Ω such
that some cost function (e.g. the maximum or average Sw-Ctr delay) is minimized.
It is an NP-hard problem for a generic graph, as discussed in [54].

The network topology is described by a weighted graph with N nodes where each
node represents a switch; each edge represents the physical connection between the
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corresponding switches and is associated with a propagation delay. Each controller is
directly connected to a switch. We assume that the master controller of a switch is the
one with the minimum Sw-Ctr delay. We also assume that all the communications
are routed along the shortest path.

2.3.1 Results on the placement of controllers in ISP networks

To explore all the possible tradeoffs on the Sw-Ctr and Ctr-Ctr planes, we adopt an
optimal algorithm (denoted EXA-PLACE) to exhaustively enumerate all possible con-
troller placements and get all Pareto-optimal placements1 and thus the corresponding
Pareto-optimal frontier. For small/moderate values of network nodes N and number
of controllers C, as considered in this section, the number of possible placements,
evaluated in (2.2), is not so large and thus EXA-PLACE is computationally feasible.
In Sec. 2.7.1 we will instead devise an approximated algorithm to find the Pareto
frontier for large networks and/or large numbers of controllers.

Coherently with [54], we considered the topologies available in the Internet
topology zoo repository [27], which collects more than 200 network topologies of
ISPs at POP level. For each ISP, the repository provides the network graph, with
each node (i.e. switch) labeled with its geographical coordinates. From these, we
compute the propagation delay between the nodes and associate it as latency of
the corresponding edge. For any given controller placement, we evaluate both the
Sw-Ctr delay (as the average delay between the switches and their master controllers)
and the Ctr-Ctr delay (as the average delay among controllers).

2.3.2 Tradeoff between Sw-Ctr and Ctr-Ctr delay

We report here the results only for HighWinds ISP, a world-wide network with 18
nodes. A preliminary version of our work [99] shows the detailed results for some
other ISPs, qualitatively coherent with HighWinds.

Figs. 2.1-2.2 show the scatter plot with the Sw-Ctr and Ctr-Ctr delays achievable
by all possible placements of 3 and 4 controllers, respectively. In total, all the possible

1When considering two performance metrics x and y to minimize, a solution (xp,yp) is Pareto
optimal if does not exist any other configuration (x′,y′) dominating it, i.e. better in terms of both
metrics; thus, it cannot be that x′ ≤ xp and y′ ≤ yp. The set of all Pareto-optimal solutions denotes the
Pareto-optimal frontier.
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Fig. 2.1: Delay tradeoffs in HighWinds network with 3 controllers
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Fig. 2.2: Delay tradeoffs in HighWinds network with 4 controllers

(18
3

)
= 816 and

(18
4

)
= 3060 different placements are shown; the corresponding

Pareto-optimal placements are also highlighted. When comparing the two figures,
the delays for Pareto-optimal points are smaller for 4 controllers, thanks to the higher
number of controllers.

The fraction of placements corresponding to Pareto points is small, equal to
38/816 = 0.46% and 64/3060 = 0.21% for the two scenarios. This suggests that
identifying Pareto points is difficult if using random sampling. To generalize our
findings, Fig. 2.3 shows the fraction of Pareto placements for 114 different ISP
topologies. When the number of controllers increases, this fraction decreases because
of the larger solution space. For some networks, corresponding to small ISPs, the
fraction is quite large (around 10%). But for most ISPs the fraction of Pareto
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Fig. 2.3: Fraction of Pareto placements for deploying 3 and 4 controllers in 114 ISP
networks.

placements becomes very small (less than 1%, and, in some large networks, less than
0.1-0.01%).

When considering the specific shape of the placements in Figs. 2.1-2.2, high (or
small) Sw-Ctr delays imply small (or high) Ctr-Ctr delays, respectively. The graphs
show the large variety of Pareto-optimal placements. We denote by P1 the Pareto
point with the minimum Sw-Ctr delay (i.e. the most right-low point), and by P2 the
one with the minimum Ctr-Ctr delay (i.e. the most left-high point). To understand
the relative tradeoffs along the Pareto frontier from P1 to P2, we compute the Sw-Ctr
delay reduction, defined as the ratio between the Sw-Ctr delay in P2 and the one in
P1. Similarly, we define the Ctr-Ctr delay reduction as ratio between the Ctr-Ctr
delay in P1 and the one in P2. Both reductions are ≥ 1 by construction. According
to Fig. 2.1, the Sw-Ctr delay reduction is 6.0 whereas the Ctr-Ctr delay reduction is
34.8. In other words, if we allow the Sw-Ctr delay to increase by 6.0 times, then the
Ctr-Ctr delay will decrease by 34.8 times, with strong beneficial effects on the time
to reach consistency among the controllers.

To generalize our findings, Fig. 2.4 shows the Sw-Ctr and Ctr-Ctr delay reductions
for 114 ISP topologies. Given the same topology, the Sw-Ctr delay reductions for
3 and 4 controllers are quite similar; interestingly, the Ctr-Ctr delay reductions are
usually much higher (also 3 order of magnitude) than Sw-Ctr delay reductions. Thus,
we can claim that Ctr-Ctr delays corresponding to Pareto points vary much more
than Sw-Ctr delays in a generic network. Indeed, Ctr-Ctr delays are by construction
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between a minimum of 1-2 hops (when all the controllers are at the closest distance)
and the maximum equal to the diameter of the network. The gains for the Sw-Ctr
delays are lower, since the availability of multiple controllers decreases the maximum
distance to reach the master controller from a switch. We can conclude that larger
Sw-Ctr delays with respect to the minimum ones are much more compensated by
much smaller Ctr-Ctr delays. This highlights the relevant role of the proper design
of the Ctr-Ctr plane in SDN networks.

To better highlight the difference with respect to a standard placement problem
that minimizes the Sw-Ctr delay, we define a new metric that evaluates the reduction
in Ctr-Ctr delay whenever we accept some little increase in the Sw-Ctr delay. Let
P′ = (d′sc,d

′
cc) be the Pareto placement that minimizes the average delay, where

d′sc and d′cc are the corresponding Sw-Ctr and Ctr-Ctr delays. Consider now the
specific Pareto placement P′′ = (d′′sc,d

′′
cc) with the minimum Ctr-Ctr delay such that

the Sw-Ctr delay increases at most by a factor of 2, i.e. d′′sc ≤ 2d′sc. We define the
Ctr-Ctr reduction factor as the ratio d′cc/d′′cc, which evaluates the relative reduction
of Ctr-Ctr delay whenever we accept to double the Sw-Ctr delay.

Figs. 2.5 reports the Ctr-Ctr reduction factors for different network topologies
obtained for 3 and 4 controllers. The reduction is larger for 3 controllers, since
the average distance between controllers is larger by construction. The gain for 3
controllers depends heavily on the particular topology. For the first 20% topologies,
the growth in the Sw-Ctr delay is not compensated by the same reduction in Ctr-Ctr
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Fig. 2.5: Ctr-Ctr delay reduction when doubling the Sw-Ctr delay for 3 and 4
controllers.

delay. Instead, for the remaining 80% topologies, the reduction in the Ctr-Ctr delay
is much higher, achieving also a factor 6; in this case, increasing a little the Sw-Ctr
delay has a very strong beneficial effect on the Ctr-Ctr delay.

It is interesting to note that in same cases the reduction decreases from 3 to
4 controllers (as in Highwinds and HiberniaCanada). It can be shown that this is
actually due to the peculiar clustered topology of the two ISPs, that are similar to
a single star connected to one or two nodes very far (e.g. in Highwinds, we have
one star-like cluster in North America and very few nodes in South America and in
Europe).

2.4 Reaction time for the data-ownership models

After a global characterization of the Pareto-optimal frontier in terms of Sw-Ctr
and Ctr-Ctr delays, we now specifically evaluate the reaction time of the controller,
defined as the latency perceived by the switch when a new network event is generated.
This time depends on the specific data-ownership model adopted by the controllers
and on a specific combination of Sw-Ctr and Ctr-Ctr delays.
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Fig. 2.6: Control traffic due to SDO model for an update event at the switch, coherent
with Raft consensus algorithm.

2.4.1 Reactivity model for MDO model

In a MDO scenario, a generic event occurring at the switch (e.g. a miss in the flow
table) generates a message (e.g., a packet-in) to its master controller, which pro-
cesses the message locally and eventually sends back a control message to the switch
(e.g., flow-mod or packet-out message). In the meanwhile, in an asynchronous
way, the master controller advertises the update to all the other controllers. Thus, we
can claim:

Property 1 In a MDO scenario for distributed SDN controllers, the reaction time
T MDO

R of the controller perceived at the switch is:

T MDO
R = 2dsw-ctr (2.3)

being dsw-ctr the delay from the switch to its master controller, i.e. to the switch
where its master controller is attached.

2.4.2 Reactivity model for SDO model

In a SDO scenario, we assume the exchange of messages coherent with the detailed
description of Raft algorithm available in [78]. According to Raft implementation
in ODL, the controller can operate as either leader or as one of the followers, for a
specific data store (denoted “shard” in the following). As an example, Fig. 2.6 shows
a general message exchange sequence in a cluster with 3 controllers (one leader
and two followers), when an update event (e.g. packet-in message) for the shard
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is generated at some switch (S1 in the figure), which receives a response message
from its controller due to the update (e.g. packet-out message). The arrows show the
exchange of messages in both Sw-Ctr and Ctr-Ctr planes triggered by the update
event; the number associated to each arrow shows the temporal sequence of each
packet. We have now two cases.

In the first case, S1’s master controller is a follower for the shard (as depicted in
Fig. 2.6). Thus, the switch sends the update event (message 1) to the master controller,
which asks the leader to update the shard through a “Raft request” (message 2). Now
the leader sends a “log replication” message to all its followers (message 3) and
waits for the acknowledge from the majority of them (“log reply” in messages 4).
Only at this point, the update is committed through a “log commit” (message 5) sent
to all the followers. Thus, after receiving the commit message, S1’s master controller
can process the update on the shard and generate the response event (message 6) to
the switch.

In the second case, S1’s master controller is the leader for the shard. This case is
identical to the previous one except for the “Raft request” message 2, now missing.

For both cases, the controller’s reaction time perceived by switch S1 is given by
the time between the update event and the response event messages. Let dsw-ctr be
the communication delay between the switch and its master controller and dctr-leader

the communication delay from the master controller and the leader (being zero
whenever the master is also leader). Assume a cluster of C controllers. Because of
the majority-based selection, let dctr*-leader be the communication delay between the
leader and the farthest follower belonging to the majority (i.e. corresponding to the
⌊(C/2)⌋-th closest follower). Observing Fig. 2.6, the reaction time is obtained by
summing twice dsw-ctr, twice dctr-leader (only in the first of the above cases) and twice
dctr*-leader. Thus, we can claim:

Property 2 In a SDO scenario (e.g. adopting Raft consensus algorithm) for dis-
tributed SDN controllers, the reaction time T SDO

R of the controller perceived at the
switch is:

T SDO
R = 2dsw-ctr +2dctr-leader +2dctr*-leader (2.4)

Thus, the reaction time is identical to the one for MDO model plus either 2 or 4
times the RTT between the controllers, when the master controller is either leader or
follower of the shard, respectively. Notably, the delays between controllers may be
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Fig. 2.7: Average reaction times in HighWinds network for all the placements.
Optimal placements for the two data-ownership models are highlighted.

dominant for large networks as SDWAN, as also shown experimentally in 2.5.1. The
model in (2.4), here obtained in a speculative way, will be tailored to a specific ODL
network application and experimentally validated in an operational SDWAN running
ODL, as described in details in 2.5.1. Thus, we can claim that the devised model is
very accurate.

2.4.3 Experimental results

We investigate the reaction times achievable for different data-ownership models,
based on Properties 1 and 2. Given a controller placement, we study the effect of
selecting the data owner among the controllers on the perceived controller reactivity.
We show the results just for HighWinds ISP, but the results for other ISP networks
are available in [99].

In Fig. 2.7, we report the scatter plots of the average reaction times for the SDO
and the MDO models when considering all possible controller placements and all
possible selections for the data owner, in the case of 3 controllers. Each controller
placement appears with 3 points aligned horizontally, one for each data owner, since
the data owner selection does not affect the MDO reaction time. In the plots we
have highlighted the placements with the minimum reaction time according to the
SDO and MDO models. By construction, the minimum reaction time for the MDO
is always smaller than the one for SDO model. From these results, the optimal
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the data owner in the SDO model.

placements appear very different for the two data-ownership models and this fact
motivates the need for a careful choice not only of the controller placement, but also
of the data owner, in the SDO case.

To highlight the role of the proper selection of the data owner for the SDO model,
in Fig. 2.8 we investigate the benefit achievable when considering the best data owner
among the 3 available controllers, for the three ISPs under consideration. Assume
that a given controller placement corresponds to three values of reaction times: d1, d2

and d3, sorted in increasing order. The minimum reduction factor is defined as d2/d1

and the maximum reduction factor as d3/d1. We plot the delay reduction factor due
to the optimal choice of the data owner, for any possible placement. For the sake
of readability, the placements have been sorted in decreasing order of minimum
reduction factor. Fig. 2.8 shows that a careful choice of the data owner in the SDO
model decreases the reaction time by a factor around 2 and 4.

These results show that the selection of the data owner in the SDO model has
the largest impact on the perceived performance of the controller, and can be easily
optimally solved by considering all the possible C cases, after having fixed the
controller placement.
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2.5 OpenDaylight validation

2.5.1 Flow setup time for reactive forwarding in ODL

To validate and show the practical relevance of the SDO model devised in Sec. 2.4.2,
we apply Property 2 to compute the flow setup time for the specific layer-2 forwarding
application called “l2-switch” available in ODL, deployed on a generic topology.
Notably, even if (2.4) is derived in a speculative way, in the following section we will
show that it is very accurate from experimental point of view, and thus its relevance
is practical. The same methodology can be applied to analyze other applications,
given the knowledge of their detailed behavior.

ODL l2-switch application provides the default reactive forwarding capabilities
and mimics the learning/forwarding mechanism at layer 2 of standard Ethernet
switches. Anytime a new flow enters the first switch of the network, the corre-
sponding ARP-request is flooded to the destination, and only when the ARP-reply is
generated, the controller installs a forwarding rule at MAC layer in all the switches
involved in the path from the source to the destination, and vice versa. The associa-
tion of a MAC address to the switch port, needed for the learning phase, is distributed
to the other controllers using Raft algorithm.

Assume a generic topology as shown in Fig. 2.9 connecting source host H1 to
destination host H2, with every switch s attached to its master controller (denoted
as c(s)) which can be either a follower or a leader (denoted as L) within the cluster.
We assume initially empty flow tables in all the switches. At the beginning, the first
ARP-request corresponding to a new flow from H1 is flooded in the whole network
(loops are avoided by precomputing a spanning tree on the topology). Anytime the
ARP packet is received at a switch, a packet-in is generated and the association
[MAC source address, ingress port, switch identifier] is stored in the shared data
store, in order to mimic the standard learning process. This means that at each
switch, along the path from the source to the destination, a latency is experienced
according to formula (2.4). When the ARP-request reaches the destination, H2
sends back an ARP-reply which generates a packet-in from the last switch (denoted
as s′) to the controller. This event generates another update since the controller
learns the port of s′ at which H2 is connected. Only at this point, the controller
installs a flow rule across all the switches in the source-destination path and then the
ARP-reply is switched back to the source. Thus the flow setup time can be evaluated
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Fig. 2.9: The control traffic for l2-switch application in ODL. For the sake of clarity,
we report just some sequence numbers. The packets sent with sequence 2-6 repeat as
9-13, 21-25, 28-32, 35-39. The packets sent with sequence 3-5 repeat as 16-18, since
the master controller of the third switch along the path is also the shard leader. Only
the messages between the controllers and the switches along the source-destination
path are shown.

as ARP reaction time tr, ARP, defined as the interval between the time when the H1’s
switch sends the packet-in message (due to the ARP-request) to its controller and
the time when H1’s switch receives back the packet-out/flow-mod messages (due to
the ARP-reply). Note that the flow setup time depends on the considered application,
that installs the flow rules across all the switches involved in the path just after the
ARP reply at the destination host is generated.

Let di, j be the propagation delay between nodes i and j, computed by summing
all the contributions along the shortest path from i to j. Let P be the list of all the
nodes involved in routing path from H1 to H2, in which the last switch s′ appears
twice. Thus, the total number of updates within a flow is |P|. We can claim:
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Property 3 In OpenDaylight (ODL) running l2-switch application, the flow setup
time can be computed as

tr,ARP = 2dH1,H2 + ∑
s∈P

(2ds,c(s)+2dc(s),L)+

2|P|dcnt*-follower + |P|tc (2.5)

Indeed, the first term in (2.5) represents the delay to send the ARP request and reply
along the routing path, the second term represents the delay occurring for all the
switches along the path (the final switch s′ is double counted) due to the packet-in
and the packet-out/flow-mod (2ds,c(s)) and due to the Raft-request and log commit
(2dc(s),L), the third term represents the delay to get the acknowledgement from the
majority for each of the updates, and the fourth term represents the computation time
for each update at the controller (assuming to be constant and equal to tc).

2.5.2 Experimental validation in a SDWAN

We validate Property 3 on a real and operational network. Since (2.5) depends mainly
on the formula (2.4) obtained for SDO model, our results validate Property 2.

Specifically, we run a cluster of OpenDaylight (Helium SR3 release) controllers
running the default “Simple Forwarding” application. We run our experiments in
the JOLNet, which is an experimental SDN network deployed by Telecom Italia
Mobile (the major telecom operator in Italy). JOLnet is an Openflow-based SDWAN,
with 7 nodes spread across the whole Italy, covering Turin, Milan, Trento, Venice,
Pisa and Catania. Each node is equipped with an OF switch and a compute node.
The compute node is a server deploying virtual machines (VMs), orchestrated by
OpenStack. Network virtualization is achieved though FlowVisor [88] and the logical
topology among the OF switches is fully connected.

