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Abstract: Over the recent years, mesoporous bioactive glasses (MBGs) gained interest as bone
regeneration systems, due to their excellent bioactivity and ability to release therapeutic molecules.
In order to improve the bone regeneration ability of MBGs, the incorporation of Sr2+ ions, due to its
recognized pro-osteogenenic potential, represents a very promising strategy. In this study, MBGs
based on the SiO2–CaO system and containing different percentages (2 and 4 mol %) of strontium were
prepared by two synthesis methods, in the form of microspheres and nanoparticles. Sr-containing
MBGs were characterized by FE-SEM, XRD and N2 adsorption/desorption analysis. The in vitro
bioactivity in SBF resulted excellent. The assessment of fibroblast cell (line L929) viability showed that
Sr-containing MBGs were biocompatible both in form of micro- and nanoparticles. The osteogenic
response of osteoblast-like SAOS-2 cells was investigated by analysing the expression of GAPDH,
COL1a1, RANKL, SPARC, OPG and ALPL genes, as cell differentiation markers. The results indicate
that the incorporation of Sr into MBG is beneficial for bone regeneration as promotes a pro-osteogenic
effect, paving the way to the design of advanced devices enabled by these nanocarriers also in
combination with drug release, for the treatment of bone pathologies, particularly in patients
with osteoporosis.

Keywords: mesoporous bioactive glasses; strontium; ion release; biocompatibility; osteogenesis;
bone regeneration

1. Introduction

In the last fifty years the chemical and textural features of melt-derived bioactive glasses,
discovered by Hench, have been largely modified to improve their biological performances
transforming them into materials with biomedical added value [1].

For this reason, from the 1990s the researchers’ attention has been moved to the sol-gel synthesis
approach since it provides better textural properties to the glass, such as higher surface area, porosity
and homogeneity, involving also lower processing temperatures. These characteristics allow widening
the range of compositions showing bioactive behaviour (up to 80 mol % of SiO2) and increasing the
hydroxyapatite (HA) deposition rate [2,3]. The HA deposition is in fact the peculiar surface-dependent
mechanism characterising bioactive materials and allowing them to form interfacial bonds with hard
and soft tissues upon their reaction in physiological fluids [4,5].
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From 2000’s mesoporous bioactive glasses (MBGs) have been synthesised combining the sol-gel
method with the use of templating agents in order to further improve and control the textural
characteristics of sol-gel bioactive glasses. Templating agents are surfactant molecules able to
self-assemble in micelles, around which the hydrolysed glass precursors condense forming an ordered
mesophase, whose structure depends on several factors (surfactant chemistry and concentration,
temperature, pH, etc.) [2,6]. After the removal of the surfactant by calcination, an ordered mesoporous
structure is obtained. Therefore, the use of these templating agents allows providing MBGs with
remarkable structural features: highly ordered and tunable porosity in the range of 2 and 50 nm
and higher surface area and pore volume values [7]. These peculiar characteristics increase MBG
reactiveness in body fluids accelerating the process of HA deposition and making these glasses
particularly suitable for bone regenerative application [8].

In addition to these structural characteristics, the regenerative potential of bioactive glasses is
influenced by their ionic dissolution products (Si, Ca, P) [9]. In fact, it has been demonstrated that
the variation of the intracellular ion concentration caused by bioactive glass dissolution leads to the
activation of intracellular signalling pathways. This mechanism influences the genic expression of
osteoprogenitor cells giving rise to rapid bone regeneration [10].

To stimulate a more advanced and specific cell response, therapeutic metallic ions (Cu2+, Sr2+,
Ag+, etc.) have been recently introduced into the bioactive glass compositions [11–13]. These ions
are able to stimulate osteogenesis, angiogenesis and to provide antibacterial properties, making them
attractive as therapeutic agents in the fields of hard and soft tissue engineering [14,15]. Furthermore,
the release of therapeutic ions can be synergistically combined with the delivery of pharmaceutical
agents or growth factors, which can be loaded into MBG mesopores or adsorbed/grafted on the
external surface of the glass particles [7].

In addition, MBGs can be exploited as multifunctional carriers in combination with a polymeric
vehicle matrix for the development of novel and versatile devices for soft and hard tissue regeneration.
With this purpose, the incorporation of Cu-containing MBGs into a thermosensitive hydrogel to obtain
a non-invasive injectable formulation for prolonged and localized therapeutic ion release has been
recently reported by the authors [16]. Another intriguing application foresees their incorporation in a
Type I collagen matrix to produce bone like, hybrid materials to promote the natural bone remodeling
in osteoporotic tissues, as recently reported by Montalbano et al. [17].

Among the elements with potential therapeutic properties, strontium has received remarkable
interest, due to its well-known role in bone metabolism [18–22] by exercising anabolic and anti-catabolic
effects. Indeed, due to its chemical analogy to calcium, strontium is able to exploit the calcium
sensing receptors present on both osteoblastic and osteoclastic cells to activate their downstream
signalling pathways, leading to the promotion of osteoblast replication, differentiation and survival
as well as downregulating osteoclast activities [23]. Furthermore strontium is normally present in
the hydroxyapatite crystals of human bones due to its ability of exchange with calcium in the HA
reticulum [14].

