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Abstract 

Big high dimensional data is becoming a challenging field of research. There exist a lot of techniques which infer 

information. However, because of the curse of dimensionality, a necessary step is the dimensionality reduction (DR) of the 

information. DR can be performed by linear and nonlinear algorithms. In general, linear algorithms are faster because of less 

computational burden. A related problem is dealing with time-varying high dimensional data, where the time dependence is 

due to nonstationary data distribution. Data stream algorithms are not able to project in lower dimensional spaces. Indeed, 

only linear projections, like principal component analysis (PCA), are used in real time while nonlinear techniques need the 

whole database (offline). The Growing Curvilinear Component Analysis (GCCA) neural network addresses this problem; it 

has a self-organized incremental architecture adapting to the changing data distribution and performs simultaneously the 

data quantization and projection by using CCA, a nonlinear distance-preserving reduction technique. This is achieved by 

introducing the idea of “seed”, pair of neurons which colonize the input domain, and “bridge”, a novel kind of edge in the 

manifold graph, which signals the data non-stationarity. Some artificial examples and a real application are given, with a 

comparison with other existing techniques. 

Keywords: curvilinear component analysis; dimensionality reduction; neural network; non-stationary data; soft competitive 

learning; bridge 

1. Introduction 

 

ATA mining is more and more facing the extraction of meaningful information from big data (e.g. from internet), 

which is often very high dimensional. For both visualization and automatic purposes, their dimensionality has to 

be reduced. This is also important in order to learn the data manifold, which, in general, is lower dimensional 

than the original data. Dimensionality reduction (DR) also mitigates the curse of dimensionality: e.g., it eases classifi-

cation, analysis and compression of high-dimensional data.  

Most DR techniques work offline, i.e. they require a static database (batch) of data, whose dimensionality is re-

duced. They can be divided into linear and nonlinear techniques, the latter being in general slower, but more accurate 

in real world scenarios. See for an overview [1]. 

However, the possibility of using a DR technique working in real time is very important, because it allows not only 

having a projection after only the presentation of few data (i.e. a very fast projection response), but also tracking non-

stationary data distributions (e.g. time-varying data manifolds). This can be applied, for example, to all applications of 

real time pattern recognition, where the data reduction step plays a very important role: fault diagnosis, novelty detec-

tion, intrusion detection for alarm systems, speech, face and text recognition, computer vision and scene analysis and 

so on. 

Working in real time requires a data stream, a continuous input for the DR algorithms, which are defined as on-line 

or, sometimes, incremental (synonym of non-batch). They require, in general, data drawn from a stationary distribu-

tion. The fastest algorithms are linear and use the Principal Component Analysis (PCA) by means of linear neural net-

works, like the Generalized Hebbian Algorithm (GHA, [2]), the Adaptive Principal-component Extractor (APEX, [3]) 

and the incremental PCA (candid covariance-free CCIPCA [4]).   

Nonlinear DR techniques are not suitable for online applications. Many efforts have been tried in order to speed-up 

these algorithms: updating the structure information (graph), new data prediction, embedding updating. However, the-

se incremental versions (e.g. iterative LLE, [5], incremental Laplacian eigenmaps [6], incremental Hessian LLE [7]) 

require too a cumbersome computational burden and are useless in real time applications. 

Neural networks can also be used for data projection. In general, they are trained offline and used in real time (re-
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call phase). In this case, they work only for stationary data and can be better considered as implicit models of the em-

bedding. Radial basis functions and multilayer perceptrons work well for this purpose (out-of-sample techniques). 

However, their adaptivity can be exploited either by creating ad hoc architectures and error functions or by using self-

organizing maps (SOM) and variants [9]. The former comprises multilayer perceptrons trained on a precomputed 

Sammon’s mapping or with a backpropagation rule based on the Sammon’s technique and an unsupervised architecture 

(SAMANN, [10]). These techniques require the stationarity of their training set. The same problem affects the deep 

neural autoencoders [11], which are trained for modelling the data reduction. They are multilayer feed-forward neural 

networks with an odd number of hidden layers and shared weights between the top and bottom layers; sigmoid activa-

tion functions are generally used (except in the middle layer, where a linear activation function is usually employed). 