Due to the limited number of nodes in the JOLNet and the limited flexibility in
terms of topology, we augment the topology with an emulated network running on
Mininet [92] in one available compute node. We adopt the linear network topology
of Fig. 2.10 with a variable number of nodes (from 3 to 36) and with one host
attached at each switch. We generate ICMP traffic using the ping command among
the different hosts. We run a single controller cluster with multiple ODL instances
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Fig. 2.10: Network configuration for the validation of the SDO model

running in different nodes of the JOLNet, in order to distribute geographically the
controllers across Italy. The controllers instances and Mininet run individually on
single VMs for a flexible placement across the nodes. Thanks to the large physical
extension of the network, we experiment a large variety of scenarios, e.g. with large
Sw-Ctr delays (when the VM of the master controller is located in a compute node
far from the switch node) and/or large Ctr-Ctr delays (when the VMs of the controller
instances are located in nodes far one from each other). By selecting the master
controller of the switches, we change the data owner of the shared data structure
within the cluster. We consider a cluster of 3 controllers and we measure the flow
setup time tr,ARP by comparing the timestamps of the packets obtained by using
Wireshark as network sniffer at the Mininet interface towards the controllers.

As first step to validate Property 3, we evaluate the RTT among each pair of
nodes in JOLNet and then we estimate the delay between any pair of nodes i and j
as di j = RTTi j/2, required to apply (2.5). The experiments reported in the following
refer to the scenarios using 3 JOLnet nodes, namely Turin, Milan and Pisa, to deploy
the VMs. The measured RTT between Turin and Milan is 4 ms, whereas the one
between Turin and Pisa is 132 ms.

As second step for the validation, we perform 100 measurements, by clearing
the whole forwarding tables and restarting the controllers at each run. According
to rigorous methodology, we evaluate the width I95 of the 95% confidence interval
for the measurements and we compute the measurement accuracy as λ = I95/(2µ̄),
where µ̄ is the average measure. For each scenario and topology, the relative error
of the model is instead computed as: δ = |Mi−Ti|/|Ti| where Mi is the average flow
setup time according to the experiments and Ti is the flow setup time according to
(2.5).
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Table 2.1: Placement of the VMs for the experimented scenarios. “L”: leader
controller. “F1”, “F2”: follower controllers. “Net”: Mininet.

Scenario Turin Milan Pisa
VMs VMs VMs

TT Net, L, F1, F2 - -
TMC Net, F1 L, F2 -
TMF Net L, F1, F2 -
TPC Net, F1 - L, F2
TPF Net - L, F1, F2

Table 2.2: Input parameters for the model, accuracy of measurements and relative
error of the model

Scenario dsw-ctr dctr-ctr tc Experimental Model
accuracy (λ ) error (δ )

TT 0.25 ms 0.25 ms 20 ms 1.2% - 2.7% 3.2%
TMC 0.25 ms 2.0 ms 20 ms 0.7% - 3.9% 5.2%
TMF 2.0 ms 0.25 ms 20 ms 0.6% - 3.6% 5.1%
TPC 0.25 ms 66 ms 20 ms 0.3% - 1.3% 9.2%
TPF 66 ms 0.25 ms 20 ms 0.6% - 2.3% 0.5%

We consider different scenarios, depending on the placement of the controllers
and of Mininet across the different JOLNet nodes. We refer to the physical distance
between the network nodes (emulated with Mininet) and the controllers (followers
and leader) as “close” when the corresponding VMs are running in the same node,
and “far” when on remote nodes. Table 2.1 lists all the experimented scenarios,
discussed in the following section. In our cluster of 3 ODL controllers, the leader
controller is denoted as “L” and the two followers are denoted as “F1” and “F2”.
Controller F1 is set to be master controller for all the switches in Mininet network.
“Net” represents Mininet emulated network.

Experimental results

Table 2.2 summarizes the input parameters that have been used for the analytical
formula in (2.5), and shows also the final experimental results in terms of measure-
ment accuracy and of model error. The input parameters are obtained either by the
RTT measurements when the VMs are located in different nodes, or by the steps
explained below. In more detail:

• Scenario TT (Turin-Turin): We run the VMs of all the controllers and of
Mininet in the same node, in order to evaluate the baseline latency due to



30 Inter-Controller Consensus and the Placement of Distributed SDN Controllers

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

3 6 9 12 18 24 30 36A
v
e

ra
g

e
 f

lo
w

 s
e

tu
p

 t
im

e
 [

s
]

Number of switches N

TMC property 3
TMC measure

TMF property 3
TMF measure

Fig. 2.11: Experimental results with the VMs running either in Turin or Milan

 0

 2

 4

 6

 8
 10

 12

 14

 16

3 6 9 12 18 24 30 36A
v
e

ra
g

e
 f

lo
w

 s
e

tu
p

 t
im

e
 [

s
]

Number of switches N

TPC property 3
TPC measure

TPF property 3
TPF measure

Fig. 2.12: Experimental results with the VMs run-
ning either in Turin or Pisa

the controller processing time and to the communication overhead (through
the local virtual interfaces). First, we measure the communication delay
between VMs, due to the local hypervisor running the different VMs, using
ping command. We obtain 0.5 ms, thus we set the delay between the network
and the controller, as well as between the controllers, equal to 0.25 ms. By
running Mininet and measuring the flow setup time, we estimate an average
processing latency of 20 ms, used as reference for all the other experiments.
We run many experiments varying nsw in the interval [3,36] and observe a
relative error of the model equal to 3.2%, so very small.

• Scenario TMC (Turin-Milan-Close): Leader L and Follower F2 of the clus-
ter are located in Milan, whereas follower F1 is co-located with the network
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in Turin node, thus all OF switches are close to their master controllers. The
dominant term in (2.5) is the delay between controllers, equal to 4/2 = 2 ms.
Fig. 2.11 shows the average flow setup time computed according to (2.5) and
the one measured. According to Table 2.1, the experimental results are quite
stable for the different values of nodes. The measured value is quite close to
the theoretical one, with a relative error 5.2%. Interestingly, the flow setup
time in absolute values is always larger than 100 ms and can reach also 1.2 s
when the network is quite large. Notably, this is mainly due to the interaction
between the master controller and the leader controller.

• Scenario TMF (Turin-Milan-Far): All the controllers are located in Milan,
thus all OF switches are far from their master controller. Thus, now the
dominant term in (2.5) is the delay from the switch to the controller (2 ms).
Fig. 2.11 compares the theoretical flow setup time with the measured ones.
Now the relative error of the model is 5.1%. As in the previous case, the flow
setup time can be very large, due to the latency in the interaction between the
network and its master controller.

• Scenario TPC (Turin-Pisa-Close) All OF switches and their master con-
troller F1 are located in Turin, whereas the leader controller and the other con-
troller are located in Pisa. The dominant term is the delay between controllers
(132/2 = 66 ms). As shown in Fig. 2.12, the measured value approaches the
theoretical value with a relative error of 9.2%. The measured delays can range
from 2 to 12 s as we vary the number of switches. These huge delays are due
to the interaction between leader L and follower F1, as well explained by our
model.

• Scenario TPF (Turin-Pisa-Far) All the controllers are located in Pisa with
the network still in Turin. Due to the large delay between Turin and Pisa
(66 ms), the dominant term in (2.5) is the delay between follower F1 and the
network. In all the results shown in Fig. 2.12, the relative error (0.5%) of the
model with respect to the theoretical value is very small. Also in this case, the
flow setup time is huge in absolute terms (up to 6 s), due to the large delay
between the network and the controllers.

In summary, our experimental results show clearly that the reactivity of con-
trollers, as perceived by the network nodes, is strongly affected by the inter-controller
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communications. Furthermore, they validate our analytical models for the SDO
model, which appear to be very accurate for RAFT consensus algorithm.

2.6 Optimal placement for minimum reaction time

In this section, we present a mathematic ILP formulation of the optimal controller
placement problem, in order to minimize the reaction time at the switches (or equiv-
alently, maximize the network reactivity), for the SDO and the MDO models. Note
that in our formulation we aim at finding also the best master controller to allocate
to each switch. Indeed, differently from the results shown in the previous sections,
we do not assume that the master controller of a switch is the geographically closest
controller to that switch. We show that connecting a switch to the closest controller
is not always optimal, when considering also the overhead due to coordination traffic
among the controllers.

2.6.1 Optimization model

We consider the network graph describing the physical interconnection among the
switches. Let N denote the set of switches; the number of switches is N = |N |.
Note that dmn is defined as the delay between switch m ∈N and n ∈N on the
shortest path. Let C denote the set of SDN controllers to be deployed; the number
of controllers is C = |C |.

We define the following binary decision variables, for any controller i ∈ C and
any switch n ∈N :

• Xin = 1 iff controller i is placed at switch n;

• Yni = 1 iff controller i is the master controller of switch n.

According to standard approach, we also define some auxiliary decision variables,
introduced to model the product of two binary decision variables while maintaining
the problem linear.

• εi jmn = Xim×X jn, ∀i, j ∈ C,∀m,n ∈N . Thus εi jmn = 1 only if controller i
is placed at switch m and controller j is placed at switch n. To avoid non-
linearities, the product can be equivalently defined as a set of linear constraints:
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εi jmn ≤ Xim, εi jmn ≤ X jn, εi jmn ≥ Xim +X jn−1

• γnim = Xim×Yni, ∀i ∈ C , ∀n,m ∈N . Thus γnim = 1 iff controller i is placed
at switch m and is the master controller of switch n. This is equivalent to:

γnim ≤ Yni, γnim ≤ Xim, γnim ≥ Yni +Xim−1

We define the following constraints:

• each controller is placed at only one switch:

∑
n∈N

Xin = 1, ∀i ∈ C (2.6)

• each switch can host at most one controller:

∑
i∈C

Xin ≤ 1, ∀n ∈N (2.7)

• each switch has exactly one master controller:

∑
i∈C

Yni = 1, ∀n ∈N (2.8)

We aim at minimizing the average reaction time perceived across the switches.
We have two different linear formulations for the objective function, depending of
the considered data-ownership model.

According to the MDO model, (2.3) defines the reaction time T MDO
R (n) perceived

at switch n as 2dsw-ctr(n). If switch n is connected to controller i as master controller,
which is placed at switch m, then dsw-ctr is equal to Xim×Yni×dmn. Now the average
dsw-ctr across all the switches can be computed as

1
N ∑

n∈N
dsw-ctr(n)

and thus, after neglecting constant factors, the objective function for the MDO
problem is:

min ∑
m∈N

∑
i∈C

∑
n∈N

γnim×dmn (2.9)
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For the SDO model, we aim at minimizing the average reaction time T SDO
R

computed as (2.4). Note that, as discussed in Sec. 2.4.3, the choice of the leader
controller, acting as data owner, affects strongly the reaction time. In order to find
the optimal choice of the leader controller we assume, without loss of generality,
that controller 1 is also the leader. Observe now that the reaction time T SDO

R (n)
perceived at switch n is composed by three terms, according to (2.4). The first term,
dsw-ctr(n), is equal to the MDO case. The second term, dctr-leader, can be computed
setting that switch n has controller i as master controller, which is placed at switch
m, and that the leader controller 1 is placed at switch s, i.e. Yni×Xim×X1s×dms =

γnim×ε1ism×dms; then, we average across all the switches. We compute the last term,
dctr*-leader, by approximating the median of the delay between the leader controller
and the other controllers with its average value. If the leader controller is placed at
switch s and that controller i is placed at switch m, then the delay among them is
Xim×X1s×dms = ε1ism×dms and the overall average is

1
C ∑

i∈C
∑

m∈N
∑

s∈N
ε1ism×dms

By combining all the above terms, the objective function for the SDO model can be
formalized as follows:

min
1
N ∑

m∈N
∑
i∈C

∑
n∈N

γnim×dmn+

1
N ∑

n∈N
∑
i∈C

∑
m∈N

∑
s∈N

γnim× ε1ism×dms+

1
C ∑

i∈C
∑

m∈N
∑

s∈N
ε1ism×dms (2.10)

Note that the second term appears to be non-linear, but actually it can be converted
to a linear relation as we showed at the beginning of Sec. 2.6.1 by defining a new set
of auxiliary variables. We omit the details for the sake of space.

2.6.2 Numerical results

We implemented an optimal solver for the optimal placement problem in (2.9) and
in (2.10) throughout the Gurobi solver [8].
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Figs. 2.13-2.14 show the placement to minimize the reaction times, by solv-
ing (2.9) and (2.10) for both data-ownership models, when 3 controllers are deployed
in the Highwinds network. As expected, the results obtained for the two models
are completely different. For the MDO case, one controller is placed in each conti-
nent, in order to minimize the average delay between the switches and their master
controllers. For the SDO case, instead, all the controllers are placed close in the
continent with the higher number of switches, and specifically the leader is chosen
close to the continent (Europe) with the second largest number of switches. This is
intuitively the best tradeoff between Sw-Ctr delays and Ctr-Ctr delays.

Fig. 2.15 shows the minimum average reaction time for both SDO and MDO
considering 3 and 4 controllers, for the smallest 89 ISP networks available in [27]. We
could not run our solver for the largest topologies, because of the limited scalability
of the ILP approach. In all the topologies, the optimal reactivity is mainly affected by
the adopted data-ownership model, and not by the number of controllers. The MDO
model achieves reaction times that are 1-2 orders of magnitude smaller than the SDO
model, showing the non-negligible impact of the Ctr-Ctr traffic on the perceived
performance at the switches for the SDO model.

Considering the actual master controller chosen for each switch, based on our ex-
periments, in the MDO model all the switches are connected to the closest controller,
as expected. But for SDO model, each switch is connected to the first controller
along the its shortest paths to the leader controller. Thus, for the SDO model the
closest controller may not be the best solution. Indeed, it may be convenient for a
switch to connect directly to the leader controller, even if farther than the closest
controller, in order to reduce the impact of the Ctr-Ctr traffic among the controllers.
In the considerer 89 topologies, on average 25% and 35% of the switches were not
connected to their closest controller for the 3 controllers and 4 controllers scenarios,
respectively.

2.7 Evolutionary placement algorithms for large net-
works

When commenting the numerical results in Secs. 2.3 and 2.6, we noticed that for the
largest ISP topologies (in terms of number of switches and links) we could not run
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Fig. 2.13: Placement for MDO in HighWinds.
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Fig. 2.14: Placement for SDO in HighWinds.

the exhaustive search (Sec. 2.3.1) and the ILP solver (Sec. 2.6.2) to get the optimal
placements, due to the limited scalability of the considered optimal approaches.

In this section, we present two evolutionary algorithms suitable for large networks.
The first one, denoted as EVO-PLACE and described in Sec. 2.7.1, finds a set of
Pareto controller placements. The second one, denoted as BEST-REACTIVITY and
described in Sec. 2.7.2, finds the final placement that minimizes the average reaction
time perceived at the switches.
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2.7.1 An evolutionary algorithm for Pareto-optimal placements

The basic idea of our algorithm is to discover new non-dominated solutions by
perturbing the current set of Pareto solutions for the controller placement. Specifi-
cally, starting from a given controller placement in the network, we may get a new
controller placement with better Ctr-Ctr delay by putting the controllers closer, and
a new controller placement with better Sw-Ctr delay by distributing the controllers
more evenly in the network. By continuously performing such perturbation, we
achieve a good approximation of the Pareto frontier for the placement problem.

As term of comparison for our algorithm, we define a basic randomized algorithm,
denoted as RND-PLACE and reported in Algorithm 1, to find a set of Pareto solutions
just using a random sampling. The input parameters are the number of controllers C,
the number of nodes N and the number of iterations imax. We assume that function
RANDOM-PERMUTATION(N,C) (called in step 4) provides the first C elements of
a random permutation of size N, with C ∈ [1,N]; its complexity is O(C) thanks to
the classical Knuth shuffle algorithm. Let P be the current set of all Pareto (i.e.
non-dominated) solutions. At each iteration, a new placement is generated (step 4).
Now function ADD-PRUNE eventually adds π to P. More precisely, if π is dominated
by any Pareto solution in P, then it not added to P since it is not Pareto (step 10).
Instead, if any current solution p ∈ P is dominated by π , then it is removed (step 12)
and then π is added as new Pareto solution (step 13). ADD-PRUNE returns true if π

was added successfully, otherwise it returns false.
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The set P returned by RND-PLACE at the end of imax iterations collects all the
Pareto placements found by the procedure, and corresponds to an approximation of
the optimal Pareto frontier for the controller placement problem. The randomized
approach is simple but quite inefficient in terms of complexity, since it takes around
|Ω| log |Ω|+0.58|Ω| iterations (thanks to the well known results about the coupon
collector problem), where |Ω| is the total number of placements (see (2.2)), to
approach the exhaustive search and find the optimal Pareto placements.

We modify RND-PLACE to exploit an evolutionary approach to boost the effi-
ciency of the random sampling. Algorithm 2 reports the pseudocode of our proposed
EVO-PLACE. At each iteration, the algorithm selects a random placement π (step 4)
and try to add to P, as in RND-PLACE. If the addition is successful (i.e. π is Pareto),
then π is perturbed (step 7) and the new placement π ′ is eventually added to P (step 8).
The loop for the perturbation ends when the newly perturbed solution cannot be
added to P, since it is dominated by other solutions (steps 6-9). The perturbation
phase is described by DECREASE-CTR-CTR-DELAY, whose pseudocode is reported
in Algorithm 3.

DECREASE-CTR-CTR-DELAY perturbs the given placement solution π by de-
creasing the Ctr-Ctr delay. Its main idea is to move the farthest controller closer to
the others. Indeed, in steps 2-3 the average distance is computed for each controller
to all the others (actually, we omit the division by C−1 since it is useless for the
following steps). We define di j as the minimum delay from node i to j, based on the
propagation delays in the network topology. Now we choose c′ as the controller with
the maximum average delay towards the others (step 4) and find c′′ as the closest
controller to c′ (step 5). Now we move c′ one hop towards c′′ (steps 6) along the
shortest path from c′ to c′′; note that the check that c′′ is at least 2 hops far from c′

guarantees that the movement is possible. As a result, DECREASE-CTR-CTR-DELAY

decreases the average Ctr-Ctr distance most of the times.