Several studies conducted on bioactive glasses where calcium has been partially substituted
by strontium have shown its beneficial effect in promoting bone remodelling. In particular,
Moghanian et al. [24] tested the response of mouse osteoblast-like cells on solid discs composed
of Sr-containing 58S glass (60% SiO2–36% CaO–4% P2O5 mol %) and evidenced that the presence
of strontium was able to increase the metabolic behaviour of osteoblasts and to promote their
proliferation and the alkaline phosphatase (ALP) activity. Enhanced osteoblastic activity was also
observed by Taherkhani et al. [25], who exposed human osteosarcoma cells to culture media treated
with ionic dissolution products of the same type of glass. More recently, Naruphontjirakul et al. [12]
investigated murine pre-osteoblast cell response to silica nanoparticles obtained by the Stöber method
and subsequently enriched with calcium and strontium, as well as the cell response to their ionic
dissolution products, and reported an enhanced ALP activity and osteogenic differentiation in presence
of nanoparticles containing strontium.
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In this work, different molar concentrations of strontium have been incorporated into the
framework of a mesoporous glass with SiO2–CaO composition. Sr-containing MBGs have been
synthesised by two different approaches, a batch sol-gel procedure and an aerosol-assisted
spray-drying method, to produce nano- and micro-sized spheres, respectively. Besides the size of the
final particles, the two preparation methods allowed to obtain Sr-substituted samples with different
structural features in term of specific surface area, pore volume and pore size and, consequently,
to investigate how these aspects may influence the bioactivity and the biological response in terms of
cytocompatibility and pro-osteogenic effect.

2. Materials and Methods

2.1. Preparation of Sr-Containing MBGs (Sr-MBGs)

MBGs containing different amount of Sr (2 and 4 mol %) were synthesised through two different
synthesis approaches in order to obtain particles with different size and structural parameters (i.e.,
specific surface area, pore size).

2.1.1. Preparation of Sr-Containing MBG Samples by Aerosol-Assisted Spray Drying Method

Based on a modification of the procedure reported by Pontiroli et al. for a binary SiO2-CaO
composition [26], MBG micro-particles with different molar percentage of Sr (molar ratio Sr/Ca/Si =
2/13/85 and Sr/Ca/Si = 4/11/85, hereafter named as MBG_Sr2%_SD and MBG_Sr4%_SD respectively)
were synthesised by aerosol-assisted spray drying method. Briefly, 2.0 g of the non-ionic block
copolymer Pluronic P123 (EO20PO70EO20, average Mn ~5800, Sigma Aldrich, Milan, Italy) were
dissolved in 85.0 g of double distilled H2O (ddH2O) (solution A). In a separate batch, 10.7 g of TEOS
were pre-hydrolysed under acidic conditions using 5.0 g of an aqueous HCl solution at pH = 2 until a
transparent solution was obtained (solution B). Solution B was then added drop by drop into solution
A and kept stirring for 1 h. Depending on the glass composition, the proper amounts of strontium
chloride hexahydrate (SrCl2·6H2O, for analysis EMSURE® ACS) and calcium nitrate tetrahydrate
(Ca(NO3)2·4H2O, 99%, Sigma Aldrich, Milan, Italy), reported in Table 1, were added.

Table 1. Amounts of used salt precursors for MBG_Sr2%_SD and MBG_Sr4%_SD.

Reagent MBG_Sr2%_SD (g) MBG_Sr4%_SD (g)

SrCl2·6H2O 0.32 0.64
Ca(NO3)2·4H2O 1.86 1.57

The final solution was stirred for 15 min and then sprayed (Büchi, Mini Spray-Dryer B-290,
Büchi Labortechnik AG, Flawil, Switzerland) using nitrogen as the atomizing gas with the following
parameters: inlet temperature 220 ◦C, N2 pressure 60 mmHg and feed rate 5 mL/min. The obtained
powder was calcined at 600 ◦C in air for 5 h at a heating rate of 1 ◦C min−1 using a furnace (Carbolite
1300 CWF 15/5, Carbolite Ltd., Hope Valley, UK), in order to remove the template agent.

2.1.2. Preparation of Sr-Containing MBG Samples by Sol-Gel Synthesis (Base-Catalysed)

MBG nanoparticles containing different amount of Sr (2 mol % of Sr, molar ratio Sr/Ca/Si =
2/13/85, and 4 mol % of Sr, molar ratio Sr/Ca/Si = 4/11/85, named hereafter as MBG_Sr2%_SG
and MBG_Sr4%_SG respectively) were synthesised by a base-catalysed sol-gel synthesis, based on a
modified procedure reported by the authors [16]. In particular, 6.6 g cetyltrimethylammonium bromide
(CTAB ≥98%, Sigma Aldrich, Milan, Italy) and 12 mL NH4OH (Ammonium hydroxide solution,
Sigma Aldrich, Milan, Italy) were dissolved in 600 mL of ddH2O under stirring for 30 min. Then,
30 mL of tetraethyl orthosilicate (TEOS, Tetraethyl orthosilicate, Sigma Aldrich, Milan, Italy), calcium
nitrate tetrahydrate (Ca(NO3)2·4H2O, 99%, Sigma Aldrich, Milan, Italy) and strontium chloride
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hexahydrate (SrCl2·6H2O, for analysis EMSURE® ACS) as reported in Table 2, were added and kept
under vigorous stirring for 3 h.

Table 2. Amounts of used salt precursors for MBG_Sr2%_SG and MBG_Sr4%_SG.

