
 
 

 

Doctoral Dissertation 
Doctoral Program in Urban and Regional Development (30th Cycle) 

 

A New Integrated Multi-Criteria 
Spatial Decision Support System  

for urban energy planning in the built environment 
 

By 
 

Sara Torabi Moghadam 
****** 

Supervisor(s): 
Prof. P. L., Supervisor 

Prof. G. M., Co-Supervisor 
 

Doctoral Examination Committee: 
Prof. M.A., Referee, National Scientific and Technical Research Council 
Prof. M.C., Referee, University of Cagliari 
Prof. J.K., School of Engineering and Architecture of Fribourg 
Prof. V.F., London School of Economics and Political Science  
Prof. I.L., Politecnico di Torino 
 
 

Politecnico di Torino 
2018



 
Declaration 

I hereby declare that the contents and organization of this dissertation constitute 
my own original work and does not compromise in any way the rights of third 
parties, including those relating to the security of personal data. Part of the work 
described in this thesis was previously published in the publications listed in 
Appendix C.  

 

Sara Torabi Moghadam 

 2018 

 

 

 

 

 

 

 

 

 

 

* This dissertation is presented in partial fulfillment of the requirements for 

Ph.D. degree in the Graduate School of Politecnico di Torino (ScuDo). 

 



I would like to dedicate this thesis to my loving family. 

 

 

 



Background and the problem statements 1—1 
 

 

We can't solve problems by using the same kind of thinking we used when we 
created them 

Albert Einstein 
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Abstract 

Sustainability contests represent a fundamental challenge to traditional urban 
development practices and concepts. Reducing energy consumption and 
greenhouse gas emissions from urban infrastructure and building stock, towards 
low-carbon cities requires a supportive planning process. In this regard, the use of 
appropriate tools and methods for addressing complex interactions of Urban Energy 
Planning (UEP) processes is needed. In particular, the problem of building stock 
energy consumption in the urban environment is crucial. The primary aim of this 
research is to model energy consumption patterns based on bottom-up statistical-
engineering combination methods. These methods evaluate the current status of 
energy consumption and different future energy saving scenarios to promote 
sustainable urban planning. However, the choice among urban energy planning 
scenarios is extensively based on multi-actors and multi-criteria aspects. Therefore, 
to anchor such a sustainable urban planning, a wider societal consensus building 
with an earnest and active engagement of relevant stakeholders in the city is 
essential. For this purpose, stakeholder-oriented approach plays a key role in 
implementing the effective strategies for urban and regional adaptation. The 
research, therefore, is also dealing with the integration of participative decisional 
processes of urban energy planning by organizing different focus groups involving 
real stakeholders. This fact can help to assess, over a short/long term period, the 
mix of measures by analyzing meaningful scenarios focused on energy 
consumptions, environmental impacts, economic and social aspects. The result is 
the development of a new Multi-Criteria Spatial Decision Support System (MC-
SDSS), which is an interactive energetic plug-in in GIS environment using 
CommunityViz. This tool has been applied to a demonstrator case-study, related to 
a medium-sized city of the metropolitan area of Turin. However, the methodology 
used for delivering the tool can be applied to other contexts due to its flexibility. 
The new MC-SDSS is intended to facilitate the decisional process for stakeholders 
who can ask “what-if” questions and visualize “if-then” scenarios in a real-time. 
Moreover, it can explore a range of possible futures for assisting urban planners, 
policymakers and built environment stakeholders in their efforts to plan, design and 
manage low-carbon cities. This thesis is part of a national Smart City & 



 
Communities project, named “EEB-Zero Energy Buildings in Smart Urban 
Districts” (www.smartcommunitiestech.it).  
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Chapter 1 

1 Introduction 

1.1 Background and the problem statements 

Cities are the main energy consumers in the world, contributing to carbon dioxide 
(CO2) emissions and the leading cause of climate change. More than half of the 
world population settle in urban areas and expecting to have this number increased 
to 64-69%, or 5.6-7.1 billion by 2050 (IPCC, 2014). Moreover, urban sprawl and 
the way that cities are growing and operating have a substantial detrimental impact 
on the environment and its energy demand (Jaeger et al., 2010). Interestingly, urban 
areas account for about two-thirds of the world energy (United Nations, 2015). 
Almost always, the most notable source of greenhouse gas (GHG) emissions comes 
from either energy use in transportation or building sector (IPCC, 2014).  

Although built environment sector is very challenging, it provides cities with 
low-cost and short-term opportunities for emissions reductions first and foremost 
through the energy performance improvement. In this regard, the European 
Commission emphasizes that emissions in this area could be reduced by about 90% 
by 2050 (European Commission, 2011). This fact highlights the significance of 
attaining the objective of the recast Directive on energy performance of buildings 
that new buildings built from 2021 onwards will have to be nearly zero-energy 
buildings (EPBD, 2010). This approach stresses the importance of accelerating 
renovation development and defining different retrofitting scenarios in the built 
environment area. An actual reduction of emissions can be realized only by acting 
on the existing building stock since, the most of the European context is 
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characterized by low energy performance existing building stocks  (BPIE, 2011); 
(Dall’O’ et al., 2013). In the literature, many studies deal with the energy 
consumption modelling for existing building stock (Swan and Ugursal, 2009). 
Particularly, the focus of these studies is made on the residential stock since this 
sector is a substantial consumer of energy for any nation (Saidur et al., 2007).  

As the GHG emitters and energy consumption reduction targets are to be met, 
it is required that Decision Makers (DMs) tackle emissions from the building sector. 
The problem is that, traditionally, the scenarios for energy and environmental 
planning have considered a single measurement criterion, costs benefit 
maximization, to make their decisions (Greening and Bernow, 2004). However, the 
complexity, conflicting and multidimensionality concept of long/medium-term 
sustainable development of urban energy planning matters cannot rely upon just 
single criterion alternatives. Moreover, an urban and regional planning should be 
sustained by earnest collaborative and inclusive processes since cities are dynamic 
living and continuously evolving organisms (Lombardi and Ferretti, 2015). In this 
regard, the use of the appropriate tools and methods for addressing complex 
interactions of energy planning problems including a high level of uncertainty, a 
different type of data, multi-interests and conflicting objectives is needed.  

Moreover, the transition toward a sustainable urban development requires the 
definition of a set of strategies considering national priorities. Since the late '50s, 
an Integrated Energy Planning (IEP) has been recognized to support the strategic 
planning process of urban areas. During these years, various energy supply 
companies had to make appropriate decisions to solve the massive growth of the 
energy demand (Herbst et al., 2012). Currently, Urban Integrated Energy Planning 
(UIEP) has been developed as the new generation of IEP (Mirakyan et al., 2009). 
UIEP asks for a comprehensive vision of urban sustainable energy policies and a 
strong co-operation between local and national governments. It involves many 
aspects (e.g. economic, societal, and environmental), different energy sources (e.g. 
electricity, gas, and oil), multiple actors (e.g. citizens, experts, and public entities) 
and different sectors (e.g. residential, commercial, and transportation), which leads 
to be considered as a very complex problem (Albeverio et al., 2008). Setting up an 
effective UIEP requires appropriate approaches to support DMs in defining a policy 
development strategy. These approaches help DMs to choose the “best” alternative 

among different alternatives (Løken, 2007a). However, from the systematic 
literature review conducted by Torabi Moghadam et al. (2017a) during the 
development of current research, emerged that there is still not a well-recognized 
procedure and an integrated framework to support the UIEP. In this study over the 
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146 articles, 80 papers on the UIEP application have been identified and analysed. 
These papers then have been classified based on three criteria for the purpose of 
presenting results effectively: the year of publication, the level of integration of 
UIEP phases and the types of combination of methodology. Chapter 2 is dedicated 
to illustrate this study and its results. One can say that although there are several 
examples of urban energy planning approaches there is still not a well-recognized 
procedure and an integrated method to face the UIEP. This fact leads to neglect 
some important aspects of current urban energy planning practices (Lombardi and 
Trossero, 2013). 

Considering that energy planning is complex and multi-disciplinary (Torabi 
Moghadam et al., 2017a), the main challenge for research is to integrate the existing 
different methodologies in an agreed structure in order to enhance the quality and 
robustness of the planning results. In fact, although the research field of energy 
planning has become progressively important at urban and regional scales, 
performing the entire energy planning process by integrating different approaches 
is still not a common practice. An IUEP is an opportunity through which it is 
possible to contribute towards a greater sustainability. Indeed, UIEP has to take into 
consideration an integrated approach. To achieve such a sustainable, integrate urban 
planning, a wider societal consensus building with an earnest and active 
engagement of all relevant actors and interest stakeholders in the city is essential. 
For this purpose, a stakeholder-oriented approach plays a key role in implementing 
the effective strategies for urban and regional adaptation. 

The whole process is essential to guarantee a future sustainable urban 
transformation by investing responsibly in alternative consumption patterns and 
greener strategies; speeding the decision-making process through participation and 
intuitive visualization; strengthening the collaboration and relationship between 
research and private and public local authorities; leading to various new commercial 
consequences for the environment, economy and society at the national level down 
to the city level; offering the opportunities of engaging stakeholders in the planning 
process by establishing a shared framework between them. According to the given 
background, the lack of well-recognized of integrated approaches in UIEP need to 
be further studied. 

1.2 Research objectives and questions  

The primary goal of this study is to develop a new interactive urban energy building 
retrofitting system, which can strongly support the participative spatial decision 
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process for relevant stakeholders. More specifically, the research first aims at 
performing energy consumption patterns modelling based on bottom-up statistical-
engineering methods. These methods evaluate the current situation of building 
stock energy consumption and they are able to predict also different future energy 
saving scenarios to promote sustainable development. However, the choice among 
urban energy planning scenarios is extensively based on multi-actors and multi-
criteria aspects. The core objectives of this research are listed below: 

a. Conduct a review of the literature regarding different phases of UIEP, which 
consist in (a) the spatial modelling approaches that can be applied to the 
energy use of building stock (b) Multi-Criteria Spatial Decision Support 
System (MC-SDSS) tools for energy planning;  

b. Create a supportive Geographic Information System (GIS) database 
including a broad number of data and information regarding the building 
stock that helps to identify and locate hot-spots area; 

c. Develop a geospatial statistical model of the building stock that is able to 
give a representative picture of the current energy consumption 
performances and locate on maps the targeted areas that need to be 
energetically improved; 

d. Explore how to reduce the energy demand of building stock in the future by 
developing simulations models that save the computations time; 

e. Develop a new MC-SDSS integrated into the GIS considering the socio-
economic, technical and environmental aspects;  

f. Identify the opportunities and challenges of creating different interactive 
energy consumption retrofitting scenarios side-by-side with stakeholders; 

g. Explore and test an interactive energy visualization tool forming different 
workshops with real stakeholders and using questionnaires and structured 
discussions. 

Concerning the current field of research limitations, this Ph.D. study has 
identified three main questions that need to be addressed in order to create a 
comprehensive framework for UIEP. 

1. Are current research studies able to support the challenges provided by 
Urban Integrated Energy Planning (UIEP) taking into account the variety of 
all the sustainable planning aspects? What are current challenges and 
barriers in this research field? 

2. How to model the energy consumption at urban scale in a spatial way for 
the current and future scenarios? Which kinds of data are needed? How to 
connect different data type from different and scattered sources? 
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3. How useful are interactive MC-SDSS tools in supporting the stakeholders 

in urban energy planning decisions? How their usability can be improved? 

These questions will be answered through methodological approaches and 
procedural steps as illustrated in section 1.3 below. 

1.3 Methodological approach and expected result  

This Ph.D. work assembles research outcomes aiming to illuminate innovative 
solutions bridging the limitations of the current field of research of UIEP, which 
consists in four main phases of planning according to Mirakyan and Guio (2013):  

• Phase I: Preparation and preliminary analysis;  
• Phase II: Detailed urban buildings energy modelling;  
• Phase III: Prioritization and decisional process  
• Phase IV: Implementation and monitoring. 

The methodological framework of this study responds to the first three main 
phases of UIEP presented above, wherein each phase several steps, tools and 
methodologies are involved (Mirakyan and De Guio, 2013); (Cajot et al., 2017). 
The Ph.D. research offers a specific methodology for each phase of planning as 
shown in Figure 1. 

 

Figure 1: Summary of methodological framework solution for each phase of 
planning through this thesis. 

In the first Phase, a GIS-data collection procedure and preliminary analysis is 
done in order to have a supportive basis for the analysis. The second Phase consists 
in a methodology, which is developed to assess the energy consumption for the 
current and future city performances. Finally, in the third Phase, stakeholder-
oriented scenarios are promoted for urban energy saving in the built environment.  
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The expected result of this thesis is a new Multi Criteria Spatial Decision 

Support System (MC-SDSS) that is able to aid and support the stakeholders in 
defining urban energy scenarios and strategies for the building sector. 

It is notable to say that the concept of Spatial Decision Support System (SDSS) 
is strictly related to Planning Support System (PSS) (Li and Jiao, 2013). In 2004, 
Geertman and Stillwell stated that similar specifications of PSS and SDSS help 
decision makers (DMs) and planners to gain more efficient and accurate planning 
and decision-making outcomes. This understanding relates these two concepts, PSS 
and SDSS, which are able to analyze the variety of alternatives on future 
development strategies, in order to compare, interactively discuss and communicate 
(Geertman and Stillwell, 2004). According to Geertman et al. (2015), “PSS are also 
related to so-called spatial decision support systems (SDSS), which are also 
designed to aid particular decision tasks. These two types of systems differ in that 
PSS generally pay particular attention to long-range problems and strategic issues 
whereas SDSS are generally designed to support shorter-term policy making by 
independent individuals or business organizations”. Given this definition, in this 

study the terminology of SDSS is interconnected with PSS, however, the author 
used SDSS rather than PSS because: (i) the focus is specifically on the urban energy 
planning rather than generally, spatial planning; (ii) this research  takes into account 
the built environment and not only of urban planning purposes; (iii) the scenarios 
are valid for short/mid-term decisions rather than long-term ones since they are 
based on current data and stakeholder preferences. 

The proposed MC-SDSS increases the data readability and robustness by using 
a GIS plugin and combining of several visualization approaches. The MC-SDSS is 
created to visualize the results of each scenario and to effectively make the 
comparison among them (Aydin, 2014). Table 1 summarizes the research 
objectives, questions, UIEP phases, relevant chapters and published papers in line 
with the conducted fieldwork.  
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Table 1: Research objectives, questions and related data collection methodologies, 

relevant chapters and corresponding papers. 

Research 
objective 

Research 
questions 

UIEP 
phase 

Relevant 
chapters 

Corresponding 
papers 

Adopted  
methods 

a 1 - Chapter 2 Paper 1 -systematic review 
-SWOT analysis 
-meta-analysis 

b 
c 
d 

2 Phase I 
Phase II 

Chapter 4 
Chapter 5 
 

Paper 2 
Paper 3 
Paper 10 
Paper 13 

-data collection 
(quantitative) 
-data analysis 
-data geo-referencing 
-statistical model 
-engineering model 

e 
f 
g 

3 Phase III Chapter 6 

Chapter 7 

 

Paper 4 
Paper 5 
 

-impact assessment 
(quantitative and 
qualitative) 
-MCA 
-semi-structured focus 
groups with real 
stakeholders 
-playing card game 
-questionnaire 

The complete list of the author’s papers is attached in Appendix C, which are 
organized based on the investigated research objectives and questions. Table 2 
shows the lists the selected publications used in this dissertation.  

Table 2: List of research papers relevant to the Ph.D. dissertation. 

Paper Title 
Paper 1 S. Torabi Moghadam, C. Delmastro, S.P. Corgnati, P. Lombardi. (2017). Urban 

energy planning procedure for sustainable development in the built environment: 
a review of available spatial approaches. Journal of Cleaner Production, vol. 165, 
pp. 811-827. 

Paper 2 S. Torabi Moghadam, G. Mutani, P. Lombardi. (2017). A mixed methodology for 
defining a new spatial decision analysis towards low carbon cities. Procedia 
Engineering, vol. 198, pp. 375–385.  

Paper 3 S. Torabi Moghadam, J. Toniolo, G. Mutani, P. Lombardi. (2018). A GIS-
Statistical Approach for Assessing Built Environment Energy Use at Urban Scale. 
Journal of Sustainable Cities and Society, vol. 37, pp. 70-84. 

Paper 4 P. Lombardi, F. Abastante, S. Torabi Moghadam, J. Toniolo. (2017).  
Multicriteria Spatial Decision Support Systems for Future Urban Energy 
Retrofitting Scenarios. Sustainability, vol. 9, n. 7. pp. 1-13.  

Paper 5 S. Torabi Moghadam, C. Delmastro; P. Lombardi; S.P. Corgnati. (2016). 
Towards a New Integrated Spatial Decision Support System in Urban Context. 
Procedia Social & Behavioural Sciences, vol. 223, pp. 974-981. ISSN 1877-0428. 

Paper 10 S. Torabi Moghadam, G. Mutani, P. Lombardi. (2016).  GIS-Based Energy 
Consumption Model at the Urban Scale for the Building Stock. JRC Conference 
and Workshop Report, Paolo Bertoldi. European Union, Luxembourg, pp. 56-63. 

http://porto.polito.it/2676965/
http://porto.polito.it/2676965/
http://porto.polito.it/view/publication/SUSTAINABILITY.html
http://porto.polito.it/2645280/
http://porto.polito.it/view/publication/PROCEDIA=3A_SOCIAL_=26_BEHAVIORAL_SCIENCES.html
http://porto.polito.it/2646750/
http://porto.polito.it/2646750/
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Paper 13 S. Torabi Moghadam, S. Coccolo, G. Mutani, P. Lombardi, J.L. Scartezzini, D. 

Mauree. A new clustering and visualization method to evaluate urban energy 
planning scenarios. Submitted, Under revision.  

1.4 Thesis structure 

This Ph.D. dissertation is a monograph that presents in structured form the Ph.D. 
candidate researchers around the development of a new MC-SDSS for energy 
retrofitting of existing residential buildings. However, most of the Ph.D. research 
results were also published in international scientific journals, that follow the same 
research path. In both monograph and the publications, the contents are organized 
to answer to each of the three research questions listed in section 1.2. This 
dissertation consists of eight chapters including the research work performed, the 
results and the conclusions (Figure 2). 

Chapter 2 is devoted to systematically review a literature related to UIEP 
approaches. The review specifically emphasizes the importance of the integration 
of GIS with the bottom-up statistical-engineering energy consumption modelling 
approaches at the urban scale. Moreover, the importance of the MCA and Spatial 
Decision Support System (SDSS) in helping in the visualization and decision-
making processes in the urban energy planning procedure is presented. This chapter 
shows the lack of a well-organized UIEP framework in the current study field, 
which includes all phases of spatial planning. 

Chapter 3 describes in detail, an integrated methodological framework of this 
thesis and all its phases and steps to fulfil the objectives of the research. This chapter 
attempts to summarize the complex interdisciplinary methodology proposed for this 
thesis, illustrating all the software used and methodological approaches for each 
phase of work. The study area is also represented in this chapter. The application of 
the proposed methodology on the case study and the relative results will be present 
in the further chapters.  

Chapters 4 and 5 illustrate the result of Phase I and Phase II (see Figure 1) and 
their applications. First, the procedure of geospatial data collection is illustrated, 
which belongs to the Phase I. This Phase is the basis of all further Phases. Next, 
two different modelling approaches were followed during the research activities: 

a) The modelling approach of the current status by the geospatial “statistical” 

method over the entire city, which is shown in chapter 4. This chapter 
illustrates the integration of GIS and a robust Multiple Linear Regression 
(MLR).   
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b) The future energy consumption scenarios assessments are based on the 

“engineering” method by defining an archetype of the city, which is 
illustrated in chapter 5. This chapter attempts to investigate the potentials 
of reducing the energy demand using mainly GIS and CitySim tools to 
explore two (standard and advanced) possible retrofitting future scenarios.   

Chapters 6 and 7 demonstrate the outcomes of Phase III of the planning 
procedure (see Figure 1). These two chapters embrace the development of a new 
MC-SDSS using the basis created in the previous chapters: 

a) The definition of evaluation criteria is first introduced in chapter 6 through 
organizing the first workshop. This chapter demonstrates the importance of 
participative and collaborative approaches in defining evaluation criteria 
from an early phase of planning. After defining the definitive version of 
evaluation criteria, this chapter assesses the impact of each multiple criteria, 
including technical, economic, social and political issues. 

b) The next step after defining evaluation criteria is how the new MC-SDSS is 
developed. A new MC-SDSS is able to define different stakeholders-
oriented scenarios in UIEP as reported in chapter 7. A new MC-SDSS tool 
is based on adapting, coding and modelling an existing interactive plug-in 
in ArcGIS environment, named CommunityViz. The developed MC-SDSS 
tool is tested and evaluated through the second organized workshop 
consisting of two semi-structured focus groups and distributed 
questionnaires. The main goal was to improve the usability of a new 
developed MC-SDSS tool and its functionality for the future developments. 

Chapter 8 is the last chapter of this dissertation and discusses the conclusive 
summary as well as suggestions for future research developments.  

In the appendices are added the envelope physical properties considered for 
simulations of Chapter 5 (Appendix A) and material used in the application of the 
second workshop during the Ph.D. research (Appendix B). Furthermore, the full list 
of the papers that have been written during this research project is attached in 
Appendix C. Additionally, each chapter is introduced by a schematic summary table 
in order to guide the readers through the text. Each schematic table illustrates the 
related phases (I, II and III) of UIEP and it introduces the research limitation which 
led to formulate the research question, research question and summarizes the Ph.D. 
proposals to address the problem. In the scheme, reference is made to the published 
papers proposing the corresponding contents.  



10 Introduction 

 

 

Figure 2: Thesis structure. 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Part of the work described in this chapter was also previously published in the 
following publication. Minor grammatical changes and some information 
extensions have been made to integrate the articles within this dissertation.  

Paper 1. S. Torabi Moghadam, C. Delmastro, S.P. Corgnati, P. Lombardi. (2017). 
Urban energy planning procedure for sustainable development in the built 
environment: a review of available spatial approaches. Journal of Cleaner 
Production, vol. 165, pp. 811-827. doi: 10.1016/j.jclepro.2017.07.142. 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.1016/j.jclepro.2017.07.142


Chapter 2 

2 Toward an Integrated Urban 
Energy Planning (IUEP) 

2.1 Introduction 

This chapter overviews the three main phases of a UIEP for the built 
environment sector according to Mirakyan et al. (2009)1. It provides an extensive 
revision of existing UIEP applications toward sustainable built environment for 
each phase of the UIEP, highlighting the most relevant spatial approaches (Torabi 
Moghadam et al., 2017a). Accordingly, section 2.2 illustrates some important 
concepts that are needed for better understanding the present research work. Section 
2.3 presents the proposed methodology to review an existing review of UIEP. First 
Phase, entitled “Preparation and Preliminary Analysis” is described in section 2.4. 
The preliminary UIEP phase consists of creating a supportive GIS database 
involving stakeholders. This Phase should be well-defined to proceed with phases 
II and III. Section 2.5 builds the principal part of the literature review of the UIEP, 
and it illustrates different approaches regarding the “Detailed Urban Energy 

Modelling”. Finally, section 2.6, entitled “Decisional and Prioritization Process” 

                                                 
1 This Ph.D. Research  does not consider the Phase IV “ex-post analysis and monitoring”, because it is 

not functional to the strategy definition. 
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presents the last and complementary phase of the UIEP, illustrating some of the 
most significant MC-SDSS for UIEP processes. For schematic summary of this 
chapter refer to Table 3. 

Table 3: Schematic summary of chapter 2. 

 
Research 

limitations 
Research  
questions 

Addressing the 
questions 

Related  
publications 

a lack of an 
integrated 

framework for 
urban and 

regional energy 
planning. 

 

Are current research studies 
able to support the 

challenges provided by 
Urban Integrated Energy 

Planning, taking into 
account the variety of all the 

sustainable planning 
aspects? What are current 
challenges and barriers in 

this research field? 

Systematic 
literature review 
through SWOT 

analysis and Meta-
analysis. 

 

[Paper 1] 
Urban energy 

planning procedure 
for sustainable 

development in the 
built environment: a 
review of available 
spatial approaches. 

 

2.2 Some important concepts 

From the literature basing on a compilation of fragmented definitions, the 
section puts forward a synthetic description of key terminologies used, in order to 
facilitate and improve the debates on this emerging field (Cajot et al., 2017). UIEP 
is defined by Mirakyan and De Guio (2013), as a model-based energy planning 
process. This is divided into the following four main phases: Phase I: Preparation 
and Preliminary Analysis; Phase II: Detailed Urban Buildings Energy Modelling; 
III: Prioritization and decisional Process and Phase IV: Implementation and 
monitoring. The focus of this research is mainly the ‘Spatial’ or “Spatial-
Integrable” approaches of UIEP (Figure 3). 
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Figure 3: Urban Integrated Energy Planning (UIEP) phases, adopted from (Mirakyan and 
De Guio, 2013). 