2.7.2 An evolutionary algorithm to minimize the reaction time

We adopt the same approach of EVO-PLACE to find the best placement that minimizes
the reaction time according to the MDO and SDO models, computed according
to Property 1 and 2 respectively. The pseudocode in Algorithm 4 describes the
proposed evolutionary approach. At each iteration, a random placement (step 4)
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Algorithm 1 Random algorithm for finding Pareto controller placements
1: procedure RND-PLACE(C,N, imax)
2: P = /0 ▷ Init the set of Pareto solutions
3: for i = 1→ imax do ▷ For imax iterations
4: π =RANDOM-PERMUTATION(N,C)
5: ADD-PRUNE(P,π)
6: return P
7: procedure ADD-PRUNE(P,π)
8: for all p ∈ P do
9: if π is dominated by p then

10: return false ▷ No addition of π

11: if p is dominated by π then
12: P = P\{p} ▷ Remove p
13: P = P∪{π} ▷ Add π since not dominated
14: return true ▷ Successful addition of π

Algorithm 2 Evolutionary algorithm for finding Pareto controller placements
1: procedure EVO-PLACE(C,N, imax)
2: P = /0 ▷ Init the set of Pareto solutions
3: for i = 1→ imax do ▷ For imax iterations
4: π =RANDOM-PERMUTATION(N,C)
5: success_flag=ADD-PRUNE(P,π)
6: while (success_flag=true) do
7: π ′ =DECREASE-CTR-CTR-DELAY(π)
8: success_flag=ADD-PRUNE(P,π ′)
9: π = π ′

10: return P

Algorithm 3 Perturb a given controller placement π to decrease Ctr-Ctr delay
1: procedure DECREASE-CTR-CTR-DELAY(π)
2: for c = 1→C do
3: hc = ∑k ̸=c dπcπk ▷ Total delay from c

4: c′ = argmaxc{hc} ▷ Farthest controller
5: c′′ = argmin

c̸=c′
{dπcπc′} ▷ c′’s closest cnt.

6: n=find first node in the shortest path from c′ to c′′

7: if n ̸= πc′′ then
8: πc′ = n ▷ Move c′ into n
9: return π
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Algorithm 4 Evolutionary algorithm to find Placement with minimum reaction time
1: procedure BEST-REACTIVITY(C,N, imax)
2: πbest = {} ▷ Init the best solution
3: for i = 1→ imax do ▷ For imax iterations
4: π =RANDOM-PERMUTATION(N,C)
5: UPDATE-BEST(π,πbest)
6: π =DECREASE-CTR-CTR-DELAY(πbest)
7: UPDATE-BEST(π,πbest)

8: return πbest

9: procedure UPDATE-BEST(π,πbest)
10: if REACTION-TIME(π)<REACTION-TIME(πbest) then
11: πbest = π ▷ Found better placement

is generated in order to possibly escape from local minima. Another candidate
placement is obtained (step 6) by perturbing the optimal candidate solution πBEST

found adopting DECREASE-CTR-CTR-DELAY. The reaction time for each new
candidate solution is evaluated in step 7 by calling UPDATE-BEST. This function
(step 9) exploits the analytical formulas to compute the reaction time to check whether
the given placement has a smaller reaction time than the current candidate optimal.
As an example, the formula adopted in Property 3 (see 2.5.1) can be exploited to
compute the reactivity for the standard reactive layer-2 forwarding application in
ODL controller.

2.7.3 Performance of EVO-PLACE

We compare the performance of EXA-PLACE, RND-PLACE and EVO-PLACE on
different networks with varying number of controllers. For a fair comparison, we run
EVO-PLACE after having fixed imax and record the actual total number of analyzed
placements. Then we use such value to set the number of placements considered by
RND-PLACE. Thus, all the results comparing EVO-PLACE with RND-PLACE are
obtained with the same number of analyzed placements.

In Fig. 2.16, we show the results for the Garr network, a nation-wide Italian ISP,
taken from [27], with 35 nodes, for the case of 3 controllers. Thus, N = 35, C = 3 and
thus |Ω|=

(35
3

)
= 6,545 are all the possible placements evaluated by EXA-PLACE.

The corresponding Pareto points represent the optimal Pareto frontier, used as a
reference for the frontiers obtained with the other algorithms. The graphs show
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the sub-optimal Pareto points obtained by RND-PLACE and EVO-PLACE running
for imax = 50 iterations, corresponding to a sampling fraction equal to 0.9% of all
possible solutions. From the figure, the Pareto placements computed by EVO-PLACE

appear to approximate much better the optimal ones than RND-PLACE, given the
same number of iterations.

In order to evaluate in a quantitative way the “distance" between the optimal
Pareto frontier computed by EXA-PLACE and the approximated ones obtained by
RND-PLACE and EVO-PLACE, we define two error indexes, as depicted in Fig. 2.17,
derived from classical volume based performance indexes for Pareto sets [77]: (i)
the average Sw-Ctr error, computed as the average vertical distance between the
optimal Pareto frontier and the approximated Pareto frontier, (ii) the average Ctr-Ctr
error, computed as the average horizontal distance between the two frontiers.
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Fig. 2.18: Pareto frontier error with 3 controllers for Garr.
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Fig. 2.18 shows the behavior of the two errors in function of the number of
iterations, in the same scenario considered in Fig. 2.16. Each experiment, for a given
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Fig. 2.20: Pareto frontier error with 3 controllers for ITC-Deltacom.

number of iterations, is repeated multiple times to get an accurate estimation of the
error. When increasing the number of iterations, the Pareto errors decrease, thanks
to the larger space of considered solutions. As already observed, we expect that
the Ctr-Ctr delays are larger than the Sw-Ctr delays in absolute terms, and thus the
corresponding errors are following the same behavior. After 200 iterations both
the Sw-Ctr error and the Ctr-Ctr error are around 3 times smaller than the errors
obtained for 10 iterations, and in absolute terms very small (less than 0.1 ms) for
EVO-PLACE. The advantage of EVO-PLACE with respect to RND-PLACE tends to
increase with the number of iterations, indeed the errors for EVO-PLACE are between
1.5× (for low number of iterations) and 3× (for high number of iterations) smaller
than RND-PLACE. In general, an accurate estimation of the Pareto frontier can be
achieved with a sampling ratio equal to 1-3% of the total solution space.

We extend our investigation to other larger topologies, for which EVO-PLACE

is much faster than EXA-PLACE. Figs. 2.19 and 2.20 show the errors in the Pareto
frontiers obtained for China-Telecom and ITC-Deltacom networks, respectively,
taken from [27]. In China-Telecom (38 nodes), the Pareto errors decreases by a
factor 2.5 from 10 to 200 iterations, and the relative gain of EVO-PLACE with respect
to RND-PLACE is around 1.2-1.5, decreasing for larger sampling space. Also in this
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case, around 1-2% of the sampling space is enough to obtain an accurate estimation
of the Pareto region. Fig. 2.20 shows the errors for ITC-Deltacom network, which
is a large USA ISP with 100 nodes. Despite the large size of the network, after 50
iterations (corresponding to 0.03% of sampling ratio) all the errors tend to stabilize
for EVO-PLACE, showing a relative gain with respect to RND-PLACE which is
always more than 2.

The results obtained for the above 3 ISPs show the effectiveness of the evolution-
ary approach with respect to the simple random sampling. Notably, also in absolute
terms all the errors are small, even if their actual values depend on the geographical
area covered by each network.

We have also evaluated the scenario with Colt-Telecom from [27], an Europe-
wide ISP covering 149 nodes, in the case of 10 controllers. In this scenario EXA-
PLACE cannot run since the total number of possible placements is larger than 1015

and thus we cannot evaluate the average errors with respect to the optimal Pareto
points. We instead observe that EVO-PLACE is always outperforming RND-PLACE

by reducing the average Sw-Ctr and Ctr-Ctr delays of 0.25−1 ms.

In conclusion, for all the scenarios we investigated, we have observed a better
Pareto frontier obtained by EVO-PLACE with respect to RND-PLACE, given the
same number of considered placements and thus the same computation complexity.
Thus, the evolutionary approach adopted in EVO-PLACE appears efficient in finding
the Pareto placements for a given network topology, especially when the network is
large and an exhaustive approach is not anymore feasible.

2.7.4 Performance of BEST-REACTIVITY

We evaluate the performance of BEST-REACTIVITY algorithm applied to the MDO
and SDO models to find the single optimal placement that minimize the average
reaction time. For the SDO model, we evaluate the performance on 58 middle-
size ISP networks, again taken from [27], for 3 controllers. We compare BEST-
REACTIVITY with a random sampling of the controller placement. For the sake of
space, we do not report the detailed results. The ratio between the reaction time
obtained with BEST-REACTIVITY is on average 2.1× (at most 4.4×) smaller than
the random sampling, given the same number of considered placements. Our results
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Fig. 2.21: Complexity for BEST-REACTIVITY to achieve a reactivity ≤ 30% larger
than the minimum reaction time.

prove the effectiveness of adopting DECREASE-CTR-CTR-DELAY to decrease the
reaction time of the candidate for the optimal placement.

We also compare BEST-REACTIVITY with the solution obtained through Gurobi [8]
implementing the optimization model described in Sec. 2.6.1, under the same 58
ISP topologies considered above. According to standard methodology, we evaluated
the approximation ratio with respect to the optimal algorithm, i.e. the ratio between
the average reaction time obtained by BEST-REACTIVITY and the one obtained
by Gurobi solver. Fig. 2.21 shows the number of iterations, measured as sampling
ratio with respect to the exhaustive search, to achieve 1.3 approximation ratio, i.e.
to obtain a reaction time which is ≤ 30% larger than the minimum one obtained by
Gurobi. We investigate both SDO and MDO scenarios, for 3 and 4 controllers. Our
results show that the actual solution space to consider depends on the actual topology,
and a reasonable good solution (i.e. ≤ 30% error with respect to the optimal one)
can be obtained by sampling around 1-10% of the solution space. Interestingly,
increasing the number of controllers improves the efficiency of BEST-REACTIVITY

thus making us more confident about the robustness of the proposed approach.

2.8 Related works

The work in [65] emphasizes the importance of the network state consistency, and
indicates that inconsistent network states degrade the performance of network ap-
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plications. Thus, [65] motivates our work, since we devise the controller placement
problem to target small Ctr-Ctr delays in the MDO model, thus improving the
resilience of the network to possible state inconsistencies between controllers.

Many works address the controller placement problem in SDN, but with slightly
different objectives. The works [84, 55, 74] target fault tolerance, whereas [96, 83]
aim at balancing the loads on the controllers. [30] strives for network resource
minimization in mobile cellular networks. [54, 33, 94] focus on the optimal con-
troller placement by considering only the minimization of Sw-Ctr delays (average
or maximum). Differently from us, they neglect completely the interaction among
controllers and thus the Ctr-Ctr delays. In the case of SDO model, [54, 33, 94]
neglect the relevant role of the data owner. In the case of MDO, we have shown
in Sec. 2.4.3 that by relaxing the minimum switch-to-controller delay target, it is
possible to significantly reduce the Ctr-Ctr delays and improve the convergence to a
consistent network state.

Interestingly, [63] addresses the controller placement problem considering a wide
combination of metrics: average/maximal Sw-Ctr and Ctr-Ctr delays, the level of
load balancing, and the number of isolated switches in case of network partitioning.
The latter metric is tailored to a resilient controller placement. Notably, [63] does
not consider the combined effect of Sw-Ctr and Ctr-Ctr delays in the reactivity
perceived at the switches as in our work. From the algorithmic point of view,
[63] adopts exhaustive search to find the optimal Pareto controller placements for
small size networks, exactly as EXA-PLACE (Sec. 2.3.1), and proposes a simulated
annealing approach for large networks. Differently from EVO-PLACE, this approach
requires careful tuning of many parameters and obtains the solution with a number of
iterations around 1-10% of the sample space, similar to the results obtained by EVO-
PLACE. Finally, [86] provides a general mathematical framework to compute the
optimal controller placement, under generic cost functions, but it neglects the role of
Ctr-Ctr delays.

2.9 Summary

We consider a distributed architecture of SDN controllers, with an in-band control
plane. We investigate the performance issues related to the placement of the con-
trollers across the network nodes. Different from previous work, we highlight the
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importance of the coordination among the controllers to synchronize their shared data
structures. We distinguish two possible models for the shared data structures: the
single (SDO) and the multiple (MDO) data-ownership models, which are both cur-
rently implemented in state-of-the-art controllers for strong consistent and eventual
consistent data structures.

As first step, we study the optimal controller placement problem by considering
all the communications occurring in the control plane. We investigate the Pareto
frontier that characterizes all the possible tradeoffs between switch-controller delays
and inter-controller delays. For the SDO model, we prove the crucial role of the
placement of the data owner controller, since the reactivity perceived by any switch
depends heavily on the interaction between the controllers and the leader controller.
We compute the Pareto frontier for many realistic ISP topologies, based on an optimal
algorithm (EXA-PLACE). To overcome the limited scalability of the optimal solver
for large networks, we devise an evolutionary algorithm (EVO-PLACE).

As second step, we focus on the reaction time as perceived by the switches, which
provides a single target to optimize, and depends on the network application running
on the controller. We devise some analytical formulas for the two data-ownership
models models, and validate experimentally their accuracy in a SDWAN. Thanks to
these formulas, we formalize an ILP problem to minimize the average reaction and
we devise an approximated algorithm, still based on evolutionary algorithm (BEST-
REACTIVITY), able to scale to large networks, whose performance is compared
against the optimal solver.

We believe that our investigation provides a solid methodology not only to place
the controllers but also to design the network supporting the control plane in large
networks, as in the scenario of large SDN networks or SDWANs.



Chapter 3

On-the-fly Traffic Classification and
Control with a Stateful SDN
approach

The novel "stateful" approach in Software Defined Networking (SDN) provides
programmable processing capabilities within the switches to reduce the interaction
with the SDN controller, thus improves both the scalability and the performance of
the network. In our work, we consider specifically a stateful extension of OpenFlow
that was recently proposed, called OpenState, that allows to program simple state
machines in almost-standard OpenFlow switches.

We consider a reactive traffic control application that reacts to the traffic flows
which are identified in real-time by a generic traffic classification engine. We devise
an architecture in which an OpenState-enabled switch sends the minimum number
of packets to the traffic classifier, in order to minimize the load on the classifier
and improve the scalability of the approach. We design two stateful approaches to
minimize the memory occupancy in the flow tables of the switches. Finally, we
validate experimentally our solutions and estimate the required memory for the flow
tables. The content of this chapter is also reported by [100].
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3.1 Integrating an SDN controller with a traffic clas-
sification engine

We consider a scenario in which the incoming traffic is mirrored to a traffic classifier
(TC), so that traffic flows are eventually identified. Based on the classification
outcome, a traffic control application operates a specific policy on the flow, e.g.
re-routing the traffic to a different port, tagging the traffic or dropping it.

3.1.1 On-the-fly traffic classification

We address the scenario in which traffic is classified in real-time based on the actual
sequence of packets switched across the network. To identify a flow, only the initial
sequence of packets of a flow are required by the TC. Let Cp be the minimum number
of packets to identify protocol p. Each TC engine is characterized by different
values of Cp, depending on the adopted technology and the level of accuracy. For
some protocols, the basic classification based on transport layer information (e.g.
TCP/UDP ports), allows an immediate identification and thus Cp = 1. For more
advanced identifications, this number can be larger and may depend on the required
accuracy.

The traffic control application is supposed to react only to a specific set, denoted
as A , of protocols. Let C be the minimum number of packets sufficient to identify
any protocol in A for a given TC engine. Thus,

C = min
p∈A

Cp

We are now discussing some technologies for the TC engine. One technique to
classify traffic on-the-fly is Deep Packet Inspection (DPI), which can be implemented
in different ways. The first approach is denoted as pattern-matching DPI (aka, pure
DPI), which identifies the flow by matching the whole layer-7 payload with a set
of predefined signatures. All the signatures are collected in a dictionary defining a
set of classification rules, and then checked against the current packet payload until
either a match is found or all the signatures have been tested. The second approach
is based on Finite State Machines (FSM-DPI) which are used to verify that message
exchanges are conform to the expected protocol behavior. For example, for the
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OpenDPI engine [19], Cp ∈ [1,25] to achieve the maximum accuracy [58]; a smaller
accuracy can be achieved for Cp ∈ [1,10]. The third approach is based on Behavioral
Classifiers (BC) which leverage some statistical properties of the traffic. For instance,
the distribution of packet sizes or of inter-arrival times may allow to identify the
application generating the traffic. This approach avoids the payload inspection and
is not affected by encryption mechanism. However, statistical estimators usually
require a large number of packets per flow to achieve a good accuracy.

The definition of the signatures and matching rules implemented by above
approaches can be either achieved manually, i.e., by studying or reverse-engineering
the protocols to classify, or, automatically, i.e., by adopting Machine Learning (ML).
ML learns the peculiar features of given traffic flows, and provides the knowledge
to classify on-the-fly the traffic [52]. The disadvantage is that the results depend
mostly on the training data which should be up-to-date and accurate, and may not be
as accurate as other techniques. As example, the ML-based classification scheme
proposed in [35] is able to detect the application generating the traffic with at most 5
packets, thus Cp ∈ [1,5].

Each classifier offers a different tradeoff between accuracy and processing speed.
Our investigation is independent from the actual classification engine, provided that
only the first C packets are required for the flow identification, given the specific
set A of protocols for which the traffic control application is supposed to react.
Whenever the engine is not able to classify a flow after receiving C packets, it is
clearly useless and counterproductive to keep injecting packets of the same flow
to the TC. Thus, we aim at designing solutions satisfying the following design
constraint: no more than C packets of the same flow are sent from the switch to the
traffic classifier.

3.1.2 Basic integrated approach

A standard approach to integrate an SDN controller with the TC which satisfies
the above design constraint is shown in Fig. 3.1. The traffic control application
instructs the switch to forward all the packets of a new flow to the controller through
legacy OF packet-out messages. Then the SDN controller provides a copy of each
received packet to the traffic control application (usually through the northbound
interface of the controller), which does a countdown from C to 0 for each flow, by



3.1 Integrating an SDN controller with a traffic classification engine 51

Traffic control
application

Traffic
classifier

SDN
controller

OF traffic

    OpenFlow
     switch

Data traffic     

Control port

Fig. 3.1: Basic approach for integrating traffic classification with an SDN controller
.