The main weakness of autoencoders is that their training may converge very slowly, especially in cases where the input 

and target dimensionality are very high (since this yields a high number of weights in the network). In addition, they 

are limited by the presence of local optima in the objective function. 

The latter family of neural networks comprises the self-organizing feature maps (SOM) and its incremental variants. 

SOM is inherently a feature mapper with fixed topology (which is also its limit). Its variants have no topology (neural 

gas, NG [12]) or a variable topology and pave the way to pure incremental networks like growing neural gas (GNG, 

[13]). These networks, in conjunction with the Competitive Hebbian Rule (CHR, [14]), create a graph representing the 

manifold, which is the first step for most DR techniques. NG plus CHR is called Topology representing network 

(TRN, [15]). The approach is called TRNMap [16] if the DR technique is a multidimensional scaling (MDS); it is 

called RBF-NDR [17] if the projection is modeled by an RBF with an error function based on geodesic and Euclidean 

distances: in both cases, the projection follows the graph estimation, which results in the impossibility to track changes 

in real time. If the graph is computed by GNG, then the DR can be computed by OVI-NG [18], if Euclidean distances 

are used, and GNLG-NG [19] if geodesic distances replace Euclidean distances. However, from the point of view of 

real time applications, only the former is interesting, because it estimates, in the same time, the graph updating and its 

projection. 

For data drawn from a nonstationary distribution (nonstationary data stream), as it is the case for fault and pre-fault 

diagnosis and system modeling, the above-cited techniques basically fail. For instance, the methods based on geodesic 

distances always require a connected graph. If the distribution changes abruptly (jump), they cannot track anymore. 

Apart the linear techniques, like PCA, which, for their speed, can be adapted to this problem, but are forcedly approx-

imations in case of nonlinearities, only the variant of SOM, called DSOM [20], can be used. It exploits some changes 

of the SOM learning law in order to avoid a quantization proportional to the data distribution density. However, what is 

more interesting is the use of constant parameters (learning rate, elasticity) instead of time-decreasing ones. As a con-

sequence, DSOM is able to promptly react to changing inputs. Unfortunately, it is a forgetting network, in the sense 

that it forgets the past information and only tracks the last changes. This is a serious problem, especially in case the 

past inputs would carry useful information. There are also neural networks, like SOINN and its variants [21], which 

record the whole life of the process to be modelled (life-long learning), but are not able to project the information 

into a lower dimensional space. The same observation can be repeated for the data stream clustering methods [22].   

Recently, an ad hoc architecture has been proposed (onCCA, [23]), which addresses this problem by using an incre-

mental quantization synchronously with a fast projection based on the Curvilinear Component Analysis (CCA, [24], 

[25]). This neural network requires an initial architecture provided by a fast offline CCA.  

The growing CCA (GCCA, [26], [27]) neural network is an improved version of onCCA, which, by using the new 

idea of seed, does not need an initial CCA architecture. It also uses the principle of bridges in order to detect changes 

Fig. 1 The CCA neural network and its two weight layers 
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in the data stream. 

This paper is an extensive description and analysis of GCCA. After the presentation of the traditional (offline) CCA 

in Sec. II, Sec. III presents some online algorithms such as OVI-NG and DSOM. Sec. IV introduces the new algorithm 

and discusses both its basic ideas and the influence of its user-dependent parameters. Sec. V shows the results of a few 

simulations on artificial problems and a real application. Sec. VI yields the conclusions.  