The concept of sustainable development dates back to 1970s and since then it 
has been widely the subject of public, private and academic sectors concerns, being 
the main effort of national and international economic, social and environmental 
agendas (Brandon et al., 2016). According to Brandon and Lombardi (2011) and 
Rad (2010), sustainable development is a continuous process that is able to balance 
between all the environmental, economic and social aspects related to a living 
environment, in order to improve present or future generations. A sustainable 
energy development means balancing energy production and consumption, along 
with having the minimal impact on the environment and giving the opportunity to 
employ social and economic activities (Hofman and Li, 2009).   

Moreover, scenarios analyses can be defined as a way to create and predict 
future alternatives and their impacts, providing policy decisions framework (Miola, 
2008); (Mistry et al., 2014). Indeed, the major purpose of energy modelling is to 
understand the possible future trends of certain energy-related variables, planning 
new strategies, and adaptation.  Future studies comprise of a huge number of 
approaches as is introduced in 1996 as a “very fuzzy multi-field” (Marien, 2002). 
One of the most basic concepts in this field is “Scenario”. Future scenarios analyses 
can be defined as a way to create and predict the future alternatives and activities 
and their impact, providing policy decisions framework (Mistry et al., 2014); 
(Miola, 2008). The aim of future studies is supporting decision-making under 
uncertainty which is to be defined as indeterminacy (Dreborg, 1996). In the scenario 
literature various classifications exist (Mannermaa, 1986); (Rotmans et al., 2000); 
(Börjeson et al., 2006); (Marien, 2002). Following the classification defined by 
Börjeson et al. (2006) scenarios studies are classified into three principal categories 
in order to answer three main questions. 

• Predictive-what will happen? For example, forecasting predicts the possible 
future, depending on the degree to which it accurately proposes what is 
plausible happen under specified conditions (Robinson, 2003).  
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• Explorative-what can happen? For instance, one way to do scenario 

planning is creating the business strategies that are robust among different 
possible future developments (VanderHeijden, 1996). These scenarios are 
descriptive and explore several plausible configurations for identifying 
main drivers and their linked dynamics (IEA, 2003). 

• Normative-how can a specific target be reached? For instance, backcasting 
was introduced by Robinson (1982) as an approach to long time-term (over 
20-100 years) future studies with the aim at exploring the implications and 
feasibility of desired policy goals and with a discussion of what changes 
would be happened in order to reach the images (Robinson, 1990). They are 
strategic and, according to the analyst, assume to simulate some necessary 
norms and to identify the most suitable ones (IEA, 2003). 

Furthermore, scenarios can be classified taking into account their time horizon 
perspective, scales, and the level of integration; vertical and horizontal integration. 
Concluding, it can be found further information in the comprehensive Börjeson et 
al. (2006) study for guiding how scenarios can be developed and used as shown in 
Table 4 (Börjeson et al., 2006); (Banister and Stead, 2004). 

Table 4: Future scenarios classification according to (Börjeson et al., 2006); (Banister 
and Stead, 2004). 

Scenarios 
type 

Quantitative/ 
Qualitative 

Time-frame Main Techniques 
Generating Integrating 

PREDICTIVE-what will happen? (Probable futures) 
Forecasts Typically, 

quantitative, 
sometimes 
qualitative 

Often short Surveys, 
Workshops, 
Original Delphi 
method 

Time series analysis, 
Explanatory 
modelling, Optimizing 
modelling 

What-if Typically, 
quantitative, 
sometimes 
qualitative 

Often short Surveys, 
Workshops,  
Delphi method 

Explanatory 
modelling, Optimizing 
modelling 

EXPLORATIVE-what can happen? (Possible futures) 
External Typically, 

quantitative, 
qualitatively 
possible 

Often long Surveys, 
Workshops,  
Delphi method 
 

Explanatory 
modelling, Optimizing 
modelling 

Strategic Quantitative and 
qualitative 

Often long Surveys, 
Workshops,  
Delphi methods 

Explanatory 
modelling, Optimizing 
modelling 

NORMATIVE-how can a certain target be reached? (Preferable futures) 
Preserving Typically, 

quantitative 
Often long Surveys; 

workshops. 
Transforming 

Optimizing modelling 
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Transforming Typically, 

quantitative with 
qualitative 
elements 

Often very 
long 

Surveys; 
workshops, 
Backcasting 
Delphi. 

- 

  

2.3 Systematic review methodology  

This section illustrates hereafter the systematic literature reviews methodology, 
which is conducted by Torabi Moghadam et al. (2017a). The methodology has been 
adopted in this research for reviewing the journal articles and conference papers. 
According to Prasara-A and Gheewala (2016), this is structured as a four-stage 
analysis framework. In the earliest stage of the review process, named “Literature 

search”, the Scopus database has been chosen to support the literature search. 
Moreover, conference papers and many different tools and applications developed 
by Research and Development (R&D) projects have been scattered across different 
websites through Google search engine. 

The second stage is the “Screening process”. In this, the review has been 
organized according to three UIEP process phases, as presented, with the aim of 
illustrating an in-depth state of the art on available approaches, in the specific 
context. In each phase, the principal keywords have been used, in combination with 
the literature search. As this research focuses on the “UIEP”, which is a multi-
disciplinary and multi-phases topic, the relevant keyword combinations have been 
checked as follows: Urban /Building/ Energy Modelling/ Multi-Criteria/ Spatial/ 
Decision Support System/ GIS/ Energy System. The time period sets in the search 
engine for the academic publications is between 1970 and 2016.   

In the third stage, “Selection of literature”, the abstract of all the references 

have been read in order to select and identify the most related studies on the topic. 
Furthermore, the full paper texts of those more appropriate papers have been 
included in the database. Finally, this selection of papers has been filtered by 
considering the following criteria: (i) English language papers; (ii) the study must 
be related to energy sustainable development; (iii) the approach presented in the 
paper must be “spatial” or “integrable spatial”. A total of 146 papers, ranging from 

1970 to 2016, have been selected at this stage. 

The fourth stage, named “Including literature”, consists of reading the 146 
selected papers in order to collect the information about existing approaches for 
supporting the UIEP in the sustainable built environment and urban development. 
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In total, the 146 reviewed papers are composed of two groups as follows: 66 papers 
that describe the state of art and theoretical background and 80 articles that show 
the urban applications of the described approaches. However, in this dissertation, 
the author intended to extend the literature review. A summary of the main features 
of each section is shown in Figure 4 to help the readers. 

 

Figure 4: Outline of section 2, adopted from (Torabi Moghadam et al., 2017a). 
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2.4 Phase I: preparation and preliminary analysis 

The Phase I is crucial in creating a supportive data and necessary information to 
perform the next phases of the UIEP. The most relevant activities included in Phase 
I consist of data collection and stakeholders’ involvement processes (Mirakyan and 
De Guio, 2013). Data collection consists of collecting the historical and current 
building stock data (e.g., building level data and census level data). A high data 
disaggregation may represent wider possibilities of investigations, however, very 
detailed data collection may be very challenging and takes too much time (Kelly, 
2011). Accordingly, the data collection process can be divided into: 

• Geo-referenced data collection: the collection of existing building-related 
data such as geometrical and demographic information. 

• Non-geo-referenced data collection: the collection of available data which 
should be further geo-referenced such as energy consumption and 
temperature information. 

2.4.1 Geographic Information System (GIS) for urban energy 
planning  

An urban structure has a very evolving nature and dynamic organism within several 
various subsystems in which interacted together. To address this challenge, GIS as 
a comprehensive tool provide a city model structured including several layers and 
geo-referenced data to support the urban planning analysis (Azzena, 1995). Many 
cities have already started to shift the representation and analysis of territorial 
processes from analogue cartography analysis to digital geoprocessing (Campagna, 
2016). In this phase, therefore, the use of GIS is significantly beneficial to store, 
manage, and visualize a broad number of spatial data for urban planning purposes. 

Through the representation of multiple layers, city development can be 
represented, where each item is associated with a geometric entity in a proper 
system of coordinates (Bugs et al., 2010). Particularly, the GIS allows Geo-
referencing all the available energy data to develop energy consumption models to 
characterize the building stock for the whole city fully. Data need to be carefully 
elaborated and analysed to create a strong supporting data set. GIS techniques were 
born due to a necessity to have a supportive tool for collecting, processing, 
analysing and visualizing a huge number of territorial spatial information both 
alphanumerically and graphically at the cities. These techniques have become 
crucial to operating decisions involving territory, allowing to collect all data and 
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information for analysing future scenarios related to different possible alternatives 
to single out the best one (La Gennusa et al., 2011). By geo-referencing the data, 
each item is placed in a proper location-system of coordinates, being associated 
with a geometric entity. Indeed, the GIS techniques development shifts from not 
integrated into an integrated data information management in the designing, 
planning, and management of territory and environmental processes (MUTATE, 
2005). 

Therefore, the creation of a GIS is a useful tool for an urban energy planning, 
regarding both territorial management and evaluation of energy retrofits potential 
(Ascione et al., 2011). At the urban scale, GIS helps with regards to identifying 
critical points of possible areas that necessitate improvement concerning energy 
performances (Chalal et al., 2016). Moreover, this digital environment is mainly 
used for buildings’ storage data and consequently helps to determine their energy 
performance of buildings. In this regard, it can implement the most effective 
strategy for each scenario and verify the energy consumption saved after some steps 
in related areas. Geo-referencing process manages and analyses the large volume 
of data with the aim of better understanding the urban transformation and the 
modifications induced by selected interventions (Ascione et al., 2011). Since built 
environment data and information at the local level are significantly scattered 
among several entities, and there is a lack of interoperability among the data 
sources, one of the most challenging barriers to developing a robust and detailed 
analysis is data collection (Caputo and Pasetti, 2015). In this regard, an enormous 
effort is required to provide a supportive and comprehensive accessible building 
stock database, at the local level for different goals and various stakeholders, 
gathering all the necessary data from different sources  (Caputo and Pasetti, 2015).   

Sometimes, information about building stock and their energy performances 
are derived from different regional and local authorities and often are not 
homogeneous (Caputo et al., 2013b). In this context, GIS helps to identify and 
visualize buildings data and their distribution, supporting decision-making, at urban 
and regional scale. This approach can manage location-based information, linking 
databases to maps to create dynamic displays. Moreover, GIS highlights the high 
energy use hotspots that need to be renovated (Chalal et al., 2016). GIS is 
principally used for buildings geometrical data; however, it significantly assists also 
their energy performance determination. Accordingly, there are many opportunities 
to achieve a better level of sustainability by making better decisions and by 
supporting proper urban planning.  
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The other fundamental action to be considered from the earlier phase of 

integrated UIEP is the involvement of stakeholders. This fact helps to obtain the 
existing data, determine important sustainable objectives, and propose a common 
strategic vision (Bottero et al., 2015); (Linnenluecke et al., 2016); (Pelzer et al., 
2015). In order to involve multiple stakeholders and experts in the planning 
procedure is necessary to organize the collaborative events such as workshop 
organization, focus groups, questionnaires, and interviews. The GIS supportive 
database aids the stakeholders to visualize the current urban energy situation and 
therefore to reshape the sustainable objectives. In sum, the creation of a geo-
referenced urban energy inventory establishes the primary step of the strategic 
planning. According to Girardin (2012), this stage aims to achieve: 

• The creation of a set of necessary information and data; 
• The identification of the entities and sources of local information; 
• The collection and integration of scattered information within the data 

storage; 
• The production of the integrated spatial information, making it available for 

every new work and research; 
• The management of data; 
• The presentation of the current state of the balance of energy and emissions; 
• The smart electronic access to geo-referenced energy data layer. 

It is notable to say that the geodatabase will not only be used to evaluate the 
present situation of the building energy modelling in the early phase but also 
support the assessment of energy performance and scenarios visualization for the 
future visions. 

2.5 Phase II: detailed urban buildings energy modelling 

This section aims at providing a comprehensive overview of the existing building 
stock energy consumption assessment approaches and their applications to model 
energy consumption. According to Yu et al. study (2011), existing studies with 
regards to energy consumption can be classified into two types: 

• Aggregate analysis for which researchers performed energy consumption 
aggregate analysis at national, regional and do not differentiate each energy 
end-uses such as the works conducted by Schipper and Ketoff (1983); 
Unander et al. (2004); Zhang (2004); Lenzen et al. (2006). 
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• Disaggregate analysis started from the 1980s for which researchers have 

developed energy consumption disaggregate approaches, estimating and 
analysing energy consumption for a specific individual end-uses as the 
works conducted by Moller (2003); Vringer and Blok (1995). 

In other classification regarding previous comprehensive surveys the modelling 
energy use for residential building sector are classified into “top-down” (aggregate) 

and “bottom-up” (disaggregate) (Swan and Ugursal, 2009); (Kavgic et al., 2010).  

The top-down approach is based on the historical aggregate energy values as 
energy reported by energy suppliers and estimates the energy consumption as a 
function of top-level variables. These models specify the energy consumption 
energy value affected by long-term changes in the building stock. At the large level, 
there are many different studies of residential energy demand system such as   for 
Spain (Labandeira et al., 2006); for the UK (Summerfield et al., 2010), and  for the 
USA (Hirst et al., 1977). The top-down method has been recognized suitable for a 
broad national scale analysis and not for the identification of the possible 
improvements to the building at urban and regional levels (Lenzen et al., 2006); 
(Zhang, 2004).  Hence, this research focuses on the urban and regional scale; the 
top-down models are not reviewed and discussed. 

In counterpart, the bottom-up approach has been identified more appropriate 
with the aim of evaluating the energy consumption at a smaller scale. These 
methods require a high level of detailed data and the specific expertise to model 
technological systems (Nouvel et al., 2015). Several studies are also conducted to 
define the energy modelling stock for the large scale such as a national 
(Farahbakhsh et al., 1998); (Huang and Broderick, 2000); (Shipley et al., 2002); 
(Wan and Yik, 2004); (Parekh, 2005); (Yao and Steemers, 2005); (Petersdorff et 
al., 2006); or provincial (MacGregor et al., 1993).  

Bottom-up models are divided into two Engineering (i.e., Sample, Archetype, 
and Population Distribution) and Statistical (i.e., Regression, Conditional Demand 
Analysis, and Neural Network) groups (Swan and Ugursal, 2009); (Kavgic et al., 
2010). The bottom-up models differ in calculation methodology, time and spatial 
resolution, disaggregation level of input data and results. Figure 5 illustrates the 
energy consumption modelling categories according to the existing classification 
(Swan and Ugursal, 2009); (Kavgic et al., 2010). Even if previous studies are 
focused on the same classification mentioned in this thesis, the focus here is to 
understand if the methodologies can be applied at urban scale and coupled with 
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GIS. In other words, this research emphasizes the importance of spatial approaches 
for urban energy modelling and re-classify them considering an existing 
classification in the literature. 

2.5.1 Building energy consumption modelling using the bottom-up 
approach 

Since bottom-up building energy consumption modelling are appropriate for urban 
and local scale analysis, this section focuses only on these approaches and their use 
for spatial energy-planning purposes. The section will start with a short presentation 
of these models and their background as shown in Figure 5.  

 

Figure 5: Energy consumption classification, source (Swan and Ugursal, 2009); 
(Kavgic et al., 2010). 

2.5.1.1 Statistical models 

According to the rapid growth of data availability sources, statistical techniques can 
extensively identify the associations and correlations among various variables 
influencing building energy performances. These methods search for correlations, 
utilizing a sample of information in energy bills as a source of data for energy 
modelling and analysing the link between energy consumption and a range of 
different variables (e.g. building shape, age, and occupant behaviour) (Nouvel et 
al., 2015). They calculate reliable consumption based on the available information 
on the current status of buildings potential after applying refurbishment measures 
(Torabi Moghadam et al., 2018). They perform reliable consumption information 
about the current status of buildings and for the calibration process of engineering-
based models.  

However, due to their strong dependency on available historical consumption 
data, these methods are not able to predict the impact of new retrofitting solutions 
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and the amount of energy saving. One of the major strengths of statistical analysis 
is the widespread familiarity with this methodology and its simplicity. According 
to Swan and Ugursal (2009), the statistical methods can be divided into: 

Regression analyses: regression methods fit the relation between energy 
consumption and its identified appropriate drivers (Dascalaki et al., 2010); 
(Fracastoro and Serraino, 2011). In this context, Theodoridou et al. (2011) 
conducted a statistical analysis of the features of the residential building stock 
relative to energy consumption and potential of energy savings to classify the 
building typologies in Greece. They do not require very detailed data about the 
building structure and envelope system, but they need a high amount of data to 
develop the model. In 2008, the statistical method for space heating carried out by 
Caldera et al. (2008) was based on a dataset of 50 multi-family residential buildings, 
finding out a simple correlation between space heating energy demand, construction 
age and thermos-physical and geometrical features. Results of the correlations can 
be spread to the whole stock buildings with the same boundary conditions to find 
out the energy performance for space heating of the major real estates.  

Another study based on a field survey was carried out by Corgnati et al. (2008) 
to collect and analyse the actual heating space energy consumption data for about 
140 buildings in the metropolitan city of Turin. They introduced a “specific 
conventional coefficient of energy supplied for heating” which could be used for 
analysing the building stock energy performance, providing a cost analysis and 
helping in planning retrofit solutions. This methodology is suitable for long-term 
assessments of building stocks, while it is necessary to consider an upper accuracy 
for single buildings. A study conducted by Dascaloaki et al. (2010) introduced the 
approach to collect and to analyze the energy data for Hellenic building stock that 
demonstrate relevant characteristics. The database comprises a sample of 250 
buildings from different regions in Greece. The work aimed to provide a 
management tool for the procedure of construction. The database used for this study 
includes a total of 255 realistic range of building characteristics.  

In 2011, Fracastoro and Serraino (2011) developed an analytical method, 
starting from census data and energy statics to define the statistical distribution of 
residential buildings according to heating demand. In this study, the principal 
source of data was the Italian Census, but it should be integrated into laws and 
energy standards, literature and the data derived from the authors’ experience, and 
also, in situ analysis. Their study did not offer a physical model but specified the 
overall primary energy demand basing on statistical information such as typologies, 



Phase II: detailed urban buildings energy modelling 25 

 
climatic areas. The model is applied at the national level but can be scaled to local 
and urban level. This approach requires a low level of input data and provides more 
aggregated results.  

Another interesting statistical modelling and analysis of energy consumption 
for the buildings sector have been conducted by Hsu (2015). This study highlighted 
the interactions of several parameters, both technical and non-technical, for 
developing accurate analysis and policy formulation at the local level.  In 2016, 
Walter and Sohn (2016) developed a multivariate linear regression model with 
numerical variables and categorical indicators to estimate energy use intensity. The 
model quantifies the contribution of building characteristics and systems to energy 
consumption. Furthermore, in this study the cross-validation has also been applied 
for validating the model in a more accurate way. 

Conditional Demand Analysis (CDA): CDA method is a regression-based 
method suitable for analysing large datasets. Due to the lack of flexibility, the 
analysis of energy conservation measures upon request variation is not allowed 
(Swan and Ugursal, 2009). 

Neural network models (NN): NN find the relationship between a wide range 
of variables and parameters. They have been widely used for prediction problems 
at the individual building level, but also at a larger scale (Aydinalp et al., 2004). 
This method is proper for the evaluation of energy consumption and the impact of 
socioeconomic factors (Aydinalp-Koksal and Ugursal, 2008), but they are not 
suitable for defining energy conservation measures even if some applications exist 
(Krarti et al., 1998). There are some NN regression algorithms that have been 
performed by previous studies in building energy-related studies (Asadi et al., 
2014); (Siami-Irdemoosa and Dindarloo, 2015); (Siami-Irdemoosa and Dindarloo, 
2015). Recently in 2016, Ma and Cheng (2016) proposed a spatial integrated NN 
regression algorithms methodology framework for estimating the building energy 
use intensity in the urban scale of New York City. However, there is still an 
inadequate integration between energy data and spatial planning (Zanon and 
Verones, 2013).  

2.5.1.2 Engineering models 

Engineering methods are very detailed models based on traditional 
thermodynamic relationships and heat transfer calculations (Robinson et al., 2009). 
The main advantage of an engineering-based method is the capability of predicting 
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energy savings for buildings after the application of renovation solutions (Mauree 
et al., 2017). Although the historical data can be used for the comparison against 
measured consumption data, this method is able to assess energy consumption 
without any historical information. However, these modelling approaches require a 
high quantity of information about building structure and parametric input to 
calculate the energy consumption of a set of reference buildings of the stock based 
on a numerical model. Additionally, the evaluation of urban planning scenarios is 
computationally very extensive, and the availability of construction and 
geometrical data needed as input for the models is very scarce. Into this, simplified 
3D city models can significantly help (Aydinalp-Koksal and Ugursal, 2008). These 
engineering methods can be divided into (Kavgic et al., 2010): 

Archetype method: this method is based on the aggregation of dwellings in 
representative building classes clustered according to key characteristics (e.g., 
construction period and surface to volume ratio) (Corgnati et al., 2013). This 
method has been broadly widespread as it allows to achieve much more 
disaggregated results. The characterization of archetypes to be representative of a 
broad set of buildings is the main difficulty of this method. The identification of 
archetypes implies the association of thermos-physical characteristics to each 
building and consequently to use building simulation software for assessing current 
and future energy consumption (Ballarini et al., 2014); (Wan and Yik, 2004).  

Shimoda et al. (2004) have described the simulation model which predicts the 
end-use residential buildings energy consumption, considering the occupant 
presences, energy efficiencies of appliances, and weather data for Osaka City. They 
classified the household types into 23 archetypes. In 2010, the sample of 500 houses 
using the questionnaire is performed in Cyprus (Panayiotou et al., 2010). Later they 
selected a smaller sample of 20 houses for which in situ measurements and asset 
rating using SBEM Cy software is used for assessing the energy performance of 
buildings (Panayiotou et al., 2010) 

Sample method: sample methods consider the data collected from surveys and 
monitoring campaign used to model the actual behaviour of the building stock. The 
Domestic Energy and Carbon Model (DECM) has been developed to improve the 
occupancy patterns details (Cheng and Steemers, 2011). This model has also been 
applied at the regional level using census data on dwelling types and socioeconomic 
data with good performances. Limited applications of sample method have been 
found at local level (Cheng and Steemers, 2011). 
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Population distribution method: this method is an accounting method 

reflecting energy consumption of household appliances regarding the ownership 
saturation rate of appliances. Accordingly, it can be suitable for building up the 
electric distribution load of an area or for estimating the energy consumption of 
household appliances (Kadian et al., 2007); (Saidur et al., 2007).  

To conclude this section, although it might be possible to use the sample and 
population distribution models at the urban level. The more applicable widespread 
method for urban spatial analyses is the archetype one. This approach allows both 
short and long-term analysis and the possibility to create energy retrofit scenarios). 

2.5.1.3 Hybrid models 

Generally, hybrid models combine different methods to merge their strengths and 
compensate their weaknesses. These methods are also useful when the thermal 
parameters are unattainable (Chalal et al., 2016). 

2.5.2 GIS-based building energy consumption modelling  

This section reviews the integration of statistical and engineering models with GIS 
methods by focusing on spatial applications of urban energy modelling techniques 
(Torabi Moghadam et al., 2017a). These methods are appropriate for short-term 
planning based on large data requirement and to create energy retrofit scenarios. 
The use of energy and environmental energy models based on GIS methodologies 
has been progressively increased in the last ten years in order to help urban energy 
planning, for instance  (La Gennusa et al., 2011); (Cheng and Steemers, 2011); 
(Grassi et al., 2012);  (Iowerth et al., 2013); (Li et al., 2015); (Yang and Yan, 2016); 
(Carozza et al., 2017). 

2.5.2.1 GIS-based-statistical models 

Recently, Dall’O’ et al. (2012) introduced a statistical GIS-based methodology for 
creating the comprehensive framework of the energy performance in buildings and 
applied to five municipalities in the province of Milan. The study is largely based 
on available information and data of building stock (e.g. thematic maps, 
cartographic documentation, geometric data, energy data). Especially, the energy 
data derived from energy audits of sample buildings (Dall’O’ et al., 2012). This 
model used to specify primary energy for space heating data to construct regression 
lines based on shape factor ratio during different construction periods. At the same 
year, Howard et al. (2012) built a statistical bottom-up GIS-based model for New 
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York City. They estimated the energy end-use intensity for domestic hot water, 
space heating, and electricity consumption of the building sector. Their result was 
spatially explicit that energy consumption can be a significant factor in determining 
energy efficiency policies and renewable energy strategies (Howard et al., 2012). 
In this study, the model has been performed by robust multivariate linear regression. 
Interestingly, building age factor was not considered as a predictor to estimate the 
energy consumption. 