    
   

Traffic control
application

SDN
controller

Traffic
classifier

OF traffic

Control port

OpenState−enabled
   OpenFlow switch

Data traffic     

Mirror port

Data traffic    
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counting the number of packets for each flow. As soon as the TC classifies the
flow, the network application stops the countdown and programs the switch based
on the given traffic control policy. In the case the countdown reaches 0, i.e. the
number of forwarded packets is C, then the traffic control stops sending packets to
the TC (since it is useless to identify any protocol in A ) and programs the switch
(typically, through flow-mod messages) to stop sending the packets to the controller.
This approach poses severe scalability issues caused by the exchange of packets and
control messages between (i) the switch, (ii) the controller/application and (iii) the
TC, and the consequent communication and processing overhead.

An alternative solution to reduce the communication overhead from the switch
to the controller is to install a forwarding rule within the switch that mirrors all the
traffic with a time limit. This approach does not require a stateful extension to the
OF switch, but requires a hard-timeout which is difficult to tune, since the minimum
time corresponding to C packets depends on the actual traffic arrival process, which
is usually unknown. Notably, hard-timeouts, differently from soft-timeouts, expire
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after a predefined time, independently from the actual traffic arrival process and have
been available since OF version 1.0. Nevertheless, an hard-timeout can be safely set
assuming a worst-case behavior of the flow, but in typical cases this would imply a
much larger number of mirrored packets than C, with a useless waste of resources.

In the following section, we present our approach which overcomes the limita-
tions of the techniques described above.

3.2 Stateful SDN approach for traffic classification

Adopting a stateful approach in OF switch allows for a very efficient mirroring of
the first C packets of a flow. Indeed, the switch can autonomously mirror the first C
packets of each flow to the TC engine, without the involvement of the traffic control
application or the SDN controller in the countdown process.

We consider OpenState [36] as an enabling technology for stateful SDN. Open-
State supports Mealy Machine as abstraction for extended finite-state machine
(XFSM), which enables programmability of a stateful data plane in a quite flexible
way, with switches whose hardware is (almost) the same as standard OF switches.
OpenState is implemented with two main tables. The state table maps each active
flow to its current state (i.e., an integer value). Instead the XFSM table is an extension
of a standard OF flow table that maps a match field to an action. Indeed, in the XFSM
table the match field includes also a possible value for the current state, and the action
can also be updated on the fly. In such a way, we can implement state machines in
which packet arrival events trigger transitions and states evolve as described by the
XFSM table. Notably, we can implement XFSM tables directly in TCAM memories,
as currently done for flow tables in commercial OF switches. In the following, to
remark their common nature, we will refer to the XFSM table as flow table.

Leveraging this technology, we can adopt the approach described as follows.
Whenever a packet arrives, the state table identifies the current state of the corre-
sponding flow, the switch processor accesses the flow table, and based on the match
fields on the packet header and on the current state, it takes an action on the data
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Fig. 3.3: Finite state machine programmed in the OpenState switch for each new
flow. The transitions are triggered by packet arrivals and associated with the actions
to apply on the packet.

plane (e.g., forward, drop) and updates the state of the flow in the state table.1 The
implementation details of OpenState are available in [36].

To exploit the stateful approach provided by OpenState, we propose the architec-
ture shown in Fig. 3.2, based on OF switches supporting OpenState extension.

We program the switch to run the finite state machine (FSM) illustrated in
Fig. 3.3 for each new flow, in order to operate the countdown from C to 0 within the
switch, and not in the traffic control application as in the basic solution described
in Sec. 3.1.2. Each packet arrival triggers a transition in the FSM. Whenever a new
packet arrives, the switch decrements the state, forwards the packet to the required
destination port, and in the meanwhile mirrors it to the TC. When the countdown
reaches zero, the switch disables the mirror operation. The transitions triggered by
a “reset” message are not required for the basic countdown process, and will be
discussed in Sec. 3.2.3.

In the following, we propose two approaches to implement the state machine
mechanism described above. Our goal then is to minimize the number of flow entries
and the size of the tables used by such approaches.

3.2.1 Simple CountDown (SCD) scheme

The first approach to implement the state machine in Fig.3.3 is denoted as SCD
(Simple CountDown). The main idea is to maintain the state equal to the current
countdown value and the flow table describing the update of the state based on

1Notably, OpenState is flexible and provides more operations than those described. For instance,
it allows to define different “lookup” and “update” scopes to access and update the state table.
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Match fields Action
Header Current state Data plane New state
flow-id1 C forward and mirror C−1
flow-id1 C−1 forward and mirror C−2

... ... ... ...
flow-id1 1 forward, (send to controller) and mirror 0
flow-id1 0 forward 0

* default send to controller -

Table 3.1: Flow table for SCD approach when the first packet of flow “flow-id1” is
received

Match fields Action
Header Current state Data plane New state
flow-id1 0 forward 0

* default send to controller -

Table 3.2: Flow table for SCD approach after the countdown ends

the flow identifier and the current state. The behavior of the proposed scheme is
described in Fig. 3.4, according to which the switch mirrors only the first C packets
to the TC.

Table 3.1 shows the flow entries installed in the flow table when the first packet
of a new flow reaches the controller (through a packet-in message). We assume
that the flow is identified by a specific matching rule denoted as “flow-id1” (e.g.
IP source/destination and TCP ports). In the first C states (from C to 1) the switch
mirrors the traffic to the TC (through the mirror port), while it forwards the traffic
according to the standard routing. The final state of the countdown is 0 that means
that the switch has mirrored C packets to the TC, and must disable the mirroring
for the corresponding flow. By construction, the total number of entries is C+1 for
each flow, thus the total memory occupancy of the table is F(C+1) entries, if F is
the concurrent number of flows traversing the switch. After the installation of the
entries in the state table, the switch processes new packets belonging to the same
flow locally without the intervention of the controller.

In addition to the flow rules to update the countdown process, we add the standard
default rule for any new flow, which must be sent to the controller (through a packet-
in message). In addition, we also add some basic rules (not shown here for briefness)
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to manage ARP packets and avoid sending them to the TC. In the following, we will
not consider the impact of this couple of rules on the size of the flow tables.

In order to minimize the memory occupancy, we devise an optional memory
purging scheme to delete the C entries associated to a flow as the countdown ends.
Indeed, when the flow state becomes 0 (i.e. the countdown has terminated), the packet
is sent also to the controller through a packet-in message (not shown in Fig. 3.4).
Since in OpenState a packet-in carries also the current value of the state, the controller
can understand that the countdown has terminated and issues an OF delete message
to remove all the entries regarding the corresponding flow and add a entry with the
final forwarding rule to apply. At the end, the flow table corresponding to a specific
flow is shown in Table 3.2. The proposed purging scheme is complementary to the
standard idle timeouts of the entries in the flow tables. The main advantage of our
approach is that it does not require a careful setting of the timeouts, which depend
on some worst-case arrival pattern for a flow, which is practically very difficult to
know in advance.
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Match fields Action
Header Current state Data plane New state
flow-id1 * forward and goto table 2 *

* default send to controller -

Table 3.3: OpenState flow table FT1 for CCD approach

Match fields Action
Header State Data plane New state

* C mirror C−1
* C−1 mirror C−2
... ... ... ...
* 1 mirror 0
* 0 - 0

Table 3.4: OpenState flow table FT2 for CCD approach

3.2.2 Compact CountDown (CCD) scheme

The second approach we propose aims at reducing the size of the flow tables, and
thus we denote it as Compact CountDown (CCD). The approach exploits a cascade
of two flow tables, as shown in Tables 3.3 and 3.4. The entries corresponding to each
flow in both tables are installed when the first packet of a flow reaches the controller,
as in SCD scheme. The first table (FT1) programs the required forwarding action and
imposes that the second table (FT2) must be processed, in cascade, independently
from the actual state. Instead, FT2 stores the countdown values, independently from
the flow.

In this way, we achieve the same behavior as SCD (shown in Fig. 3.4) but with
a reduced number of state entries. We have 1 entry in FT1 for each flow and C+1
entries in FT2 for all the flows. Thus, for F concurrent flows, the total number of
entries is F +C+1.

Differently from SCD, the memory purging scheme at the end of the countdown
is not necessary in CCD since only one entry for each flow is stored in the flow tables
and must be kept for the entire life of the flow. Thus, in addition to the reduced
memory occupancy, SCD does not require the switch to interact with the controller
for the purging, with a beneficial effect of load reduction on the controller.
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3.2.3 Countdown interruption

As soon as the TC identifies the flow, it is useless to keep mirroring the traffic to the
TC. Thus, we propose a scheme to interrupt the countdown in order to minimize the
load on the TC. We devise an in-band signaling scheme based on a “reset” message
sent directly from TC to the switch with the same flow identifier of the just classified
flow. Fig. 3.3 shows how this message is integrated in the countdown FSM and
Fig. 3.5 shows the network behavior due to the interruption. The state machine
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Fig. 3.5: Protocol behavior for an interruption

changes in a way that anytime the TC sends a packet to the switch on the mirror port,
the new state of the flow becomes 0, i.e., the countdown is interrupted. This behavior
is obtained by adding one flow entry as shown in Table 3.5. The priority of such
entry is set higher than the other entries to be sure that it works properly.

For SCD the interruption mechanism is integrated with the proposed memory
purging scheme in order to minimize the memory occupancy.

3.2.4 Comparison of approaches

Table 3.6 summarizes the differences between our two proposed approaches and the
number of installed entries for F concurrent flows, according to the discussion above



58 On-the-fly Traffic Classification and Control with a Stateful SDN approach

Match fields Action
Header Input port Current state Data plane New state

... ... ... ... ...
flow-id1 mirror port * drop 0

Table 3.5: Additional entry in SCD and CCD to interrupt the countdown

SCD CCD
Number of flow tables 1 2
Memory purging Yes Not needed
Countdown interruption Yes Yes
Flow entries during countdown F(C+1) F +C+1
Flow entries after countdown F F +C+1

Table 3.6: Comparison between the two approaches for F concurrent flows

(we have omitted the default rule for unknown flows and the rules related to ARP
packets). From both tables, CCD appears the most convenient because of its mild
growth in the memory occupancy. In Sec. 5.4 we also evaluate the actual occupancy
in bytes.

3.3 Validation and Experimental Evaluation

We validate the behavior of both SCD and CCD approaches in the testing Ubuntu
14.04 VM provided in OpenState website [1]. The VM provides a modified version
of Mininet 2.2.1 with OpenState-enabled switches and Ryu controller is available
to issue OpenState-specific flow-mod commands and configure the state machine
internal to the switch.

We develope a Python script running in Ryu that programs the switch according
to either SCD or CCD schemes. To verify the correct behavior of our implementation
for both schemes, we configured the topology of Fig. 3.6 in Mininet, with 2 hosts,
the controller, the TC module and one switch. We run tcpdump in all the hosts
to capture the detailed exchange of packets destined to the hosts and to verify the
correct behavior of our implementation for different values of C.

We perform the validation as follows. We program the OpenState FSM to send
the traffic arriving from host 1 to host 2 and to mirror the first C packets to the host
corresponding to the traffic classifier, using SCD or CCD approach. We generate
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Fig. 3.6: Topology for testing

Approach Flow table occupancy [bytes]

SCD
min 18F
max 22F(C+1)+17F

CCD
min 17F +14C+12
max 34F +14C+12

Table 3.7: Total memory occupancy for F concurrent flows and countdown from C

the ICMP packets from host 1 to host 2 with the ping command to verify that
only the first C packets are forwarded correctly also to TC. Then, by sending an
appropriate flow-mod packet from the SDN controller, we verify that the memory
purging scheme works as expected in SCD. Finally, to verify the correct behavior of
the countdown interruption, explained in Sec. 3.2.3, we run netcat command in the
TC host to generate a packet with the same flow-id (at IP level) of the flow from host
1 to host 2 and thus interrupt the countdown.

We evaluate experimentally the actual memory occupancy in bytes for the two
approaches. Notably, it is not immediate to infer the memory occupancy because of
the different match fields in SCD and CCD schemes. Furthermore, our estimation is
based on the memory occupancy of the flow tables in Mininet with the OpenState
extension, which provides a reasonable approximation of the memory required for a
real hardware implementation based on TCAM.

To evaluate the actual size of the flow tables, we exploited the standard OpenFlow
“FLOW_STATS” request and reply messages. The reply contains a field representing
the length in bytes of the entries installed in the tables of the switch. This length
comprises the match fields (including the current state) and the actions (including the
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new state) that must be applied over the packets. We sample the table sizes after each
installation of the XFSM for a new flow, for different values of F and C and obtain
the empirical formulas in Table 3.7. We show two bounds for SCD and CCD. “SCD
max” provides an upper bound on the occupancy, due to the C+1 rules installed
for each flow at the beginning plus the rule to manage the countdown interruption.
“SCD min” provides instead a lower bound on the occupancy, due to the final entry
left in the table after the memory purging operation. Both bounds are strict, and we
expect that the actual occupancy is between the two bounds. For CCD the two bound
differs only of 17 bytes, equivalent to the size of the interruption entry.

Fig. 3.7 shows the total occupancy in function of F and for two values of C. All
the curves show the expected growing proportional to F . SCD in the worst case
requires around 1.5C times the amount of memory than CCD, but in the best case it
can also outperform CCD, when the number of flows is less than 50. This is due to
the fixed overhead of CCD to store the flow table FT2.

Fig. 3.7 allows to assess the maximum scalability of each approach in a real
setting. If we consider a maximum size for the TCAM equal to 250 kbytes, which is
a typical value according to [22], SCD is able to sustain around 2,500 concurrent
flows, whereas CCD can sustain more than 80,000 concurrent flows, thus with a gain
of almost two orders of magnitude.



3.3 Validation and Experimental Evaluation 61

3.3.1 Experimental comparison with standard OpenFlow switches

We tested experimentally the traffic monitoring architecture in Fig. 3.2 in two dif-
ferent scenarios: the first one using the CCD stateful approach implemented with
OpenState, and the second one using a standard approach (without countdown)
implemented in a standard OF switch. By comparing the actual data traffic from the
switch to the traffic classifier, we will evaluate quantitatively the gain in terms of
scalability of our proposed stateful approach.
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Fig. 3.9: Average ratio of traffic received by nDPI for a stateful CCD approach, with
respect to a standard OF approach

In our testbed, we connected directly Ryu controller to the traffic classifier
through a TCP socket. The traffic classifier was implemented in a standalone module
by adapting the open-source code of nDPI [12], which allows to identify a large
set of applications analyzing the IP packets. The classifier was programmed to
send a message to the SDN controller whenever a flow was identified. The network
application running on the SDN controller was designed to stop mirroring the traffic
of a flow anytime the flow was identified by nDPI and to steer such flow to another
port of the switch.
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We created a real-traffic trace by capturing the traffic of a single user for 53
minutes while accessing multiple services on the Internet (e.g. web browsing, video
streaming, VoIP, cloud services, etc). The total number of packets in the trace was
645,720, with a total number of flows equal to 14,807; the average generated traffic
was around 200 packets/s. Fig. 3.8 shows the maximum number of packets required
to identify the flows in our specific trace, obtained by feeding directly the real-traffic
trace to nDPI. In our experiment, 51 different kinds of flows were identified, in
particular all the DNS queries were identified with just the one packet (as expected),
whereas between 4 and 10 packets were needed to identify all the remaining flows.

We used tcpreplay to feed the trace of the traffic from a host to the switch. We
measured through a packet sniffer the data traffic sent from the switch to the classifier
for identification. We varied C to evaluate the effect of the countdown procedure in
CCD on the data traffic sent by the switch to the traffic classifier.

Fig. 3.9 shows the traffic received by the traffic classifier using a stateful CCD
approach and a standard approach in an OpenFlow switch. In the latter case, the
average traffic sent to the classifier is always 13.37 packets/s since C does not have
any effect. This traffic is much lower than the average offered load to the switch
(around 200 packets/s), because of the truncated mirroring of any new identified flow.
Notably, in a scenario with multiple users to monitor, we would expect an increase
in the traffic to the classifier proportional to the number of active users.

As we can see from Fig. 3.9, the CCD approach reduces always the load of
classifier between 73% (for C = 10) and 96% (for C = 1), with respect to the
standard OF approach, thanks to the countdown interruption mechanism described in
Sec. 3.2.3. This allows to increase the number of users monitored by the same traffic
classifier, e.g. by a factor of 28 when C = 1 and by a factor of 3.7 when C = 10.

3.4 Summary

In this chapter, we considered an SDN traffic control application that reacts in real-
time to the traffic, based on the analysis of a traffic classifier, towards which the
traffic is mirrored. To improve the scalability of the approach, and, thus, of the
overall system, we addressed the problem of minimizing the interaction between the
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main three players of the system, i.e., the switch, the SDN controller and the traffic
classifier.

We leveraged OpenState, a novel extension of OpenFlow, to implement a state
machine directly in the switches in order to mirror just the minimum number of
packets to the packet classifier. We designed two solutions based on OpenState,
aimed at minimizing the total amount of memory required for the flow tables. Finally,
we evaluated experimentally the actual memory in bytes to assess precisely the
maximum scalability of each solution, given the size of the TCAM memory through
which the flow tables are typically implemented in OpenFlow switches.

Our results show that our proposed CCD solution outperforms SCD solution in
terms of memory footprint by almost two orders of magnitude, thus allowing us to
execute on-the-fly traffic classification, while guaranteeing a satisfactory scalability
degree.



Chapter 4

Misbehaving SDN controllers

The logical centralized approach in the control of SDN networks allows an unprece-
dented level of programmability in the network, but also implies the vulnerability in
the case of misbehavior of the controller, due for example to software bugs, hardware
problems or hacker attacks. In our work we propose to exploit the diversity offered
by multiple controllers to manage the network switches and detect misbehaviors
whenever one controller issues different OpenFlow instructions for the data plane
with respect to the others. We design a behavioral checker, denoted as BeCheck,
that acts as a transparent relay in the interaction between the network switches and
the controllers. We propose and investigate different policies to relay the messages
and to detect the controller misbehavior. We implement and validate our approach
in a simple testbed, showing the possible tradeoff between detection reliability and
controller reactivity perceived at the switches.The results and obervations in this
chapter have also been reported in [101].