Reagent MBG_Sr2%_SG (g) MBG_Sr4%_SG (g)

SrCl2·6H2O 0.84 1.68
Ca(NO3)2·4H2O 4.88 4.13

The powder was collected by centrifugation (Hermle Labortechnik Z326, Hermle LaborTechnik
GmbH, Wehingen, Germany) at 10,000 rpm for 5 min, washed once with distilled water and two times
with absolute ethanol. The final precipitate was dried at 70 ◦C for 12 h and then calcined at 600 ◦C in
air for 5 h at a heating rate of 1 ◦C min−1 using a furnace (Carbolite 1300 CWF 15/5 Carbolite Ltd.,
Hope Valley, UK), in order to remove CTAB.

2.2. Characterization of Sr-MBGs

Wide-angle (2ϑ within 15–80◦) X-ray diffraction measurements (X’Pert PRO, PANalytical, Almelo,
The Netherlands) were performed using CuKα radiation at 40 kV and 40 mA.

MBG_Sr_SD were dispersed on a conductive carbon tape prior to SEM observation (Phenom XL,
Phenom-World, Eindhoven, The Netherlands). The MBG_Sr_SG particles morphology was analysed
by Field-Emission Scanning Electron Microscopy (FE-SEM) using a ZEISS MERLIN instrument
(Oberkochen, Germany). In particular, 10 mg of MBG_Sr_SG powders were dispersed in 10 mL of
isopropanol by ultrasonication using an ultrasonic bath (Digitec DT 103H, Bandelin, Berlin, Germany)
for 5 min to obtain a stable suspension. A drop of the obtained suspension was deposited on a
carbon-coated copper grid (3.05 mm Diam.200 MESH, TAAB, Aldermaston, Berks, UK) and allowed to
dry. A Cr layer was deposited on powders before SEM and FE-SEM analyses in order to enhance the
sample conductivity.

Nitrogen adsorption/desorption isotherms were measured (ASAP2020, Micromeritics ASAP 2020
Plus Physisorption, Norcross, GA, USA), at the temperature of −196 ◦C. Before nitrogen adsorption–
desorption measurements, each sample was degassed at 150 ◦C for 3 h. The Brumauer–Emmett–Teller
(BET) model was applied to determine the specific surface areas (SSABET) of the samples. The pore size
distribution was calculated through the DFT method (Density Functional Theory) using the NLDFT
kernel of equilibrium isotherms (desorption branch).

2.3. Sr2+ Ions Release Tests

In order to evaluate the concentration of released Sr2+ ions, the powders were soaked in Tris HCl
buffer (Tris(hydroxymethyl)aminomethane (Trizma) (Sigma Aldrich, Milan, Italy) 0.1 M, pH 7.4) at
concentration of 250 µg/mL, according to the protocol described by Shi et al. [27]. In particular, 5 mg
of powder were suspended in 20 mL of buffer up to 14 days at 37 ◦C in an orbital shaker (Excella E24,
Eppendorf) with an agitation rate of 150 rpm. At defined time points (3 h, 24 h, 3 days, 7 days and
14 days) half of the supernatant was collected after centrifugation at 10,000 rpm for 5 min (Hermle
Labortechnik Z326, Wehingen, Germany) and replaced by the same volume of fresh buffer solution to
keep constant the volume of the release medium. The release experiments were carried out in triplicate.

The concentration of Sr ions was measured by Inductively Coupled Plasma Atomic Emission
Spectrometry Technique (ICP-AES) (ICP-MS, Thermoscientific, Waltham, MA, USA, ICAP Q),
after appropriate dilutions. In order to assess the initial amount of strontium incorporated during the
synthesis all samples were dissolved in a mixture of nitric and hydrofluoric acids (0.5 mL of HNO3

and 2 mL of HF for 10 mg of powder) and the resulting solutions were analysed via ICP analysis.
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2.4. In Vitro Bioactivity of Sr-Containing MBGs

In vitro bioactivity test was performed to evaluate the apatite-forming ability of Sr-MBGs in
simulated body fluid (SBF). To this aim, 30 mg of Sr-MBGs were soaked in 30 mL of SBF, according to
literature [28]. The samples were kept immersed at 37 ◦C up to 14 days in an orbital shaker (Excella
E24, Eppendorf, Milan, Italy) with an agitation rate of 150 rpm. At each time point (3 h, 1 day, 3 days,
7 days and 14 days), the suspension was centrifuged at 5000 rpm for 5 min, in order to separate the
powder from the solution. The pH of each recovered supernatant was measured, and the powder was
washed with distilled water and dried in oven at 70 ◦C for 12 h prior FE-SEM and XRD analysis to
evaluate the apatite layer formation.

2.5. In Vitro Biological Assessment of Sr-Containing MBGs

The biological response to MBG_Sr2%_SD and MBG_Sr2%_SG and to their ionic release products
was assessed by following two different experimental approaches. In particular, through a direct
contact method, where cells were seeded directly on the MBG particles, and through a not-contact
method, according to which the Sr-MBG suspensions were placed in a Transwell® membrane insert
(<3 µm pore, SARSTEDT AG & Co., Numbrecht, Germany) to allow the passage of the particle
dissolution products.