Moreover, Mutani and Vicentini (2013) conducted a GIS-based regression 
analysis to correlate building energy consumption to building compactness and 
construction period. Yeo et al. (2013) developed an urban demand forecasting 
system, with hourly resolution, based on a GIS database (E-GIS DB) with 2D/3D 
visualization. Furthermore, a bottom-up statistical methodology considering 
dwelling type, a period of construction, floor surface and some occupants has been 
developed by Mastrucci (2014). The Ordinary Least Squares (OLS) method was 
used to fit this model. Another GIS integrated data mining methodology for 
assessing the energy use intensity of buildings in city scale is proposed by Ma and 
Cheng (2016). This model is based on 216 prepared features for a case study of 
3640 multi-family residential buildings in New York City. The model then is tested 
and cross-validated in order to have more robust results. Recently, Braulio-Gonzalo 
et al. (2016) modelled energy performance of existing residential building stocks 
based on five parameters using simulation software. Several some example, which 
highlight methodologies for evaluating the energy performances of building stock 
using GIS with regression methods are (Yeo et al., 2013); (Torabi Moghadam et al., 
2016b); (Torabi Moghadam et al., 2016c); (Torabi Moghadam et al., 2017b); 
(Torabi Moghadam et al., 2016a).  

From the literature emerged that among the above mentioned statistical 
approaches, the regression methods have been coupled with GIS more than the 
other methods. These methods are appropriate for short-term planning based on 
large data requirement (Torabi Moghadam et al., 2017a). 

2.5.2.2 GIS-based-engineering models 

In this section the integration of engineering models with GIS methods in order to 
focus on spatial applications reconsidered. In particular, the impact of heritage 
buildings on the overall energy demand of Ferrara (Italy) has been investigated by 
Fabbri et al. (2012). This study considered the influence of the number and energy 
incidence and their characteristics in accordance with geometry, thermo-physics 
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and using GIS maps as a strong platform for linking a different data.  Moreover, an 
interesting “post-processed” map is provided. As the energy information is already 

available, the calculation approaches are not described (Fabbri et al., 2012). In 
2007, a new clustering modelling approach has been proposed to define CO2 

reduction scenarios in the commercial sector (Yamaguchi et al., 2007). In this study, 
a capable simulation model was developed by considering various parameters, 
which affect energy use and management  Jones and Williams (2001) developed 
the Energy and Environmental Prediction (EEP) model based on a technique that 
augmented archetypes with additional information based on a “drive-pass” survey 
using GIS. They described the level of data that was needed, the survey technique 
and the operation of the model to predict building energy consumption over the 
whole of the city or local authority area.  

GIS-based calculation and visualization approach for energy use and 
greenhouse gas emissions for the residential stock is another archetype bottom-up 
approach that conducted by Mattinen et al. (2014). Moreover in 2016, a 
methodology to describe the building-stock regarding the energy efficiency 
measures has been proposed (Österbring et al., 2016). This methodology integrates 
building characteristics from energy performance certificates, measured energy use 
and envelope areas from a GIS model. Recently, a GIS-based simulation model has 
been developed by Li et al. (2016) to evaluate how building typology and urban 
morphology influences on building energy consumption and CO2 emissions. 
Moreover, Delmastro et al. (2016a) have developed several long-term scenarios 
assessing the energy saving potential and the relative cost. They spatially analysed 
the socio-economic feasibility of renovation measures. Yamaguchi et al . (2007) 
suggested a new clustering modelling approach for energy use in the commercial 
sector to define CO2 reduction scenarios. Initially, they classified the districts into 
several sets according to the spatial building stock pattern, or urban form. 
Afterward, the energy consumption per unit floor area of the building is evaluated 
concerning each district typology using a simulation of energy consumption in 
buildings in a representative district. Finally, a proper simulation model is 
developed by taking into account different parameters which are affect energy 
usage and management. This model is applied in the commercial sector of Osaka 
city in order to support urban energy policy.  

Additionally, Ascione et al. (2013) suggested a new method for calculating the 
space heating demand for buildings. This model aimed at characterizing both winter 
and summer energy performance of new and existing building stocks at the urban 
contest, geo-referencing all the data. Their target was to promote efficient 
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refurbishment solutions for existing buildings and efficient design for new 
buildings. Both Caputo et al. (2013) and Costa (2012) proposed a methodology to 
evaluate the energy performance of the built environment at the city level. The 
method suggested by Costa (2012) took the information from the National 
Buildings Census statistical database, and it is an applicable methodology to all the 
Italian cities. It is implemented in GIS to evaluate how energy performance 
scenarios effect on the built environment at city/district level. This study developed 
by Caputo et al. (2013) introduced a methodology that can determine the built 
environment energy performances in a city/neighborhood level.  

2.5.2.3 GIS-based-hybrid model 

More recently, Mutani and Vicentini (2013)have conducted hybrid analysis 
where they used the energy demand of some sample buildings to adapt them to 
estimate the energy consumption of a city (bottom-up). The achieved results were 
calibrated through top-down level data. Again in 2014, Mutani and Pairona (2014). 
have also submitted an approach for calculating the energy consumption of 
residential building stock by starting from census data information and real energy 
consumption data. The model is based on actual heating energy consumption data 
of Turin residential construction sector. Thermal analysis of typical buildings 
allowed the assessment of the energy savings on renovated buildings. These 
considerations can be extended on an urban scale to European cities, calculating the 
overall energy savings obtained by different energy policies  

In 2015, Nouvel et al. (2015) developed an interesting combined methodology, 
as a multi-framework for urban scale applications, based on Ordinary Least Squares 
(OLS) multiple linear-GIS and an engineering model making use of 3D city models. 
This multiple linear-GIS was previously proposed by Mastrucci et al. (2014). In this 
study, both statistical and engineering methods are combined in a multi-scale 
framework to improve the heat demand predictions for the case study of Bospolder-
Rotterdam counting about 1000 buildings. They first performed the statistical 
equations to predict city building energy consumption. Later, they selected relevant 
neighborhood for retrofitting scenarios utilizing the engineering model. Into this, 
this study individualized energy savings potentials based on a good agreement with 
measured gas consumption data at the neighborhood level (5-25% deviation) 
(Nouvel et al., 2015).  

Similarly, towards sustainable management of building stocks, a model 
conducted by Tornberg and Thuvander (2005) developed a hybrid energy model of 
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building a stock of Goteborg. The model is based on GIS technique to support the 
evaluation of the consumption levels of specific energy sources. The outcomes 
illustrated as maps are useful to have a global overview of the energy performances 
of cities. In this study, a top-down approach is combined with a bottom-up approach 
to compensate lack of data and evolve each other. These methods have been widely 
integrated with GIS in the literature.  

A framework, so-called EnerGIS has been proposed by Girardin et al. (2010) 
to support qualitative long-term scenario analysis involving building renovation. 
EnerGIS is based on the pinch and statistical analysis. A new method has been 
suggested by Ascione et al. (2013) to evaluate the energy demand for buildings with 
the aim of characterizing both cooling and heating performances. The target was to 
promote efficient refurbishment solutions for existing buildings and efficient design 
for new ones.  

2.6 Phase III: prioritization and decisional process 

The main purpose of this section is to give an overview of SDSS and MC-SDSS 
existing tools, which are potential can be used for energy saving scenarios purposes.  

2.6.1 Spatial Decision Support System (SDSS) and Multi Criteria 
Analysis (MCA) 

The concept of sustainable development dates back to 1970s, and since then it has 
been widely the subject of several sectors concerns, being the main effort of national 
and international economic, social and environmental agendas (Doukas et al., 
2007); (Alam et al., 2007); (Pereira and Duckstein, 2007); (Bilgen et al., 2008); 
(Omer, 2008); (Hoffman and Jorgenson, 2016); (Tsai, 2010); (Iddrisu and 
Bhattacharyya, 2015); (Cosmi et al., 2015); (Brandon et al., 2016). Previous studies 
have discussed a broad consensus on the concept of sustainable development and 
their application in the field of energy planning.  

According to Brandon and Lombardi (2011) “ sustainable development is a 
process which aims to provide  physical, social and psychological environment in 
which the behaviour of human beings is harmoniously adjusted to address the 
integration with, and dependence upon, nature in order to improve, and not to 
impact adversely, on present or future generations”. This continuous process makes 
a balance between the environmental, economic and social aspects related to the 
living environment and their systematic (Rad, 2010). 
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In this context, a sustainable energy development sector means at balancing 

energy production and consumption, along with having the minimum impact on the 
environment and giving the opportunity to employ the social and economic 
activities (Hofman and Li, 2009). To comply a future sustainable energy 
development, prioritization and decision process should be integrated into the 
procedure of energy planning sustainable development of cities and regions due to 
technology diversity, uncertainties and different conflicting objectives and 
preferences of planning participants (Mirakyan and De Guio, 2013). Traditionally, 
energy and environmental planning are considered a single measurement criterion, 
as costs benefit maximization, to make their decisions (Greening and Bernow, 
2004). However, the complexity, conflicting and multidimensionality concept of 
long/medium-term sustainable development of urban energy planning matters 
cannot rely upon just one criterion alternatives. Moreover, an urban and regional 
planning should be sustained by collaborative and participative processes since 
cities are dynamic living organisms that are continuously evolving (Lombardi and 
Ferretti, 2015). In this regard, the use of adequate tools and methods for addressing 
complex interactions of energy system planning problems is significantly needed. 
They should able to perform different data type, multi-objective and preferences, 
and conflicting objectives (Lombardi et al., 2017).   

Multi-Criteria Decision Analysis (MCDA) is an integrated form of a 
sustainability evaluation. It provides well-established decision support tools for 
sustainable energy development because of the multi-dimensionality of the 
sustainability goal and the complexity of socio-economic aspects (Wang et al., 
2009). However, MCDA approach cannot make the actual decisions by themselves, 
but, it should aid DMs in making better decisions.  

Reported from a comprehensive study of Belton and Stewart (2002), “One of 
the principal aims of MCDA approaches is to help DMs organize and synthesize 
such information in a way which leads them to feel comfortable and confident about 
making a decision, minimizing the potential for post-decision regret by being 
satisfied that all criteria or factors have properly been taken into account.”  

A huge number of multi-criteria models and approaches are available in the 
literature. However, the general MCDA process in sustainable energy decision-
making is shown in Figure 6 according to Wang et al. (2009); Ustinovichius et al. 
(2007); Pohekar and Ramachandran (2004). Generally, the first phase in MCDA is 
to formulate the problem and alternatives for sustainable energy decision-making 
problem, setting the sustainable evaluation criteria and normalizing both 
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quantitative and qualitative criteria data. Afterward, weights of each criterion 
should be defined to show their impact performance. Then, it is necessary to 
structure the model and the evaluation matrix (acceptable criteria and alternatives 
matrix). Finally, after selecting the appropriate method, it can assess and evaluate 
the alternatives to rank/sort/choice/descript them. If the performed sensitivity 
analysis shows the constancy of the obtained result the decision-making process 
will be ended  (Wang et al., 2009); (Torabi Moghadam et al., 2017a). Otherwise, 
the results are analysed again, and the best one is selected.  

So far, there are a number of the MCDA review methods in the literature 
regarding the sustainable energy planning. The most comprehensive review of 
decision analysis in energy and environment modelling was presented by Huang et 
al. (1995). They classified suggested studies with regard to the decision analysis 
application area and techniques. They found out that the most widespread 
application of MCDA is in energy planning and policy analysis. Furthermore, they 
highlighted that the most important application techniques include decision making 
under uncertainty. Greening and Bernow (2004) focused on the application of 
multi-criteria decision-making methods to analyse and formulate the energy and 
environment policies. Pohekar and Ramachandran (2004) reviewed the application 
areas of MCDA in energy planning such as energy resource allocation, renewable 
energy planning, planning for energy projects, building energy management, and 
electric utility planning. This study reported that the most widespread MCDA 
methods are a multi-objective optimization, AHP, PROMETHEE, ELECTRE, 
MAUT, fuzzy methods and Decision Support Systems (DSS).  
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Figure 6: MCDA process in sustainable energy decision-making, elaborated from 
(Wang et al., 2009); (Ustinovichius et al., 2007); (Pohekar and Ramachandran, 2004); 
(Cajot et al., 2017). 

Moreover, Zhou et al. (2006) underlined again a high importance of MCDA 
methods and energy-related environmental studies. In this study, more than 250 
studies have been reviewed to classify the MCDA methods according to the 
application type and methods. They have classified MCDA applications for energy 
planning into the three main categories: Single Objective Decision Making 
(SODM) methods, MCDM methods, DSS. The literature review conducted by 
Løken (2007a)  has emphasized that energy planning is a very suitable field for the 
use of MCDA. Recently, Cajot et al. (2017) updated the state of the art of the given 
context. They have systematically reviewed MCDA problems and methods in the 
context of UIEP. This survey synthesized the data and insights obtained, which 
support potential users identifying suitable decision analysis methods based on 
given problem context.   

In the context of integrated energy planning, although the MCDA aims at 
presenting the most appropriate plan, it should fulfil the understanding of the multi-
criteria complex situation recommendation (Mirakyan and De Guio, 2013). This 
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fact realizes by supporting the interactive planning and learning, helping people to 
express and exert their value judgments, and documenting the values and the 
alternatives of each recommendation (Mirakyan and De Guio, 2013). However, 
since the energy consumption at the built environment influenced by different 
features, urban energy planners need proper MCDA tools. These tools should 
support their urban energy planning decision-making with regards to identify 
potential areas that need improvement (Chalal et al., 2016). They have to implement 
the most effective strategy for each scenario and analyse the energy consumption 
saved after certain measures in related areas (Chalal et al., 2016).  

This fact needs data on the geographical locations of alternatives with GIS. 
McHarg (1969) was the first who used maps to make decisions; this concept has 
been later developed in GIS (Charlton and Ellis, 1991a). Using of maps in decision-
making processes has been defined by Charlton and Ellis (1991b). GIS is a strong 
and useful system that integrates, captures,  manages and visualizes all big data, 
which are spatially geo-referenced into different levels (Azzena, 1995). GIS 
produces thematic maps and performs spatial operations, while Multi-criteria 
methods translate these maps into value maps, optimal or compromise maps and 
rankings (Arciniegas et al., 2011). Due to this reason, in the last two decades, a lot 
of geospatial data processing is done to gain information for decision making, and 
many spatial decision problems give the rise to the GIS-based multicriteria decision 
analysis (GIS-MCDA) (Malczewski, 2006). Interestingly, these two tools take 
advantage of each other (Chakhar and Martel, 2006). Integrating GIS and MCDA 
has been highlighted in the late 1980s and early 1990s with the aims at developing 
the long-term perspectives SDSS. This fact is devoted to helping DMs in spatial 
problems highlighted by different previous studies (Carver, 1991); (Densham, 
1991); (Sharifi et al., 2002); (Chakhar and Martel, 2006) (Malczewski, 
2006);(Pereira and Duckstein, 2007); (Arciniegas et al., 2011); (Lombardi and 
Ferretti, 2015); (Demetriou et al., 2017). 

From a methodological point of view, the process to build a model can be 
described in three following phases (Malczewski, 1999), involving both GIS and 
MCA (Malczewski, 1999). Figure 7 shows the framework of MC-SDSS process, 
illustrating the involvement of both GIS and MCA method for each 3 macro-phases: 
intelligence (process model), design (planning model), choice (evaluation model) 
(Wang et al., 2009); (Ustinovichius et al., 2007); (Sharifi et al., 2002); (Herbert 
Alexander Simon, 1977); (Pohekar and Ramachandran, 2004). 
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1. Process Model (Intelligence phase): the decisional context analysis for 

structuring and identifying the decision problem to be evaluated should be 
provided in this phase and also the relevant evaluation criteria should be 
established and identified, assigning them later the proper weights of 
alternative options.  

2. Planning Model (Design phase): once the alternative options have been 
determined, it is necessary to structure the model and the evaluation matrix 
(criteria and alternatives matrix). This step involves the selection of the 
MCDA method.  

3. Evaluation Model (Choice): after choosing the appropriate method, it can 
assess and evaluate the alternatives to rank/sort/choice/descript them (Roy, 
1985). Finally, a sensitivity analysis is suggested with a view to examine 
the constancy of the obtained outcomes and the robustness of the model. 

SDSS can be considered as an interactive computer system for assisting the 
user/s (i.e., single or group) to perform decision processes efficiently (Malczewski, 
2006). In this sense, the SDSS can visually support the stakeholders during different 
focus groups and workshops to understand how the criterion trade-offs evolve when 
one or several decision parameters changed. (Chakhar, 2003). Its main advantage 
is that the DMs can express and exert their preferences concerning evaluation 
criteria and/or alternatives (value judgments) into GIS-based decision-making 
procedures, and consequently, get back feedback to increase the DMs trust in the 
results (Chakhar, 2003). The SDSS acquires, manages and stores the geo-referenced 
data performing the analysis of spatial problems. Moreover, it provides an 
interactive environment for performing effective visual activities thanks to the 
visual interface, which enables a dynamically interactive session in a real-time 
exchange of information between the user and the system to support the 
stakeholders through all decision phases (Malczewski, 1999). 
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Figure 7: Schematic spatial multi-criteria analysis process, sources: (Wang et al., 

2009); (Ustinovichius et al., 2007); (Sharifi et al., 2002); (Herbert Alexander Simon, 1977); 
(Pohekar and Ramachandran, 2004). 

Particularly, SDSSs include nine general features: (i) solve ill-structured 
problems; (ii) user friendly interface; (iii) analytical models with data integration; 
(iv) able to find spatial solution through building alternatives; (v) support a variety 
of decision-making techniques; (vi) interactive and recursive problem solving; (vii) 
spatial data input; (viii) application of spatial analysis; (ix) produce geographic 
outputs according to different spatial forms including maps, graphs (Aydin, 2014); 
(Malczewski, 1999); (Densham, 1991). The MC-SDSS are part of a larger field of 
SDSS (Ferretti, 2011). In the framework of MC-SDSS, two interrelated instruments 
existed. On one hand, GIS supports in data storage, management, visualization of 
maps and analyses the decision problems. On the other hand, MCA provides a full 
range of methods for structuring decision problems and for designing, evaluating 
and prioritizing alternative decisions (Malczewski, 2006). Moreover, they are 
strong visualization tool through which maps become a “visual index” to provide 
solutions to the planners to optimize the conditions (Janssen and Herwijnen, 2007); 
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(Lotov et al., 1997); (Andrienko and Andrienko, 1999); (Jankowski et al., 2001). In 
other words, digital maps are meant for communication among workshop 
participants and an interactive mapping device (Arciniegas et al., 2011).  

2.6.2 Available tools for UIEP-an overview  

This section illustrates some SDSS/MC-SDSS tools, which support (or can 
potentially support) the energy saving scenarios in UIEP approaches towards a 
more sustainable development of cities (Torabi Moghadam et al., 2017a). Some of 
the existing SDSS/MC-SDSS tools related to sustainable energy planning are 
presented as follows from the study conducted by Torabi Moghadam et. al (2017a): 

• MEU (Urban Energy Management) (Rager et al., 2013) is a web-based 
platform as a decision support which integrates with CitySim (Robinson et 
al., 2009) to develop different energy demand and supply scenarios, 
including GIS-based visualization of the results. This tool can quantitatively 
analyse different scenarios. It permits to continuously monitor annual 
energy flows, consumptions and related actions (Puerto et al., 2015). 
UrbanSim (Waddell, 2007) is an open source SDSS tool for scenario 
development and simulation for the city scale. It is an integrated platform to 
share data, design alternative plans, simulates the impacts of those plans 
over time, and visualize outcomes in 3D. This platform analyses of impacts 
of alternative scenarios, adopt UrbanCanvas for interactive design, 
UrbanSim Commons for sharing data on the cloud. This tool is not 
specifically produced for the building sector; however, they are used to 
evaluate alternative transportation and land use plans taking into account 
the building stock evolution. 

• DIMMER (District Information Modelling and Management for 
Energy Reduction) Dashboard” (Lombardi et al., 2014) is an open SDSS 
platform for existing and real-time data processing and visualization at the 
district/urban level to support decision making by energy managers and 
public authorities, monitoring district energy data as well as simulating and 
implementing energy management policies. DIMMER can integrate 
Building Information Model (BIM), System Information Model (SIM) and 
GIS to visualize real-time energy-related information in the built. One of 
the examples of the application of MCA method using the DIMMER 
Dashboard, as an integrated participative SDSS, is the study conducted by 
Abastante et al. (2017). In this study they have evaluated three scenarios 
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regarding heating supply system options in a district using the MACBETH 
method.  

• InViTo (Interactive Visualisation Tool) (Pensa et al., 2016) is an 
interactive SDSS web interface for supporting users in the exploration of 
spatial data. The tool purposes to provide a structured framework for aiding 
users in accessing and interrogating a geo-referenced spatial thematic 
database. InViTo works with GIS database and relies upon on the free and 
open web technologies such as Google Maps and Google Fusion Tables, for 
visually managing and exploring geo-referenced data 

• INDICATE (Melia et al., 2015) is an ongoing project to support DMs and 
other stakeholders towards Smart City context.  The concept of smart cities 
will be achieved through the development of a SDSS interactive cloud-
based tool, which will provide a dynamic assessment of the interactions 
between buildings, the electricity grid, renewable technologies and 
Information Communication Technologies (ICT). It integrates new 
technologies in the city to better manage supply and demand by dynamic 
simulation modelling, GIS, and 3D urban modelling.  

The integration of SDSS tools with MCDA (MC-SDSS) has been widely 
applied in the field of urban energy planning, especially in the siting of renewable 
energy technologies in the land use. Few tools have been developed for energy 
analysis in the built environment but potentially can be adapted for this context. In 
this section, both are considered.  

• CommunityVIZ (Kwartler and Bernard, 2001) is an ArcGIS-based 
decision support system for community planning and design applications, 
which allows obtaining different interactive visualization and understand 
their potential impacts (Lieske and Hamerlinck, 2013). It encompasses two 
components: (i). Scenario 360 for communication, analysis, and 
engagement; (ii). Scenario 3D for three-dimensional visualization. It could 
be integrated into energy analysis and planning (Novak et al., 2012) 

• FASUDIR-IDST (Friendly and Affordable Sustainable Urban District 
Retrofitting-Development of Decision Support Tool) (Barbano et al., 
2015) is a comprehensive interactive and user-friendly decision support tool 
to analyse the outcome of the building retrofitting strategies on the 
sustainability of the urban district. The Integrated Decision Support Tool 
(IDST) features a 3D graphical user interface, to facilitate the interaction 
between the multiple stakeholders involved in the decision-making process. 
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• AHP in ArcGIS is a powerful ArcGIS extension that determines criteria 

weight considering the well-known Analytic Hierarchy Process (AHP) 
(Saaty, 1980).  

Table 5 and Table 6 summarize the most important characteristics of the 
explained tools of (section 2.6.2) to facilitate the readers to choose the most 
appropriate one for their research and applications, reported from Torabi 
Moghadam et al. (2017a). 

Table 5: SDSS tools characteristics, source (Torabi Moghadam et al., 2017a). 

SDSS 
Name  DIMMER 

Dashboard 
InViTo INDICATE MEU UrbanSim 

Developer DIMMER 
project team  

SiTI Istituto  INDICATE 
project team  

LESO-PB Urban 
Analytics Lab  

Open Source Yes Yes No Yes Yes 
Objective district 

energy 
saving 

guide users 
in building 
their spatial 
knowledge 
by dynamic 
maps 

support 
stakeholders 
in the 
transition 
towards 
smart cities 

urban energy 
management 

community 
planning tool 

Visualization 2D/3D 2D 2D/3D 2D/3D 3D 
Approach participative 

collaboration 
open 
collaborative 
web tools 

participative 
collaboration 

direct 
collaborative 
framework 

simulation,  
visualization 
and shared 
open data 

Method dynamic 
monitoring, 
management 
of energy 
consumption 

interactive 
visualization 
tool 

interactive 
decision 
support and 
information 
exchange 
platform 

link to 
citysim 

scenario 
development 
and simulation 

Spatial 
Coverage 

building and 
district 

cities and 
regions 

city and 
neighborhoo
d 

urban 
district 

community/ur
ban 

Type of tool WebGIS 
dashboard 

web 
platform 

platform ArcGIS 
based web 
platform 

software based 
on python data 

Time 
resolution 

real-time _ _ hourly short/long-
term 

 

Table 6: MC-SDSS tools characteristics, adopted from (Torabi Moghadam et al., 
2017a). 