This chapter is organized as follows. Sec. 4.1 discusses the previous work.
Sec. 4.2 introduces the architecture of the proposed solution and describes different
detection policies. Sec. 4.3 describes the implementation of the prototype and the
testbed adopted for the experimental validation. The experimental results highlight
the different tradeoffs between detection reliability and the controller reactivity as
perceived by the network switches. Finally, in Sec. 4.4 we draw our conclusions.
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4.1 Related works

Many recent works [32, 59, 51, 69, 87, 40] focused on checking software bugs
and verifying the correctness of SDN control plane. In particular, [32] proposed a
system that deductively verifies if an SDN program is correct on all feasible network
topologies. Similarly, [51] implemented a dynamic analyzer to identify software
bugs and prevent a network from concurrent violations. The work [69] developed a
distributed model checker to verify some security properties related to the network
state. In [87] a troubleshooting technique was implemented that can automatically
detect the minimal sequence of random inputs responsible for bugs in the SDN
control plane. The work in [40] presented a model checking technique with symbolic
execution to test the applications running on top of SDN controllers. On the other
hand, the studies [61, 70] focused on the security aspects of SDN. In particular, [61]
analyzed the threats related to the SDN paradigm and advocated the design of secure
and dependable SDN controllers. Finally, [70] presented a first prototype of secure
SDN controller designed to deal with malicious SDN administrators. However,
all the above works adopted complex analysis processes, such as model checking,
which are very time-consuming and difficult to run in real-time. Unlike them, our
work detects misbehaving controllers in real-time by comparing the behavior of
independent controllers, in a transparent way for both the controllers and the network
switches.

More similar to our work, [59] proposed to check some network-wide invariants
in real time (e.g. loop free routing) by deploying a software layer between the
control and data plane and dynamically inspecting each flow installation rules. It was
based on a single controller, whereas BeCheck operates with multiple controllers.
The advantage of our approach is that BeCheck runs completely oblivious of the
network application. Finally, [67] aims at validating the behaviors of distributed
SDN controllers. Similar to us, a consensus process is employed to determine
the correct actions and detect misbehaving controllers. However, the detection is
based on replicating the network events on the other controllers within the cluster,
thus requires some modification of the internal management of the cluster. Instead,
BeCheck is completely transparent with respect to the controllers, which do not
require any modification.
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Fig. 4.1: The architecture of BeCheck with C = 3 controllers

4.2 Architecture of our behavioral checker

Fig. 4.1 shows the general architecture of our behavioral checker, which exploits
the diversity offered by multiple controllers running in lockstep the same network
application. Let C be the number of controllers, with C ≥ 2. All C controllers
operate on the same network, and each controller is responsible for managing all
the switches, i.e. acting as master for OpenFlow (OF) switches. The controllers run
the same network application; thus, if they all behave correctly, they will show the
same sequence of messages sent to the switches. Thus, misbehaviors can be detected
by comparing the messages received by the controllers and check if inconsistent
messages are sent to the switches. Our behavioral checking module, denoted as
BeCheck, is responsible to digest the OF instructions arriving from the controllers,
check their consistency and replicate a copy of the instructions to the destined switch.
At the same time, BeCheck replicates all the network events to all the controllers,
to ensure that the network applications proceed in lockstep with coherent states.
BeCheck is connected to the switches as it was their master controller, but actually
its role is just to detect misbehaviors and relay the messages in both directions
between switches and controllers. Thus, BeCheck does not substitute the controller
and does not take any decision for the data plane, being completely oblivious of the
specific network application running on the controllers.

It is worth to highlight that our approach is different from a cluster of distributed
controllers, where each controller acts as master only for a subset of switches.
Distributed controllers indeed are aimed at improving reliability and scalability of
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Controller	1 Controller	2BeCheck

pkt-in

Controller	3

pkt-in

flow-mod

flow-mod

pkt-in pkt-in

flow-mod
flow-mod

Fig. 4.2: Example of BeCheck behavior with C = 3 controllers

the SDN control plane. Instead, in our case we exploit the diversity provided by
multiple controllers, in order to detect misbehaviors. It would be also possible to
extend our approach to cluster of controllers, i.e. each controller in Fig. 4.1 might be
a different cluster of distributed controllers, but we have left this extension for future
work.

BeCheck acts as a relay for the OF messages between the controllers and the
switches. Not all the OF messages are actually processed by BeCheck, since some of
them are not meaningful to detect misbehaviors in the data plane. In OF standard [20],
three kinds of messages are defined: (i) controller-to-switch messages, which are
initiated by the controller and allow to manage the switches; (ii) asynchronous mes-
sages, which are initiated by the switch and allow to update the controller about some
local events (e.g. changes in the switch state); (iii) symmetric messages, which are ini-
tiated by either the switch or the controller and sent without solicitation. In our case,
we consider just the main OF messages dictating the forwarding behavior of the data
plane in the network, i.e. pkt-in (which is an asynchronous message), flow-mod
(which is a controller-to-switch message) and pkt-out (which is a controller-to-
switch message). All the other kinds of messages are instead transparently forwarded
by BeCheck.

As example of BeCheck behavior, consider the scenario of a reactive forwarding
network application. Assume now that a switch receives a packet from the network,
generates a pkt-in message and its master controller reacts by sending to the
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switch a flow-mod message. As shown in Fig. 4.2, the switch sends the pkt-in to
BeCheck, which replicates it to all the three controllers. Now each controller reacts
to the pkt-in independently, and sends a flow-mod message to BeCheck. If now
BeCheck finds out that all the 3 messages received by the controllers are coherent,
then it sends to the switch one copy of the flow-mod. Otherwise, in the case of
inconsistency, i.e. one controller behaving incorrectly, BeCheck can react in different
ways: e.g., generates an alarm towards the controllers, or disables the interaction with
the misbehaving controller. The details on how to manage misbehaving controllers
are outside the scope of the current paper.

There are three critical challenges about implementing BeCheck. First, to guar-
antee the communication between BeCheck and all the controllers, the transaction id
(“xid”) for each single controller must be managed correctly. Since BeCheck module
interacts with multiple controllers which may react to a network event using different
xids, OF reply messages with wrong xids from the network can result in connection
refusal by the controllers. BeCheck implements a scheme to map the xids used to
interact with the controller and the xids to interact with the switches. Second, to
detect misbehaving controllers, the action/s associated with each OF controller-to-
switch message (i.e. pkt-out, flow-mod) must be recorded and the messages are
checked in terms of coherence between the different controllers. BeCheck records
the messages from the controllers throughout a Pending Message (PM) table. Third,
the policy according to which the behavior check is preformed as well as the timing
to send the required OF messages to the switches have different impacts on the
detection reliability and on the reactivity of BeCheck. BeCheck implements one of
the three detection policies described in Sec. 4.2.3.

The software architecture of BeCheck, as shown in Fig 4.1, mainly consists of
two components: controller handler and network handler. The controller handler
manages the message exchange with the controllers whereas the network handler
manages the message exchange with the network switches. The XID table is shared
between the two components and it implements a one-to-many table mapping for the
xids used for the network switches and for the controllers. The PM table buffers the
instructions of the OF messages received from the controllers and it is updated by
the controller handler. The Checker submodule is in charge of running the policy to
verify the behavioral consistency among the messages received by the controllers
and to detect possible misbehaviors.
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OF message type Datapath-id Switch xid Controllers xid
pkt-out ...:0A 1001 {101, 201, 301}
flow-mod ...:FB 1002 {102, 202, 302}

Table 4.1: Example of XID table for 3 controllers

OF message type Datapath-id Action Controller bitmask B
pkt-out ...:0A output 1 100
flow-mod ...:FB output 3 110

Table 4.2: Example of PM table for 3 controllers

4.2.1 Network handler

The network handler plays the role of forwarding OF messages between the controller
handler and the network. Whenever an OF message is received from the network,
the network handler adds the corresponding xid field in the XID table and replicates
the message to all the controllers, storing the corresponding values of xids used for
the interaction with the controllers. The XID mapping is required since multiple
controllers may send OF messages with different xids to react the same event, and
OF reply messages with unexpected xids are discarded by the controllers.

The XID table consists of 4 fields, mainly based on the 8-byte header of OF. The
first two fields are aimed at identifying the message, while the last two store the xids
mapping. The message is identified through the OF 1-byte “message type” and the
corresponding switch is identified through the 8 byte “datapath-id” (based on the
switch MAC address). Finally, the xid is detected by the 4-byte xid present in the
OF header of the messages exchanged with the network and with the controllers. An
example of XID table is shown in Table 4.1.

4.2.2 Controller handler and detection policy

The controller handler is the central part of BeCheck. It maintains the connections
with the SDN controllers and forwards OF messages between the controllers and the
network handler. It also collects and inspects the messages from the controllers’ side,
so as to detect possible misbehaviors. All the OF messages, except flow-mod and
pkt-out, are sent directly to the switches in a seamless fashion.
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If all the controllers behave identically, BeCheck expects exactly the same OF
message received from all the three controllers in some random order. A message is
considered “pending” if it has been only confirmed by a subset of controllers. The
handler operates on the Pending Message (PM) table, based on the OF messages
(either pkt-out or flow-mod) received from the controller.

The detection policy is based on the full consensus on the messages received by
the controllers and works as follows. Only when a message is confirmed by all the
controllers, then it is considered correct and removed from the PM table. Otherwise,
after a fixed timeout, an entry is removed and a misbehavior event is generated, since
the corresponding command has not been confirmed by all the controllers.

The PM table contains a message identifier identical to the one in XID table,
based on the message type and the datapath-id. Now the particular action associated
to such message is stored in the table and a controller bitmask B = [bi]

C
i=1 is updated

to keep track of the controllers that sent the message; the ith bit is defined as:

bi =

1 if the message was received from controller i

0 else

By construction, ∑
C
i=1 bi gives the number of controllers from which the message

from received. Whenever ∑
C
i=1 bi =C (i.e. the same message has been received from

all the C controller), then the corresponding entry is removed from the PM table. A
sample PM is shown in Table 4.2, which refers to the two messages of Table 4.1.
According to it, the pkt-out message has been already confirmed by controller 1,
whereas the flow-mod message by controllers 1 and 2.

4.2.3 Forwarding policy

The Checker submodule in Fig. 4.1 reacts on changes in the PM table and triggers
two kinds of events: (i) the transmission to the switch of an OF message, (ii) the
misbehavior detection. We define reaction time as the latency experienced by the
controllers to react to a new event in the network (e.g. pkt-in due to a new flow) as
perceived by the network switches. E.g., in the toy example of a reactive forwarding
application, the reaction time is the interval of time between the generation of the
pkt-in for a new flow and the reception of the flow-mod/pkt-out at the switch,
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generated by BeCheck. We propose three different forwarding policies, each of them
with a distinct trade-off between detection reliability and reactivity:

• Consensus policy (CO) sends the OF message to the switch only when the
message has been received by all the controllers, i.e. only when ∑

C
i=1 bi =C.

This approach introduces the largest reaction time, since it depends on the
slowest controller, but it is the most reliable policy since it is able to detect
immediately misbehavior of just 1 controller and sends to the switches only
fully correct messages. In the case of a misbehavior, BeCheck will not relay
the messages from the controllers to the switches, since they are unconfirmed
by all the controllers, and this results into a network outage.

• First Response policy (FR) sends the OF message to the switch just after the
first message has been received by any controller, i.e. as soon as ∑

C
i=1 bi = 1.

In the case of a misbehavior, BeCheck will keep relay the messages until the
timeout of the corresponding entries in the PM table expires and the detection
occurs. This approach introduces the smallest reaction time, due to the fastest
controller, but it is the least reliable policy since incorrect messages may be
sent to the switches (e.g. when the fastest controller is misbehaving) and the
misbehavior detection takes longer.

• Majority policy (MA) sends the OF message to the switch just when the
message has been received by the majority of the controllers, i.e. when

∑
C
i=1 bi > C/2. The behavior of this approach is intermediate in terms of

reaction time and reliability with respect to CO and FR policies.

The performance of these three policies are evaluated in the following section.
We argue that BeCheck is not susceptible to software bugs mainly due to its intrinsic
simplicity.

4.3 Validation and Experimental Evaluation

We evaluate the performance of BeCheck and compare the different forwarding
policies running in the Checker submodule. For easy reference, we introduce the
following notation to identify the variants of our approach: “BeCheck-X(C)” where
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POX	1 POX	2 POX	C

BeCheck module

l3-learning l3-learning l3-learning

Switch	1 Switch	2 Switch	N

Mininet

6633 6633 6633

6633 6633 6633 6633

Fig. 4.3: Experimental setup

X is either CO, FR or MA depending on the forwarding policy, and C is the number
of controllers.

We implement BeCheck module using OpenFlowJ [21] and NIO.2 libraries [14];
the final source code is around 1500 lines. The experiments are performed in the
scenario shown in Fig. 4.3, based on C controllers and N switches in the network.
We run BeCheck instance directly in a server, together with the controller instances
and the network, emulated with Mininet [92]. The switches communicates with
BeCheck through port 6633, thus BeCheck appears as a classic master controller.
BeCheck, in turn, is connected to each controller through their predefined port 6633.

We evaluate the time-average occupancy of the size of the PM table, since its
small size is crucial for the scalability of the proposed approach, in particular due
to misbehaving controllers. We do not report the size of the XID table since its
occupancy (never larger than PM table) is not affected by possible misbehaving
controllers.

We perform our tests with C independent instances of POX controller [23], each
of them running the default l3-learning application for reactive forwarding. We
show the results for C ∈ {1,2,3,4}. Note that for C = 1 the forwarding policy does
not have any effect, since acts just as a message relay, and this case is used as term
of comparison for the evaluation of the computation overhead of the bare BeCheck
application (e.g. due to the socket management for the transmission and reception of
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Fig. 4.5: Response time obtained with ping command

OF messages). In all our experiments, the network topology is linear, connecting N
switches, with N ∈ {1, . . . ,10}.

We also evaluate the reactivity perceived by the switches by running the ping
-c 1 command at the terminal connected at the first switch, generating one single
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ICMP packet towards the Nth switch, and recording the corresponding Round Trip
Time (RTT) for the first ICMP request/reply exchange in the switch.

Fig. 4.4 shows the table size for C ∈ {3,4} and N ∈ {2,3,4,5}, for different
forwarding policies. Consensus (CO) policy always presents the minimal average
number of entries, whereas First Response (FR) policy shows the largest number of
entries. The reason can be easily understood assuming that one controller is much
slower than the others to process the pkt-in messages received by the network,
relayed by BeCheck. Indeed, for CO only when all the OF flow-mod messages are
received by BeCheck for a target switch, the message is sent to the switch, which
forwards the ICMP packet one hop further along the path. Thanks to the deletion
policy in PM table, the corresponding entry is deleted and thus the maximum number
of entries is one independently from the number of controllers. On the contrary, FR
policy sends the flow-mod to the destined switch as soon as it receives the message
from the fastest controller, without waiting for the slowest controller. Thus each
switch can forward the ICMP packet to the next switch in the path, without waiting
for the flow-mod generated by the slow controller. But this implies that a large
number of entries will be present in the table, which will be deleted only when the
slowest controller sends the flow-mod message. So in a specific time instance, FR
policy results in a larger number of entries in the PM table than that of CO, since
FR allows PM to contain entries for messages originated from multiple switches.
Majority (MA) policy instead, by construction, behaves in an intermediate way with
respect to CO and FR.

Our intuitive explanation is corroborated by observing the reaction time perceived
at the network switches, as shown in Fig. 4.5. FR achieves always the best reactivity
(i.e. the smallest RTT), CO the worst, whereas MA is in the middle of the two. The
graph shows also that the RTT increases with respect to the network size, due to the
larger number of hops in the network.

We now consider the scenario in which a controller is misbehaving. We modify
the l3-learning application in one controller to send always the ICMP packet
towards an unused port of the switch. Fig. 4.6 shows the occupancy of the PM table.
The number of entries for CO is now bounded by two, independently from the number
of switches, since CO receives a coherent OF message from N-1 controllers and
another one from the misbehaving controller. CO detects at once the inconsistency.
The other two policies are also able to detect the misbehavior but, differently from
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Fig. 4.6: Average size of the PM table in the case of one misbehaving controller

CO, allow the network application run for the non-misbehaving controllers. The main
difference between FR and MA is that MA assures always a correct behavior (since
the majority of the controllers are behaving correctly in our scenario), whereas FR
generates wrong instructions on the data plane whenever the misbehaving controller
is the fastest. In all these cases, the occupancy of PM tables grows proportionally to
2N, since around 2 pending messages are stored for each switch.

To evaluate the actual overhead due to BeCheck, we keep the same configuration
as in Fig. 4.3 with all the controller behaving correctly, but we use Cbench to emulate
the network with N switches instead of Mininet. Cbench is not able to emulate
a real network topology, but just a set of N switches flooding the controller with
pkt-in messages. We run now l2-learning application on POX controller. We
record the “throughput” of BeCheck in terms of maximum number of responses per
second, as measured by Cbench. The results are obtained by averaging the results
for 100 tests, each of them lasting for 1 sec. The results of the tests are shown in
Fig. 4.7. As expected, the throughput decreases with increasing number of switches,
since in Cbench the switches generate pkt-in messages simultaneously. As term
of comparison, we report also the scenario, denoted as “No BeCheck", in which
BeCheck is not present between the network and the single controller. Thus, from
Fig. 4.7 it is clear that the reduction of throughput for larger networks is due to the
POX controller. Furthermore, BeCheck(1) (i.e. with just one controller) shows a
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minimum degradation in terms of performance, due to the basic operation of relaying
the messages between the controller and the switches. Instead, when the forwarding
policies are effective, the performance degrades almost proportionally with respect
to the number of controllers. This result is quite expected since each POX controller
is able to answer to the flooding requests of Cbench without almost any processing,
and thus the main bottleneck becomes the BeCheck module, on which the processing
of multiple controllers converges.