 

 

2. The curvilinear component analysis 

One of the most important non-linear techniques for dimensionality reduction is the Curvilinear Component Analysis 

(CCA, [24], [25]), which is a non-convex technique based on weighted distances. It derives from the Sammon map-

ping [1], but improves it because of its properties of unfolding data and extrapolation. CCA is a self-organizing neural 

network (see Fig.1), which performs the quantization of a data training set (input space, say X) for estimating the cor-

responding non-linear projection into a lower dimensional space (latent space, say Y). Two weights are attached to 

each neuron. The first one has the dimensionality of the X space and is here called X-weight: it quantizes the input da-

ta. The second one, here called Y-weight, is placed in the latent space and represents the projection of the X-weight. In 

a sense, each neuron can be considered as a correspondence between a vector and its projection. The input vector 

quantization can be performed in several ways, by using, for instance, classical neural unsupervised techniques. The 

CCA projection, which is the core of the algorithm, works as follows. For each pair of different weight vectors in the X 

space (data space), a between-point distance    , calculated as            . The objective is to constraint the dis-

tance     of the associated Y-weights in the latent space, computed as            , to be equal to    . Obviously, 

this is possible only if all input data lay on a linear manifold. In order to face this problem, CCA defines a metric func-

tion Fλ, which penalizes the long distances but preserves local topology, by using a user-dependent parameter λ. In its 

simplest form, it is given by: 

   

(1) 

 

That is a step function for constraining only the under threshold between-point distances    . A smoother way of 

favoring short distances stems from the use of the right Bregman divergence [25]: 
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whose asymmetry yields a better projection.  

For each pair i, j of N neurons, the CCA error function is given by: 
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 This error allows to unfold strongly non-linear or closed structures. Defining as    the weight of the j-th projecting 

neuron, the stochastic gradient algorithm for minimizing (3) follows: 
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where   is the learning rate. 

The computational complexity of CCA is O (N). CCA has good extrapolation (projection of points outside the in-

put data domain). As pointed out in [28], the CCA projection has also a high trustworthiness. 

However, there are some limits. For instance, although the accuracy of the projected topology in the latent space 

does not change, the projected map is not positionally invariant with regard to each new CCA execution. Indeed, it 

changes because it is only constrained by distance preservation. An invariant CCA is presented in [29]. 

 

 

3. Some Online Algorithms 

 

As a comparison with GCCA, the OVI-NG and DSOM methods are here sketched. The former has some similarities 



 

 

with GCCA, but is not suitable for a nonstationary environment. The latter is simpler, but has no temporal memory. 

3.1 OVI-NG 

By defining a neural gas quantization equipped by the Competitive Hebbian Rule (CHR) for the creation of connec-

tions, the online visualization neural gas (OVI-NG, [18]) is a nonlinear projection method which combines TRN with 

the CCA projection rule (4). Quantization and projection are performed simultaneously (the authors define it as on line 

technique). The quantization is not incremental: it requires to define in advance the number of neurons (units) and the 

corresponding initial conditions. The CCA rule (4) uses the right Bregman divergence (2) and is tailored to offline 

problems: indeed, each parameter of the network is time-dependent and follows a decreasing exponential law in order 

to converge to a solution. As a consequence, twelve user-dependent parameters are required: the initial and final values 

of the lifetime of the connections, the NG learning rate, the neighborhood widths in input and output space and the 

CCA learning rate; the number of neurons; the maximum time for the temporal schedules. 

This technique is not well suited to non-stationary data, because of its dependence on time (decreasing exponen-

tially). Also, the predefined architecture does not allow to track the underlying distribution. However, by using con-

stant parameters, it can mimic the forgetting behavior of DSOM. In this case, it still requires the initial conditions for 

the weights and six parameters. Nevertheless, OVI-NG is here used for comparison because it uses the same formula 

(4) as GCCA (but using the right Bregman divergence) and has some points in common with it. 

As a consequence not to be incremental, there is no neuron pruning; indeed, CHL is only used for visualization 

purposes. 

In [18] it is claimed OVI-NG can visualize discontinuities in the map thanks to CHR (under the assumption of 

trustworthiness of the network), by showing only the connections among non-neighboring units. However, CHR is not 

able to track non-stationarities, because it is not time directional (time anisotropy), as it will be clear in the analysis of 

GCCA bridges. 