MC-SDSS 
Name of the tool CommunityVIZ FASUDIR-IDST ArcGIS with AHP 

https://www.linkedin.com/in/paulwaddell
https://www.linkedin.com/in/paulwaddell
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Developer Orton Family 

Foundation 
Fasudir project Team Saaty 

Open Source No No No 
Objective visualize, analyse and 

communicate about 
planning decisions 

define different 
retrofitting scenarios 
with regards to 
sustainable KPI 

spatial analysis 

Visualization 2D/3D 2D/3D 2D/3D 
Approach collaborative  

decision-making 
collaborative 
stakeholders 

data integration and 
collaborative 

Method dynamic scenario tool retrofitting scenarios 
tool 

pairwise-comparison 

Spatial Coverage cities and regions 
(large and small) 

district and 
neighborhood 

user-dependent 

Type of tool ArcGIS extension Web-based software ArcGIS extension 
Time resolution time-scope long-term user-dependent 

In the Tables 5 and 6, CommunityViz and UrbanSim can be named also Planning 
Support System (PSS), offering planners the ability to reflect different alternative for 
possible future spatial scenarios (Li and Jiao, 2013). According to recent literature, these 
tools include geographically-oriented websites and interactive communication-oriented 
map-based touch tables that provide groups of stakeholders a mutual workbench to discuss 
and evaluate sketches of future layouts, e.g. (Vonk et al., 2005); (Geertman and Stillwell, 
2004); (Pelzer and Geertman, 2014); (Campagna et al., 2015); (Arciniegas et al., 2013); 
(Geertman et al., 2015). 

2.7 Results 

This section illustrates the results of a meta-analysis of 80 analysed papers by 
Torabi Moghadam et al. (2017a). Moreover, this study provided the SWOT analysis 
for providing information and insights on how the various UIEP approaches can be 
integrated to handle the entire planning procedure.  

2.7.1 Meta-analysis of previous literature 

Eighty papers on the UIEP application have been identified by Torabi Moghadam 
et al. (2017a). These papers have been classified based on three criteria for the 
purpose of presenting results effectively: the year of publication, the level of 
integration of UIEP phases and the types of combination of methodology. In Figure 
8, the results of the meta-analysis are shown. 

• The level of integration. Phase I is always integrated with the other UIEP 
phases since it is the necessary basis of the entire planning procedure. Phase 
II is the most widely used phase, involving a total of 70 papers out of 80, 
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accounting for 87,5% (27 papers integrate Phase I with Phase II, 36 papers 
belong to Phase II only and only 7 papers include all the Phases). Since 
Phase III is the prioritization and decisional process, complementary to the 
other Phases, it is required to be integrated. The Figure shows that 17 papers 
(21,25%) are referred to Phase I, of which 10 papers integrate Phase I and 
III while 7 papers integrate all the Phases. The most important finding, 
relevant to be highlighted, is that the full integration of the different Phases 
is reported by only 8,75% of the papers (7 papers).  

• Methods (shape of the bullets in Figure 8). According to the previous 
studies, the possible combinations of methodologies have been classified in: 
(i) Methodology isolationism: one method for one paradigm; (ii) 
Methodology enhancement: enhancing a methodology by exploiting other 
methodologies; (iii) Methodology combination: combining methodologies 
in a unique intervention; (iv) Multi-methodology: combining parts of 
different methodologies (Mirakyan and De Guio, 2013); (Mingers and 
Brocklesby, 1997). A total of 36 papers (45%), which are classified in Phase 
II by a circle shape (o), perform the methodology isolationism by proposing 
urban energy modelling approach without integration. 35 of reviewed 
papers (43,75%), shaped as a triangle (), belong to Methodology 
enhancement classification since they enhanced the proposed approach by 
using GIS tools. Further, regarding the Methodology combination shaped 
as a square (□), 6 papers (7,5%) have combined their approaches in a unique 

intervention. Finally, the remaining 3 papers (3,75%) shaped as (⁕), have 

combined different parts of different methodologies in a Multi-
methodology. 

• Year of publication (colour of the bullets in Figure 8).  The most important 
output from this analysis is that the UIEP is a very recent research topic. In 
fact, 78 papers (97,5%) have been published after 2000, red and blue bullets. 
Two other papers are older, but still relevant for the survey field.  

In comparing the reviewed papers based on the three aforementioned criteria, 
this meta-analysis first recognizes that in urban energy planning the number of 
papers that fully integrate the UIEP Phases is very few and very recent. Finally, one 
can say that although there are several examples of urban energy planning 
approaches there is still not a well-recognized procedure and an integrated method 
to face the UIEP (Torabi Moghadam et al., 2017a).  
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Figure 8: Meta-analysis of previous papers, source (Torabi Moghadam et al., 2017a). 

2.7.2 SWOT analysis of the reviewed methodologies 

From this survey on integrated UIEP emerged a broad range of available individual 
approaches for existed sustainable urban energy planning. A SWOT analysis is 
presented in Figure 9 to discuss the main strengths, weaknesses, opportunities, and 
threats of each available spatial approach described in previous sections (Torabi 
Moghadam et al., 2017a).  
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Figure 9: SWOT analysis related to the presented approaches in Section 2, elaborated 
from (Torabi Moghadam et al., 2017a). 

From  Figure 9 the following considerations are derived (Torabi Moghadam et 
al., 2017a):  

• Phase I-spatial database creation: since built environment data and 
information at the local level are significantly scattered among several 
entities, and there is a lack of interoperability among the data sources, one 
of the most challenging barriers in developing a robust and detailed analysis 
is data collection (Caputo and Pasetti, 2015). In this regard, a huge effort is 
required in order to provide a supportive and comprehensive accessible 
building stock database, at the local level for different goals and different 
stakeholders, gathering all the necessary data from various sources (Cajot et 
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al., 2017);(Caputo and Pasetti, 2015). In Italy, information about building 
stock and their energy performances are derived from different regional and 
local authorities and often are not homogeneous (e.g., ISTAT, Italian 
National Institute of Statistics, ARPA, Regional Agency for Environmental 
Protection, Regional register of energy performance certificates and AEEG 
Regulatory Authority for Electricity and Gas) (Caputo et al., 2013b). 
Therefore, in order to set up an effective energy planning at the local scale, 
it is crucial to improve data availability and management. Data availability 
about buildings energy consumption will be increasingly improved in the 
future, thanks to smart metering and real-time data monitoring, following 
recent open data policies (COM n.882 final, 2011). In this context, GIS 
helps to identify and visualize buildings data and their distribution, 
supporting decision-making, at urban and regional scale. This approach can 
manage location-based information, linking alfa-numerical information 
databases to spatial maps to create dynamic displays. Moreover, GIS 
highlights the high energy use hotspots that need requalification (Chalal et 
al., 2016). Although GIS is principally used for buildings geometrical data, 
it can significantly assist the energy performance of buildings. The 
procedure of data collection and geo-referencing procedure is very time-
consuming. Moreover, the quality of data is a very big faced challenge in 
this phase. However, in order to create MC-SDSS for urban energy 
planning, this phase is non-negligible. The geospatial database includes 
several attributes that are associated with each building. Some of the 
information derives from the bulging level. When the single building level 
information is not available the data come from the census level.  

• Phase II-spatial building energy modelling: this phase provides a detailed 
information on the building stock and its retrofit potential. Here it is possible 
to understand also relevant purposes for design. Among aforementioned 
models, the choice between archetype and regression methods strongly 
depends on data availability and the willingness to explore retrofit 
retrofitting solutions (i.e. archetype) or to forecast energy consumption (i.e. 
regression).   

• Phase III-spatial decision support systems: a tool to build alternative actions, 
to express different and conflicting objectives, and to explore the various 
aspects that can influence final decisions. Also, these tools can take into 
account both quantitative and qualitative aspects, considering all 
sustainability pillars. In this regard, a huge amount of data is required to 
compute all different aspects (i.e. social, environmental and economic). In 
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some of these tools the MC methods are integrated into their application 
(MC-SDSS), and for the other, the MC analysis should be incorporated 
exogenously (SDSS). This means that, once the scenarios are defined in the 
SDSS, the MC analysis will be performed separately.  

From the SWOT analysis (Figure 9), urban energy planners can recognize how 
the strengths of others can rectify the weaknesses of the different approaches. 
Accordingly, the urban actors can realize which approach could be proper for their 
planning purposes. Therefore, the presented SWOT analysis may guide and support 
urban players in the choices among the summarized individual approaches by 
highlighting the key features. Furthermore, the SWOT analysis is beneficial to 
urban energy planners and DMs since models become useful when the users are 
aware of the models advantages and limitations to make effective decisions (Cheng 
and Steemers, 2011). 

2.7.3 Major findings 

The major findings are summarized in this section to give new insights for future 
research and extend existing research. Taking into account the aforementioned 
considerations emerging from meta-analysis and SWOT analysis, Figure 9 shows 
which approaches are suitable for creating the different scenarios explained (Torabi 
Moghadam et al., 2017a). Moreover, this figure illustrates the possible integration 
of different methods to help the urban actors in performing the whole UIEP 
procedure. As shown in Figure 10, Phase I must be integrated with all other phases 
in a spatial framework due to the necessity of handling a large volume of data (i.e. 
the building energy demands and the relative retrofit potential) to improve 
significantly the quality of planning and decision-making processes.  In Phase II, it 
is possible to interlink more than one method when it is necessary. For instance, the 
output of the archetype models could be used as the input of comprehensive energy 
system models (e.g. energy requirement of a building typology and retrofit 
solutions). Phase III should be integrated with all the methodologies of Phase I and 
II to support a collaborative process, to better visualize the structure of group 
decision problems, and organize communication among participants. Therefore, in 
order to obtain an effective UIEP, decision making process for sustainable 
development should be broadened to including the stakeholders’ presence. In this 
context, collaborative SDSS and MC-SDSS based on spatial information sharing 
and on expert systems are more proper to tackle the problem (Lombardi and Ferretti, 
2015). Existing tools are very effective in modelling energy consumption but not 
very efficient in structuring urban planning problems. 
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Figure 10: Approaches suitability for creating future scenarios and integrating with 
other phases. The barred bullets mean the possible integration methods in Phase II in order 
to improve one of them, source (Torabi Moghadam et al., 2017a). 

Here, pointed out some of the most relevant findings of the review and some 
insights for future research developments are pointed out. The major findings cover 
two following main points:  

• Urban energy planning has to take into consideration an integrated 
approach: considering that energy planning is complex and multi-
disciplinary, from the in-depth analysis of the state of the art, the main 
challenge for future research is to integrate the existing different 
methodologies in an agreed structure in order to enhance the quality and 
robustness of the planning results.  In fact, although the research field of 
energy planning has become progressively important at urban and regional 
scales, performing the entire energy planning process by integrating 
different approaches is still not a common practice. The discussion so far 
underlines that the advantage of integrating different approaches is due to 
their complementarity in fulfilling different tasks of the process. Indeed, the 
preparation of the GIS supportive database allows to manage and visualize 
the territorial and socio-economic spatial peculiarities (Phase I); energy 
modelling tools allow to quantitatively analyse the current and future 
sustainable built environment evolution (Phase II); while MC-SDSS allows 
to involve the different actors in the decision process and to analyse and 
choose between the different strategies obtained from the energy modelling 
parts (Phase III). 
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• An integrated urban and regional energy planning is an opportunity through 

which it is possible to contribute towards a greater sustainability. The whole 
process is essential to guarantee a future sustainable urban transformation 
by: investing responsibly in alternative consumption patterns and greener 
strategies; speeding the decision-making process through participation and 
intuitive visualization; strengthening the collaboration and relationship 
between research and private and public local authorities; leading to various 
new commercial consequences for the environment, economy and society 
at the national level down to the city level; offering the opportunities of 
engaging stakeholders in the planning process by establishing a shared 
framework between them. 

2.8 Concluding remarks 

From the review of an existing literature is emerged that there is still not an 
integrated method to face the UIEP. Therefore, in this Ph.D. work, a new integrated 
MC-SDSS is proposed to evaluate and visualize the results of different UIEP 
scenarios taking into account the DMs involvement from the early stage of 
planning. 

Concluding, the approaches described in this chapter represent the necessary 
base for creating the future urban energy consumption paths for scenarios analysis. 
Particularly, the importance of using GIS tools for calculating, managing, storing 
and visualizing data at the urban scale is highlighted. From the overview, the top-
down models are rarely adopted at the urban scale.  

While, the bottom-up models are appropriate to characterize the energy 
consumption of the existing building stock. Among the mentioned statistical 
methods, the regression ones have been the most widespread coupled with GIS. 
These statistical methods are suitable for short-term planning based on large data 
requirement. Regarding engineering methods, although it might be possible to use 
the sample and population distribution models at the urban level, the most well-
known and applicable method for urban spatial analyses is the archetype method. 
Archetype methods allow both short and long-term analysis and the possibility to 
create future energy retrofit scenarios.  
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Chapter 3 

3 Research Design and Method 

3.1 Introduction 

This chapter will discuss in detail the design and the methodological set-up of the 
Ph.D. research. The idea is to solve the problems that stated in chapter 1 by 
combining the methodologies and approaches discussed in chapter 2. In fact, the 
aim of this chapter is to offer an interdisciplinary integrated methodological 
framework which is able to support decision-making processes. This will help in 
defining and evaluating energy-saving scenarios taking into account the 
participation of stakeholders in an interactive way. The meaning of integrating 
different tools and methods in this framework is due to their complementarity in 
fulfilling various tasks in the UIEP process. The research approach and framework 
are explained in section 3.2 and 3.3. Moreover, section 3.4 illustrates the study area 
as a demonstrator of the Ph.D. project. Furthermore, some concluding remarks of 
this chapter are given in the last part of the chapter (section 3.5). To understand the 
outcomes, it is essential that the reader is aware of the methodological choices made 
in all the phases. 
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3.2 An interdisciplinary integrated approach 

To address a complex challenge of urban and regional energy planning, there is a 
need for an interdisciplinary and integrated spectrum (Brömmelstroet et al., 2014). 
In fact, the planning processes in urban energy problems may be not specifically 
innovative approach; however, its management by means of integrated, cross-
sector, multi criteria and multi actors approaches is absolutely a novel approach to 
be resolved (Cajot et al., 2017). In this vein, many cities should struggle to develop 
innovative methods to successfully reinforce the collaboration among different 
research disciplines dealing with energy issues (Zanon and Verones, 2013).  

On one hand, considering the existing research gaps and methodological 
directions, this Ph.D. study follows an interdisciplinary path. Both technical (e.g., 
energy modelling) and societal (e.g., an active engagement of relevant actors and 
interest groups) elements help to perform a proper UIEP; especially, from the 
stakeholders’ perspective (Dantsiou, 2017). On the other hand, this study is 
fundamentally based on “Multi-Methodology Integration” defined by Mirakyan 
and De Guio (2013), in which parts of different methodologies are combined (e.g., 
statistical, engineering, focus groups and etc.).  

In structuring the UIEP, it is important to select different appropriate 
approaches and to choose them considering the decision context and the type of 
planning project. The SWOT analysis presented in chapter 2 (Figure 9) can 
significantly aid. Furthermore, it is crucial to analyse how it is possible to 
implement the interaction among the different stakeholders. As a result, the 
developed MC-SDSS for UIEP in the built environment uses techniques at the 
crossroads of three domains (see Figure 11): 

1. Spatial database, which constitutes the GIS platform including all the 
relative information and data and enables the use of analytical process and 
outcomes such as the maps, graphs, and tables; 

2. Spatial building energy modelling, which develops a bottom-up modelling 
to evaluate the current and future energy consumption at the city scale 
concluding a sufficient level of detail; 

3. Spatial decision support system, which is the fact that the DMs can express 
and exert their preferences with respect to multiple evaluation criteria and/or 
alternatives, and consequently, get back feedback in a real-time to increase 
the DMs trust in the outcomes. 
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Figure 11: Schematic overview of the three main components of this research. 

The integration of this technical know-how allows providing maps of energy, 
economic, environmental, social and technical indicators resulting from the 
evaluation of energy saving scenarios. This provides a supportive tool for the urban 
actors in the participatory planning processes allowing several stakeholders with 
different backgrounds and interests to gather and discuss the issues of several urban 
and regional energy saving scenarios (Girardin, 2012). In the following section, the 
integration of theoretical proposed framework and how it is supposed to be applied 
to the study practice is shown. 

3.3 The research framework 

A new MC-SDSS, which is an interactive plug-in of GIS environment is developed 
in this three-year research. The plug-in will help to dynamically analyse the energy 
retrofitting scenarios based on the stakeholders’ preferences within an urban scale. 
The methodological framework of this study consists of several phases involved in 
the framework of an integrated urban energy planning according to (Mirakyan and 
De Guio, 2013). Hence, it is helpful to break it down into the main elements that 
frame it to understand the research process steps employed in this study. To this 
end, in Figure 12 a schematic flowchart of the methodological approaches of the 
thesis is shown.  
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During the early stage, the research questions were defined (Table 1). 

Afterward, a critical systematic review of each phase of urban energy planning from 
the literature has been conducted [Paper 1]. This step provides a statistical analysis 
of the 80 reviewed papers through a Meta-analysis (Figure 8) to figure out current 
research trends and to identify the main gap of the given context that needs to be 
filled. It also provides a SWOT (Figure 9) analysis of the different approaches to 
discuss the main strengths and weaknesses of each available spatial approach that 
are described in chapter 2. The review allowed to identify the lacks in the UIEP 
research filed, emphasizing the need for well-organized interdisciplinary integrated 
frameworks. 

Phase I 
Accordingly, the fieldwork thesis is started starting from the quantitative data 

collection to characterize the building stock and to create a supportive geodatabase. 
This phase (Phase I), entitled “preparation and preliminary analysis”. Phase I is the 
foundation of all processes and modelling approaches in the next Phases, II and III. 
Of course, the GIS database can be always updated, and more data can be joint into 
the framework. In this step, the information characterizes by geo-referenced and 
non-georeferenced data. Therefore, the geo-referencing procedure should be 
performed for those non-geo-referenced ones in order to create a strong geospatial 
database. All the collected data have been then overlapped and integrated into the 
GIS platform. In this regard, each building polygon has been associated with its 
available and necessary information. The goal of this Phase was to create a 2D-GIS-
database platform for the city including the various factors, which may influence 
the building energy issues. The use of GIS was crucial since it offers the opportunity 
to characterize the building stocks and to visualize the spatial distribution of a large 
number of data through its location-based feature and its multiple layers 
representation (see the section 4.3.1 of chapter 4). 

Phase II 
Consequently, Phase II has been performed to model the energy consumption 

of building stock a detailed way. First, in chapter 4, a bottom-up statistical model 
has been developed to estimate the energy consumption for the built environment 
space heating at the city level. This model is based on the integration of statistical 
analysis (considering several variables reported in Table 10) with 2D-GIS to map 
the current energy consumption of the city [Papers 2, 3 and 10]. The novelty of the 
proposed statistical model lies on its simplicity and applicability and the high level 
of their robustness in the literature (see chapter 2). However, these statistical 
methods rely strongly upon monitored real data. It should be noted that fortunately, 
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the author succeeded to collect a sample of information of energy billings as a data 
source for modelling purpose and for analysing the link between energy 
consumption and a wide range of different variables. Moreover, the statistical 
models are also able to take into account socio-economic effects in the equations 
(Mastrucci et al., 2014). They perform reliable consumption information about the 
present condition of buildings and for the calibration process of engineering-based 
models. However, due to the strong dependency of statistical methods on available 
historical consumption data, these methods are limited to predict the impact of 
innovative technology options and energy saving potential after applying renewal 
solutions.  

In counterpart, engineering methods are very detailed models based on 
traditional thermodynamic relationships and heat transfer calculations (Nouvel et 
al., 2015). Although the historical data can be used for making a comparison against 
measured consumption data, these methods can assess energy consumption without 
any historical information. However, the engineering modelling approaches require 
a high quantity of information about building structure and parametric input to 
calculate the energy consumption of a set of reference buildings of the stock based 
on a numerical model. Into this, 3D city models can significantly help (Nouvel et 
al., 2015). One the main benefits of engineering-based methods, which is used this 
thesis is their ability to predict energy saving quantity for buildings after renovating 
solutions application (Mangold et al., 2015). In this phase, the study proposed to 
simulate the energy consumption of urban areas after applying retrofitting actions. 
Although the engineering methods are able to predict future conditions, simulating 
whole cities using energy demand software can be very extensive in terms of 
computer resources and data collection. The reduction of these time-consuming 
methods thus still remains to be resolved. Therefore, a new methodology, using city 
archetypes is proposed, in chapter 5, to simulate the energy consumption of urban 
areas including urban energy planning scenarios. The objective of this chapter is to 
present an innovative solution for the simulating of the energy demand of cities by 
using a simplified 3D-GIS model, designed as a function of the city urban 
characteristics.  

In fact, the chapter 5 of the dissertation combines both the statistical and 
engineering approaches to obtain a more robust prediction of the urban energy 
consumption. The framework is performed in order to reduce time-consuming 
processes of energy demand simulation, assessment and for designing urban energy 
saving scenarios [Paper 13]. A spatial distribution of urban building energy 
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consumption in 2D/3D visualization provides SDSS tool in order to identify where 
the energy consumption is mostly concentrated to make the better decisions. 

Phase III 
Phase III of the study follows “a mixed methodology” that combines qualitative 

and quantitative approaches (Dantsiou, 2017).  Qualitative research refers to semi-
structured focus groups formed in which the qualitative data such as stakeholders’ 

opinion are collected through discussions and questionnaires. Particularly, the use 
of focus groups by stakeholders in this study has the following implications: (i) it 
answers the research question 3 reported in section 1.2. (ii) it reflects the “mixed 

methodology” choice for Phase III with the use of qualitative (semi-structured focus 
groups, questionnaires, playing card) and quantitative (building stock energy data, 
costs, etc.) data collection and analysis methods.  

To define evaluation criteria, several methods exist in the literature (Wang et 
al., 2009). In this thesis, the evaluation criteria are defined through the first 
workshop including semi-structured focus group organized on 30th November 2016 
involving relevant stakeholders [Paper 4]. The definition of evaluation criteria side-
by-side the real local stakeholders leads to have trustable results that grantee the 
robustness of planning process. Given a vast number of available MCDA 
approaches, makes it necessary to carefully select the most appropriate method for 
each specific decision context (Lombardi et al., 2017). In this thesis, the “Playing 

Cards” was chosen (Simos, 1990) due to some reasons. First, it is a simple and 
intuitive method and easy to be understood, even by non-experts in the field of 
decision processes (Figueira et al., 2005); (Lombardi et al., 2017). Second, they can 
help DMs in managing values that cannot be quantified without difficulty, 
involving qualitative judgments. Finally, the technical parameters involved in the 
playing card methodology can be interpreted easily, allowing a simplification of the 
problem (Lombardi et al., 2017). Chapter 6 describe the main the procedure of 
“Playing Cards” method and its results. 

Subsequently, each of the selected criteria from the first workshop was 
analysed and assessed to be implemented in a new MC-SDSS tool (see chapter 7). 
Two main instruments, Interactive Impact Assessment and Suitability Analysis, are 
modelled and adapted in order to develop a new MC-SDSS. Several dynamic 
attributes and indicators were modelled and coded using CommunityViz as a 
Planning Support System (PSS) tool (Kwartler and Bernard, 2001). This PSS tool 
is selected as a base for further modelling processes due to its several strengths. It 
helps in analysing and understanding the potential alternatives and their impacts 
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through visual investigation and scenario analysis. Moreover, this tool is interactive 
and provide dynamic feedbacks on changing the assumptions and viewing the 
influences of changes on the future scenarios on-the-fly. Furthermore, it engages 
stakeholders in participative and collaborative decision-making processes through 
visualization in real-time approach. All the above strengths lead to stronger 
consensus and better decisions in resolving complex problems. The detailed 
methodological procedure developed for supporting this phase of research is 
presented in chapter 7 (section 7.3).  

This Ph.D. work provides a significant innovative progress in the research field, 
that is developing an interactive plug-in tool for UIEP in the GIS environment. In 
this regard, finally, the second workshop is organized on 12th July 2017 to test the 
usability and validate the tool from the real stakeholder point of view (section 7.5). 
For evaluation purposes, this workshop included in two semi-structured focus 
groups. This step attempts to understand the weaknesses and strengths of the 
mentioned framework. In this workshop, the questionnaires also were designed for 
analysing the stakeholders’ feedbacks about the developed tool. Within the use of 
this GIS extension, public administrative users, such as urban energy planners, 
policymakers and built environment stakeholders can plan, design and manage low-
carbon cities. This plug-in will provide the stakeholders with the ability to visualize 
interactively and explore a range of possible futures saving scenarios. 
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Figure 12: A schematic overview of the methodological approach. 
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3.4 Study area  

Research design links the collected data of the case study to the research questions 
(Dantsiou, 2017). The case study includes numerous levels of analysis with the aim 
of illustrating the application of the proposed methodology.  