4.4 Summary

In this chapter, we propose a behavioral checker, denoted as BeCheck, to detect
in real-time possible misbehaviors of SDN controllers. We assume that multiple,
independent controllers are running the same network application, and thus their
behavior must be coherent. BeCheck is based on a module which relay the OpenFlow
traffic between the controllers and the network switches, and compares the OpenFlow
instructions to detect possible misbehaviors. We propose a detection policy based on
the full consensus on the messages from the controllers. Combined with the detection
policy, we consider the effect of different forwarding policies, First Response (FR),
Majority (MA) and Consensus (CO), which offer different tradeoffs between the
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detection reliability and the latency introduced by the BeCheck module. BeCheck
runs completely transparent from the point of view of the network switches and
the SDN controllers, and operates obviously from the specific network application
running on the SDN controllers.

We implement BeCheck as a standalone module and investigated its performance
for the specific case of a basic reactive forwarding application running in multiple
instances of POX controller. We show the possible tradeoff between the detection
reliability and the controller reactivity as perceived by the switches, for the different
detection policies. We also evaluate the throughput degradation due to BeCheck.

Our results, even if preliminary, are promising, and can be extended to con-
sider applications, coherent in terms of behavior, running on completely different
controllers, in order to detect misbehaviors in a more reliable way. We leave this
extension for future work.



Part II

Integrated Mobile Gaming





Chapter 5

Task Allocation for Integrated
Mobile Gaming

In this chapter, we consider a combined Integrated Mobile Gaming (IMG) platform,
in which some tasks, i.e., software modules of a game, can be offloaded either to
the cloud or to the neighbor mobile nodes. We formalize the optimal offloading
problem that minimizes the maximum energy consumption among the mobile nodes,
under the constraints of a maximum response time and a limited availability of
computation, communication and storage resources. We also propose a heuristic,
called TAME, which closely approximates the optimal solution and outperforms
other state-of-the-art algorithms under both synthetic and realistic test scenarios. The
findings and results of the chapter have also been reported in [98].

The remainder of the chapter is organized as follows. Sec. 5.1 presents the system
model of IMG, and describes the available computation and communication network
resources as well as the game structure in terms of tasks and their interaction. Sec. 5.2
introduces the optimal energy-efficient task offloading problem, while Sec. 5.3
describes our approximate algorithm TAME. Sec. 5.4 presents the methodology used
to investigate the system performance, which is then shown in Sec. 5.5. Finally,
Sec. 5.6 discusses related work highlighting the novelty of our contribution, and
Sec. 5.7 draws some conclusions.
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cloud
 serverPoA

Fig. 5.1: A sample network graph GN with three mobile nodes: one player’s node n0
and two neighbor nodes n1 and n2.

5.1 System model for IMG

We first introduce the network graph GN , which describes the network topology and
all its computation, communication and storage resources. Then we define the task
graph GT , characterizing the game tasks and their dependency.

5.1.1 Network model

We consider the network topology depicted in Fig. 1.1. Each mobile device can com-
municate with a Point of Access (PoA), e.g., a Wi-Fi access point or a base station,
and with its neighbor mobile nodes through any device-to-device communication
technology. For simplicity, we assume that the cloud server is directly connected
to the PoA through a wired connection. Let N be the set of all network nodes,
comprising the mobile nodes and the PoA. We denote by n a generic network node;
with an abuse of notation, we will use a, with a∈N , to refer to both the PoA and the
cloud server. We assume that the network evolves through a sequence of temporal
epochs, each with duration of the order of tens of seconds or minutes. During each
epoch, the communication capacity between pairs of nodes remains constant; indeed,
we include in the N set only those neighbor nodes whose movement with respect to
the player’s device is negligible during an epoch.

Let GN be the network graph representing our network during an epoch: each
vertex corresponds to a network node while edges represent communication links
between nodes in radio visibility. An example of GN in the case of a network
including three mobile users is depicted in Fig. 5.1, while Table 5.1 summarizes
the notation we use to describe the network. Let n0 be the game player’s device.
A generic mobile node n is characterized by computation capacity Cn, available
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Table 5.1: Network model notation

Symbol Description
GN Network graph
N Set of all network nodes
m, n Generic node in the network, m,n ∈N

a PoA and/or cloud server, a ∈N
n0 Player’s mobile device

Bn,m Throughput from node n to m [bit/s]
Bn,a Throughput between node n and the PoA [bit/s]
Dac Propagation delay between the PoA and the edge node [s]
ET

n,m Energy consumption for node n to transmit data to m [J/bit]
ER

n,m Energy consumption at node m to receive data from n [J/bit]
EC

n Processing energy consumption at node n [J/cycle]
Cn Computation capacity at node n [Hz]
Sn Storage availability at node n [bit]
En Available energy at node n in a frame period [J]

storage Sn, and available energy En. The cloud node a has computation capacity Ca,
while its available storage and energy are considered as unbounded. Let Bn,m be the
throughput between node n and m, and Bn,a the throughput between node n and the
PoA. We assume that the propagation delay from any mobile node to the PoA is
negligible, and that the available bandwidth between the PoA and the cloud server
is so high that the only contribution to the communication delay between the PoA
and the cloud server is due to the propagation delay, denoted with Dac. Regarding
the energy consumption, we define EC

n as the per-clock-cycle energy cost due to
computing at node n. With regard to the transmission from node n to node m, let
ET

n,m and ER
n,m be the per-bit energy cost for the transmission and the reception of

data, respectively, similarly to the models adopted in [42, 93].

5.1.2 Mobile game model

The software of a game can be partitioned into several tasks. Different levels of
granularity for the definition of the tasks can be adopted, i.e., at method level, at
object/class level, or at component level (such as artificial intelligence module,
collision detection module and so on). In real-time games, the software manages the
calls of the tasks within a main event loop, which is responsible to update the entire
state of the game, given the players’ inputs, and to render the scene. The duration of
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Fig. 5.2: A sample task graph GT , composed of one local task t0 and two generic
tasks t1, t2.

Table 5.2: Game model notation

Symbol Description
GT Task graph
T Set of all game tasks
t, τ Generic task of a game, t,τ ∈T
t0 Local task on n0
F Frame period duration [s]
st Size of task t (code + state) [bit]
O Set of all the objects
so Size of object o [bit]
ct CPU required by task t [cycles]

Wt,τ Data from task t to task τ [bit]

the event loop is typically bounded by the scene frame period (e.g., 33 ms for 30 fps)
with duration F .

For the sake of generality, we describe the tasks and their dependencies through
a directed graph, called task graph and denoted by GT . Each vertex corresponds to
a task, and an edge connects two vertices if there exists a dependency between the
corresponding tasks, e.g., the output of the first task is used as input to the second
one, or the second task runs only after the first has been completed. Fig. 5.2 shows
a sample graph with 3 tasks; in Sec. 5.4.3, we will then discuss a methodology to
obtain such task graph in the case of real-world games.

The notation we use for the task graph is summarized in Table 5.2. Let T be
the set of all tasks, assumed to run in real-time. Let t0 be a special task (possibly
comprising a set of specific sub-tasks) that must run locally on the player’s device n0

(e.g., I/O processing, video rendering or decoding). Each task t is characterized by a
computation requirement ct , expressed as number of CPU cycles in a frame period,
coherently with standard practice [93, 42]. Let Wt,τ be the average amount of data,
measured in bits, sent from task t to task τ during a frame period. Some tasks may
need some objects for their execution (e.g., the textures shown in the game, or the
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Table 5.3: Decision and auxiliary variables in the optimization problem

Symbol Description
Xt,n 1 if t is offloaded to n, 0 else
π

t,τ
n,m 1 if task t on n sends data to task τ on m, 0 else

ηo,m,n 1 if n downloads object o from m, 0 else
νn,o 1 if some task on n needs object o, 0 else

sounds), which must be stored at the nodes running the tasks. We assume that the
cloud has a copy of every object and that, at the beginning of each frame period, both
the availability of objects at each node and the set of objects required by a task are
known. With an abuse of notation, we say that o ∈ n if object o is locally available at
node n, and o ∈ t if object o is required by task t.

5.2 Problem formulation

We formulate the problem of optimal energy-aware task offloading, under the system
constraints presented in Sec. 5.1. Aim of the problem is to allocate each task to the
most suitable node, so that the maximum energy consumption across the mobile
nodes, including the player’s one, is minimized. This ensures fairness in the energy
toll requested to the mobile nodes for the game execution, and it can also be easily
adapted to the case where the player’s device is supposed to pay a higher energy toll
than its neighbor devices.

We agree that an alternative cost function would be the total energy consumption;
notably, our models adapts immediately to this modification. But this cost may lead
to unfair energy consumption (few nodes very loaded and others idling) that could
be incompatible with cooperation incentives. Thus, we preferred to focus only on
the proposed cost function.

Input to the optimization problem are the network model, described by GN , and
the game model, described by GT . The main decision variable is the binary variable
Xt,n, which takes 1 iff task t is offloaded to node n and zero otherwise, with Xt,a = 1
denoting that the task is allocated to the cloud server. The related decision and
auxiliary variables are summarized in Table 5.3. The objective function is given by:

min max
n∈N \{a}

εn (5.1)
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where εn is the energy cost on node n (excluding the PoA) due to the game execution,
during a given frame period. As detailed in Sec. 5.2.1, εn accounts for the energy
consumption due to task processing as well as to the communication required for
task offloading, retrieval of non-local objects and data exchange between tasks. In
addition, our optimization framework accounts for the performance perceived by
the user, defined as response delay of the game software. Indeed, a game with high
response delay or low frame rate cannot guarantee accurate and fluent game scenes,
thus in our optimization problem, we constraint the response time to be below a
given threshold. This performance metric is defined in detail in Sec. 5.2.2, while
the system constraints under which the optimization problem should be solved are
reported in Sec. 5.2.3.

5.2.1 Mobile node energy consumption

The total energy cost for any mobile node n, with n ∈N \{a}, in the given frame
period is the summation of four terms:

εn = ε
P
n + ε

C
n + ε

M
n + ε

O
n (5.2)

Each term is defined below.

Task processing energy consumption εP
n

The total energy consumption of mobile node n, due to the computation of the tasks
that node n hosts, is given by:

ε
P
n = ∑

t∈T
Xt,n ·EC

n · ct (5.3)

where EC
n denotes the per-clock-cycle energy cost of node n and ct is the required

number of CPU cycles for task t. Thus, Xt,n ·EC
n · ct is the energy consumption due

to t being offloaded to n.
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Task communication energy consumption εC
n

Each mobile node transmits and receives data from other nodes on behalf of the
hosted tasks. The corresponding energy consumption at the generic node n is
evaluated as follows:

ε
C
n = ∑

t,τ∈T
t ̸=τ

∑
m∈N \{n}

Wt,τ · (πt,τ
n,m ·ET

n,m +π
t,τ
m,n ·ER

m,n) (5.4)

where we recall that Wt,τ represents the amount of data that task t sends to task τ .
The first term within the summation denotes the energy used by node n to transmit to
m (i.e., ET

n,m), whenever t is running on n and τ on m (i.e., π
t,τ
n,m = 1). Similarly, the

second term is the energy used by n, running τ , to receive data from task t running
on m (i.e., ER

m,n). Notably, we consider also the reception of data from the PoA (i.e.,
m = a).

Task migration energy consumption εM
n

In the case of task migration from the player’s node n0 to another node m (possibly
including the cloud server a), the energy cost at n0 due to the task transmission is:

ε
M
n0

= ∑
t∈T

∑
m∈N\{n0}

st ·Xt,m ·ET
n0,m (5.5)

where st denotes the size of task t. Similarly, the energy cost at a generic destination
node n receiving a task from n0 is:

ε
M
n = ∑

t∈T
st ·Xt,n ·ER

n0,n n ̸= n0,a (5.6)

Note that we excluded the energy consumption at the PoA (i.e., n ̸= a), since the
PoA operates without energy limitations.

Object retrieval energy consumption εO
n

Since tasks may need to load some objects as input for execution, the nodes hosting
the tasks are in charge of downloading the required objects from other nodes if
not locally available. As a result, a node may need to transfer its locally available
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objects to others, or receive objects from other nodes. Thus, any n ∈N \{a} may
experience the following energy consumption:

ε
O
n = ∑

o∈O
∑

m∈N \{n}
so · (ηo,m,n ·ER

m,n +ηo,n,m ·ET
n,m) (5.7)

where so denotes the size of object o and ηo,m,n indicates whether n needs to download
object o from m or not. In particular, the two terms in the above equation represent
the total energy cost for node n to, respectively, retrieve objects from others and
transmit objects to others.

5.2.2 Response delay

The response delay δ experienced by the player in a given frame period is given by:

δ = δ
M +δ

R +δ
P +δ

E (5.8)

where each term is described below.

Task migration delay δ M

The tasks that are offloaded from n0 to other nodes or to the cloud for remote
execution, require to be transmitted; thus, they experience some migration latency
given by:

δ
M = ∑

t∈T
∑

n∈N \{n0,a}

(
Xt,n · st

Bn0,n
+Xt,a ·

(
st

Bn0,a
+Dac

))
(5.9)

The first term in (5.9) is the transmission time of task t, of size st , from n0 to another
mobile node n, given that the expected throughput between the two nodes is Bn0,n.
The second term in (5.9) is instead the migration delay from n0 to the cloud, given
the transmission time to the PoA (i.e., st/Bno,a) and the propagation delay Dac from
the PoA to the cloud server.
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Task processing delay δ P

The processing time of task t, requiring ct cycles and running on node n with Cn

processing capability, is ct/Cn. Notably, in the case the task runs in the cloud, this
turns out to be ct/Ca. The overall execution time depends on the degree of parallelism
allowed to run the tasks. If we assume that all tasks are executed sequentially, the
total task processing delay δSeq is given by:

δSeq = ∑
t∈T

∑
n∈N

Xt,n · ct

Cn

Instead, if all tasks are executed in parallel, the total task delay δPar is the maximum
among all the processing nodes:

δPar = max
n∈N ∑

t∈T

Xt,n · ct

Cn

We expect that in realistic scenarios some tasks can be executed in parallel and others
sequentially. As a result, the actual task processing time is bounded as follows:

δPar ≤ δ
P ≤ δSeq (5.10)

In the following, for a worst case design, we will consider δ P = δSeq.

Task communication delay δ E

As shown in Fig. 5.2, tasks may need to exchange data, introducing communication
latency. For a worst case design, we assume sequential communications, and thus
the task communication delay can be formulated as follows:

δ
E = ∑

t,τ∈T
t ̸=τ

(
∑

n,m∈N
n̸=m,a

Wt,τ ·πt,τ
n,m

Bn,m
+ ∑

n∈N \{a}

(
π

t,τ
a,n+π

t,τ
n,a

)
·
(

Wt,τ

Bn,a
+Dac

))
(5.11)

The first term in (5.11) includes the duration of the transmission from task t to task τ

occurring from mobile node n to mobile node m, and equal to Wt,τ/Bn,m, whenever
such transmission occurs (i.e., π

t,τ
n,m = 1). The second term in (5.11) considers

the communications between the cloud server and a mobile node. It includes the
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transmission time Wt,τ/Bn,a from/to the PoA and the propagation delay Dac between
PoA and the cloud server whenever such communication occurs, either from the
mobile node to the cloud server (i.e., π

t,τ
n,a = 1) or vice versa (i.e., π

t,τ
a,n = 1).

Object retrieval delay δ R

We assume that objects, if needed, are retrieved sequentially, thus the total object
retrieval delay is formulated as follows:

δR = ∑
o∈O

∑
n∈N \{a}

∑
m∈N \{n,a}

(
ηo,m,n · so

Bm,n
+ ηo,a,n ·

( so

Bn,a
+ Dac

))
(5.12)

The first term in (5.12) represents the total delay so/Bm,n for mobile node n to retrieve
object o from mobile node m whenever convenient (i.e., ηo,m,n = 1). The second
term refers to the download time of o from the cloud, i.e., between the cloud and
the PoA (i.e., Dac) and between the PoA and node n (i.e., so/Bn,a), whenever this
case happens (i.e., ηo,a,n = 1). We recall that the cloud has a copy of any object, thus
objects are never uploaded to the cloud.

5.2.3 Constraints

Given the variables defined above, the IMG system is subject to the constraints listed
below.

Maximum response delay

The execution of all tasks related to a given frame period needs to be completed
within the frame itself:

δ ≤ F (5.13)

Task mapping

Each task can only be offloaded to either a mobile node or the cloud, i.e.,

∑
n∈N

Xt,n = 1 ∀t ∈T (5.14)
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Additionally, since t0 is the local task that must run on node n0, we force Xt0,n0 = 1.

Task communication

The auxiliary binary variable π
t,τ
n,m is related to the main decision variable Xt,n as

follows:

π
t,τ
n,m =

Xt,n ·Xτ,m if Wt,τ > 0

0 else
(5.15)

i.e., a data transfer between tasks t and τ running, respectively, on nodes n and
m, occurs only if τ gets as input t ′s output, and t and τ are actually assigned to
the two mobile nodes. In order to obtain linear constraints, we can equivalently
express (5.15), when Wt,τ > 0, as:

π
t,τ
n,m ≥ (Xt,n +Xτ,m−1) , π

t,τ
n,m ≤ Xt,n, π

t,τ
n,m ≤ Xτ,m

Object demand

Let νn,o be a binary variable such that νn,o = 1 iff one or more tasks on node n need
object o to be executed. Thus, the value of νn,o should be such that:

∑
t|o∈t

Xt,n ≤ K ·νn,o (5.16)

∑
t|o∈t

Xt,n ≥ νn,o (5.17)

where K is a large enough constant. Indeed, if at least one task t running on node
n needs object o (thus, Xt,n = 1 and o ∈ t) then the summation across all tasks
in (5.16) implies νn,o = 1; otherwise, (5.17) imposes νn,o = 0. We remark that (5.17)
is superfluous, since the energy minimization will prevent the case νn,o = 1 to occur
whenever task t does not require object o.
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Object retrieval

If node n hosts tasks requiring an object that is not locally available, then one copy
of the object must be downloaded from other nodes, i.e., for any o /∈ n:

K · ∑
m∈N \{n}

ηo,m,n ≥ νn,o (5.18)

An object is downloaded by n from other nodes (i.e., ∑m∈N \{n}ηo,m,n = 1) iff it is
not locally available (i.e., o /∈ n) and it is needed by the tasks running on node n (i.e.,
νn,o = 1), as modeled in (5.18). Similarly to (5.17), we remark that νn,o will take 0
zero unless (5.18) is satisfied.