2.5.1. Inflammatory Response of Sr-Containing MBGs

The inflammatory response test was conducted in direct contact mode, using cells and Sr-MBG
particles at concentration of 1 mg/mL. For these tests the murine macrophage cell line J774a.1
(European Collection of Cell Cultures) was used. Before the tests, cells were maintained in Dulbecco’s
modified Eagle’s medium (Gibco Invitrogen, Cergy-Pontoise, France) supplemented with 10% fetal
bovine serum, penicillin (100 U·mL−1), streptomycin (100 µg·mL−1) and 4 mM l-glutamine. Cells were
grown in a 100% humidified incubator at 37 ◦C with 10% CO2 and passaged 2–3 days before use.
Then the J774a.1 cells (2 × 104 mL−1) were seeded onto 24-well tissue culture polystyrene plates
(Falcon™), containing the Sr-MBG particles. After 4 h, the RNA from J774.a1 cells was isolated
by using the Maxwell® RSC simply RNA Cells Kit (Promega Italia s.r.l, Milan, Italy) and reverse
transcribed by the High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City,
CA, USA). Real-time PCR was performed through the Applied Biosystems StepOne Plus instrument
with 2.2 Step-one software version. Mouse interleukin-1β (IL-1β), interleukin-6 (IL-6), tumour necrosis
factor alpha (TNFα) and Tyrosine 3-Monooxygenase/Tryptophan 5-Monooxygenase Activation
Protein Zeta (YWHAZ) were chosen from the collection of the TaqMan Gene Expression Assays
as primer sets (Applied Biosystems Assay’s ID: Mm01336189_m1, Mm99999062_m1, Mm00443258_m1,
Mm03950126_s1 respectively). Real time PCR was performed in duplicate for all samples in a volume
of 20 µL and, after an initial denaturation at 95 ◦C for 10 min, the PCR amplification was run for 40
cycles at 95 ◦C for 15 s and at 60 ◦C for 1 min. The content of cDNA samples was normalized through
the comparative threshold cycle (∆∆Ct) method, consisting in the normalization of the number of
target gene copies versus the endogenous reference gene YWHAZ.

2.5.2. Biocompatibility Test of Sr-Containing MBGs

Fibroblast cell line L929 was used to assess the biocompatibility of Sr-MBGs. Experimental cell
culture medium (BIOCHROM KG, Berlin, Germany), composed by Minimum Eagle’s Medium without
L-glutamine, 10% fetal bovine serum, streptomycin (100 g/L), penicillin (100 U/mL), and 2 mmol/L
L-glutamine, was placed in 250 mL plastic culture flask (Corning TM, Corning, NY, USA). Cells were
cultured at 37 ◦C in a humidified incubator equilibrated with 5% CO2. Cells were harvested prior to
confluence by means of a sterile trypsin-EDTA solution (0.5 g/L trypsin, 0.2 g/L EDTA in normal
phosphate buffered saline, pH 7.4), re-suspended in the experimental cell culture medium and diluted
to 1 × 105 cells/mL.
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A preliminary qualitative assessment was carried out through optical imaging of the cells in direct
contact with Sr-MBGs particles. In parallel, cell viability tests were performed in Transwell® permeable
inserts. Briefly, fibroblast cells were seeded on polystyrene plate below the Transwell® insert containing
1 mg/mL of Sr-MBG suspension, and after 72 h of incubation cell viability was evaluated through MTT
assay. This assay allows assessing the possible toxic effect of particle dissolution products on cells,
by evaluating the reduction of the mitochondrial succinate dehydrogenase (SDH) enzyme activity,
normally involved in the citric acid cycle. For the execution of the MTT test, cells were incubated with
a 1 mg/mL solution of soluble tetrazolium salt (3-(4,5-dimethylthiazol–2yl)-2,5 diphenyl tetrazolium
bromide). During the subsequent two hours of incubation at 37 ◦C, the succinate dehydrogenase
enzyme causes the transformation of tetrazolium salts into a yellow soluble substance first and then
into a blue water-insoluble product, the formazan precipitate. From the quantification of the precipitate
product is possible to evaluate the degree of the enzyme activity and, consequently, the number of
metabolically active cells. To perform this evaluation, the formazan precipitate was dissolved with
dimethylsulphoxide and was spectrophotometrically measured at a wavelength of 570 nm, providing
an optical density (OD) value. Cells grown on polystyrene plate were used as negative control,
while cells grown with the addition of 20 µL of a solution of 0.08 mg/mL of Sodium nitroprusside
(NPS) were used as the positive one.

2.5.3. Osteogenic Response to Sr-Containing MBGs

Osteoblast-like SAOS-2 cells were cultured at 37 ◦C in a humidified incubator equilibrated with 5%
CO2. Cell suspension was obtained by adding 2 mL of a sterile 0.5% Trypsin-EDTA solution (GIBCO
by Life Technology, ref 15400-054, Thermoscientific, Waltham, MA, USA) to a 250 mL cell culture flask
(Corning™), re-suspended in the experimental cell culture medium and diluted to 1.45 × 105 cells/mL.

For these experiments, 5 mL of the cell suspension were seeded onto 24-well tissue culture
polystyrene plates (Falcon™), provided with the Transwell® insert containing 1 mg/mL of Sr-MBG
suspension. After 72 h and 7 days of incubation, the expression of GAPDH, COL1a1, RANKL,
SPARC, OPG and ALPL genes as cell differentiation markers was assessed using the real time reverse
transcription polymerase chain reaction (qRT-PCR) (Applied Biosystems Assay’s ID: Hs00266705_g1,
Hs00164004_m1, Hs00234160_m1, Hs00243519_m1, Hs00900358_m1, Hs01029144_m1, respectively).