The application of the methodology in the urban area will be performed by a 
significant selection of buildings belonging to the “beating heart” of the Italian city 
of Turin (Piedmont), named Settimo Torinese. The residential building stock of this 
city is located in North-West of Italy in the continental temperature climatic zone. 
This municipality represents a proper demonstrator due to the presence of a various 
buildings typology, size and age of construction. Settimo Torinese (45⁰8’ North, 

7⁰46’ East, 207 m asl) is a medium-sized city. The choice of this medium-sized city 
is significantly important since these cities have not been at the centre of attention 
of sustainable developments (Rosenzweig et al., 2010). The city is composed of 
300 census sections and about 3600 residential buildings with 47,831 inhabitants, 
and it occupies an area of 33 km2, as visible in Figure 13, showing aerial views of 
the city of Settimo Torinese. Moreover, the total heated volume of the residential 
buildings is equal to 8.55 Mm³.  

Interestingly, the city can be divided into three main zones based on their 
geometrical and urban characterizations: (i) Fiat Village (semi-suburban area), (ii) 
Campidoglio Square (transformation area) and (iii) Historical Centre (consolidate 
area). Table 7 summarizes the generic information and characterization of Settimo 
Torinese. The study area presented here, will be used as a demonstrator during the 
rest of dissertation for applying the proposed methodology. The municipality of 
Settimo Torinese will assume the role of DM. 
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Figure 13:  Aerial and 3D view of the city of Settimo Torinese, source Google maps. 

Table 7: General information about the case study, source Municipality of Settimo 
Torinese. 

Municipality Settimo Torinese 
Province Turin 
Region Piedmont 
State Italy 
Coordinates 45°08′21″ N; 7°46′12″ E 
Climatic zone E 
HDD 2664 
Altitude 207 m above sea level 
Surface 32,37 km2 
Inhabitants 47 785 
Density 1476,21 In/km2 

According to energy consumption analyses, reported by the North-East Turin 
Union of Municipalities (NET) (i.e., Borgaro Torinese, Caselle Torinese, San 
Benigno Canavese, San Mauro Torinese, Settimo Torinese, Volpiano), the total 
energy consumption in 2009 was equal to 3,252 GWh for a population density of 
535 ab/ km² (Figure 14). The highest value is referred to the industrial sector (36% 
of the total), and it is also significant for residential (27%) and transport sector 
(26%). The public sector accounted for a share of 1% of total consumption. 
Compared to 2000, the first available year for historical values, there was an overall 
consumption decline of about 8.5% (SEAP, 2012). The Municipality of Settimo 
Torinese is the most energy consumer both in 2000 and 2009 for about half of the 
total energy consumption respectively 49.93% and 46.68%, amounting for about 
40% of the total population in 2009 (SEAP, 2012).  
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Figure 14: Evolution of energy consumption by sector in the North-East Turin Union 
of Municipalities, source  (SEAP, 2012). 

Currently, District Heating (DH) network is extended for about 40 km of 
network, serving 7000 users for an equivalent of about 350 condominiums. Figure 
15 shows the recent map of DH network in Settimo Torinese. The presence of 
District Heating allows Settimo Torinese network to save on the installation of 
single point boilers, which overall would have the greater impact than a plant in 
emitting terms. The plant is equipped with very recent technology, with low NOx 
emission and CO burners, which allow relatively low mass flows, limiting its 
environmental impact. 

 
Figure 15: District Heating network in Settimo Torinese, source EEB Project. 
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In addition, the city is proactive towards initiatives related to technological 

innovation and smart cities. The city, in fact, provides the opportunity for its 
citizens to free surfing, using Wi-Fi of active networks over the city squares and 
major public buildings. However, the existing built environment still needs to 
overcome a difficulty of integration of intelligent technologies and systems for 
increasing the energy efficiency and management. 

3.5 Concluding remarks 

This chapter has illustrated the methodology framework proposed for this Ph.D. 
research. A methodology is an interdisciplinary integrated approach, where there is 
a need for both quantitative and qualitative analysis in order to have a 
comprehensive structure for UIEP. Providing useful information to DMs (urban 
planners, municipalities or architects) can be a tedious task when designing more 
sustainable urban areas. On the one hand, statistical methods are often used to 
understand the driving parameters of energy consumption but rarely used to 
evaluate future urban renovation scenarios. On the other hand, the simulation of a 
complete city or urban area can be extensive in terms of computational resources, 
data acquisition and modelling.  

In order to address these shortcomings, this work first proposed a geospatial 
statistical method to estimate the heating energy consumption at the current state of 
the city; afterward, it has developed a new methodology to define an archetype 
urban area that would be representative of a city of the case study. The objective 
was to decrease the number of buildings that need to be simulated. However, a 
transition towards a sustainable urban development requires a wider societal 
consensus building with an active and earnest engagement with all relevant 
stakeholders. Therefore, in the next step, intuitive approaches such as playing card 
method are proposed in order to define relevant evaluation criteria through 
participative approaches. After selecting the evaluation criteria, a new developed 
MC-SDSS is modelled to define different interactive energy retrofitting scenarios. 
Finally, a case study is introduced in this chapter, which helps to investigate 
practices within their real-world setting.  
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Chapter 4 

4 Building Energy Consumption 
Modelling at Urban Scale: 
Estimation Using Statistical-
Regression Technique 

4.1 Introduction 

This chapter will illustrate the development of a geospatial bottom-up model for 
estimating the space heating energy consumption of a vast number of residential 
building stock, considering a broad range of variables. Section 4.2 presents a 
general statistical modelling procedure. In section 4.3 first the data collection 
procedure is detailly illustrated, which is involved in Phase I (i.e. Preparation and 
Preliminary Analysis). Afterward, this section develops a methodology based on 
2D-GIS and Multiple Linear Regression (MLR) providing location-based 
information for every single dwelling to discover correlations and assess the heating 
space energy consumption of the current state of the city (Phase II: Detailed Urban 
Buildings Energy Modelling). This framework is tested for the study area, including 
around 3600 residential buildings. Section 4.4 and 4.5 provide the required input 
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data for the modelling process and the achieved results, which are validated by 
residual analysis and cross-validation approach.  

It is notable to recall the first models that were previously published in (Torabi 
Moghadam et al., 2016b) [Paper 2] and (Torabi Moghadam et al., 2017b) [Paper 
10]. The reader interested in knowing more about the first models, which were 
based on two significant predictors, the building age and surface to volume ratio, 
can refer to indicated publications. These two models were validated through the 
calibration coefficient that is the ratio between the top-down analysis (e.g. energy 
balance quote) and bottom-up analysis (the energy consumption estimated for each 
building) (Delmastro et al., 2016a).  

This chapter focuses on illustrating the optimized and final model published in 
[Paper 3]. Thus, this part of the research represents a primary step for performing 
the future energy investigations at the urban level. The results from will aid spatial 
decision-making processes (section 7) in performing energy planning and testing 
how different scenarios affect energy performance and carbon emissions and its 
relationship as well as maintaining the dynamic context of the smart city. For 
schematic summary of this chapter refer to Table 8. 

Table 8: Schematic summary of chapter 4 including Phase I and Phase II of UIEP. 

 
Research 

limitations 
Research  
questions 

Addressing  
questions 

Related  
publications 

the difficulty in 
collecting the 
scattered data 

having a different 
type from various 

sources and entities; 
the lack of all real 
measured data of 

energy 
consumption at the 
current status of the 

cities. 

How to model the 
energy consumption 
at urban scale in a 
spatial way for the 
current and future 
scenarios? Which 
kind of data are 
needed? How to 

connect different data 
type from different 

and scattered 
sources? 

Spatial-GIS-database 
creation; 

Spatial-GIS-statistical 
method. 

[Paper 2] 
A mixed 

methodology for 
defining a new spatial 

decision analysis 
towards low carbon 

cities. 
[Paper 3] 

A GIS-Statistical 
Approach for 

Assessing Built 
Environment Energy 
Use at Urban Scale. 

[Paper 10] 
GIS-Based Energy. 
Consumption Model 

http://porto.polito.it/2646750/
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at the Urban Scale for 

the Building Stock. 

4.2 GIS-statistical model  

Chapter 2 discussed and reviewed comprehensively the advantages of the use 
of GIS-based statistical methods. Although many studies mentioned in section 
2.5.2.1 focused on the development of statistical building stock models, the number 
of studies which adopted a GIS-statistical methodology is quite limited. Moreover, 
in the most of previous studies, the real monitored data was not available but only 
the simulated values were used. The main difference between the Urban Energy 
Modelling (UEM) proposed in this work and the previously mentioned studies is 
that this model considers various real measured data and also a considerable number 
of predictors. The proposed model is greatly useful to diminish time-consuming 
energy demand estimation processes and to support urban energy planning. 
Moreover, the spatial results of this study are a valuable tool to help DMs in the 
urban planning process to create future energy transition strategies, implementing 
energy efficiency and renewable energy technologies in the context of sustainable 
cities. Additionally, the proposed methodology can be simply applied to all cities 
worldwide. As section 4.3 will illustrate better, this work developed a UEM, which 
describes the current situation of urban energy consumption to support decisional 
process in evaluating future scenarios. The specific goal is to create an energy map 
of the entire city, integrating MLR statistical techniques and 2D-GIS-based 
methodologies. 

The data used in this research work is derived from a sample of 290 residential 
buildings, built in different construction periods2. Relationships were searched 
among the various variables that were appropriately combined to discover statistical 
relations. The estimated energy demand was validated by splitting the data-set into 
training and testing subsets. Moreover, the cross-validation was also applied for 
selecting the features more accurately. For the improvement of the GIS database, 
the input data were composed by: (i) climate (external air temperatures); (ii) 
geometric data (e.g., surface to volume ratio, floor area, number of floors); (iii) 
typology of the building envelope (class of thermal transmittance U for opaque 
surfaces, class of U for transparent surfaces); (iv) period of construction; (v) 

                                                 
2 This process of data collection is involved in the Phase I, as a preparation. In this phase, all the data were 

analyzed and elaborated. It is not possible to use the data directly for the modelling approach (Torabi 
Moghadam et al., 2017b, 2016b). 

http://porto.polito.it/2646750/
http://porto.polito.it/2646750/
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ground-floor type (commercial, residential and pilotis, which means open space 
entrance with pillars that support building on the ground floor); (vi) roof type (flat, 
gable); (vii) building type (residential); (viii) monthly measured data of space 
heating consumption (two heating seasons). 

4.3 Modelling framework  

To create a valid and understandable model for urban energy consumption, a 
methodology is needed to be developed in order to evaluate space heating of 
residential building stock in an Italian context. The model represents the spatial 
distribution of urban building energy consumption to ease the decision-making 
process to simulate various urban transition energy policies according to local 
conditions. The proposed methodology is mainly based on existing census data and 
real measurements of DH energy consumption data. Moreover, GIS was used to 
identify the geometrical characteristics, data, and information of the building stock. 
The geo-referencing process assists significantly in managing, analysing and 
visualizing a huge amount of data to support the participative and collaborative 
workshops for making the better decisions at the urban scale analysis. Based on the 
available data, a regression methodology was applied to estimate the energy 
demand of city residential building stock. Figure 16 shows the proposed 
methodology comprised of three major steps:  

Step 1-data collection and data integration: the available information on the 
existing building stock was collected and analysed. All the collected data were 
overlapped and integrated at this step. Each building polygon was associated with 
the relative energy consumption and other data. The building stock was thereby 
characterized. The goal was to create a city GIS Database framework on the factors 
influencing building energy consumption. 

Step 2-parameter identification, modelling, and validation: firstly, a pre-
processing procedure was performed using “missing value replacement” and 

“outlier detection”. Next, a feature selection process was applied to the given 
dataset to identify the most influencing factors on energy performances. Lastly, a 
robust MLR was employed to evaluate the energy consumption of building stock. 
The feature selection process and regression models were tested with the cross-
validation and splitting data set process to produce more robust outcomes (Ma and 
Cheng, 2016). 
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Step 3-model expansion at urban scale: the model obtained from the Step 2 

was expanded to urban scale of a medium-sized city, located in North-West of Italy. 
At this step, the buildings, which were not accurately estimated, were excluded. 

 

Figure 16: Proposed methodology framework of the GIS-statistical-modelling 
approach. Yellow part belongs to Phase I and the blue one constitutes to Phase II. 

The proposed approach could be used by everyone involved in the formulation 
and optimization of operation strategy. The methodology is introduced in the sub-
sections below.  

4.3.1 Data collection and data integration: GIS database 

Here the Phase I will be demonstrated, in which the data collection procedure and 
its main reference sources, (e.g., building stock characterization and distribution) 
are fundamental to the next phases. Although the data collection procedure can be 
generalized, data and information availability depend strongly on each specific 
nation. The research began with the collection and analysis of the available data of 
building stock, which affects space heating energy consumption. The proposed 
methodology shown in Figure 16 integrates GIS as a supportive data collection tool, 
which can join different types of information or datasets by using location as the 
common feature  (Ma and Cheng, 2016).  For instance, the Census data sets consist 
of demographical, and housing information can easily be overlapped to individual 
buildings which have shape files. Since the target of this research is always the 
urban and local level, the definition of the buildings database is crucial. Table 9 
illustrates the different predictors that principally characterize the heating space 
energy consumption of buildings with their references. The geometrical data were 



Modelling framework 69 

 
mostly acquired from the digital cartographic base using the automatic functions of 
the GIS tool. 

Table 9: Structure of the database and the relative description of the variables. 

Data Raw data unite Source of 
information 

Reference 

Dispersing 
Surface 

Floor area 
Perimeter 
Height 
Contiguity 

m2 Cartography 
Cartography 
Derived 
Derived 

(Dall’O’ et al., 2012); 
(Fracastoro and Serraino, 
2011)  

Net floor Area Gross floor 
area 
Gross/net ratio  

m2 Cartography 
Normative 

(Caputo et al., 2013b); 
(Fracastoro and Serraino, 
2011) 

Height Number of 
floors 
Floor height 

m Cartography 
Literature 

(Dall’O’ et al., 2012) 

Heated Volumes Net floor area 
Net floor 
height 

m3 Derived 
Derived  

(Dall’O’ et al., 2012); 
(Fracastoro and Serraino, 
2011) 

Number of floors - number Cartography (Dall’O’ et al., 2012) 
Perimeter - m Cartography 

 
(Caputo et al., 2013b); 
(Dall’O’ et al., 2012) 

Building shape 
factor  

Net floor area 
Net floor 
height 
Gross floor 
area 
Gross/net ratio 

m-1 Derived (Penna et al., 2015); 
(Florio and Teissier, 
2015); (Braulio-Gonzalo 
et al., 2016); (Aksoezen et 
al., 2015) 

Roof type - - Google earth/ 
In-situ analysis  

(Dall’O’ et al., 2012) 

Period of 
construction 

- - ISTAT national 
census 

(Theodoridou et al., 
2011); (Aksoezen et al., 
2015); (Florio and 
Teissier, 2015); 
(Dascalaki et al., 2010) 

Temperature Typical 
meteorological  

C° ARPA (Mastrucci et al., 2014) 

Building 
occupation ratio 

Occupied 
buildings  
Empty 
buildings 

% ISTAT national 
census 
ISTAT national 
census 

(Mutani and Vicentini, 
2015) 

Ground floor type - - Cartography (Evans et al., 2015) 
Installed power - kW DH Company - 
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Collected data consists in:   

On one hand, geo-referenced data: geometrical information on the building 
stock derived from the digital cartographic technical map of the municipality 
(perimeter, number of floors, heated volume, and area). The height of the building 
(eave height) was computed by multiplying the number of floors per the average 
height of the floor (Delmastro et al., 2016a). The average of used floor height 
depends on the age of the building, and consequently, it can be used to calculate 
gross heated volume. Another interesting approach to determine the height of 
buildings in which it used in this research validation is to approximate the height of 
buildings  from the LiDAR Data or DSM (Digital Surface Model) subtracting the 
DTM (Digital Terrain Model) height data (Normalized Digital Surface Model: 
NDSM=DSM-DTM), source (Berlin Environmental Atlas, 2014).  

This is possible when the relative data is available. The prevailing period of 
construction of a large building stock was extracted from the ISTAT national 
Census database (ISTAT, 2011), which provides information for each census 
parcel. This variable suggests the typical envelope characteristics of buildings (e.g., 
roofs, floors and windows) and heating systems efficiencies. According to the 
Italian national classification, the period of construction can be divided into nine 
classes characterized by homogeneous features of buildings as; age1: before 1919; 
age2: 1919-1945; age3: 1946-1960; age4:1961-1970; age5: 1971 1980; age6: 1981-
1990; age7: 1981-2000; age8: 2001-2005; age9: after 2005. This variable considers 
the building envelope, such as the percentage of the transparent envelope and a class 
of U-value (W·m-2K-1) for both opaque and transparent surfaces, and the 
performance of the heating system.  

Mutani and Todeschi (2017) reported that fewer clusters of Italian period of 
construction can be considered based on an increased energy consumption for 
buildings built before 1919 to 1960, higher values for the buildings build in 
economic boom period (1961-1980) and a decreasing energy consumption for 
buildings age after 1981. This evidently means that Italian building stock is 
characterized by high energy consumption before the first energy regulation (e.g., 
Law 373/1976), when the envelope insulation and energy efficient system was not 
required (Delmastro et al., 2016a). Furthermore, the building's occupation factor 
can be identified from the percentage of the occupied building, which is derived 
from ISTAT national census database. Unlike many previous studies, ground-floor 
typology (R: residential, C: commercial and P: pilotis) was also considered in this 
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study, which is derived from the digital cartographic buildings’ map of technical 

departments of the municipality.  

The model to define the space heating consumption of the buildings depends 
clearly on the surface to volume ratio of the buildings (S/V, dispersing 
surface/heated volume). This factor represents the non-compactness of the building, 
and it was determined using GIS excluding the contiguous surfaces between two 
heated buildings.  Figure 17 shows the automatic calculation of the adjacent walls 
has been permitted to subtract this parameter from the gross dispersant surface in 
order to obtain the real dispersant surface that was applied according to (Mutani 
and Vicentini, 2013). The unheated volumes and then the higher dispersant surfaces 
were considered for typical Italian building archetypes. The surface to volume ratio 
is classified as Single-Family House (SFH): S/V≥ 0.8 m-1; Terrace House (TH): 0.6 
≤S/V≤ 0.8 m-1; Multi-Family House (MFH): 0.4 ≤S/V≤ 0.6 m-1; Apartment Block 
(AB): S/V≤ 0.4 m-1 (TABULA, 2012).  

  

Figure 17: The determination of the common surface of the two contiguous buildings 
that will be removed from the dispersed surface, source (Mutani and Vicentini, 2013). 

On the other hand, the non-georeferenced necessary energy consumption data 
of buildings were collected such as measured monthly energy consumption for DH 
with the relative installed power information. In the case that the measured real data 
is not available (in many nations), other methodologies such as building simulation 
tools can be used to determine the energy consumption, the database was updated 
monthly on the two heating seasons 2011-2012 and 2014-2015. The monthly DH 
energy consumption was given by the district heating company. In this step, these 
kinds of data should be geo-referenced and associated with each building entity 
using Google maps and in-situ analyses. First, all the data is analysed in excel-
sheets and organized. The GIS volume and the real volume are compared in order 
to find an error less than 20%. Regarding heating data, which the data is 
georeferenced automatically based on buildings address and geocoding. 
Additionally, the roof type (G: gable, F: flat) and the mean daily climate 
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temperature were also added to other information. This parameter emerges from the 
google earth.  

Finally, for creating the supportive and strong GIS database, it is necessary to 
overlap and integrate all the data collected at two levels: (a) the individual building 
level (e.g. the base floor area, the perimeter, the gross volume and eaves height of 
the buildings, the external surface, DH data) and (b) the ISTAT census cartography 
level (e.g. the main construction period and the average building occupation 
percentage). Figure 18 illustrated the summarized procedure of GIS database 
framework consists of all data and information describing each building as a basis 
for estimating the related energy consumption for space heating. It is important to 
highlight a significance of this stage since it is a basis of all calculation process and 
other substantial action. In this stage, the stakeholders’ involvement should be 

integrated as well in order to obtain the existing data and determine relevant 
sustainable objectives for future planning (Pelzer et al., 2015). 

 
Figure 18: The conceptual scheme of GIS data platform. 
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4.3.2 Parameter identification, modelling, and validation: 

modelling process  

The statistical methodology is based on a geospatial multiple linear regression 
model that applied at the urban scale. Many different statistical bottom-up methods 
exist in the building sector (Torabi Moghadam et al., 2017a). From a comparison 
of regression analysis, decision tree and neural network emerge, these methods 
seem to be comparable in predicting energy consumption with a slight difference 
in accordance with errors (Tso and Yau, 2007). Using regressions help in easing the 
usage and interpretation of the parameters that introduced in the analysis (Mastrucci 
et al., 2014); (Arboit et al., 2010). The MLR is one of the most well-known popular 
regression algorithms. Specifically, numerous researchers have used the MLR 
method with the aim of predicting energy consumption by using a range of different 
predictors (see chapter 2). These techniques determine the strength of the 
relationship between dependent variables that used for numerical prediction. 
Moreover, the regression models are top-rated due to their simple application 
(Bassani et al., 2016).  

A multiple linear regression model with more than one explanatory variable is 
described as follows:  

 
Where: 

• 𝑦 is the output variable; 
• I the general model intercept; 
• β𝑖 the regression coefficient (𝑖 =1,2,…, 𝑝);  
• x𝑖  the input variables (𝑖 =1,2,…, 𝑝) 
• ε the random effect (to measure the random difference between the y 

variables for all buildings and the corresponding prediction for a specific 
building) and remaining errors.  

Pre-processing: There are usually features with missing values in data set, 
which in this study, they were replaced by the mean value of that attribute (Han et 
al., 2011). Moreover, the outliers’ detection procedure was performed, and the 
presence of outliers was checked. 

𝑦 = 𝐼 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝑝𝑥𝑝 + 𝜀 
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Feature Selection: Many variables for estimating the energy consumption in 

statistical models could be irrelevant or redundant; therefore, the key of variables 
selection is a major step in achieving more accurate predictions (Hsu, 2015). 
Indeed, those redundant variables led to reduce the model performance. Therefore, 
an appropriate feature selection process and identification of the correlation is 
fundamental in order to be measured the degree of association between two 
attributes. In this study, Akaike Information Criterion (AIC) used to select features 
for the linear regression (Akaike, 1973) as different approaches used in the 
computer for the feature selection. This method selects the attribute with the 
smallest standardized coefficient in each iteration, removing it and performing 
another regression (Deshpande, 2012). For robustly selecting the feature the 
removed correlation variables operation was applied in the proposed methodology 
to eliminate the highly correlated variables. Correlated attributes are usually 
removed since they behave similarly, and they have the same impact in prediction 
calculations, therefore, keeping those attributes is redundant and time-space 
consuming. 

Validation: In order to be assured about the accuracy of prediction and the 
proper model characteristics, assumptions at the basis of the regression model 
should be attentively verified. Validation of the statistical model can be internally 
performed, utilizing techniques such as cross-validation. In this study, the 
performance of the representative regression approach in these two following 
aspects compared. To verify the estimation of energy demand, the actual energy 
consumption of the target area was compared with the calculated energy demand. 
Details are as follows: 

First, very high correlated variables were removed before applying the 
regression model. Then, the dataset is divided into two subsets, as training and 
testing partitions, for assessing the model performance. In this way, a model is first 
trained on a 90% of the dataset and then that model is applied to the testing partition 
to validate and identify the reliability of the methodology. The performance gives 
the difference between training and testing set estimates regarding fitting 
(coefficient of determination, R2) and also prediction error (Mean-Root-Squared-
Error, MRSE). (Figure 19) 
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Figure 19: Validation approach (90% training-10 % testing), source (Torabi Moghadam et 
al., 2018) 

Second, the feature selection procedure and regression were validated by cross-
validation approach to achieve more steady state results and to avoid the high risk 
of overfitting (Han et al., 2011). In the cross-validation process, the data set is 
divided into the ten same size folds. A single fold is considered as the testing data 
set and the remaining nine subsets are used as training data set. The cross-validation 
process is then repeated ten times (𝑘 = 10), with each of the ten subsets used 
exactly once as the testing data. By applying cross-validation, the model can do a 
more comparison study on the features selection approaches and the identification 
of regression equations. The results show (section 4.5) that both approaches have 
produced similar performances and coefficients (Figure 20).  