Resource capacity

Since mobile devices have limited battery and computation capabilities, they must
have enough resources in order to host tasks. For each mobile device, we define
four kinds of resource capacity constraints: CPU, bandwidth, storage and energy
constraints, as described below.

Node CPU constraint. Each node n (either a mobile node or the cloud) must
have enough CPU to satisfy the computation requirements of all the tasks it hosts in
the given frame period. Thus, for any n ∈N ,

∑
t∈T

Xt,n · ct ≤ F ·Cn (5.19)

The left side is the summation of CPU cycles required by all tasks running on node
n, while the right side is the total number of CPU cycles available at the node.

Node bandwidth constraint. In the given frame period, each node n (either a
mobile node or the PoA/cloud) must have enough bandwidth to support the data
exchange between the local tasks and the remote tasks running on other nodes.
Hence, for any n,m ∈N :

∑
t,τ∈T

t ̸=τ

Wt,τ · (πt,τ
n,m +π

t,τ
m,n)≤ F ·Bn,m (5.20)
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The left side of (5.20) is the total amount of data that node n transmits/receives
to/from m (i.e., π

t,τ
n,m and/or π

t,τ
m,n are equal to 1). The right side of (5.20) is the total

amount of data node n can exchange with m, in the given frame period.

Node storage constraint. In a given frame period, each mobile node n has to
store the objects needed by its local tasks, i.e., for any n ∈N \{a}, the total size of
stored objects cannot be larger than the available storage at n:

∑
o∈O

νn,o · so ≤ Sn (5.21)

Note that we implicitly assume non-persistent storage, and we expect that non-
needed objects can be deleted by node n at the beginning of a frame period whenever
νn,o = 0 and the storage is full. We stress however that the set of objects stored
by a node at the beginning of one frame period is given, and used as input to the
optimization problem for the current frame period.

Node energy constraint. The energy consumption εn cannot be larger than
the available energy En of a mobile node n, during the frame period, i.e., for any
n ∈N \{a}:

εn ≤ En (5.22)

Recall that the cloud server has CPU and bandwidth limitations only.

5.2.4 Problem complexity

The above ILP formulation involves four kinds of decision variables and six kinds of
constraints. It can be shown that the total number of variables grows as O(|N|2|O|, |T |2|N|2),
and the total number of constraints grows as O(|T ||N|, |O||N|). According to [73],
for a linear programming problem with v variables and α constraints, the complexity
of an ILP solver is O(22v

α). Thus, the final complexity to solve our optimization
problem is: O(22|T |

2·|N |2 |T ||N |) for |T |> |O|

O(22|O|·|N |
2
|O||N |) for |T | ≤ |O|

which underlines that the problem complexity greatly increases with the number of
tasks and mobile nodes.
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5.3 TAME algorithm

The optimization problem presented in Sec. 5.2 can be solved with ILP solvers in
the case of small problem instances, but, due to its high complexity, it cannot scale
to large network/game instances. We therefore devise a low-complexity, greedy
algorithm, named Task Allocation with Minimum Energy (TAME), which closely
approximates the solution obtained with the optimal ILP solver.

At each iteration, TAME assigns a task to the node that minimizes the energy
cost. This cost depends on both communication and computation. To minimize
the complexity when evaluating the energy costs, TAME identifies the dominant
factor (either computation or communication) contributing to the total energy cost,
based on all unallocated tasks. The task to offload is chosen according to the domi-
nant factor, while ensuring compatibility with the available resources (computation,
communication and storage). In other words, at each iteration TAME adapts its
“energy-awareness” to the most relevant energy contribution.

The pseudocode of TAME is presented in Algorithm 5, which takes both the
task graph GT and the network graph GN as input and returns the task allocation
X = {Xt,n}. After initialization, TAME allocates the local tasks t0 to the player’s
device n0 (line 2). Then it considers the remaining tasks iteratively, until all of
them have been allocated (lines 4-26). At each iteration, TAME estimates the total
energy cost due to computation and communication, for all the unallocated tasks.
This allows identifying the major contribution to the energy cost, and, based on
that, the optimal task allocation. In more detail, let ÊC be the energy consumption
corresponding to one computation unit, averaged across all the mobile nodes, then
εcpu is the estimated total energy cost due to computation for all unallocated tasks
(line 5). Likewise, let ÊT and ÊR be the energy consumption due to the transmission
and reception, respectively, averaged across all possible pairs of mobile nodes.
Then εcom is the estimated total energy cost due to communication between all
unallocated tasks (line 6). If the dominant energy contribution is due to computation,
the unallocated task with the maximum energy (t∗) is selected (line 8). Otherwise,
the dominant energy is due to communication, thus the pair of unallocated tasks with
the maximum communication cost (t∗ and τ∗) are selected. After having selected
the task (or the pair of tasks) to allocate, all the mobile nodes are considered as
candidates to host such task/s (line 12-17). When a generic candidate node n is
considered, the constraints on the maximum response delay (as detailed in Sec. 5.2.3)
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Algorithm 5 TAME algorithm
Require: GT ,GN
1: Xt,n = 0,∀t ∈T ,∀n ∈N ▷ Init with no allocated task
2: Xt0,n0 = 1 ▷ Allocate local task/s to n0
3: Ω = T \{t0} ▷ Init set of unallocated tasks
4: while Ω ̸= /0 do ▷ For all unallocated tasks
5: εcpu = ÊC · (∑t∈Ω ct) ▷ Energy due to computation
6: εcom = (ÊT + ÊR) · ( ∑

t,τ∈Ω,τ ̸=t
Wt,τ) ▷ Energy due to comm.

7: if εcpu ≥ εcom then ▷ Computation energy is dominant
8: t∗← argmax

t∈Ω

{ct} ▷ Task with highest computation requirement

9: τ∗ = {} ▷ Task τ∗ is undefined
10: else ▷ Communication energy is dominant
11: t∗,τ∗← arg max

t,τ∈Ω

{Wt,τ +Wτ,t} ▷ Task pair with highest communication requirement

12: for all n ∈N do ▷ Find most energy-convenient node
13: assume t∗ (and, possibly, τ∗) is offloaded to n
14: if all the constraints are satisfied then
15: ên ← maximum energy cost across the mobile nodes if t∗ (and, possibly, τ∗) is

offloaded to n
16: else
17: ên← ∞ ▷ n is not suitable
18: n∗ = arg min

n∈N
{ên} ▷ Find the node with minimum energy

19: if εn∗ < ∞ then ▷ A feasible choice exists
20: Xt∗,n∗ = 1 ▷ Offload t∗ on n∗

21: Ω = Ω\{t∗} ▷ t∗ will not be further considered
22: if τ∗ ̸= {} then ▷ If τ∗ is defined
23: Xτ∗,n∗ = 1 ▷ Offload τ∗ on n∗

24: Ω = Ω\{τ∗} ▷ t∗ will not be further considered
25: else
26: return ▷ Task offloading is not possible
27: return X

and on CPU, bandwidth, storage and energy resources (as detailed in Sec. 5.2.3)
are evaluated. If all constraints are satisfied (line 14), then ên records the maximum
energy cost among all the nodes, assuming that t∗ (and possibly τ∗) is allocated on
the node under consideration. Among all nodes for which the allocation is feasible,
TAME selects the node n∗ for which the cost ên∗ is minimum (line 18). Finally, t∗,
and possibly τ∗, are offloaded to node n∗ (lines 20-24).

Note that, since TAME greedily allocates tasks in each iteration, at some point
it may happen that the response delay constraint cannot be met under the current
partial task allocation thus resulting into an allocation failure. To solve this issue,
TAME adopts a worst case prediction approach: when it verifies the response delay
constraint (line 14), it assumes that for the future iterations the unallocated tasks
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will run in the player’s node n0. All nodes that fail to satisfy this response delay
constraint are excluded from further inspection. So doing, TAME minimizes the
probability of task offloading failure.

5.4 Performance evaluation methodology

We now introduce the methodology adopted to assess the performance of our scheme
and to compare it against state-of-the-art solutions. In particular, Sec. 5.4.1 describes
the two algorithms we use as benchmarks for the TAME algorithm, while Sec. 5.4.2
and Sec. 5.4.3 present, respectively, the network scenarios and the network task
graphs used in our experiments.

5.4.1 Benchmark schemes

We evaluate the performance of our TAME algorithm against the following ap-
proaches:

• BESTFIT considers the tasks in decreasing order of CPU requirements and
offloads each task to the node with the minimum available CPU resource, thus
consolidating the tasks into the minimum number of mobile nodes such that
the system constraints are met. As an example, assume that all mobile nodes
have the same CPU capacity: since the local task t0 is initially allocated to
node n0, all other tasks will be allocated into n0 until possible. Then BESTFIT

will assign tasks to the node with maximum available CPU till its capacity is
saturated, and it will proceed in this way till no further allocation is possible.
It follows that often BESTFIT does not offload any task.

• GRAPHMERGE [79] is based on the idea of combining tasks with low compu-
tation requirements and high communication cost into a “super-task”, which is
then allocated to the most suitable node. This is equivalent to merging nodes
in the task graph, and it has the advantage of nullifying the energy cost due to
communication between tasks that fall within the same super-task since they
will be co-located in the same physical node.

• OPTIMAL solves optimally the ILP optimization problem formulated in Sec. 5.2.
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Table 5.4: Experimental setting for the network model GN

Parameter Value
|N | {4,6,8,10,12}
Bn,a {10,20,100}Mbps
Bn,m 1 Mbps (Bluetooth), 20 Mbps (Wi-Fi Direct)
Sn {16,32,64,128} GB
Cn 0.8 - 2.7 GHz, for n ̸= a
Ca 3 GHz
En 18000 J
so 1000 bytes
EC

n Randomly chosen from Table 5.5
ET

n,m, ER
n,m Randomly chosen from Table 5.6

Dac {1,20,50} ms
|O| {0,10} objects

TAME, BESTFIT and GRAPHMERGE are implemented in Python, while in
OPTIMAL the solution is obtained by using the Gurobi solver [8]. We evaluate
the approximation ratio of each algorithm defined as the ratio of the cost function
maxn∈N \{a} εn (as defined in (5.1)) obtained through the algorithm, to that of OPTI-
MAL. Clearly, by construction, the approximation ratio is always equal or greater
than one.

5.4.2 Network scenarios

To generate the network model described by GN , we consider a network scenario
characterized by the parameters listed in Table 5.4. We vary the total number of
network nodes |N | (which we recall it includes the player’s node n0 and the cloud
server a) from 4 to 12; this corresponds to a number of neighbor mobile nodes for n0

varying from 2 to 10. Node n0 is connected to the neighbor nodes through a Wi-Fi
Direct or Bluetooth interface, while it communicates with the PoA through a Wi-Fi
interface.

The values of the energy consumption for computation (EC
n ) and communication

(ET
n,m,E

R
n,m) are all derived from real-world mobile processors and wireless modules,

as detailed below.
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Table 5.5: Energy cost due to computation

Processor Max power [W] Max frequency [GHz] EC
n [nJ/cycle]

name
Exynos 5433 0.22 1.5 0.147
Exynos 7420 1.29 2.1 0.614

Table 5.6: Energy cost due to communication.

Technology Module name V [V] IT ; IR [mA] ET ;ER [nJ/bit]
SPWF01SA 3.3 243.0;105.0 14.8;6.4

WiFi-Direct QFM-2202 3.3 201.2;66.7 12.3;4.1
QCA6234 3.3 250.0;69.0 15.3;4.2
WGM110 4.8 246.0;81.0 22.0;7.2
RN-42(N) 3.3 30.0;30.0 99.0;99.0
HC-06 3.3 8.0;8.0 26.4;26.4

Bluetooth BT4 BLE 3.3 8.5;8.5 28.0;28.0
BT24 3.3 29.0;29.0 95.0;95.0
SPBT2632 2.5 23.0;23.0 57.5;57.5

Computation energy cost EC
n

We estimate the energy consumption per clock cycle by dividing the nominal max-
imum power of a mobile processor by its maximum CPU frequency. Specifically,
we consider two mobile processors: the Exynos 5433 equipping the Samsung Note
4 [6], and the Exynos 7420 equipping the Samsung Galaxy S6 [7]. The resulting
values are shown in Table 5.5.

Communication energy costs ET
n,m and ER

n,m

We estimate the energy cost to transmit (ET
n,m) and receive (ER

n,m) data using the
formula V · I/B applied to the considered communication chipset, where V is the
voltage supply and I is the current when transmitting/receiving at rate B. We consider
different Wi-Fi and Bluetooth chipsets, and we assume B = 54 Mbps for Wi-Fi and
B = 1 Mbps for Bluetooth. Note that the Wi-Fi chipsets support also Wi-Fi Direct
since the two technologies share the same physical layer. The results are summarized
in Table 5.6 and are derived from the chipset datasheets.

5.4.3 Task graph generation

To describe the game graph GT , we take two approaches. First, we build synthetic
task graphs, which emulate mobile games and allow us to easily vary the system
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Table 5.7: Experimental setting for synthetic task graphs

Parameter Value
|T | {4,6,8,10} tasks
dT 2
ct Uniformly distributed in [105,106] clock cycles

Wt,τ Exponentially distributed with average 220 bytes
F {33,150} ms

Fig. 5.3: Screenshots of MICshooter (left) and Minecraft clone (right)

parameters. Then we profile two real-world games and create the corresponding task
graphs, so as to further verify the algorithms performance in real-world scenarios.

Synthetic task graphs

We generate random task graphs with a given number of tasks |T | and a given
average out-degree of each task dT . The graph generation process starts with a graph
of |T | isolated nodes. Then an ordered pair of tasks (t1, t2) is randomly selected and
a directed edge from t1 to t2 is added to the graph. Such select-and-add operation
continues until the number of distinct edges in the graph equals |T | ·dT , so as to
achieve the expected average degree. The amount of data exchanged between each
pair of tasks is exponentially distributed with 500 bytes as the mean value. The
frame period is fixed to either 33 ms (for a frame rate equal to 30 fps), or 150 ms
(for a generic real-time application). All the settings for this scenario are reported in
Table 5.7.
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Main (c=100000)

Hud (c=97600)

W=26632

Enemy (c=26320)

W=328064

Background (c=25000)

W=56

Ship (c=23600)

W=96

W=54856 W=1168

W=72

W=1232

W=400

W=24

Lasers (c=59200)

W=768

W=2816

Fig. 5.4: Experimental task graph GT for MICshooter: c is expressed in CPU cycles
and W in bytes.

Real task graphs

We select two open-source python games: MICshooter [10] and Minecraft clone [11],
whose screenshots are shown in Fig. 5.3. MICshooter is a classic single-person ar-
cade space shooting game, while Minecraft is a clone of the popular multi-player
sandbox game. For both games, we first analyze the source code and partition the
game into relevant tasks at the class level. In our experiment, we partition MIC-
shooter into 6 tasks and Minecraft clone into 5 tasks. Then we run the game and
get the real task graphs for both games as follows. First, the game call graph can
be obtained in real-time using the pycallgraph module [24]. We then process
the call graph by categorizing the method calls at class level to get the actual task
graph GT . The average CPU requirement ct of each task t in a frame period can
be approximated by the total CPU time provided by cProfile [3] divided by the
number of frames. The average amount of exchanged data between tasks is obtained
by parsing the source code and setting up interception points to measure the size
of exchanged data, considering the input variables and the output ones of each call.
Notably, to obtain the actual size of the whole data structure referred by a variable,
we adopt the python module asizeof [2], which recursively measures the referents
of a data structure.

Fig. 5.4 and 5.5 depict the resulting task graphs, highlighting the computation
requirement (c) and the communication requirement (W ) of each task.
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Window (c=708890)

Sectorize (c=232440)

W=130

Normalize (c=198330)

W=1047

Model (c=1312900)

W=271

Cube (c=186670)

W=1628W=130

W=133

W=1040

W=132

W=415

W=128

W=416

W=40304

Fig. 5.5: Experimental task graph GT for Minecraft clone: c is expressed in CPU
cycles and W in bytes.

Table 5.8: Average approximation ratio for Wi-Fi Direct (top) and Bluetooth (bottom)
connections, |N | ∈ {4,6,8,10,12} and |O|= 0

PPPPPPPPPAlg.
|T |

4 6 8 10

TAME 1.01-1.01 1.01-1.02 1.01-1.02 1.02-1.03
BESTFIT 3.16-3.40 4.59-4.77 5.81-6.04 6.80-6.92
MERGEGRAPH 1.23-1.30 1.45-1.48 1.46-1.51 1.48-1.56

PPPPPPPPPAlg.
|T |

4 6 8 10

TAME 1.01-1.01 1.01-1.01 1.02-1.04 1.09-1.12
BESTFIT 3.21-3.46 4.52-4.80 5.78-5.93 6.53-6.61
MERGEGRAPH 1.21-1.32 1.54-1.59 2.25-2.33 4.75-5.01

5.5 Numerical results

We first compare the performance of the algorithms for the synthetic task graph
scenarios, when the type of connectivity between the network nodes and the number
of objects required to run the game vary. Then we show the performance in the case
of real-world games.
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Fig. 5.6: Tasks running locally on player’s node, for Wi-Fi Direct communications.
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Fig. 5.7: Tasks offloaded to neighbor nodes, for Wi-Fi Direct communications.

5.5.1 Scenario with Wi-Fi Direct communications

Initially, we neglect the process of object retrieval by setting |O| = 0 and assume
that the cloud is “close” to the PoA, i.e., we set Dac = 1 ms. We fix F = 33 ms,
corresponding to the common 30 fps refresh rate. Table 5.8(top) reports the average
approximation ratio of TAME, BESTFIT and GRAPHMERGE, assuming only Wi-
Fi Direct D2D communications. Given a number of tasks |T | and a number of
nodes |N |, we run 1000 different experiments and evaluate the approximation
ratio averaged over 1000 instances. In Table 5.8, we fix |T | and vary |N | ∈
{4,6,8,10,12}; in each cell, for each |T |, we report the minimum and maximum
(average) approximation ratio obtained by varying |N |.
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Fig. 5.8: Tasks offloaded to the cloud, for Wi-Fi Direct communications.