3.2 The Dynamic Self-Organizing Maps 

Self-organizing maps (SOM) are composed of neurons equipped with pairs of weights, like CCA. The X-weights 

quantize the X-space, while the Y-weights are constrained to a fixed topology (predefined grid). The quantization law 

is given by: 

   

(5) 

 

where   is the input vector in X-space and iwin is the index of the closest neuron to the input (given a metric); the func-

tion (t) is called learning rate and, in general, follows a decreasing law; h is the neighborhood function and depends 

on the norm of the distance between the Y-weights of the neuron i and the winner win; it is often expressed as a Gauss-

ian law: 

   

(6) 

 

where (t) is a geometrically decreasing law (for tuning the quantization from coarse to fine). 

This version of SOM is not able to track nonstationary data; indeed, when (t) and (t) are too low, the map does 

not evolve anymore. A possible solution, which is considered in this paper, is the use of constant laws. However, it los-

es the possibility of fine-tuning the quantization because of this lack of flexibility. 

The only good variant of SOM for solving this problem is given by the dynamic SOM (DSOM, [20]). The learning 

law (5) is changed as: 
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being  and  the constant learning rate and elasticity (or plasticity) parameter, respectively. If ξ=xiwin, then hn(i,iwin, 

ξ)=0 and DSOM works like having time-invariant, but local dependent parameters. If an X-vector is close enough 
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to data, there is no need for others to learn anything (the winner can represent the data); if there is no X-vector 

close enough to the data, any X-weight learns the data according to its own distance to it. The first fact prevents 

DSOM from fitting the magnification law (the quantization does not capture the data density): what is actually 

mapped by DSOM is the structure or support of the distribution rather than the density. The second one implies 

new data (from a changing environment) attract all X-weights. As a consequence, their positions (in input and out-

put space) change and represent only the new information (memoryless network). Indeed, the goal of DSOM is on-

ly the representation of the new environment. It tracks each successive distribution with a short transient error cor-

related to the distribution change. Both constant SOM and DSOM require only two parameters. However, their 

convergence and stability are not proved (the same is true for SOM). In online learning, DSOM stability seems 

unachievable. 

 

4 The GCCA Description 

 

The growing CCA is a neural network whose number of neurons is determined by the quantization of the input space. 

Each neuron has two weights: the first in the data space (X-weight) is used for representing the input distribution, the 

second in the latent space (Y-weight) yields the corresponding projection. The neurons are connected by links which 

define the manifold topology. The original concepts are the idea of seed and bridge. The seed is a pair of neurons, 

which (except in the network initialization) colonize the nonstationary input distribution, in the sense that they are the 

first neurons representing the change in data. Seeds are created by the neuron doubling. The bridge is a qualitatively 

different link, which indicates a non-stationarity of the input. Hence, there are two types of links: edges, created by 

CHL, and bridges. Each neuron is equipped with a threshold which represents its receptive field in data space. It is es-

timated as the distance in X-space between the neuron and its farthest neighbor (neighbors are defined by the graph) 

and is used for determining the novelty of input data. GCCA is incremental both in the sense that it can increase or de-

crease (pruning by age) the number of neurons and the quantization and the projection work simultaneously. The learn-

ing rule is the soft competitive learning (SCL, [23]) except in neuron doubling, which requires the hard competitive 

learning (HCL, [23]). The projection is based on (4), which, because of the choice of (1), implies the idea of λ-neurons. 

4.1 The Algorithm 

The initial structure of GCCA is a seed, i.e. a pair of neurons. The X-weights are random. However, a good choice is 

the use of two randomly drawn inputs. The associated Y-weights can be chosen randomly, but it is better that one pro-

jection is the zero vector, for normalization purposes. 

 

Fig. 2 The GCCA flowchart 



 

 

The basic iteration, represented in the flowchart of Fig. 2, starts at the presentation of a new data, say       . 

All neurons are sorted according to the Euclidean distances between    and their X-weights. The neuron with the 

shortest distance (  ) is the winner w1. If its distance is higher than the scalar threshold of the neuron (novelty test), a 

new neuron is created. Otherwise, there is a weight adaptation and a linking phase. 