 

Figure 20: Cross-Validation approach (90% training-10% testing, 10 iteration), source 
(Torabi Moghadam et al., 2018). 

Heteroskedasticity test: Homoscedasticity is a significant assumption in 
regression analysis (Hayes and Cai, 2007). Therefore, the appropriate diagnostics 
(e.g., Breusch–Pagan test and White test) were performed to carefully check the 
multiple linear regression model assumptions to verify the correct specification and 
accuracy of the model prediction. The homoscedasticity (assumption of 
homogeneous variance for residuals) was tested through the scatter plot of residuals 
(or the squared residuals) against predicted values. Into this, the initial presence of 
heteroscedasticity is reduced thorough heteroskedasticity-consistent standard errors 
(HCSE) (or robust errors) in the linear regression model (White, 1980), which 
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allowed the fitting of a model that does contain heteroscedastic residuals. The 
software SPSS was used additionally for this scope. Finally, no significant 
heteroscedasticity issues were detected being the residuals randomly scattered.  

4.3.3 Model expansion at urban scale: urban energy map 

As previously stated, the purpose of the study was the evaluation of a simplified 
energy consumption model for space heating at the urban scale. All the considered 
variables needed to be extendable and available for the whole city. Once the 
statistical analysis of using building function was performed, the results are mapped 
across the city. Since the sample of dataset includes a specific range of heated 
volume, the buildings that were lower and much higher than this value were 
excluded. The database information quality accordingly, the geo-referenced model 
can be continuously improved (Ascione et al., 2013).  This methodology is flexible 
enough to add variables according to the data availability and purpose of the 
analysis, such as occupants’ behaviour or buildings renovation ratio information. 

4.4 Required input data 

The energy consumption data available consist of monthly records of DH energy 
consumption for the residential sector, and the heating periods 2011-2012/2014-
2015, with respectively 2597 and 2342 HDD at 20°C measured. The data were pre-
processed and carefully analysed before being used to put into the model.  In this 
study, the monthly data energy consumption was elaborated first for each month 
(from the exact first day of the month to the last day), and then it was divided by 
the number of days of each month in order to have a normalized daily energy 
consumption. The monthly measured DH energy consumption data of 290 
residential buildings were used for the analysis (the local DH Company provided 
the total number of mixed typology buildings connected to the DH network, which 
was 350). Almost 50% of the data were excluded before creating the model due to 
the difficulty of associating the address of the building to its heated volume. 
Another reason was the presences of some differences between the heated volume 
calculated by GIS and the heated volume given by the DH Company. Moreover, 
the GIS data was optimized by comparing the volume of the buildings and the 
measured volume provided by the DH Company, with an acceptable limit of 15% 
difference. 165 buildings out of a total number of 290 residential buildings that 
connected to the DH were successfully associated and geo-referenced with the 
polygon of each building on the GIS map. This operation was performed manually 
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using the Google Maps platform and in-situ analysis to identify the relative 
buildings.  

In order to create a supportive database and to have enough available data,  
these 165 residential buildings were considered over 7 months (from October to 
April) of two heating seasons, taking into account the residential typology; ground 
floor typology (C: commercial, R: residential, P: pilotis); occupation factor; number 
of floors; geometrical information of each building (area, perimeter, heated volume, 
height); the surface to heated volume ratio S/V. Regarding the period of 
construction, a linear correlation can be hypothesized by dividing the buildings into 
three clusters, with higher energy consumption for the buildings built from 1961 to 
1980 (n. data 1344), lower consumption for the older ones (n. data 678) and for the 
newer ones (n. data 245). As a complement to the data set provided directly by the 
city, daily records of the outdoor air temperature of these two years were made 
available by the Regional Agency for Environmental Protection (ARPA). The 
acquired input data set is summarized in Table 10. 

Table 10: Input sample dataset. with minimum, maximum, average and standard 
deviation values. 

 
 

Sample of data  
(165 residential buildings) 

Entire Building stock  
(3608 residential buildings) 

Numerical Input 
Variable 

Min Max SD Ave. Min Max SD Ave. 

Dispersing Surface 
(m2) 

802.2 11678.6 1618.3 2822.9 190.0 13910.4 1336.1 1384.7 

Area (m2) 147.4 1688.1 270.62 502.89 6.10 2953.72 221.7 230.97 

Height (m) 7.0 27.00 5.51 16.49 3.10 27.20 4.35 8.06 

Heated volumes (m3) 1504.1 40178.4 6205.3 8609.8 20.7 51063.7 3902.0 2370.9 

Number of floor 
(number) 

2.0 8.0 1.6 4.0 1.0 8.0 1.2 2.3 

Perimeter (m) 49.2 348.8 46.9 107.6 9.9 498.9 41.0 66.2 

S/Vreal (m-1) 0.3 0.7 0.0 0.5 0.3 2.3 0.3 0.9 

Temperature (Cᵒ) -0.3 12.8 4.2 6.8 -0.3 12.8 4.2 6.8 

Building occupation 
ratio (%) 

0.00 1.0 0.0 0.9 0.0 1.0 0.2 0.8 

Installed power (kW) 50.0 1000.0 126.2 196.4 n.d. n.d. n.d. n.d. 

Nominal Input 
Variable 

Least Most - - Least Most - - 

Period of 
construction  

>1919 
(1) 

1961-
1970 
(84) 

- - 2001-
2005 
(82) 

1946-
1960 
(1028) 

- - 

Ground floor type P (6) R (135) - - P (48) R (2962) - - 

Roof type F (5) G (160) - - n.d. n.d. - - 
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By using GIS tool, it became possible to represent how these variables 

distributed in the city of the case study. Figure 21 shows the urban block distribution 
according to the year of construction, ground floor type, and S/V. Among all the 
surveyed buildings, 82 % of the buildings characterized by the ground floor as a 
residential type and just 14% accounts for a commercial ground floor. Regarding 
the period of construction, 47 buildings were built in the category of age3: 1946-
1960, accounting for 29%. While 84 buildings were built in age4: 1961-1970, 
accounting for 51%. This fact is very well proportionated with the reality of entire 
building stock and it means that the building stock is mostly characterized by 
buildings that constructed before the first Italian energy regulation. Figure 21 shows 
that the MFH typology is the most widely used, accounting for 68%, followed by 
TH and AB accounting for 16%. This fact shows that the single house as SFH is 
not connected to the DH network. The results of the multiple regression analysis 
will strongly depend on the sample of buildings analysed. 

4.5 Results  

In this section the outcomes of the regression analysis and the spatial distribution 
of the annual energy consumption discussed. The open source software for data 
mining, Rapid Miner 7.1, was employed, which has a visual environment for 
predictive analytics and data mining (RapidMiner Studio, 2016). Having an 
intuitive graphical user interface and no need for a specific programming language 
are main reasons that lead to select this tool for this research (D’Oca and Hong, 

2015). Moreover, this tool is one the best open sources one in terms of technology 
and applicability basing on an XML internal process structure.  

Additionally, the influence of every single variable on energy consumption was 
analysed. In Figure 22 the scatter plots for each of the variables concerning the daily 
space heating energy consumption indicated. As it is shown, there are correlations 
between the energy-use for space heating and some of the selected variables of 
buildings as the: perimeter, heated volume, installed power, and area. It must be 
remembered that in this analysis, not all the variables have been fully taken into 
account, for example, the level of buildings’ renovations and the adoption of 
renewable energy technologies; this can impact the dispersion of the results. 
Moreover, the results of this first analysis are influenced by the number of analysed 
buildings, for instance, each period of construction and each value of surface to 
volume ratio (S/V), the number of buildings is not the same; for example, the 
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sample of buildings connected to the DH network mainly consists of big apartment 
blocks built in 1961-70. 

 
Figure 21: Comparison between Sample of input data (165 buildings) on the left and 

the entire building stock (3608 buildings) in the right for ground floor and period of 
construction, and S/V respectively, source (Torabi Moghadam et al., 2018). 

In Table 11 the value of the correlation coefficients between the daily heating 
energy consumption (kWh) and different single variables of the available sample 
of data is shown. Some correlations appear to be very rational and intuitive such as 
perimeter, surface, area, height, heated volume, installed power, occupation ratio, 
and air temperature. An interesting result is that some correlations seem to be 
controversial, taking into account basic thermophysical of buildings such as S/V 
ratio. Table 11 reports that the S/V ratio correlation is negatively correlated with 
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space heating energy consumption. This fact is explained by the strong correlation 
between the variables heated volumes and S/V. Due to buildings geometry, high 
values of S/V are generally related to small buildings (e.g. semi-detached houses) 
with low energy consumptions, while small S/V values are related to big 
condominiums with higher energy consumptions. However, a positive correlation 
is expected between the S/V and the specific daily energy consumption (kWh/m2 
or kWh/m3).  
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Figure 22: Scatter plot: DH energy consumption and variables, elaborated from 

(Torabi Moghadam et al., 2018). 
Table 11: Correlations of the selected variables with energy consumption (kWh). 

Attributes Daily Energy 
Consumption (kWh) 

Association 

Numerical Variables 
Installed power (kW) 0.789 Strong positive association 
Dispersant Surface (m2) 0.631 Strong positive association 
Heated volumes (GIS) (m3) 0.619 Strong positive association 
Perimeter (m) 0.544 Strong positive association 
Area (m2) 0.541 Strong positive association 
S/Vreal (m-1) - 0.528 Strong negative association 
Eaves’ height (m) 0.440 Weak positive association 
Number of floors (number) 0.434 Weak positive association 
Temperature (Cᵒ) -0.383 Weak negative association 
Buildings occupation ratio (%) 0.161 Weak positive association 

Non-Numerical Variables 
Ground -floor type R 
Ground -floor type C 
Ground-floor type P 

-0.074 
-0,057 
0.261 

Weak negative association 
Weak negative association 
Weak positive association 

Roof type F 
Roof type G 

0.045 
-0.045 

Little positive or no association 
Little negative or no association 

Period 1:<1960 
Period 2:1961-80 
Period 3:>1981 

-0.009 
0.003 
-0.019 

Little negative or no association 
Little positive or no association 
Little negative or no association 

The correlations of each of these variables on energy-use for space heating were 
analysed and MLR was modelled identifying the best coefficient of determination 
(R2). The estimated coefficients, standard error, and p-values (the probability for a 
given statistical model) for energy consumption robust linear regression are shown 
in Table 12 (Model A) and Table 13 (Model B), respectively. All numerical 
predictors rejected strongly the null hypothesis for a value of ≤ 0.05 in which 

indicating that the estimated intensities are statistically significant (Howard et al., 
2012).  

Moreover, the code factor (*) directly is based on p-value; more stars mean the 
variable is more significant. In the following paragraphs, the predicted values 
derived from the model will be compared with the real data collected.  Analyses of 
variance, known as the ANOVA, the F-statistic = 1132.478 (p-value < 0.0001), 
indicating the results of the regression model are satisfactory. The correlation 
coefficient between the predicted and monitored values, measured by the mean 
squared error (MSE) and squared correlation (R2), are shown in Table 12 (Model 
A) and Table 13 (Model B). In the second model (B), the data about an installed 

https://en.wikipedia.org/wiki/Statistical_model
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power and the type of roof were excluded due to their unavailability for the entire 
building stock. As a result, the performance of the second model (B) was slightly 
diminished with respect to Model A. The coefficients of the regression equation for 
each variable seem to have the expected trend: 

• The highest coefficient for the buildings that constructed in 1961-1980, they 
consume more energy and lower consumption for the older buildings due to 
their lower percentage of transparent envelope. and higher thickness of 
structure for the newer buildings due to their thermally insulated envelopes; 

• A positive coefficient with gable roofs, as the dispersant surface and heated 
volume is greater with higher energy consumption; 

• A negative coefficient for the commercial typology of the ground floor, as 
it is usually heated autonomously; 

• A positive coefficient for the pilots, as the floor disperses more heat to the 
outside environment; 

• A positive coefficient for bigger buildings, as the high heated volume, 
number of floors, and perimeter leads to higher energy consumption; 

• A positive coefficient for the installed power of the heat exchanger as it 
depends on the dimensions and the level of energy efficiency of buildings; 

• A negative coefficient for the outdoor air temperature, as with lower air 
temperatures the energy consumption increases; 

• A positive coefficient for the occupation factor as the buildings consume 
more if they are utilized and occupied. 

In Figure 23, it is possible to notice the good correlation of the models and the 
correspondence between measured and predicted annual energy consumption. The 
colours of the points indicate the heated volumes of the buildings and it is shown 
that the model does not work for massive buildings. The coefficients of 
determination R2 for the two models are of 0.84 and 0.80, meaning a high-
performance correlation even without the installed power and the type of roof 
variables. The precision of a model depends on the availability and the accuracy of 
data and, mostly, on the typology of the data sample.  

Table 12: Linear regression results considering all the influencing variables, 
considering installed power and the roof type (Model A). 

 X-Validation 
Attribute Coef. Std.error t-stat p-value 
Period of construction (< 1960) -24.32 17.29 -1.41 0.159 
Period of construction (1981) 4.87 27.96 0.17 0.861 
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Roof type F -203.95 57.04 -3.58 3.58E-04**** 
Roof type G - - - - 
Ground floor R -14.57 21.25 -0.69 0.493 
Ground floor C -54.28 22.97 -2.36 0.018** 
Ground floor P 68.70 49.14 1.40 0.162 
Perimeter (m) 2.29 0.29 7.86 6.11E-15**** 
Number of floor (Eaves) 54.82 5.78 9.49 0**** 
Heated volumes-GIS (m³) 0.04 0.00 13.03 0**** 
Installed power (kW) 1.77 0.12 14.45 0**** 
Monthly average temperatures 
(C°) 

-63.61 1.86 -34.15 0**** 

Occupation factor 812.97 134.05 6.06 1.57E-09**** 
(Intercept) -430.42 Infinity 0.00 1 

Performances 
RMSE: 217.598 +/- 22.885 
R2: 0.830 +/- 0.036 

 Validation 
Attribute Coef. Std.error t-stat p-value 
Period of construction <1960 -31.39 20.48 -1.53 0.125 
Period of construction 1981 9.50 33.09 0.29 0.773 
Roof type F - - - - 
Roof type G 226.09 59.66 3.79 1.57E-04 **** 
Ground floor type R -14.26 25.53 -0.56 0.576 
Ground floor type C -55.13 27.28 -2.02 0.043** 
Ground floor type P 69.42 62.74 1.11 0.268 
Perimeter (m) 3.03 0.36 8.48 0**** 
Number of floor (Eaves) 76.98 6.95 11.08 0**** 
Heated volumes-GIS (m³) 0.03 0.00 7.39 2.28E-13**** 
Installed power (kW) 1.87 0.15 12.91 0**** 
Monthly average temperatures 
(C°) 

-63.96 2.20 -29.11 0**** 

Occupation factor 865.81 154.45 5.61 2.43E-08**** 
(Intercept) -790.88 Infinity 0.00 1 

Performances RMSE: 207.798 +/- 0.000 
R2: 0.835 

*Signific.code:<0.5; ** Signific.code:<0.01; ***Signific.code:<0.001. 

Table 13: Linear regressions considering the influencing variables that are expandable 
at the urban scale, removing installed power and the roof type (Model B). 

X-Validation 
Attribute Coef. Std.error t-stat p-value 
Period of construction (< 1960) 15.86 17.77 0.89 0.372 
Period of construction (1961–1980) 17.74 16.81 1.06 0.291 
Period of construction (> 1981) -33.19 28.71 -1.16 0.247 
Ground floor type C -25.88 23.58 -1.10 0.272 
Ground floor type P 27.00 50.03 0.54 0.589 
Perimeter (m) 5.77 0.29 19.73 00**** 
Number of floor (Eaves) 108.43 5.85 18.54 0**** 
Heated volumes-GIS (m³) 0.03 0.00 9.97 0**** 
Monthly average temperatures (C°) -63.34 1.91 -33.11 0**** 
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Occupation factor 885.29 137.48 6.44 1.49E-10**** 
(Intercept) -776.06 Infinity 0.00 1 

Performances RMSE: 234.668 +/- 28.713  
R2: 0.803 +/- 0.058  

Validation 
Attribute Coef. Std.error t-stat p-value 
Period of construction (< 1960) 10.24 19.23 0.53 0.59 
Period of construction (1961–1980) 18.11 18.19 0.99 0.32 
Period of construction (> 1981) -28.38 31.22 -0.90 0.36 
Ground floor type C -28.45 25.28 -1.12 0.26 
Ground floor type P 23.4 57.90 0.40 0.68 
Perimeter (m) 6.44 0.33 19.25 0**** 
Number of floor (Eaves) 126.62 6.42 19.69 0**** 
Heated volumes-GIS (m³) 0.021 0.00 6.15 9.06E-10**** 
Monthly average temperatures (C°) -63.52 2.05 -30.96 0**** 
Occupation factor 917.00 146.48 6.25 4.79E-10**** 
(Intercept) -873.41 Infinity 0.53 1 

Performances RMSE: 216.811 +/- 0.000 
R2: 0.826 

 

Figure 23: The comparison between the predicted the real energy consumption (kWh), 
removing installed power and the roof type (Model B). 

Finally, applying the energy regression model to the entire building stock area 
in Settimo Torinese, through the GIS framework, the energy consumption spatial 
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distribution was represented, creating a visual map. The total annual energy 
consumption (kWh/m3) for each individual building is shown in Figure 24. 
Moreover, this fact leads to identify, in which neighbourhoods the energy 
consumption is mostly concentrated (Caputo et al., 2013a). Since the sample dataset 
includes the heated volume greater than 1500 m3 (Table 10), the volumes of the 
building less than this value were excluded (grey polygons). The results show that 
the residential buildings constructed before 1980 have a mean annual energy 
consumption of 27.47 kWh/m3. Indeed, the buildings located in historical city 
Centre are one of the largest annual energy consumers as it is shown by the dark 
colours on the map (about 47.70 kWh/m3). Those constructed after 2005, show a 
decrease in the heating energy consumption of 10%.  
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Figure 24: Urban energy map (2D and 3D); energy consumption for space heating 
(kWh/m3/y), source (Torabi Moghadam et al., 2018). 

4.6 Concluding remarks 

Urban energy efficiency plays a crucial role in the implementation of energy 
policies in the context of low-carbon cities and smart cities. The research illustrated 
in this chapter of Ph.D. work demonstrates that urban actors (e.g. energy planners, 
local and public administrators and other stakeholders) can be supported by an 
appropriate urban scale energy consumption model in delivering the most effective 
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strategies. The whole procedure was successfully tested at the city level for Settimo 
Torinese and validated. Given available data, the proposed methodology can be 
applied to any similar city and also to other kinds of energy usage (e.g., electricity, 
cooling). Analysis of the available data regarding the existing building stock is vital 
to understand the solutions needed to increase energy efficiency or decrease gas 
emissions in the construction sector.  

This methodological approach was proposed in order to specify the energy 
consumption for space heating of a residential building stock at the urban scale. A 
framework combines statistical analysis with GIS-based techniques to identify the 
most appropriate variables influencing energy consumption, using detailed 
measured building data. Moreover, GIS tools were used to support both the 
geometrical building stock characterization and the energy assessment process.  The 
MLR analysis applied in this study has highlighted the variables most related to 
energy consumption, as follows: period of construction, heated volume, type of 
ground floor, occupation factor, air temperature, type of roof and the installed 
heating power. In case of unavailability of two variables such as the type of roof 
and the installed power, the model reaches a determination coefficient of 0.8, but 
only for buildings of a limited heated volume. Since the building stock is constituted 
mostly by large condominiums, the models have a higher margin of error on low 
volume buildings; for the same reason, this model should be utilized only for 
buildings connected to the district heating network. It is important to remember that 
the level of uncertainty for a model of this type is strongly dependent on the 
characteristics of the sample. Finally, this model makes it possible to evaluate an 
average consumption of residential buildings for space heating and it can be used 
to spatially distribute the energy demand, supply, and emissions at the urban/local 
scale.  
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Chapter 5 

5 Building Energy Retrofitting 
Modelling: Simulation Using 
Engineering-Archetype Technique 

5.1 Introduction 

Actually, the simulation of entire buildings of the city is very time-consuming. 
Therefore, the time-consuming process of the entire process needs to be resolved. 
Hence, this chapter represents an innovative method to simulate the future energy 
consumption of urban areas after certain retrofitting by using a simplified 3D 
model, designed as for function of the city urban characteristics. Into this, an 
archetype urban area representative of a full city. This chapter belongs to Phase II 
that was non-negligible step to be integrated into the proposed methodology to 
perform different future energy saving scenarios at the urban scale regarding 
different retrofitting solutions. It should be noted that this chapter is conducted to 
gain the percentages of energy saving affected by various energy retrofitting 
solutions. These energy percentages will be implemented into the new MC-SDSS 
tool. The chapter is organized as follows. Section 5.2 presents a general engineering 
modelling procedure. Section 5.3 is dedicated to illustrating the modelling 
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framework. Section 5.4 describes how the archetype district is constructed and give 
a detailed overview of the energy model used in the study case. In section 5.5, the 
results will be discussed in detail to demonstrate the robustness of the solution and 
decision-support maps are also provided. In conclusion, some concluding remarks 
are given. For schematic summary of this chapter refer to  Table 14. 

Table 14: Schematic summary of chapter 4: Phase II. 

 

 

 

Research 
limitation 

Research 
question 

Addressing 
question 

Related 
publications 

The difficulty of the 
entire city simulation 

due to the time-
consuming and the 

need of very detailed 
building physics data. 

 

How to model the 
energy consumption 
at urban scale in a 
spatial way for the 
current and future 
scenarios? Which 
kind of data are 
needed? How to 

connect different data 
type from different 

and scattered 
sources? 

Creating the 
archetype of a city 
and applying the 
GIS-engineering 

method to create the 
future scenarios. 

 

[Paper 13] 
A new clustering and 
visualization method 

to evaluate urban 
energy planning 

scenarios. 
 

 

5.2 GIS-engineering model  

The development of tools or methodology for the planning of more sustainable 
cities is necessary if we want to address multiple objectives at the same time. One 
of the major problems in the evaluation of urban planning scenarios is the 
computational time. Besides this, construction and geometrical data are needed as 
input for the models and are very difficult to obtain. As mentioned in section 2, 
while several statistical and engineering building stock models have already been 
developed at city scale (Torabi Moghadam et al., 2016c), only a few GIS-statistical-
engineering combination models are currently available (Nouvel et al., 2015). This 
fact compares two methods for obtaining a more robust prediction of the urban 
energy consumption. Moreover, the integration of these two approaches with GIS 
raises the opportunity to identify the high energy use hot-spots and make the better 
decisions. The present chapter combines both the statistical and engineering 
approaches to obtain a more robust prediction of the urban energy consumption. 
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Moreover, the integration of these two methods with GIS demonstrates the 
opportunity to identify the high energy use hot-spots and make the better spatial 
decisions. The novelty of the proposed methodology lies in its simplicity and 
applicability. The framework is performed in order to reduce time-consuming 
processes of energy demand simulation, assessment and for designing urban energy 
saving scenarios. In this research, a methodology according to Ratti et al. (2003) 
and Salat (2011) to define a model, of the medium-sized city of Settimo Torinese, 
that would be representative of the urban form and characteristics is proposed. Then 
the energy consumption with a deterministic model based on the period of 
construction and compared the results using monitored data and with energy 
consumption from a statistical method is evaluated. Finally, two sets of renovation 
scenarios were assessed, and the energy consumption was also integrated within the 
GIS database and used for visualization and decision-making processes. It is very 
important to emphasize that the target of this chapter is to implement the result of 
these simulations as an input of MC-SDSS tool of the next chapters (6 and 7). 

5.3 Modelling framework  

As is shown in Figure 25, the proposed framework integrates an engineering 
simulation model based on 3D city models performed for an archetype of the city 
to simulate the saving scenarios after retrofitting. In Figure 25 the yellow part 
belongs to Phase I, which is completely presented in chapter 4. It is recalled to ease 
the understanding of the integration steps. The blue part of chart belongs to Phase 
II and it is illustrating how an engineering method is integrated into the proposed 
methodology. The software of CitySim (Robinson, 2012) was employed to simulate 
and model the energy consumption of the archetype of residential buildings in 
Settimo Torinese. The required data consists of physical properties of energy 
systems according to the buildings period of construction based on (TABULA, 
2012). 
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Figure 25: Flowchart of the multi-scale framework to support energy saving 
scenarios. 