The RNA from SAOS-2 cells was isolated by using the Maxwell® RSC simply RNA Cells
Kit (Promega), by following the manufacturer’s instructions. RNA was reverse transcribed by the
High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems) and RNA quantitation was
performed before starting the Rt-PCR using Quantifluor system kit (Promega).

Real-time PCR was performed in the Applied Biosystems StepOne Plus instrument (Applied
Biosystems). The content of cDNA samples was normalized by making use of the comparative
threshold cycle (∆∆Ct) method.

2.6. Statistical Analysis

Experimental data are reported as mean ± standard deviation. Statistical differences between
groups were analysed using two-way ANOVA using Tukey’s post-hoc test and one-way ANOVA
using Tukey’s pairwise post-hoc test. Statistical significance was represented as * p < 0.05, ** p < 0.01
and *** p < 0.001.

3. Results and Discussion

3.1. Characterization of Sr-Containing MBGs

3.1.1. Morphological and Structural Characterization

FE-SEM images (Figure 1a,b) of MBG_Sr2%_SG and MBG_Sr4%_SG revealed particles with
uniform spherical morphology and size ranging between 100 and 200 nm. At variance, spray-dried
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samples (Figure 1c,d) were spherical particles with micrometric size between 0.5 and 5 µm, in analogy
with those obtained in previous works [26,29]. Morphological analysis evidenced that for both methods
the introduction of higher amount of strontium precursor did not lead to significant morphological
variations of the final particles.Materials 2018, 11, x FOR PEER REVIEW  7 of 19 
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Figure 1. FE-SEM images of (a) MBG_Sr2%_SG; (b) MBG_Sr4%_SG; (c) MBG_Sr2%_SD; (d) MBG_Sr4%_SD.

Nitrogen adsorption-desorption isotherms (Figure 2a) of MBG_Sr2%_SG and MBG_Sr4%_SG
samples are both classified as type IV isotherms, conventionally associated with mesoporous materials,
with H2 hysteresis loop. Pore size distributions of both samples showed uniform mesopores with a
mean diameter of about 4 nm (Figure 2b). The increase of Sr molar concentration from 2 to 4 mol % led
to a decrease in the specific surface area (SSA) from 803 to 551 m2·g−1 and of the pore volume from
0.82 to 0.45 cm3·g−1 [18]. In the literature, other works have shown that the incorporation of increasing
amount of strontium, or trivalent element as Ce, into the framework of MBGs, affected their structural
features [18,22,30], leading to a reduction of specific surface area and pore volume, associated to the
appearance of disorganized non-porous domains [30].
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(b) DFT pore size distributions.

Most likely, the higher incorporation of Sr2+ may interfere during the self-assembly interactions
between SiO4

4− species and the cationic heads of the template, which can cause structural defects in
the polymerized framework and the consequent alteration of the final mesopore structure [18].

Spray-dried samples also showed IV type isotherms confirming their mesoporous nature, with a
pronounced H2 hysteresis (Figure 3a). According to the literature, this could be associated to the
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presence of a complex pore network undergoing the pore-blocking phenomenon, due to the presence
of mesopores connected to the external surface through narrow necks that caused the empting of pores
at lower vapour pressures [31,32]. This less organized porous structure could result from the fast
kinetics of the spray-drying process, which reduce the time available for the mesophase organization
and the degree of silica framework condensation. The values of specific surface area, pore volume
and average pore size are reported in Table 3. The obtained spray-dried MBGs showed SSA values
comparable to those previously obtained by our research group through analogous synthesis without
Sr incorporation [26], evidencing the reliability and versatility of this preparation method.

A slight decrease of SSA values, from 167 m2·g−1 of MBG_Sr2%_SD to 154 m2·g−1 of
MBG_Sr4%_SD, was observed for increasing amount of substituting element, as already reported
for Sr-containing glasses [33]. Nevertheless, the obtained SSA values are remarkably higher than
those of conventional sol-gel glasses, allowing an improved reactivity in physiologic environment [8].
As expected, based on the features of the used templating agent (Pluronic P123), spray-dried samples
showed an average pore size of about 8 nm [34], irrespective of the amount of strontium in the
synthesis solution.
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Table 3. Main textural characteristics of Sr-containing MBGs obtained by N2 adsorption/
desorption analysis.

Parameters MBG_Sr2%_SG MBG_Sr4%_SG MBG_Sr2%_SD MBG_Sr4%_SD

BET surface area 803 m2·g−1 551 m2·g−1 167 m2·g−1 154 m2·g−1

Average Pore size 4.8 nm 4.1 nm 8.3 nm 7.8 nm
Pore volume 0.82 cm3·g−1 0.45 cm3·g−1 0.18 cm3·g−1 0.17 cm3·g−1

3.1.2. Strontium Ion Release from Sr-Containing MBGs

Release tests carried out in Tris HCl medium evidenced, as expected, that the released ionic
concentration (ppm) of Sr2+ ions is dependent on MBG composition, as higher Sr substitution resulted
in higher released amount. Analogous behavior was reported for similar systems, such as Sr-containing
bioactive glass nanoparticles or Sr-substituted MBG scaffolds, which showed a release capacity
well-correlated to the Sr2+ incorporated amounts [12,21,24,35].