Neuron creation. The X-weight vector is given by x0. The winner and the new neuron are linked by a bridge (this link 

does not respect CHL). The new neuron threshold is   . The associated projection (Y-weight) in latent space requires 

two steps: 

1. Determination of the initial values of the projection (y0): a triangulation (see Appendix) inspired by [30] is 
used, in which the winner and second winner projections are the centers of two circles (in the first two di-
mensions of the latent space), whose radii are the distances in data space from the input data, respectively. 
There are two intersections and the initial two components are chosen as the farthest from the third winner 
projection. If the latent space is more than two-dimensional, the other components are chosen randomly. 

2. One or several CCA iterations (4) in which the first and second winner projections are considered as fixed, in 
order to estimate the new y0 (extrapolation). 

Adaptation, linking and doubling. If a new neuron is not created, it is checked if the winner, whose X-weight is x-1, 

and the second winner, whose X-weight is x-2, are connected by a bridge. 

1. If there is no bridge: 

a. these two neurons are linked by an edge (whose age is set to zero) and the same age procedure as in 

[13] is used as follows. The age of all other links emanating from the winner is incremented by one; 

if a link age is greater than the agemax scalar parameter, it is eliminated. If a neuron remains without 

links, it is removed (pruning). X-weights are adapted by using SCL [13]:  x-1 and its direct topologi-

cal neighbors are moved towards x0 by fractions α1 and αn, respectively, of the total distance 

                                                                                  

                                                                            
 

and the thresholds of the winner and second winner are recomputed. 

b. The neurons whose Y-weights are within the sphere of radius λ centered in the first winner are de-
termined, say λ-neurons (topological constraint). One or several CCA iterations (4), in which the 
first winner projection is fixed, are done for estimating the new projections of the λ-neurons (inter-
polation). 

2. If it is a bridge, it is checked if the winner is the bridge tail; in this case, step 1 is done and the bridge be-

comes an edge. Otherwise, a seed is created by means of the neuron doubling (see Fig.3):  

a. A virtual adaptation of the X-weight of the winner is estimated by HCL (only (9a) is used) and con-

sidered as the X-weight of a new neuron (doubling). 

b. The winner and the new neuron are linked (age set to zero) and their thresholds are computed (it 

corresponds to their Euclidean distance). 

c. The initial projection of the new neuron (Y-weight) is estimated by the same triangulation as before. 

d. One or several CCA iterations (4) in which the projections of the two neurons of the bridge are con-
sidered as fixed, in order to estimate the final projection of the new neuron (extrapolation). 

 

Fig. 3 Neuron Doubling 



 

 

 
4.2 Choice of Parameters 

The algorithm requires very few user-dependent parameters, in order to suit it to the problem at hand. They can be di-

vided in two groups: one group for the CCA projection and the other one for the soft competitive learning (SCL). The 

CCA projection requires the following parameters: 

- α learning rate: it influences the Y-projection through (4). A low value implies a more rigid displacement of 

the projected points.  On the contrary, a high value has to be preferred in case of a fast changing data distribu-

tion, which can be automatically detected by introducing some measure of the non-stationarity (e.g. rate of 

change of the density and length of bridges). If the non-stationarity decreases, the parameter can be lowered 

to improve the accuracy of the projection. 

- λ : it is the most important parameter of the network; it depends on the data manifold geometry.  If the mani-

fold is linear, λ can be set to ∞, because all distances in the X-space can be respected in the Y-space. On the 

contrary, a strong non-linearity implies a low value of λ, which means that distances can be preserved only 

locally.  

The selection of this parameter is also crucial because a too small value could imply a collection of local pro-

jections without any coordination. The accurate setting of λ is the way GCCA creates its global projection. As 

a consequence of all these problems, the original CCA requires its manual setting by visual inspection of a 

particular diagram, named dy-dx, which plots the pairs of corresponding distances in X- and Y-space.  

Another possible solution is the use of multiple λ’s, one for each neuron: in this way λ can be made local and 

its tuning can be automatized by using the pairs of corresponding distances in X- and Y-space which express 

the projection accuracy. These values can also be considered as an alternative representation of the data mani-

fold local curvature.  