5.4 Engineering heating energy consumption modelling 

The methodology illustrated in chapter 4 provides the current energy performance 
of the entire building stock at the city level; however, the methodology should also 
be able to support decision making about future energy planning (Caputo et al., 
2013b). In this context, a further effort was made to perform an analysis of different 
future scenarios using an engineering method. Figure 26 pictures the methodology 
that will be used to evaluate the energy consumption and how they will be used to 
evaluate renovation scenarios. The heating energy consumption modelling method 
presented in this work is based on 3D-city models. The urban energy modelling tool 
CitySim was employed to simulate the energy consumption of the proposed 
archetype, representing the city of Settimo Torinese. Further, the archetype of the 
city to predict the energy-saving potential of buildings at the city scale, by applying 
several refurbishment scenarios, as it is explained in the following sections is used. 
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Figure 26: Flowchart describing the methodology used to create and use the archetype for 
energy demand simulation. 

5.4.1 Modelling an archetype city 

Defining an archetype urban area representative of a full city is quite a tedious task. 
To do this, one has to consider the geometrical characteristics of the buildings, the 
age of the buildings and also their physical properties. In order to create a 3D 
geometrical model, which is able to scale and fully describe the energy and micro-
climatic behaviour of the city of Settimo Torinese, analyses are started from the 
available archetype, as presented by Ratti (2003). As a first step, the city is divided 
into its three main zones based on their geometrical and urban characterizations: 
Fiat Village (semi-suburban area), Campidoglio Square (transformation area) and 
Historical Centre (consolidate area) (see Figure 27). Moreover, Figure 28 shows the 
dominant period of construction of the buildings of Settimo Torinese, which latter 
helps in determining the energy consumption simulations outcomes.  
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Figure 27: Aerial and 3D view of the city of Settimo Torinese, Source Google maps. 

 
Figure 28: Building age map3. 

                                                 
3 According to the Italian national classification, the period of construction is divided into seven classes: 

C1= 1900-1918; C2= 1919-1945; C3= 1946-1960; C4= 1961-1970; C5= 1971-1990; C6= 1991-2005; C7= 
2006-ongoing. 
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Next, an attempt is made to correlate the archetypes to the city of Settimo 

Torinese, looking for the “typical” urban form, according to the existing tissue. The 

second step considers the real city; indeed, the use of archetype was not completely 
representing the city, as the city is characterized by several urban typologies (e.g. 
the city centre and the Fiat district). In order to overcome this problem, the typical 
urban typology for the city of Settimo Torinese is created. By analysing the 
geometrical characteristics of the city, a new methodology to “prototype” the entire 

city is provided. In order to do so, the city is subdivided into 22 concentric sections 
(each 400 m), starting from the city centre (see Figure 29). Each section is then 
analysed, defining the average height of buildings, their length as well as the width 
of the street. Based on the data previously calculated, the new urban archetype of 
the city, as visible is defined in Figure 30. 

 
Figure 29: Superposition of the concentric circles, starting from the city centre. 

The obtained archetype is composed of 87 buildings (see Figure 30) with their 
height corresponding to the average height of each concentric layer, as well as the 
distance between the buildings. With the use of the proposed methodology, the 
number of buildings from 3600 to 87 were reduced, considerably impacting the 
time required for the simulations. Table 15 illustrates the surface information of 
differ components of the defined archetype. 
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Table 15: Main geometrical characteristics of archetype. 

Total 
Surface 

Floor 
m2 

Roof  
m2 

Windows 
buildings 
1901-1920 m2 

Windows 
buildings 
>1920 m2 

Wall 
buildings 
1901-1920 m2 

Wall for 
buildings 
>1920 m2 

2971  2971  16536  37206  66144 45474 

 

 

Figure 30: The proposed archetype composed of representative buildings. Plan (left) and 
3D view (right). 

5.4.2 Required input data 

A 3D-city model is extracted from the 2D-ArcGIS database. Afterwards, the file is 
imported in Rhinoceros to make the 3D model with all associated buildings 
attributes. Finally, the Rhinoceros model is imported in CitySim. All thermostatic 
characteristics of the building envelope system are from Tabula (2012), which is an 
exhaustive dataset of building physics parameters, energy systems, and building 
use. This helps to refine the urban thermal model and improve the result accuracy. 
Nevertheless, it is possible to create a model based on a minimum set of building 
attributes data: building usage and building year (or age class). As reported by 
Nouvel et al. (2015), these characteristics are necessary to collect realistic building 
physics parameters from the building libraries Although the renovation ratio is not 
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essential to start the energy analysis, they are valuable data that will be used 
consequently. These information impact significantly the precision of the heat 
demand and energy saving scenarios (Nouvel et al., 2015). 

5.4.3 Urban energy simulations model 

As mentioned before, the energy simulations were performed with the CitySim 
software (Robinson, 2012), an urban energy modelling tool able to quantify the 
energy demand and the urban microclimate, from the building to the city scale. 
Seven models were designed, as a function of the buildings period of construction, 
as presented in Table 16. All the physical properties of the buildings are based on 
the Tabula project (2012), assuming a typical construction typology per each period 
of construction: Single-Family House (SFH), Terraced House (TH), Multi-Family 
House (MFH) and Apartment Block (AB). Based on the typology, the physical 
properties are retrieved from the web Tabula tool (2012), and the envelopes are then 
calculated with Lesosai (2017) based on the available materials and the final U-
value of the elements. Table 17 shows, as an example, the physical properties of the 
walls built during the first phase of construction, as calculated with Lesosai. Each 
composite of the envelope is defined, assuming its physical properties: thickness 
(m), conductivity (W m−1 K−1), density (kg m−3) and specific heat (J kg−1K−1). 
 
Table 16: Physical characteristics of buildings per each period of construction, source 
(Tabula, 2012) 

Cluster Period of 
construction 

Type Wall 
(W/m2K) 

Roof 
(W/m2K) 

Floor 
(W/m2K) 

Windows 
(W/m2K) 

1 Before 1919 TH 1.61 1.80 2.00 4.90 
2 1919 -1945 SFH 1.48 1.80 2.00 4.90 
3 1946-1960 SFH 1.48 2.20 2.00 4.90 
4 1961-1970 MFH 1.15 1.10 0.94 4.90 
5 1971-1990 MFH 0.8 0.75 0.98 3.70 
6 1991-2005 MFH 0.59 0.57 0.77 2.20 
7 Since 2006 TH 0.34 0.28 0.33 2.20 

 
Table 17: Composition of the envelope, wall. Period of construction before 1919, Terraced 
house (according to TABULA) 

Element Conductivity  
(W/mK) 

Density 
(kg/m3) 

Specific heat  
(J/ kgK) 

Gypsum Plaster 0.21 900 850 
Stone and mortar masonry 1.00 800 1045 
Gypsum Plaster 0.41 900 850 
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The windows ratio of each facade is defined as a fluctuation of the period of 

construction, ranging from 0.20 for buildings constructed between 1901-1920 to 
0.45 for the newest ones. The internal temperature is set up at 20⁰ C, as required by 
the current standards for residential buildings. The internal gains are defined 
considering both the occupants and the appliances, according to the Swiss 
normative SIA 2024 (SIA, 2006). Both occupants and appliances are defined, as a 
function of the liveable surface area in the buildings, as well as the hourly daily 
profile (SIA, 2006). The infiltration rate of the buildings is defined assuming an 
average winter Air Change per Hours (ACH) as a function of the tightness of the 
envelope construction (Younes et al., 2012). A tight envelope has an average ACH 
of 0.2-0.6, a loose one of 1.0 to 2.0. 

In order to compare the results obtained with CitySim with the monitoring data 
from the city of Settimo Torinese, a new meteorological file including the 
monitored data of the year 2014-2015 is created (see Figure 31) for the closest 
ARPA weather station of Brandizzo at the same altitude of Settimo Torinese. The 
new climatic file is based on the Typical Meteorological Year (TMY), as created 
by Meteonorm (Younes et al., 2012) by considering the hourly trend of outside air 
temperature but with the same average, maximum and minimum monitored 
monthly temperatures. During the heating season from October 15th to April 15th, it 
is interesting to notice that the monthly average air temperature varies from -1.3 to 
+10.7 °C on the yearly average of 13.3 °C, consequently impacting the buildings 
space heating energy consumption. During the winter season, due to the urban 
microclimate, the average air monthly temperature is 2.6 °C lower during the month 
of January, with a minimum hourly temperature of -4.9 °C. 
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Figure 31: Meteorological data for the city of Settimo Torinese. Typical 

Meteorological Year from Meteonorm (left) and monitoring data (right). 

5.4.4 Urban energy simulations, refurbishment scenarios 

In order to understand the impact of the buildings envelope on their energy demand, 
as a function of the period of construction, ten main refurbishments are proposed, 
based on the current city and presented in Figure 32.  

• Case study a1: improvement of the floors thermal insulation, according to 
the standard refurbishment, as defined by Tabula. This refurbishment varies 
per each period of construction. 

• Case study a2: improvement of the roofs thermal insulation, according to 
the standard refurbishment, as defined by Tabula. This refurbishment varies 
per each period of construction; 

• Case study a3: improvement of the walls thermal insulation, according to 
the standard refurbishment, as defined by Tabula. This refurbishment varies 
per each period of construction; 

• Case study a4: improvement of the glazing thermal performance, replacing 
the current glazing as required by Tabula. This refurbishment varies per 
each period of construction; 

• Case study global a: complete refurbishment of the site, by addressing the 
previous points (case studies from a1 to a4). This refurbishment varies per 
each period of construction; 

• Case  study b1:  improvement  of  the  floors  thermal  insulation,  by  adding 
0.35 m of EPS insulation;  

• Case study b2: improvement of the roofs thermal insulation, by adding 0.35 
m of EPS insulation;  

• Case study b3: improvement of the walls thermal insulation, by adding 0.35 
m of EPS insulation;  

• Case study b4: improvement of the glazing thermal performance, replacing 
the current glazing with triple glazing (U-value equals to 0.7 W m−2K−1).  

• Case study global b: complete refurbishment of the site, by addressing the 
previous points (case studies from b1 to b4). 

All the physical properties of the refurbished envelope, according to Tabula, 
are expressed in Table 18 and Table 19. More detailed thermo-physical properties 
of the case studies envelope system are attached in Appendix A. 
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Figure 32: Schematic schemes of the case studies performed. 

The thickness of the insulation required in case studies b1 to b4 is 35 cm. It is 
defined by the Swiss Minergie-P Label and corresponds to a zero-energy building. 
This value is derived from the characteristic curve of heat loss with respect to the 
insulation’s thickness and which considers that an insulation with a thickness above 

35cm does not bring any additional significant protection to the element.  

Table 18: Standard refurbishment according to Tabula, per each period of 
construction. Roof and Wall. 

Cluster Period of 
construction 

Type Roof. 
Thickness 
(m) 

Roof. U-
value  
(W/m2K) 

Wall. 
Thickness 
(m) 

Wall. U-value 
(W/m2K) 

1 Before 1919 TH 0.10 0.30 0.11 0.32 
2 1919-1945 SFH 0.11 0.30 0.09 0.34 
3 1946-1960 SFH 0.12 0.29 0.09 0.34 
4 1961-1970 MFH 0.11 0.27 0.09 0.32 
5 1971-1990 MFH 0.10 0.26 0.07 0.33 
6 1991-2005 MFH 0.08 0.27 0.06 0.31 
7 Since 2006 TH - 0.22 - 0.27 

 
Table 19: Standard refurbishment according to Tabula, per each period of 

construction. Floor and windows. 

Cluster Period of 
construction 

Type Floor. 
Thickness 
(m) 

Floor. U-value 
(W/m2K) 

Windows. U-
value (W/m2K) 

1 Before 1919 TH 0.11 0.31 2.00 
2 1919-1945 SFH 0.11 0.31 2.00 
3 1946-1960 SFH 0.11 0.31 2.00 
4 1961-1970 MFH 0.11 0.26 2.00 
5 1971-1990 MFH 0.10 0.28 2.00 
6 1991-2005 MFH 0.08 0.30 2.00 
7 Since 2006 TH - 0.30 1.80 
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5.5 Results 

Results obtained by the proposed methodology are then implemented into the GIS 
environment in order to visualize the impact of the refurbishment of the buildings, 
as well as the energy saving scenarios. The purpose was to produce a strong 
visualization tool through which maps become a ‘visual index’ to provide solutions 

to the urban actors with the aim of optimizing the renovations (Lotov et al., 1997); 
(Janssen and Herwijnen, 2007). As reported by Ascione et al. (2013). the quality of 
planning processes can be significantly improved when necessary information is 
efficiently handled and visualized In this sense, SDSS consisting of a tool devoted 
to support the decision processes in spatial urban energy problems is created 
(Chakhar and Martel, 2006); (Arciniegas et al., 2011). Moreover, it provides an 
interactive environment for performing effective visual activities (Chakhar, 2003) 
thanks to the visual interface, which enables exchanging of information between 
the user and the system to support the stakeholders through all decision phases 
(Malczewski, 1999). The proposed SDSS is able to visually support the 
stakeholders and DMs during different focus groups and workshops (Chakhar, 
2003). Using GIS-based procedures helps to the stakeholders to express their 
preferences by visualizing their alternative scenarios, increasing trust in the results. 

5.5.1 Urban energy simulations 

The energy model was set up, and the results obtained with CitySim were compared 
to both with the monitoring data (realized during the years 2014-2015) and the 
Tabula database. results are compared for the periods 1946-1960, 1961-1970, 1971-
1990 and 2005-2016 since they had a sufficiently large representation of monitored 
buildings. Indeed, the results were compared with more than 210 monitored 
buildings. Figure 33 summarizes the comparison of the data. 

The relative difference was calculated as the difference between the results 
obtained with CitySim, and the averaged data from the monitoring and TABULA 
webtool. Indeed, as defined in the methodology, the input data required for the 
energy model are both defined based on the TABULA database (building 
characteristics) and on the monitored data (meteorological data). It can be 
highlighted that all the simulations stay below a 10% of the difference, showing the 
strength and consistency of the proposed archetype model. It can be noted that for 
the 1946-1960 period the modelling approach overestimates the energy 
consumption (by 6%) while with for the other periods there is a slight 
underestimation (-3% for 1961-1970, -8% for 1971-1990 and -4% for 2005-2016). 
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It can also be seen in Figure 33 and Table 20 that the deterministic model generally 
gave better results as compared to the statistical model. 

 

Figure 33: Comparison of the total consumption from measurements, Tabula and 
engineering models. 

Table 20: Comparison between the heating demand computed by the proposed energy 
model, the monitoring data for the city of Settimo and the results from TABULA. 

Period of 
Construction 

CitySim 
(kWh/m3) 

TABULA  
(kWh/m) 

Monitored  
(kWh/m3) 

Difference 
(%) 

1946-1960 36.7 32.5 37.1 6 
1961-1970 34.0 33.2 37.3 3 
1971-1990 28.5 24.6 37.1 8 
2005-2016 18.7 17.4 21.6 4 

The annual energy demand required for heating, as defined by CitySim for each 
case study can be analysed for each period of construction. The maximal energy 
demand is required for buildings built before 1919, with an average demand of 158 
kWh m-2. The lower demand is for the ones built between 2005 and 2016, showing 
a reduction by 53% compared to the building of the first period of construction, 
with an average demand of 74 kWh m-2. It is quite interesting to notice that the 
energy demand of the first two periods of construction is quite similar (difference 
by 1%), and it increases between the next periods of construction, with an average 
reduction by 7% between the periods 1919-1945, 1946-1960 and 1961-1970. The 
difference doubles during the next periods of construction (1971-1990, 1991-2005 
and 2006-2016) by 14%, 15% and 23%, respectively. Finally, it is quite interesting 
to see the connection between the urban environment, the physical properties of the 
buildings, and their energy demand. Figure 34 shows the annual heating demand of 
the site, by assuming that all buildings are built during the first phase of construction 
(before 1919) and during the last one (2005-2016). Buildings realized during the 
last phase of construction present a lower energy demand compared to the previous 
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phase, but their thermal behaviour is also directly related to the solar exposure: the 
higher is the sun exposition, the lower is their energy demand. By contrast, 
buildings built during the first phase are more impacted by their surface to volume 
ratio, consequently, the buildings with the higher demand are the ones that are less 
compact. 

 

Figure 34: Annual heating demand of the first period of construction (please note the 
difference in scale 

Additionally, the results of the statistical method and with the deterministic 
model for the whole of the city were compared. The results are shown in Figure 35 
As demonstrated previously with the comparison with the monitored and Tabula 
data, the deterministic model showed a better correspondence. The fact that the 
older buildings (and the less well insulated) are located in the city centre typically 
means that they have higher energy consumption. This can then be visualized with 
the map and distribution of buildings in the city. 
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Figure 35: Statistical and deterministic method energy consumption maps. 

5.5.2 Standard refurbishment scenarios 

The simulations performed with CitySim underline the impact of the period of 
construction on the energy demand of buildings. Based on the previous results, two 
main refurbishments are proposed using the archetype presented in the 
methodology part. Firstly, a refurbishment according to the standard refurbishment 
presented by the Tabula and secondly according to the Minergie-P certification 
(advanced). Figure 36 shows that the energy demand of buildings is reduced 
following the renovation based on the Tabula recommendations. The refurbishment 
of vertical surfaces (walls and windows) are the elements that have the most impact 
on the demand. Naturally, the energy demand is lightly reduced thanks to the 
normal refurbishment, showing an average reduction of 60% for the entire site, and 
a lower one for the new buildings (by 30% on average for the site).  

When looking at the impact of the single elements on the demand, it is quite 
interesting to notice that a similar refurbishment has a different impact according 
to the period of construction. As an example, replacing the existing windows with 
the new ones (with a U-value of 2.0 W m-2K-1) reduces significantly the demand (-
19%) in buildings built before 1919 while it will only decrease the demand by 5% 
in buildings built between 1991 and 2005. This again highlights the importance of 
targeting the appropriate buildings and of tailoring the best possible renovation 
scenarios according to their specificities.  
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Table 21 demonstrates the percentages of each energy saving reduction and 

new clusters. Considering the very low variability in some period of constructions, 
buildings in C1 (built from 1900-1919) have been grouped together with C2 (1919–

1945) and C3 (1946–1960). Thus, the total number of clusters has been reduced to 
5.  

 

Figure 36: Heating demand following the TABULA standard renovation. 

Table 21: Difference between the base and the refurbished case for each scenario. 

Final Cluster Refurbishment strategy Heating demand (GWh) Difference (%) 

1 

<1919 15.42   
a1 10.78 30.09 
a2 14.11 8.50 
a3 12.37 19.78 
a4 12.61 18.22 
Complete refurbishment 3.7 76.01 
1919-1945 15.28   
a1 10.64 30.37 
a2 13.96 8.64 
a3 12.37 19.04 
a4 12.47 18.39 
Complete refurbishment 3.7 75.79 
1946-1960 14.24   
a1 9.92 30.34 
a2 13.42 5.76 
a3 12.24 14.04 
a4 12.11 14.96 
Complete refurbishment 3.75 73.67 

2 

1961-1970 13.18   
a1 11.08 15.93 
a2 12.39 5.99 
a3 11.01 16.46 
a4 9.67 26.63 
Complete refurbishment 4.71 64.26 
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3 

1971-1980/ 1981-1990 11.05   
a1 8.65 21.72 
a2 10.64 3.71 
a3 10.03 9.23 
a4 7.6 31.22 
Complete refurbishment 3.95 64.25 

4 

1991-2000/ 2001-2005 9.46   
a1 7.94 16.07 
a2 9.17 3.07 
a3 8.86 6.34 
a4 9.02 4.65 
Complete refurbishment 6.63 29.92 

5 

>2005 7.25   
a1 6.43 11.31 
a2 7.24 0.14 
a3 6.83 5.79 
a4 6.37 12.14 
Complete refurbishment 5.14 29.10 

The second refurbishment follows the Minergie-P label. It is quite noteworthy 
to highlight that the refurbishment proposed are not linearly expressed (see Figure 
37). As an example, the refurbishment of the floors according to the advanced 
Minergie-P label (adding 35cm of EPS insulation), implies a reduction of the 
heating demand by circa 35% during the first three periods of construction, but just 
by 20% in the period of construction 1961-1970. This is related to the physical 
properties of the envelope, which was more energy efficient compared to the other 
ones (with a U-value of 0.94 W m-2K-1), as well as its impact on the thermal 
behaviour of the buildings.  

Additionally, it is important to notice that the maximal energy savings are 
obtained when refurbishing the walls (including opaque and transparent parts), 
reaching a reduction of around 60% in the periods 1961-1970 and 1971-1990. 
Indeed, it is during this period, due to the economic growth, that the constructions 
were built faster, with cheaper materials and without using the thermal mass as 
passive energy component in the thermal behaviour of buildings. Consequently, 
buildings of this period, are less energy efficient compared to the older ones. 
Although, this is the best refurbishment available on the market, but due to the physical 
characteristics of buildings, their historical value, as well as the economic impact, it is not 
always possible to apply this kind of renovation. Also, Table 22 shows the percentages 
value reduction for new clusters of buildings in terms of buildings age. 
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Figure 37: Heating demand following the Minergie-P renovation. 

Table 22: Difference between the base and the refurbished case for each scenario. 
Final Cluster Refurbishment strategy Heating demand (GWh) Difference (%) 

1 

<1919 15.42   
b1 10.02 35.02 
b2 13.84 10.25 
b3 11.66 24.38 
b4  11.37 26.26 
Complete refurbishment 1.18 92.35 
1919-1945 15.28   
b1 9.89 35.27 
b2 13.69 10.41 
b3 11.66 23.69 
b4  11.22 26.57 
Complete refurbishment 1.18 92.28 
1946-1960 14.24   
b1 9.14 35.81 
b2 13.2 7.30 
b3 11.37 20.15 
b4  10.87 23.67 
Complete refurbishment 1.15 91.92 

2 

1961-1970 13.18   
b1 10.45 20.71 
b2 12.18 7.59 
b3 10.24 22.31 
b4  8.13 38.32 
Complete refurbishment 1.88 85.74 

3 

1971-1980/ 1981-1990 11.05   
b1 7.95 28.05 
b2 10.43 5.61 
b3 9.01 18.46 
b4  6.09 44.89 
Complete refurbishment 1.19 89.23 

4 1991-2000/ 2001-2005 9.46   
b1 7.18 24.10 
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b2 8.97 5.18 
b3 8.29 12.37 
b4  6.2 34.46 
Complete refurbishment 2.45 74.10 

5 

>2005 7.25   
b1 6.11 15.72 
b2 7.24 0.14 
b3 6.64 8.41 
b4  4.01 44.69 
Complete refurbishment 2.41 66.76 

5.6 Spatial distribution of building energy consumption 
through GIS visualization tool 

Applying the energy consumption of archetypes to all of the building areas in 
Settimo Torinese produced the spatial distribution of building energy consumption 
this City. In this view, the output from the sets of archetypes simulation was used 
as inputs for the visualization of the data, updating GIS tool with the new building 
energy consumption values. The energy reduction, from the renovation of each 
building from a particular period of construction, was mapped back in the GIS 
environment, providing a complete dataset with the renovation scenarios. The 
results are visible by maps in which the energy consumption values are displayed 
with a colourful ramp to illustrate the main differences in the magnitude of 
consumption and its spatial variation (Figure 38 and Figure 39). The effects of the 
selected refurbishment solutions, improvement of the opaque and the transparent 
surfaces, were evaluated both separately and combined with the archetype carrying 
out 70 simulations (considering buildings age). 

A spatial distribution of urban building energy consumption in 2D visualization 
provides a useful SDSS tool to facilitate the decision-making process and managing 
aspects. Additionally, Figure 40 illustrates an example of the 3D visualization that 
can be also available, where the stakeholders and DMs need to visualize the urban 
form in an intuitive way. Indeed, through the urban energy maps, it is instantly 
possible to visualize the impacts of both refurbishment solutions, Tabula and 
Minergie-P, on the energy consumption of each individual building. This fact eases 
the identification of the high energy consumption districts. 
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Figure 38: Heating demand Map following the Tabula renovation. 
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Figure 39: Heating demand Map following the Minergie-P renovation. 

The principal concentration of space heating energy consumption is situated in 
the old city centre district. This difference is explained by the high presence of the 
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buildings built before 1919 to 1960 in this area. From the visualization maps emerge 
that both case studies a2 and b2 in which the roofs are isolated are not effective 
enough; they just reduce energy consumption between 7% and 9%. 