The release profile of Sr2+ from MBG_Sr2%_SG and MBG_Sr4%_SG showed a burst effect in the
first 3 h for both samples followed by a plateau (as reported in Table 4). The fast ion release kinetics
is attributed to the remarkably high surface area and to the particle size (short diffusion paths),
which allow fast ion diffusion inside the porous structure [16]. The chemical composition of
MBG_Sr2%_SG and MBG_Sr4%_SG, determined by ICP-AES, revealed a reduced incorporation
of strontium compared to the nominal values. A similar behavior was reported for Sr-substituted
glasses, prepared by sol-gel method, which revealed incorporated amounts lower than the nominal
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ones [36]. This difference can be tentatively ascribed to the larger ionic radius of strontium (1.16 Å)
compared to calcium (0.94 Å) [33], which can limit its incorporation into the framework during silica
polymerization. Moreover, a lower charge density (charge/ionic radius) can account for weaker charge
interactions between Sr2+ ions and the silicate framework and can contribute to the observed lower
Sr2+ incorporation rate.

However, as far as MBG_Sr4%_SG sample is concerned, the total amount of incorporated
strontium was released with a final concentration of about 7.6 ppm. Similarly, the final released
concentration of Sr2+ from MBG_Sr2%_SG results slightly lower compared to that expected based on
the incorporated amount (about 95%), with a final concentration of about 2.4 ppm (Table 4).

Spray-dried MBGs showed also a burst release of Sr2+ in the first 3 h of soaking in Tris-HCl,
followed by a stationary trend. Similarly, the fast ion release could be attributed to the high accessibility
of medium into the porous structure and the fast ionic exchange reactions occurring at the surface.
The final strontium concentration after 72 h of soaking was 7.2 ppm for MBG_Sr2%_SD and 13.2 ppm
for MBG_Sr4%_SD, which represented respectively the 94% and the 100% of the amount initially
incorporated into the two samples, which resulted very similar to the theoretical value (see Table 4).

Table 4. Sr2+ amount incorporated expressed in mol % and ppm, Sr2+ released quantity in ppm after
3 h and 72 h of soaking in Tris HCl.

Sample Sr2+ Incorporated
mol %

Sr2+ Incorporated
ppm

Sr2+ Released at
3 h (ppm)

Sr2+ Released at
72 h (ppm)

MBG_Sr2%_SG 1.0% 2.40 2.19 2.36
MBG_Sr4%_SG 2.0% 7.60 6.68 7.60
MBG_Sr2%_SD 2.0% 7.20 6.30 6.90
MBG_Sr4%_SD 3.7% 13.20 12.1 13.2

3.1.3. In Vitro Bioactivity of Sr-Containing MBGs

The very high SSA and the mesoporous texture of MBGs enhance their bioactivity, namely the
ability to induce the formation of a HA layer on their surface through a series of ionic exchanges with
physiologic fluids [37]. In fact, while melt-derived and non-porous sol-gel glasses exhibit bioactivity
after several days of soaking in SBF, MBGs are able to induce the deposition of the HA layer in shorter
time [8]. This behaviour was also observed for the Sr-containing samples synthetized in this work.
In particular, MBG_Sr2%_SG and MBG_Sr4%_SG showed the formation of nanometric crystals of
HA after 3 days of soaking in SBF that grew in size during the test, causing the embedding of MBG
particles after 7 days (Figure 4).

Spray-dried MBGs, irrespective of the strontium content, exhibited a faster bioactive behaviour
inducing the deposition of numerous HA crystals on their surface after only 1 day of soaking in SBF
(Figure 5). After 7 days of soaking, the particles appeared completely covered by a compact layer of
HA having the typical cauliflower morphology.

The precipitation of a HA layer on the Sr-containing samples and its crystalline nature was
confirmed by XRD analysis: new peaks appeared at 25.8 and 32.0 2θ degrees in all MBG samples
matching the HA reference (00-001-1008) as can be observed in Figure 6.
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The effect of strontium content in bioactive glasses on HA formation remains an open issue in the
literature. Arepalli et al. [38] and Taherkhani et al. [25] reported that the introduction of relatively high
amount of strontium increased the HA formation both for melt-derived and sol-gel bioactive glasses,
due to the decrease of the silica network connectivity. On the contrary, Moghanian et al. [24] and
Hu et al. [39] found that the partial molar substitution of Ca2+ with Sr2+ induced a decreased release of
calcium ions from the glass into the SBF, causing consequently the reduction of its apatite-forming
ability. In this work, based on morphological and structural analysis, the kinetics of HA formation of
Sr-containing MBGs appeared not significantly influenced by the amount of incorporated strontium,
compared to un-substituted samples.

Furthermore, during the in vitro bioactivity test the pH of the SBF solution remained below
7.8 which is considered the threshold value for allowing osteoblasts to maintain their physiological
activity [40], making these systems appropriate for bone regenerative applications.

The overall characterization demonstrated the versatility and the reliability of the two employed
preparation methods to produce Sr-containing MBGs with tailored morphology (particle size),
structural features (surface area, pore size), incorporated amount of bivalent ions and release properties,
without affecting the excellent bioactive behaviour typical of MBGs.

3.2. In Vitro Biological Assessment of Sr-Containing MBGs

The following in vitro biological assessment aimed to evaluate if the developed Sr-containing
samples and their released products allow cell survival and can exhibit a therapeutic effect by
stimulating pre-osteoblastic cells. In order to study this aspect and the role of both the particles
size and the structural features on the induced biological response, the experiments described in
Section 2.5, were carried out on MBG_Sr2%_SD and MBG_Sr2%_SG.