A last consideration on the CCA projection: the original CCA projection (4) is applied for several iterations (until 

convergence). This is possible because data are stationary and the technique is batch. On the contrary, GCCA is driven 

by changing data, which forbid this use of (4). As a consequence, (4) is iterated each time the neuron (which represents 

the projection) is taken into account. Indeed, when the neuron is created (new data or doubled neuron), (4) is computed 

for the first time (in extrapolation mode). All the subsequent iterations are performed in interpolation mode each time 

the associated neuron is labeled as λ-neuron.  

The soft competitive learning and pruning of GCCA require the following parameters: 

- α1 and αn : they are used in the same way as for other neural networks, like GNG. In particular, α1>>αn. The 

case αn = 0 corresponds to Hard Competitive Learning (HCL). These quantities can be set constant, as in 

DSOM, in order to react to changes in the input distribution. This is the choice for this paper. However, it is 

possible to apply a local α1 parameter to each neuron, endowed with a decreasing exponential law. If, from 

one side this allows a better refinement of the quantization, on the other side, this rigidity can be avoided in 

presence of non-stationarity, which is detected by means of the bridges. For each new neuron (unlike DSOM, 

GCCA is incremental), the associated α1 is set to the initial value. Even this initial value can be set equal to 

the length of the corresponding bridge. Indeed, for big jumps in the distribution, α1 is given a larger value, 

which implies a more flexible network.  

- agemax : it is a threshold for the pruning of the network. A low value implies a more flexible network, capable 

of better tracking the input distribution. It can be computed automatically by estimating the rate of change of 

the number of bridges. If this rate is higher, there is more novelty in data and the threshold is decreased in or-

der to better react to the change.  

Resuming, only four user-dependent parameters are required in case of HCL. They are five for SCL. However, the 

above-cited considerations show the possibility of a completely automatic GCCA.  

4.3 Analysis of Bridges 

Bridges are fundamental in tracking nonstationary data. They are links between a neuron and a new data (new neuron). 
As a consequence, they point to the change in data. They have two basic characteristics: the length and the density. A 
long bridge, whose new neuron has doubled, represents an effective change in the input distribution; instead, if the new 
neuron has no edges, it represents an outlier. The density yields further insight in the time-varying distribution: 

1. In case of abrupt change in the input distribution (jump), there are a few long bridges. 

2. In case of smooth displacement of data, the density of bridges is proportional to the displacement speed of 
the distribution. 

3. In case of very slow displacement, only the border (frontier of the distribution domain) neurons win the com-
petition and move in average in the direction of the displacement. The other neurons are static. Very slow 



 

 

displacement implies no bridges. Bridges appear only if the learning rate of SCL is not constant, but depends 
inversely on the number of wins; however, this rate must be reset after a certain number of iterations, in order 
to avoid the braking effect on the border neurons (effect similar to DSOM). 

 The geometry of bridges can be deepened, but it is outside the scope of the paper. 

 

5 Examples 

 

The behavior of the GCCA neural network is now illustrated both for artificially examples and, in the next subsection, 

in a real world experiment, with regard to the above described DSOM and OVI-NG, which are the only non-linear 

algorithms for non-stationary problems. 

The first example is a simple illustration of the basic difference between DSOM and GCCA. It deals with a data 

uniform distribution whose domain jumps three times (from NW to NE, then from NE to SW and, finally, from SW to 

SE). 

 

Fig. 4 shows the result for DSOM (ε = 1.5, η = 5.5). The neurons and edges only represent the last domain of the 

distribution. The previous information is completely lost. In this sense, the DSOM quantization is memoryless. The 

same phenomenon can be seen for other unsupervised neural networks, like SOM, when using constant parameters. 

DSOM detects the jump by means of the migration of its neurons towards the new domain, because it does not have 

additional resources because the number of neurons is constant (and fixed in advance). 

 

Fig. 5 illustrates the behavior of GCCA on the same example. The parameters are set to: α = 0.005, λ = 2, α1 = 

0.01, αn = 0.0001, agemax = 8. Unlike DSOM, the resulting quantization memorizes the previous positions of the distri-

bution (the grid deformations are due to the small number of data presentations before each jump). The advantage of 

Fig. 4. Four squares: DSOM case. Data are represented by points, 
neurons by full-circles and edges by segments. 