Observe that the TAME algorithm is always very close to the optimal solution,
with a maximum approximation ratio of 1.03, and always outperforms the other algo-
rithms. On the contrary, BESTFIT gives the worst performance, since it concentrates
the tasks in one (n0) or few nodes thus increasing their energy consumption, while
the other algorithms tend to balance the task load across multiple nodes. As expected,
this problem is exacerbated as |T | increases. With regard to GRAPHMERGE, it
behaves worse than TAME, because it assumes that the problem is mainly dominated
by communication energy costs (which is not the case in this scenario), hence it tends
to co-locate different tasks on the same node, regardless their computation energy
cost. TAME instead is able to adapt its choices to the dominant energy contribution.

To better understand the behavior of TAME and OPTIMAL, we show how the
tasks are distributed across the local node (Fig. 5.6), the neighbor nodes (Fig. 5.7)
and the cloud (Fig. 5.8), in the same scenario as for Table 5.8(top). We report the
results as functions of the number of neighbor nodes (which is equal to |N |−2).
TAME behaves almost identically to OPTIMAL in terms of number of offloaded tasks
toward the neighbor nodes and the cloud, and this justifies the approximation ratio
very close to 1 reported in Table 5.8(top). In particular, according to Fig. 5.6, the
number of local tasks is 1 most of the times, and 2 in all other cases, independently
from the number of neighbor nodes, thus TAME is very effective in offloading tasks.
By comparing Fig. 5.7 to Fig. 5.8 as the number of neighbor mobile nodes increases,
we note that fewer tasks are offloaded to the cloud while more tasks are delegated
to the neighbor nodes. This is because a higher number of neighbor mobile nodes
provides more choices to offload tasks. Notably, the number of offloaded tasks per
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Fig. 5.9: Number of tasks running locally on player’s node, for |T |= 6

node is on average at most one, thus TAME tends to distribute equally the load across
all neighbor nodes, although some of them do not host any task since offloading is
not convenient. All other tasks are offloaded to the cloud.

5.5.2 Scenario with Bluetooth communications

Table 5.8(bottom) shows the average approximation ratio when mobile nodes com-
municate via Bluetooth, and Wi-Fi is used to communicate with the PoA. In this case
too, TAME greatly outperforms the other algorithms. Note that TAME performs a
little worse for 10 tasks, compared to the Wi-Fi Direct case in Table 5.8(top). Indeed,
Wi-Fi Direct and Bluetooth have quite different link speeds. Since in our experiment
the link speed of Wi-Fi Direct (20 Mbps) is 20 times higher than that of Bluetooth
(1 Mbps), the response delay constraint becomes more critical in the latter case. As a
result, TAME is reluctant to offload tasks to the neighbor nodes and inclined to keep
more tasks locally on the player’s node n0. This behavior is exacerbated by a larger
number of tasks, since the bandwidth required for the communication between tasks
increases. Similarly, GRAPHMERGE performs worse when adopting Bluetooth than
in the case of Wi-Fi Direct communications.
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Fig. 5.11: Number of tasks offloaded to the cloud, for |T |= 6

5.5.3 Varying the delay between the PoA and the cloud

We now investigate the impact of the propagation delay Dac between the PoA and
the cloud. We consider |T |= 6 tasks, and the response delay constraint F = 150 ms,
which is the maximum lag for real-time applications. We then assume Wi-Fi Direct
connections between mobile nodes and vary Dac ∈ {1,20,50} ms. Figs. 5.9-5.11
show how the tasks are offloaded across the player’s node, the neighbor nodes and the
cloud. As in the previous scenario, TAME behaves almost identically to OPTIMAL.
In particular, the number of tasks running on the player’s node is always very low as
the policy tends to distribute the tasks across all mobile nodes. With regard to the
average number of tasks offloaded to the cloud (see Fig. 5.11), it is almost the same
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Table 5.9: Average approximation ratio for Wi-Fi Direct (top) and Bluetooth (bottom)
connections, |N | ∈ {4,6,8,10,12} and |O|= 10 with so = 1000 bytes

PPPPPPPPPAlg.
|T |

4 6 8 10

TAME 1.04-1.06 1.10-1.16 1.13-1.19 1.16-1.27
BESTFIT 3.09-3.30 4.57-5.17 5.41-5.93 6.19-6.56
GRAPHMERGE 1.35-1.43 1.47-1.52 1.50-1.65 1.63-1.81

PPPPPPPPPAlg.
|T |

4 6 8 10

TAME 1.05-1.07 1.09-1.17 1.10-1.28 1.11-1.32
BESTFIT 3.13-3.59 4.71-5.17 5.21-6.09 6.15-6.77
GRAPHMERGE 1.30-1.36 1.54-1.73 2.30-2.60 4.75-5.55

for Dac equal to 1 ms and 20 ms, while it significantly decreases for Dac = 50 ms.
Indeed, in the latter case no tasks, or at most one task, can be offloaded to the cloud
to meet the strict response delay, independently from the number of neighbor nodes.

5.5.4 Multiple objects

To investigate the effect of object retrieval, we now set the number of objects |O|= 10
and their size to s0 = 1000 bytes. During every run of simulation, each object is
located in one mobile node selected at random. Each task requires a given object
with probability 0.5, thus it requires on average 5 objects. Then we run exactly the
same experiments performed to obtain the results in Table 5.8. Table 5.9 shows that
TAME approximates within a factor 1.32 the solution obtained by OPTIMAL and
still outperforms the two benchmark algorithms.

5.5.5 Real-world games

We now consider task graphs obtained from real-world games. Table 5.10 shows
the approximation ratio for MICshooter and Minecraft clone, considering Wi-Fi
Direct and Bluetooth communications. TAME closely matches the performance of
OPTIMAL, with a maximum approximation ratio equal to 1.06, and significantly
outperforms BESTFIT and GRAPHMERGE. As in the previous scenarios, BESTFIT

gives the worst performance, even if with a better approximation ratio than in the
case of synthetic task graphs.
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Table 5.10: Average approximation ratio for Wi-Fi Direct (top) and Bluetooth
(bottom) connections and |N | ∈ {4,6,8,10,12}

PPPPPPPPPAlg.
Games

MICshooter Minecraft clone

TAME 1.00-1.05 1.02-1.06
BESTFIT 1.45-1.45 2.60-2.62

GRAPHMERGE 1.34-1.35 1.15-1.22
PPPPPPPPPAlg.

Games
MICshooter Minecraft clone

TAME 1.01-1.03 1.02-1.03
BESTFIT 1.45-1.45 2.51-2.55

GRAPHMERGE 1.45-1.45 2.48-2.52

In conclusion, TAME approximates very well the optimal solution, and always
outperforms BESTFIT and MERGEGRAPH in all the scenarios we tested, both
synthetic and real-world task graphs.

5.6 Related works

We first review the works concerning the computation offloading problem for mobile
computing, then we focus on studies related to mobile gaming.

5.6.1 Offloading for mobile computing

The problem of mobile computation offloading has been widely studied. The works
in [45, 95, 53, 68, 93, 42] address the mobile cloud computation offloading problem
theoretically. In particular, [45] advocates dynamic application partitioning to adapt
to ever-changing network conditions. [95, 53] exploit task offloading to achieve
high throughput for data stream applications. [68] proposes a task offloading and
scheduling framework to minimize energy consumption. [93] combines mobile
cloud offloading and dynamic frequency scaling to achieve energy efficiency. [42]
proves that the problem of multi-user computation offloading converges to a Nash
Equilibrium, and proposes a distributed approach based on game theory to decide
local or cloud execution for the tasks of each user. [79] proposes a mobile task
offloading algorithm that merges computationally light but heavily communication
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tasks into super-tasks, and offloads them to the most suitable mobile nodes. However,
all the above studies only address the mobile cloud offloading problem without
exploiting the available resource in the mobile fog. One of the algorithms used for
our performance comparison, named MERGEGRAPH and presented in Sec. 5.4.1, is
an adaptation of the algorithm proposed in [79] to our hybrid cloud/fog scenario.

Another body of works [47, 57, 82, 60, 46, 104] aim at implementing task of-
floading platforms in practice. Specifically, MAUI [47] is a system supporting
energy-aware, fine-grained code offloading for .NET smartphone applications. It
uses .NET common language runtime to ensure platform independence, identify the
remoteable tasks with all the related states, and determine the offloading costs. MAUI
decides the offloading results by solving a linear programming optimization problem
based on online measurements of CPU and network cost. Since .NET serialization
is used to profile the mobile applications at runtime, MAUI supports continuous
profiling and provides optimal offloading strategies on the fly. Cuckoo [57], instead,
is a runtime application offloading framework for the Android platform. It offers a
programming model to help developers implement applications remotely, a resource
manager to collect and manage remote resources, and a runtime system to perform
optimal offloading decisions based on the selected remote nodes. Likewise, Jade [82]
is a dynamic computation offloading system, which provides a programming model
to develop Android applications with computation offloading capability. In addition,
it implements a multi-level data storage to manage data synchronization and avoid
unnecessary data transfers. ThinkAir [60] is another runtime computation offloading
framework for the Android platform. Aside from providing an easy-to-use interface
for developers, ThinkAir enables on-demand paralleled task execution by invok-
ing multiple instances of virtual machines to improve the scalability of the cloud.
CloneCloud [46] is a system that automatically transforms Android applications
so that they can support computation offloading and benefit the available resource
in the cloud. It combines static analysis and dynamic profiling on Java bytecode
so as to partition applications in finer granularity, and it aims at achieving both
energy-efficiency and execution time optimization. Offloading is performed at thread
level, and only those threads that do not require local state are qualified for remote
execution. Similarly, DPartner [104] automatically re-factors Android bytecode
(thus, without the need for the original source files) to enable computation offload-
ing. All the above implementation platforms and techniques can be considered as
possible key enabling technologies to support our proposed offloading scheme in
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IMG scenarios. In our work, we focus just on the optimal way to offload the tasks,
whose feasibility is proved by the aforementioned works.

Relevant to our work are also the studies [89, 91], which investigate the integra-
tion of cloud and edge/fog computing to offload tasks for mobile applications. [89]
implements a framework to offload a face recognition application, either at some
edge servers or to the cloud whenever the edge servers are not available. Notably,
face recognition applications use predefined task graphs, which, compared to those
of mobile games, are not real-time. Besides, the energy cost is not considered since
face recognition algorithms are computation intensive and are always offloaded.
[91] proposes a combined cloud and fog/edge architecture, where the cloud servers,
the neighbor mobile nodes and the edge servers are all considered as candidates
for task offloading. An ILP optimization problem to allocate tasks is formulated,
with the objective of minimizing latency. The application is modeled as a set of
independent tasks, thus, unlike our work, it does not consider the dependencies and
the communication between different tasks. Furthermore, [91] considers neither
energy costs nor communication latency.

5.6.2 Mobile gaming

With regard to mobile gaming, [50, 31, 97, 43] study possible methods to offload
the artificial intelligence (AI) components of mobile games. [50] proposes an
approach to offload part of the AI tasks to external servers and exploit their higher
computational power, so as to allow more complex AI components, hereby more
interesting and challenging games to play. Similarly, [31] studies the performance of
AI offloading with various network latency and evaluates the effectiveness of dead
reckoning algorithms to mitigate the performance degradation due to large delays.
Furthermore, [43] exploits the general-purposed GPUs to offload the AI components
of chess games, so as to perform more complicated computations and improve the
AI’s winning rates. Besides, [97] studies the performance of offloading the AI
components to servers available in the local network by varying the complexity and
number of AIs. Obviously, all these works offload tasks at the component level. In
contrast, our work offloads tasks at a finer granularity (class level), thus providing
higher offloading flexibility.
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Instead of studying solely the possibility of offloading AI components, [38, 44,
66] aim at implementing general frameworks for mobile gaming. [38] proposes a
framework to decompose a mobile game into tasks and adaptively migrate them
between the player’s device and the cloud server. The main difference with respect
to our work is that, instead of just considering the cloud, our model exploits neighbor
mobile devices. Furthermore, their work provides the best offloading scheme through
an exhaustive search of the possible offloading choices, which faces scalability issues;
the existence of two heuristics is just mentioned without providing details. [44] and
[66] exploit the resource of both the cloud and the edge servers to enhance the quality
of mobile games. Aside from cloud servers, [44] incorporates content delivery
network (CDN) servers as edge servers and deploy them close to mobile users, so as
to increase end-user coverage. Similarly, [66] envisions servers available at the user
premises as fog servers in charge of video rendering and transmission, so that the user
coverage increases while transmission delay and bandwidth consumption decrease.
Unlike [44, 66], our work exploits neighbor mobile devices like smartphones and
tablets to offload tasks, thus achieving a higher level of pervasiveness thanks to the
popularity of such devices.

Note that the incentives for cooperation are crucial for the considered offloading
application, but they are outside the scope of the present work. [41] and [103] give
detailed discussions about it.

5.7 Summary

We devised a combined Integrated Mobile Gaming (IMG) scheme that efficiently of-
floads some internal tasks of a game running on the player’s device toward neighbor
mobile nodes or the cloud. We first formalized the problem of energy-aware task
allocation as an ILP problem, which minimizes the maximum energy consumption
across all the mobile nodes while accounting for the communication and computa-
tion costs involved in running and migrating tasks. Then, in light of the problem
complexity, we proposed TAME, an algorithm that, at each iteration, adapts its allo-
cation decisions based on the major factor (either communication or computation)
contributing to energy consumption. We evaluated TAME in the case of synthetic
and real-world scenarios. Our results show that TAME always approximates very
closely the optimal solution and outperforms other state-of-art algorithms. They also
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highlight the advantages of task offloading toward neighbor mobile nodes, especially
when communication latency with the cloud is significant. Importantly, thanks to the
recent availability of offloading platforms, our TAME algorithm can be integrated in
real platforms for IMG, enabling highly pervasiveness and efficient real-time mobile
gaming.



Chapter 6

Conclusion

In this thesis, we specifically concentrate on two enabling techniques involved in
the emerging 5G networks, namely Software Defined Networking and mobile fog
computing. In particular, we propose a set of approaches to optimize the SDN
control plane in terms of communication latency, scalability as well as reliability,
in Chapters 2, 3 and 4, respectively. In Chapter 5, we propose an energy-efficient
Integrated Mobile Gaming platform to allocate gaming tasks in the context of fog
computing.

In Chapter 2, we begin by investigating the controller placement problem un-
der scenario of in-band control plane. Unlike previous works that considered only
the traffic exchange between switches and controllers, we additionally consider
the latency incurred by inter-controller communications, since they affect the time
required to reach the consensus of the data structures that are shared across mul-
tiple controllers. We further define two data ownership models, namely Single
Data-Ownership (SDO) and Multiple Data-Ownership (MDO). Both models are
implemented in state-of-the-art SDN controllers. In SDO model, controllers such
as ONOS and ODL use consensus algorithms (e.g., Raft consensus algorithm) to
synchronize a set of data structures requiring strong consistency, making the inter-
controller latency non-ignorable. The controller placement problem is studied by
building the Pareto frontier for Sw-Ctr and Ctr-Ctr latencies. By observing the
Pareto frontier of 114 real ISP network topologies in the Internet Topology Zoo,
we claim that a controller placement with small Sw-Ctr delay may impose a much
larger Ctr-Ctr delay, and the trade-off between them should be carefully considered
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when planning a network deployment. Then we formulate the problem of optimal
placement for minimum reaction time as ILP for both data ownership models, and
solve it using Gurobi optimizer. Based on the experiments on 89 real ISP topologies,
we claim that for SDO model selecting the closest controller as master might not
always renders the optimal average end-to-end latency. The last contribution is
the implementation of two evolutionary algorithms: BEST-REACTIVITY and EVO-
PLACE. The former aims at finding the controller placement with minimum reaction
time, while the latter strives for the optimal Pareto frontier. Both of them are based
on evolutionary approaches and creates new placements by perturbing the locations
of controllers. As demonstrated by experiments, BEST-REACTIVITY approximates
the optimal solution with an error rate of less than 30% by just scanning less than
10% of the whole search space. On the other hand, EVO-PLACE always outperforms
random walks by providing a better Pareto frontier.

In Chapter 3, we focus on the scalability of the control plane of SDN and exploit
OpenState extension to integrate stateful SDN approach with traffic classification.
In specific, we design two solutions to accurately redirect packets to the traffic
classifiers. Memory footprints of both solutions are analyzed in detail. Experimental
results demonstrate that our solutions dramatically decrease the amount of traffic
received by both the controller and the traffic classifier, thus scale the SDN control
plane.

In Chapter 4, we concentrate to the reliability issues of the SDN control plane and
propose BeCheck, which transparently inspects messages of the multiple instances
of controllers and detects the misbehaving ones through a voting scheme. BeCheck
replies the intercepted messages to the underlying network devices based on one
of three forwarding policies, whose trade-off between control plane reactivity and
identification accuracy are carefully studied.

In Chapter 5, we propose a brand-new task allocation platform for Integrated
Mobile Gaming (IMG) leveraging fog computing, we formulate the problem of
energy-efficient task offloading and we devise a heuristic algorithm named TAME to
find the optimal task offloading scheme. In IMG, mobile games are partitioned into
tasks with finer granularities and offloaded to either the cloud or the neighboring
mobile devices for remote execution. By doing so, the computation resources are
expected to be fully utilized. We firstly formulate the task offloading problem as
an ILP and solve it. To cope with scalability issues, we come up with the TAME
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algorithm. In each iteration, TAME evaluates the task graph, selects task(s) based
on the evaluation of energy cost due to both computation and communication, and
offloads the select task(s) to the most suitable physical node. TAME is evaluated
against two state-of-the-art task offloading algorithms, in the context of both synthetic
and real-world mobile games. As shown by the results, TAME outperforms both
algorithms in almost all the cases.

In summary, we provide a set of tools to facilitate the performance optimization
of SDN and fog computing, both of which are key enabling technologies in 5G
networks. We believe all the proposed approaches could be integrated into real
networks.
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