Materials 2018, 11, 678 12 of 18

3.2.1. Biocompatibility of Sr-Containing MBGs

Fibroblast cells were selected as a model cell line to explore the biocompatibility of MBG_Sr2%_SG
and MBG_Sr2%_SD samples, by using a polystyrene plate as negative control and a polystyrene plate
added with 0.08 mg/mL of Sodium Nitroprusside to induce cell death as positive control. The results
of cell viability tests and the optical images of cell morphology are reported in Figure 7. Overall,
it is evident that the presence of Sr-containing MBG particles did not significantly alter the cell
morphology, which appeared comparable to that shown by the cells grown on polystyrene plate
(negative control). Results from MTT assay evidenced that both MBG_Sr2%_SG and MBG_Sr2% SD
showed excellent biocompatibility, since the obtained cell viability percentages were far higher than
70%, which according to the international standard ISO 10993-5: 2009-Biological Evaluation of Medical
Devices Tests for In vitro cytotoxicity-, is the required minimum value for considering biocompatible
the tested material. In particular, the biocompatibility of MBG_ Sr2%_SD is remarkably high as it seems
to promote cell proliferation, showing even higher cell viability compared to the negative control.
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Figure 7. Section above: quantification of cell viability through MTT assay for MBG_Sr2%_ SG and
MBG_ Sr2%_SD compared with polystyrene (negative control) and positive control (polystyrene with
0.08 µg/mL of NPS). (** p ≤ 0.01). Section below: optical images of cells after 72 h of incubation with
MBG_Sr2%_ SG and MBG_ Sr2%_SD at concentration of 1 mg/1 mL, compared to cells seeded on
polystyrene plate.

3.2.2. Inflammatory Response of Sr-Containing MBGs

Usually, one of the major issues associated to nano- and micro-sized material is the induction
of the inflammatory response, which could be even more severe if associated to particle dissolution
products. In order to investigate the effect of both material size and ion release from the
particles in inducing pro-inflammatory reactions, murine macrophage cell line were seeded in the
presence of MBG_Sr2%_SG and MBG_Sr2%_SD and the expression of three pro-inflammatory genes
was evaluated.
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In particular, the following genes were considered: interleukin 1β (IL1β), an important mediator
of the inflammatory response and involved in a variety of cellular activities, including cell proliferation,
differentiation and apoptosis; interleukin 6 (IL6), an important mediator of fever and of the acute
phase response and, finally, tumour necrosis factor-α (TNF-α), involved in the systemic inflammation
response and in the make up of the acute phase reaction.

Figure 8 shows the fold expression of the listed genes obtained for MBG_Sr2%_SD and
MBG_Sr2%_SG compared with the polystyrene plate control. The results showed that there was no
increase in the inflammatory response due to the presence of both Sr-containing MBGs. In particular,
a significant reduction of IL6 and of IL1β expression was detected for MBG_Sr2%_SD compared with
polystyrene and MBG_Sr2%_SG. At variance, a slightly increase of cytokines expression was identified
for the MBG_Sr2%_SG. The reason could be associated to the smaller size of the latter compared to the
micro-size of MBG_Sr2%_SD. Several studies have shown that nanoparticles and sub-micro particles
are more pro-inflammatory than their microparticle counterparts [41–43] although the question is
still controversial as conflicting results have been obtained in other studies [44,45]. In particular,
Kusaka et al. reported a study on the effect of amorphous silica particle size on macrophages
inflammatory response, where they showed an increase in the expression of IL1β and consequently of
TNFα for particles with a size between 30 nm–1000 nm due to a lysosomal damage caused by their
internalization by macrophages [42].
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Figure 8. Gene expression of macrophages after 4 h of cell culture in direct contact with MBG_Sr2%_SD
and MBG_Sr2%_SG. Fold expression of cytokines IL1β, IL 6 and TNFα. (* p < 0.05, ** p < 0.01 and
*** p < 0.001).

On the other hand, the reduction of IL1β, IL6 and TNFα expression found for the MBG_Sr2%_SD,
could be also associated to the release of strontium ions. Indeed, in the literature, the release of Sr2+ is
reported to produce a positive effect on cytokines production, decreasing the inflammatory reaction.
Renaudin et al. demonstrated that monocyte cells, stimulated with lipopolysaccharide (LPS) to induce
an inflammatory reaction, produced a significantly lower amount of TNFα when incubated with
particles able to release strontium ions [46]. Since MBG_Sr2%_SD was able to release three times the
amount of Sr2+ compared to MBG_Sr2%_SG (see Section 3.1.2), it is possible to postulate a correlation
between the amount of released Sr2+ and the reduction of pro-inflammatory cytokines.
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3.2.3. Pro-Osteogenesis of Sr-Containing MBGs

Pro-osteogenic response of Sr-containing MBGs, was evaluated by performing the experiments
with Transwell® permeable insert, which by hindering to a large extent the direct contact between the
particles and the cells, allowed to elucidate the role of the released ions. The effect on the expression of
pro-osteogenic genes due to the ionic extracts of MBG_Sr2%_SG and MBG_Sr2%_SD was evaluated by
Rt-PCR analysis and the related results are shown in Figure 9.
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Figure 9. The expression level of the COL1A1, SPARC, RANKL, OPG and ALPL genes of osteoblast-like
cells (SAOS2) analyzed by qRT-PCR at 72 h and at 7 days (* p ≤ 0.05, ** p ≤ 0.01 and *** p ≤ 0.001).