Fig. 5. Four squares: GCCA case. Edges are represented by thin 
segments, neurons by small points and bridges by thick segments. 



 

 

being incremental gives the possibility of representing the different domains without need of defining the number of 

neurons in advance. Pruning only works in the current domain, because in the previous domains there are no more 

winners, which implies that the age of the corresponding edges does not change. This freezes the previous quantiza-

tion. The presence of single bridges alerts for a jump (abrupt change) in the distribution. In case of a smoother change, 

more bridges would be created. 

Fig. 6 shows a static unidimensional manifold representing a 3-D spiral distribution. The parameters of GCCA are 

set to: α = 0.001, λ = 20, α1 = 0.4, αn = 0.1, agemax = 2. The projection results are shown in Fig. 7. It can be deduced 

that the quantization spans the input domain uniformly and the projection unfolds data correctly. This result shows 

GCCA has the same performance as CCA when the distribution is stationary. In this sense, we can consider GCCA as 

an extension of CCA to non-stationary distributions.  

 

5.1 A.  Fault Diagnostics Application 

The OVI-NG (with constant parameters) and GCCA neural networks have been tested in the diagnosis of degradation 

and faults of the bearing of an asynchronous motor. Real data [31] are drawn from an experimental platform 

(PRONOSTIA, [32]) that enables accelerated degradation of bearings under constant and/or variable operating condi-

tions, while gathering online health monitoring data (rotating speed, load force, temperature, vibration). The main ob-

jective of PRONOSTIA is to provide real experimental data that characterize the degradation of ball bearings along 

their whole operational life (until their total failure). 

The dataset contains 2155 5-dimensional vectors whose components correspond to statistical features extracted by 

measurements drawn from four vibration transducers of the motor. In particular, this test deals with a nonstationary 

framework which evolves from the healthy state to a double fault occurring in the inner-race of a bearing and in the 

ball of another bearing. 

 

Fig.6. 3-D Spiral Distribution: GCCA vector quantization 

Fig.7. 3-D Spiral Distribution: 2-D GCCA projection 



 

 

The best OVI-NG neural network is composed of 150 neurons; the CCA and NG learning rates are equal to 0.25; 

the neighborhood widths in the input and output spaces are set to 35 and 70, respectively. The projection is shown in 

Fig. 8.  

The best GCCA neural network uses the following parameters: α = 0.01, λ = 1.6, α1 = 0.05, αn = 0.005, agemax= 2. 

Fig. 9 illustrates the projection. 

 

The GCCA learns the chain behavior and tracks it, by adapting in real time the data projection. Fig. 9 shows the 

motor lifecycle, from the initial transient phase, through the healthy state, towards, first, a pre-fault (characterized by 

an increasing bridge density), and, finally, the two faults which are clearly identified in the figure by the longer bridg-

es. 

As apparent in Figs. 8 and 9, the dataset represent the all history of the bearing. After a short transient, the bearing 

is in its own healthy state. Then, two possible faults happen. Both neural networks represent well the first two phases. 

However, they behave differently at the onset of the fault (see Fig. 10). OVI-NG starts to oscillate, while GCCA in-

Fig.8. Bearing life tracking: OVI-NG projection 

Fig. 9. Bearing life tracking: GCCA projection 

Fig. 10. Bearing life tracking: GCCA (left), OVI-NG (right) comparison at the fault onset 



 

 

creases the number of bridges. This difference influences the final representation of these two networks: unlike OVI-

NG, which only underlies oscillations, GCCA shows two branches associated to the two faults. The advantage of 

GCCA versus OVI-NG does not only rely on its representation properties, but also on the accuracy of the quantization 

and projection. Indeed, for assessing this property, the trustworthiness and continuity measures [33], [34] are used to 

compare the mapping quality.  

A projection (map) onto an output space is said to be trustworthy if the set of k nearest neighbors of a point in the 

map are also close by in the original space. Let U k (i) be the set of data samples that are in the neighborhood of the i-th 

point in the map but not in the original space. The measure of trustworthiness of the visualization, M1, is defined as: 

   

       (10) 

 

where N is the total number of neurons, A(k) = 2/(Nk × (2N − 3k − 1)), and r(xi ,x j) is the neuron ranking in input 

space.  

A projection onto an output space is said to be continuous if the set of k closest neighbors of a point in the original 

space are also close by in the output space. Let Vk(i) be the set of data samples that are in the neighborhood of the i-th 

point in the original space but not in the map. The measure of continuity of the visualization, M2, is defined as: 

   

(11) 

 

where s(yi ,yj) is the neuron ranking in output space. 

In order to track these indices in time, because of the non-stationary nature of the problem two plots for trustwor-

thiness (Fig. 11) and continuity (Fig. 12) are given with regard not only to k, as usual, but also to time. 

With regard to trustworthiness, the behavior of both networks is very accurate and similar until the onset of the first 

fault. However, after the fault onsets there is big loss in the projection quality of OVI-NG, which is recovered only af-

ter a certain number of iterations. This confirms the previous analysis about the advantage of the bridge representation 

of the fault with regard to the oscillating behavior of OVI-NG. 

A similar analysis can be repeated for the case of continuity index, with the difference that in the healthy state the 

index for GCCA is better. Probable it is due to the incremental nature of GCCA. 

 

 

6 CONCLUSION 

 

Only a few networks, in general linear, are able to track a non-stationary input distribution and to project it in a lower 

dimensional space. In this paper nonlinear techniques, like DSOM and OVI-NG have been taken into account, by 

choosing their parameters as time-constant. 

The GCCA neural network is a novel incremental technique which has been devised as an extension of CCA in order 

to learn and project a time-varying manifold. The algorithm is based on three key ideas: the first is the seed, a pair of 
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Fig.11. Trustworthiness as a function of k and time: OVI-NG (grey), 
GCCA (black) 

Fig.12. Continuity as a function of k and time: OVI-NG 
(grey), GCCA (black) 



 

 

neurons which colonizes (start of the new vectorization) a change in the input distribution domain; the second is the 

bridge, which not only allows the visualization of data changes, but also can discriminate the outliers and yields the 

possibility (by its geometry and density) to infer more information about the non-stationarity; the third is the locality of 

the projection, given by the selection of the λ-neurons for the CCA iterations. The global coherence of the projection is 

obtained by modulating λ. It is basically dependent on very few user-dependent parameters, which can be automatical-

ly estimated by the algorithm itself. 

Unlike nonlinear techniques with constant parameters (e.g. DSOM) which are memoryless, both OVI-NG and GCCA 

represent the whole story of the process at hand. However, the incremental property of GCCA allows a better represen-

tation because more neurons can be used. Indeed, OVI-NG has not been conceived for nonstationary problems, even if 

it derives from CCA and is considered as working in real time (online). In the examples, GCCA has shown a better 

performance in terms of trustworthiness and continuity than OVI-NG, but its main advantage is given by the presence 

of bridges, which allow a deep analysis of the non-stationarity.  

Future work will deal with the implementation of an automatic GCCA (i.e., no user-dependent parameters needed), a 

deeper analysis of bridges and a minor change in the computation of the short distances for approximating the geodesic 

distances. Novel applications of GCCA are dealing with fault diagnosis of electrical machines (using current and volt-

age signals) and analysis of colorectal cancer by using DNA microarrays (it is a non-stationary problem because of the 

change in volume of the tumor). 
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APPENDIX - THE TRIANGULATION METHOD 

 
Given two points           and          , whose distance        is known. Find the point 
           whose position is forced to respect the two distances        and        . Actu-
ally,           and           are associated to the first and second neighbors in the high di-
mensional space of the data whose projection            is sought. 
 
Algorithm : 
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d. If ji xx   and ji yy   (concentric circles) 

Consider           , whose associated high dimensional vector is the 

third nearest neighbor to the associated high dimensional vector of    . 
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3. If           

replace i with j and vice versa; use the eqs. of step 2. 

 

4. If         (non-intersecting or tangent circles)  
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