The pro-osteogenic effect was evaluated by considering the expression of different type of genes
involved in the process of bone regeneration. In particular, RANKL and OPG genes are fundamental
markers for the assessment of the osteogenic potential. In fact, OPG can reduce the production
of osteoclasts and consequently the excessive bone resorption, by inhibiting the differentiation of
osteoclast precursors. When OPG binds to RANKL on osteoblasts, it blocks the RANKL-RANK
interaction between osteoblasts and osteoclast precursors, then inhibiting their differentiation into
mature osteoclasts [47,48]. Therefore, the RANKL/OPG ratio is widely considered an important
indication of bone mass and skeletal integrity [49,50].

At 72 h and 7 days, gene expression analysis showed a decreased expression of RANKL for
both types of Sr-containing MBGs, with a RANKL/OPG ratio in favour of OPG expression being ≤1
(see Table 5). Interestingly, at 7 days this ratio switched in favour of RANKL in the polystyrene cultured
cells, while remained almost unchanged in presence of both Sr-containing MBGs. In particular,
this ratio was 2.291 for cells grown on polystyrene plates, and 0.563 and 0.275 in the presence of
MBG_Sr2%_SG and MBG_Sr2%_SD, respectively. The increase of the OPG expression of cells cultured
in the presence of ionic extracts from Sr-containing MBGs suggests the inhibition of osteoclastogenesis,
confirming the osteogenic activity induced by released Sr2+ ions in amount suitable to exert in vitro a
therapeutic effect.
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Table 5. RANKL/OPG ratio at 72 h and 7 days, for MBG_Sr2%_SG, MBG_Sr2%_SD and polystyrene.
A significant down regulation of RANKL and an overexpression of OPG, results in a RANKL/OPG
ratio in favour of bone remodelling at both time points.

Sample RANKL/OPG

Polystyrene 72 h 1.000
MBG_Sr2%_SG 72 h 0.181
MBG_Sr2%_SD 72 h 0.230
Polystyrene 7 days 2.291

MBG_Sr2%_SG 7 days 0.563
MBG_Sr2%_SD 7 days 0.275

A non-negligible increase of the RANKL/OPG ratio was observed for MBG_Sr2%_SG at
7 days. The increased expression of RANKL gene of osteoblast cells is consistent with the results of
pro-inflammatory response experiment, in which MBG_Sr2%_SG showed an increased expression
of TNFα gene. Indeed, in inflammatory bone diseases, the systemic increase of TNF stimulates the
generation of osteoclast precursors (OCPs) in the bone marrow and enhances their transfer into the
bloodstream. These OCPs differentiate into osteoclasts and sustain their production in response
to TNF and RANKL, by significantly affecting the final bone volume and turnover [51]. However,
the RANKL increase of cells cultured with MBG_Sr2%_SG was not enough substantial to overturn the
ratio. An over-expression of COLL1A1 gene (an early precursor of mineralization) was detected for
MBG_Sr2%_SG at 72 h, without further increase at 7 days. Conversely, an initial down regulation was
detected for MBG_Sr2%_SD, which at variance showed a significant over expression at 7 days.

In addition, we found an earlier and late expression of osteonectin in presence of both
MBG_Sr2%_SG and MBG_Sr2%_SD particles. Osteonectin, known as SPARC, is a glycoprotein
expressed in bone during the remodelling process. The over- expression of SPARC at 72 h and
in particular after 7 days, may suggest that strontium ions could have an active role during bone
regeneration. Osteonectin is synthesized by osteoblast cells and plays a role in binding bone minerals
(HA) and type I collagen [52,53]; furthermore, it inhibits mineralization in vitro [54,55]. This last property
finds partial confirmation in the downregulation of ALPL, which is an early and late mineralization gene.

The overall data suggest that both MBG_Sr2%_SG and MBG_Sr2%_SD are able to promote
bone formation, stimulating the expression of COLL1A1, SPARC and OPG and a down regulation
of RANKL.

Overall this preliminary in vitro biological assessment evidenced the biocompatibility of the
produced Sr-containing MBGs and confirmed the anti-inflammatory and pro-osteogenic effect of Sr2+

ions [46,54,56–58] released by MBGs micro and nanoparticles.

4. Conclusions

Mesoporous bioactive glasses incorporating different amounts of strontium were successfully
prepared through two different synthesis procedures, a base-catalysed sol-gel and an aerosol-assisted
spray-drying method, in the form of nano- and micro-particles, respectively. Besides the size of the
final particles, the two synthesis approaches allowed to obtained samples with different specific surface
area, pore volume and average pore size.

Release tests carried out in Tris HCl revealed that Sr2+ was almost totally released within 7 days
with final released concentrations well correlated to the incorporated amount.

The samples showed an excellent bioactive behaviour, evidenced by the formation of HA deposits
after 1 day of soaking in SBF, demonstrating that the partial substitution of calcium with strontium
does not significantly affect the surface ion-exchange kinetics.

Both type of Sr-containing MBGs were biocompatible, showed a reduced pro-inflammatory
response and were able to stimulate the expression of pro-osteogenic genes (COLL1A1, SPARC and
OPG), confirming the potential of Sr2+ as therapeutic element for the stimulation of bone remodelling.
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Based on the obtained results, Sr-containing MBGs are very promising candidates for bone
regenerative applications as such or in association with drugs as multifunctional carriers in combination
with polymeric matrices.
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