Contrary, case studies a1 and global (from Tabula), b1, b3, b4 and global (from 
Minergie-P) are very effective solutions to improve the energy performances. 
Comparing two performed solutions, Minegie-P solutions are more impressive 
while the Tabula renovations (e.g. case studies a3 and a4) cannot have an effective 
impact on the current energy consumption for these old buildings. These two case 
studies are still shown by red and orange coloured buildings that means the energy 
consumption is more than 120 kWh-2. Moreover, maps show that the new buildings 
(after 2005) with lowest energy consumption at the current state of the city are 
mostly located in the Campidoglio Square neighborhood (transformation area) and 
suburban area. In the consequence, almost all the retrofitting solutions have no 
significant impacts on energy consumption reduction. Same as the old buildings, 
roof insulation is the worth scenarios for reducing the energy consumption of these 
buildings in the city of Settimo Torinese. This solution might be combined with 
other ones. 

Fiat village is another main area in the city of the case study, which is 
characterized mostly by the buildings age from 1960 to 1970. Various solutions 
impact very differently on these buildings. Case studies a1, a3, b1 and b3 behave 
almost in the same way in terms of energy performances. Regarding the glazing 
replacement (case studies a4 and b4), the energy consumption reduced from the 
range of 120-140 kWh/m2 (orange colour) to the range of 75-100 kWh/m2 (green 
colour). Again, roof insulation (case studies a2 and b2) shows the minimum 
reduction for Fiat village buildings coloured orange. Intuitively, both global 
retrofitting energy solutions have the maximum energy reduction in all the maps. 
In the entire city, the total energy consumption diminishes rapidly. 

Generally, regarding the standard Tabula renovation solutions, results 
demonstrate that case study a1 (floor insulation) lead to the most heating reduction 
of approximately 30% slightly behind the case study global refurbishment. Similar 
to the Tabula renovation, the results from the advanced Minergie-P scenarios, also 
showed that the floor insulation (case study b1) was the best energy saving scenario, 
reducing around 35%. The wall insulation and the windows substitution (case 
studies a3, a4, b3, and b4) are also one of the effective energy saving solutions as 
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well as economic aspects. Especially Minergie-P solution shift the most of 
buildings to green colour. On the other hand, the worth scenarios are a2 and b2. 

 

Figure 40: Example of the 3D maps of renovation solutions. (left) Glazing replacement 
solution from Tabula (right) Glazing replacement solution from Minergie-P. 

5.7  Concluding remarks 

Providing useful information to DMs (urban planners, municipalities or architects) 
can be a tedious task when designing more sustainable urban areas. On the one 
hand, statistical methods are often used to understand the driving parameters of 
energy consumption but rarely used to evaluate future urban renovation scenarios. 
On the other hand, the simulation of a complete city or urban area can be extensive 
in terms of computational resources, data acquisition and modelling.  

In order to address these shortcomings, in the current chapter, a new 
methodology for defining an archetype urban area that would be representative of 
a medium-sized city has been proposed. The objective was to decrease the number 
of buildings that need to be simulated while at the same time keeping the same 
average geometrical and physical characteristics of these buildings. Simulations 
were performed for a full year using the CitySim software. It was demonstrated that 
the energy demand obtained using such a methodology was very close to the 
monitored energy consumption and using data from the TABULA database. 
Moreover, the simulations results obtained from this chapter (see section 5.5) were 
also compared using the results emerged from chapter 4 (see section 4.5), the 
statistical one. 

After defining the archetype, multiple renovation scenarios according to 
TABULA and to the Minergie-P standard were developed. Both these simulation 
sets for the refurbishment was done with the CitySim software. The values obtained 



Concluding remarks 113 

 
were also compared with previous studies and databases. Finally, the simulated 
scenarios were integrated into a GIS to provide a powerful visualization tool for the 
renovation of a medium-sized city. As shown in this chapter there were some 
differences between the engineering methods result and the statistical ones in 
chapter 4.  

It should nevertheless be highlighted that the method that has been proposed 
here can be generalized very easily as limited geometrical information was needed 
to perform the simulation. These types of tools could be used at an early design 
stage or during the evaluation of urban planning scenarios. Further research will be 
illustrated in the next chapters (6 and 7) for improving this framework by taking 
into account additional criteria (e.g., socio-economic, environmental) in order to 
create a MC-SDSS. This will allow the development of future low-carbon cities 
scenarios.  
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Chapter 6 

6 Identification of Evaluation 
Criteria for Multi Criteria Spatial 
Decision Support System (MC-
SDSS) 

6.1 Introduction 

This chapter aims at defining the evaluation criteria based on the real stakeholders’ 

preferences and their conflicting objectives. Section 6.2 introduces, therefore, the 
selection process starting from the pre-selection of the criteria set and how these 
criteria will be then definitively selected and implemented into the MC-SDSS tool. 
The set of evaluation criteria for this work are chosen based on the specific case 
study and its needs. However, it can be generalized the methodology at other similar 
case studies considering their particularities. Section 6.3 shows the results of the 
first organized workshop in which the selection procedure is applied and the 
evaluation criteria are selected by using “Playing Card” (Simos, 1990) due to its 
intuitive nature. Afterward, the impact assessment is performed in section 6.4 for 
the selected criteria. Finally, the chapter will end by highlighting its concluding 
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remarks (see section 6.5). For a schematic summary of this chapter refer to Table 
23. 

Table 23: Schematic summary of chapter 6: Phase III. 

 
Research 
limitation 

Research 
question 

Addressing 
question 

Related 
publications 

The absence of 
participative 

approach starting 
from early phase of 

decision-making 
process for complex 

problems 

How useful are 
interactive MC-SDSS 

in supporting the 
stakeholders in urban 

energy planning 
decisions? and how 

can their usability be 
improved? 

Identification the 
evaluation criteria 

based on 
stakeholders’ 

preferences through 
an intuitive approach 
to a playing card in a 
semi-structured focus 

group 

[Paper 4] 
Multicriteria Spatial 

Decision Support 
Systems for Future 

Urban Energy 
Retrofitting 
Scenarios. 

6.2 Selection process for evaluation criteria 

The selection process of criteria has been carried out in the following order as 
shown in Figure 41. 

 
Figure 41: Overview of section process of evaluation criteria 

After having collected and elaborated all the needed information and data, the 
decision criteria need to be carefully identified and selected in order to resolve an 
urban energy saving problem. According to Wang et al. (2009), multiple decision 
matrix for sustainable energy problems generally comprises in m alternatives 
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evaluated on n criteria, involving thus alternatives, criteria, criteria weights and the 
evaluating results as it is shown as follows. 

 

Where: 

• 𝑥𝑖𝑗is the performance of 𝑗-th f criteria of 𝑖-th alternative; 
• 𝑤𝑗  is the weight of criteria 𝑗; 
• 𝑛 is the number of criteria; 
• 𝑚 is the number of alternatives. 

Although a vast number of criteria exist to be assessed to show the energy 
saving scenarios performances, it is not absolutely helpful having more and more 
criteria (Wang et al., 2009). Contrary, fewer criteria may sometimes be more 
advantageous for evaluating the energy issues. Generally, the definition of “Major” 

criteria requires a consideration of many different parameters such as (Jin and Wei, 
2008); (Wang et al., 2009):  

• “Systemic principle”: the selected criteria should completely reflect the 
important characteristic and the whole performance of the energy systems; 

• “Consistency principle”: the criteria system should be consistent with the 

objectives of DMs; 
• “Independency principle”: the criteria should not be redundant, and they 

should reflect the performance of alternatives from different aspects; 
• “Measurability principle”: the criteria should be measurable in quantitative 

or qualitatively scale; 
• “Comparability principle”: The criteria should be comparable in order to 

have a more rational Decision-Making result. 

Naturally, the different weights of criteria could directly affect the outputs and 
the definition of different scenarios.  

                                                                                   𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎  𝐶1  𝐶2 …  𝐶𝑛  

(𝑊𝑒𝑖𝑔ℎ𝑡𝑠  𝑤1   𝑤2 …  𝑤𝑛) 

                                                        𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑠 − − − − − − −− − − −− − − 

                                                                   𝑋 =

𝐴1

𝐴2

⋮
𝐴3

                  

𝑥11 𝑥12 ⋯ 𝑥1𝑚

𝑥21 𝑥22 … 𝑥2𝑚

⋮  ⋮ ⋱ ⋮
𝑥𝑚1 𝑥𝑚2 ⋯ 𝑥𝑚𝑛
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6.2.1 Project needs and target definition 

The aim of this research is to define the scenarios regarding the mix of the 
energy retrofit measures that improve the energy efficiency of the building (e.g., 
windows replacement, insulation of the opaque envelope) and the plants system 
efficiency (e.g., heating boiler replacement). The comprehensive retrofitting 
scenarios and their evaluation are previously illustrated in chapter 5. The key role 
of evaluation criteria is to aid the DMs to take the best energy retrofit decision by 
providing quantitative or qualitative data. The criteria assess the project within its 
social, environmental, economic and technical performance for 5 retrofitting 
measures in Table 24, which are emerged from chapter 5. This Ph.D. work intends 
to implement the retrofitting measure in Table 24 in order to create the basic model 
of MC-SDSS. Naturally, thanks to the fact that the MC-SDSS can be updated, more 
solutions can be implemented in the future. 

Table 24: Considered retrofitting measures following the Minergie-P renovation. 

Code Retrofit Measures Considered Measure Note 
b1 floor thermal insulation   0.35 cm of EPS insulation 
b2 roof thermal insulation 0.35 cm of EPS insulation 
b3 walls thermal insulation 0.35 cm of EPS insulation 
b4 window  triple glazing replacement   U-value = 0.7 (W m−2K−1) 
*b5 boiler  condensation  _ 

*the b5= boiler is added as an example to evaluate also the plant system. 

6.2.2 Pre-Selection  

Reported by Pohekar and Ramachandran (2004); Strantzali and Aravossis (2016); 
Cajot et al. (2017), MCDA has been previously applied in energy planning with 
regard to different issues such as “energy policy and management, environmental 
impact analysis, renewable energy planning, energy resource allocation, building 
energy management, transportation energy management, planning for energy 
projects, electric utility planning, regional planning for coverage of energy demand  
and other miscellaneous areas”. Especially, Wang et al. (2009) conducted a 
comprehensive literature review based on 229 articles related to MCDA techniques 
for the sustainable energy decision-making issues. This study showed that the 
efficiency, investment cost, operation and maintenance cost, NOx emission, CO2 

emission, land use, social acceptability, and job creation were the most widely used 
evaluation criteria in energy planning, energy management, and resource allocation 
studies (Table 25).  
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Table 25: List of evaluation criteria used in MCDA studies conducted on energy issue, 

source (Wang et al., 2009). 

Technical Criteria Num. Literature 
Efficiency  
Exergy efficiency 
Primary energy ratio  
Safety 
Reliability  
Maturity  
Others 

15 
3  
4  
9  
9  
3  
8 

Economic Criteria Num. Literature 
Investment cost 
Operation and maintenance cost Fuel cost 
Electric cost 
Net present value (NPV)  
Payback period  
Service life 
Equivalent annual cost (EAC)  
Others 

24  
13  
9  
7  
5  
4  
4  
5 

Environmental Criteria Num. Literature 
NOx emission  
CO2 emission  
CO emission  
SO2 emission 
Particles emission 
Non-methane volatile organic compounds (NMVOCs)  
Land use  
Noise 
Others 

12  
21  
3  
8  
5  
3 
10  
6  
7 

Social Criteria Num. Literature 
Social acceptability  
Job creation 
Social benefits  
Others 

4  
9  
5 
10 

More recently in 2016, Strantzali and Aravossis (2016) has classified the most 
used criteria with a special focus on decision support methods applied to renewable 
and sustainable energy. They have shown that the investment cost and CO2 

emissions by 52% locate the first place in all evaluation criteria. Job creation 
follows them strictly by 46% due to its attention to on social aspects (Table 26). 

Table 26: Classification of criteria by (Strantzali and Aravossis, 2016). 

Technical Criteria %. Literature 
Efficiency 
Reliability 
Resource availability 
Nominal power/Installed capacity (kW) 
Maturity  

31%  
20%  
18%  
17% 
16%  
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Safety 
Energy production  
Demand 
Primary Energy Ratio (PER)  
Lifespan 
Continuity  
Stability 

10%  
9%  
9%  
8%  
8%  
5%  
3% 

Economic Criteria % 
Investment Cost 
Operation and Maintenance Cost  
Energy cost 
Payback period 
Internal Rate of Return (IRR)  
Life Cycle Cost (LCC) 
Net Present Value (NPV)  
Service life 
Equivalent Annual Cost (EAC) 

52%  
34%  
23%  
16%  
9%  
6%  
5%  
5%  
2% 

Environmental Criteria % 
CO2 emissions  
Land use 
Impacts on ecosystems  
NOx emissions  
SO2 emissions 
Emissions (generally)  
Noise 
Particles emissions  

52%  
33%  
31%  
22%  
17%  
17%  
14%  
2% 

Social Criteria % 
Job creation 
Social acceptability  
Social benefits  
Visual impact 
Local development  
Impacts on health  
Income from jobs 

46%  
28%  
15%  
14% 
13%  
10% 
8% 

As it can clearly see in the literature, the evaluation criteria can be classified 
into four main categories: technical, economic, environmental, and social (Kaya 
and Kahraman, 2010). Therefore, the first repository of criteria reviewed for this 
work is built up by considering the mentioned high frequency used evaluation 
criteria in the energy filed literature (Wang et al., 2009), and especially, the criteria 
which should be affected by energy retrofitting measures. Moreover, some other 
existing literatures, projects, tools, and standards are reviewed and analysed. 
Especially , energy planning and selection (Jovanović et al., 2009); (Doukas et al., 
2007); renewable energy problems (Cavallaro and Ciraolo, 2005) ; (Beccali et al., 
2003); (Marinakis et al., 2016); (Ertay et al., 2013); (Daim et al., 2013); (Theodorou 
et al., 2010); (Kaya and Kahraman, 2010); building and building stock energy 
management (Wang et al., 2008); (Dall’O’ et al., 2013); (Giaccone et al., 2016); 
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(Lizana et al., 2016); (Volvačiovas et al., 2013); (Roulet et al., 2002); (Hong et al., 
2014). However, the fact of high-frequency evaluation criteria in the literature is 
not enough to take them into consideration. There is a need to understand and 
analyse all the criteria and a selection form according to the particularities and the 
goals of the given context (Strantzali and Aravossis, 2016).   

The three relative R&D projects, SuPerBuildings (2012), FASUDIR (2014) and 
INSMART (2016), have been particularly taken into account in order to preselect 
the evaluation criteria. These projects by themselves consider many international 
and European initiatives, standardization activities and national building evaluation 
tools such as CEN TC 350, ISO TC59 SC17, UNEP SBCI, LEnSE, Perfection, and 
the National building evaluation tools such as BREEAM and LEED. The goal of 
the pre-selection process is to reduce them to be a practical but still significant 
amount of criteria that are sufficient for conducting a concrete sustainability 
assessment of urban built environment energy saving projects (Brandon and 
Lombardi, 2011). In order to decrease the number of potential criteria to analyse 
different alternatives, it is necessary to pre-select the most suitable evaluation 
criteria from the repository built-up (Lombardi et al., 2017). 

Table 27: Description of the considered pre-selected criteria for EEB project. 

 Criteria Literature Description Unit 

E
nv

ir
on

m
en

ta
l 

Global 
emissions  
CO2 

(Jovanović et al., 2009); 
(Beccali et al., 2003); 
(Marinakis et al., 2016); 
(Ertay et al., 2013); (Giaccone 
et al., 2016); (Cavallaro and 
Ciraolo, 2005) 

measure the equivalent 
emission of CO2, which 
is avoided by the 
examined action. 

Tons/ 
year 

Local emissions 
NOX, PM10 

(Jovanović et al., 2009) direct impact on the 
health of the community 
and an indirect impact on 
the social state of the 
community. 

Tons/ 
year 

E
co

no
m

ic
 

Payback period 
(PBP) 

(Doukas et al., 2007); 
(Volvačiovas et al., 2013) 

performance measure 
used to evaluate the 
efficiency of an 
investment or to compare 
the efficiency of a 
number of different 
investments. 

Years 

Investment cost (Jovanović et al., 2009); 
(Doukas et al., 2007); 
(Georgopoulou et al., 1997); 
(Marinakis et al., 2016); 
(Ertay et al., 2013), 
(Theodorou et al., 

investment costs related 
to refurbishment of the 
building (efficiency 
investment) and/or new 
heating system 

Euro 
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2010);(Wang et al., 2008); 
Giaccone et al. 2016);(Lizana 
et al., 2016);(Cavallaro and 
Ciraolo, 2005); (Becchio et 
al., 2016) 

(infrastructure 
investment). 

Socio-economic 
feasibility 

(Mutani and Vicentini, 2015) the economic capability 
and willingness of the 
people. 

Number 

Maintenance and 
operational costs 

(Cavallaro and Ciraolo, 2005) running fixed and 
variable costs due to the 
maintenance of the 
heating system (does not 
take into account fuel 
costs). 

Euro 

T
ec

hn
ic

al
 

Reliability (Beccali et al., 2003); (Ertay 
et al., 2013); (Wang et al., 
2008); (Dall’O’ et al., 2013) 

efficiency of the 
technology and the 
requalification result. 

Ordinal 
scale 

Technical life (Dall’O’ et al., 2013); 
(Giaccone et al. 2016) 

durability of the whole 
strategy in relation to the 
service life of each 
retrofit measure. 

Years 

So
ci

al
 

Social 
acceptability 

(Ertay et al., 2013); 
(Theodorou et al., 2010); 
(Cavallaro and Ciraolo, 
2005); (Lizana et al., 2016); 
(Volvačiovas et al., 2013) 

the perception of the 
people related to specific 
impacts due to the 
refurbishments. 

Ordinal 
scale 

Local job 
creation 

(Doukas et al., 2007); 
(Georgopoulou et al., 1997); 
(Beccali et al., 2003); 
(Marinakis et al., 2016), 
(Ertay et al., 
2013);(FASUDIR, 2014) 

potentiality of creating 
job and better regularity 
of the employee. 

Man-
day/ 
ordinal 
scale 

Architectural 
impact 

(Dall’O’ et al., 2013); 
(Cavallaro and Ciraolo, 2005) 

the visual and 
architectural impact of 
refurbishments in the 
existing built 
environment. 

ordinal 
scale 

 

6.2.3 Final Selection 

The final list of the criteria was established through a workshop including 
stakeholders. In this workshop, the author played a role of analyst who aids DMs 
in making their decision without expressing any personal preferences (Løken, 
2007b). The formed workshop was related to the rank and feasibility of the different 
evaluation criteria to be calculated by the MC-SDSS software tool. The selection 
process is applied to the practice and the results of the first workshop are shown in  
6.3. 
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Stakeholder involvement: UIEP as a very complex problem needs a 

comprehensive vision of urban sustainable energy policies and a significant co-
operation between national and local governments (Wang et al., 2009). It involves 
multiple actors and different sectors, being a multidisciplinary and complex 
problem (Albeverio et al., 2008). There are multiple stakeholders in the procedure 
of an urban energy planning, where the identification of the stakeholders who can 
affect or can be affected by the recognition of objectives is required (Dente, 2014); 
(Liu and Du, 2014). As reported by Løken (2007a) stakeholders can be referred to 
“everybody that has a just interest in the system”, “those who have a right to impose 

requirements on a solution”, or “who have demonstrated their need or willingness 

to be involved in seeking a solution”. Moreover, stakeholders can be categorized 
into different actors such as political actors, bureaucratic actors, special interests, 
general interests and experts having a different role such as a promoter, director, 
ally, mediator, and gatekeeper (Dente, 2014); (Ferretti, 2016).  

Particularly, in the public decision problem, the stakeholder’s involvement and 
their identification are significantly important since key representatives can then be 
invited to participate in brainstorming sessions (Ferretti, 2016). Several innovative 
methods exist in order to involve multiple stakeholders and experts in the planning 
procedure that have been developed and tested in practice in recent decades. It is 
necessary to organize the collaborative events such as a small group of stakeholders 
(e.g. focus groups, moderated round tables) or larger groups (e.g. future search 
conferences, world café) (Weisbord, 2012); (Brown et al., 2005). Indeed, in this 
initial part of the process, the accurate and proper stakeholder grouping is needed 
to a better image of how relationships and communication between stakeholders 
can affect the project outcome and its final application (Ferretti, 2016). 
Furthermore, stakeholder’s involvement is an ongoing and iterative procedure in 
the entire process of UEP and its decision-making part. The serious involvement of 
the stakeholders from an early phase of planning is significantly necessary. This 
fact helps to obtain the available existing data, determine relevant sustainable 
objectives and propose a common strategic vision (Torabi Moghadam et al., 2017a). 

Although the relevant actors are commonly involved in the planning process, 
some stakeholders who are even affected by the decisions are not always invited to 
take a direct decisional role in the process (Diakoulaki et al., 2005). The objectives 
of these stakeholders should be then considered in the analysis (Løken, 2007a). This 
research foresees the organization of different focus group involving real 
stakeholders in order to take into account the stakeholders’ presence. The 
significant stakeholders in the case study are the local authorities, the local energy 
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provider company, environmental groups, other non-profit organizations and 
academic and private experts in the given context. 

6.3 Results of the evaluation criteria selection: through the 
1st Workshop design 

Setting the workshop 

The first half day workshop was set up on 30th November 2016 at Politecnico di 
Torino, Turin (Italy) (Figure 42 and Figure 43). As said above, the purpose of the 
focus group was to select and rank the most important criteria to be further 
implemented in the MC-SDSS tool in section 7. Initially, the telephone preliminary 
conversation with the stakeholders has been done. During this first contact, the aims 
of the workshop were explained to each individual stakeholder. This fact helped in 
collecting the necessary information regarding their background and their 
familiarity with UEP (Brömmelstroet et al., 2014). After the stakeholders had 
agreed to participate in the focus group, an official email has been sent to them, 
introducing them the material and the structure of focus group and their role. An 
attempt was made as much as possible to invite participants with different 
backgrounds involving a number of disciplines. In view of this fact, a variety of 
point of view on the selection and rank the evaluation criteria has been ensured. 
Consequently, the invited stakeholders included an architect, representatives of the 
public administrations (i.e., energy and environment), an expert in SDSS 
development, an expert in visualization tool, an expert in implant system building 
administrators and academic experts (i.e., energy, economic evaluations and urban 
planning). 
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Figure 42: First focus group at Politecnico di Torino with the aim at defining the 
evaluation criteria. 

 

Figure 43: First focus group at Politecnico di Torino with the aim at defining the 
evaluation criteria. 

The work by the focus group has been planned in two major steps according to 
the following structure.  
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• In a first step, the analyst (author) gave the stakeholders the list of pre-

selected criteria, which was previously chosen in Table 27. The analyst 
asked them to think about the relative importance of criteria in terms of 
retrofitting actions in order to select and rank the evaluation criteria.  

• In the second step, the main task was to express the level of importance 
of each ranked criterion.  

Describing the workshop 

To define the importance of the criteria during this Ph.D. research project, it 
was decided to apply the “Playing Cards” method, which is a semi-structured 
participative procedure proposed by (Simos, 1990). The “Playing Cards” method is 
suitable to support group discussions. It allows the stakeholders involved to think 
and express about the way in which they wish to hierarchize the different criteria in 
a specific context. One of the major advantages of the “Playing Cards” method is 

the ease of application. This method, in fact, consists in associating a “card” with 

each criterion. Moreover, the stakeholders have a set of “white cards” available, the 

use of which depends on specific needs. The application of the procedure is very 
simple: (i) the stakeholders are asked to order the “cards” according to the 

importance of the criteria (from the last importance to the most important one) 
providing a complete pre-order. If some criteria have the same importance, the 
stakeholders should build a subset of cards holding them together; (ii) according to 
the fact that the importance of two successive criteria in the ranking can be more or 
less close, the stakeholders are asked to insert the “white cards” between two 

successive “cards” (the greater the difference between the mentioned weights of the 

criteria, the greater the number of white cards) providing a final ranking of the 
importance of criteria; (iii) the final ranking of criteria is converted into weights 
according to Simos’ algorithms (Simos, 1990). The fact that the stakeholders 
involved have to handle the cards in order to rank them allows a rather intuitive 
understanding of the aim of this procedure (Maystre et al., 1994). 

Few applications of this method are available in the literature (Figueira and 
Roy, 2002) ; (Bottero et al., 2015); (Wang et al., 2009). For this reason, Lombardi 
et al. (2017) compared the playing card method used for this Ph.D. research (EEB 
project) with the Measuring Attractiveness by a Categorical Based Evaluation 
Technique (MACBETH) method (Bana e Costa et al., 2010). MACBETH method 
was used previously for the European project with the same purpose (i.e., urban 
energy saving) for selecting and ranking the evaluation criteria. The European 
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project refers to the smart urban energy project, named DIMMER project (District 
Information Modelling and Management for Energy Reduction). 

Mention has to be made to the study provided by Bottero et al. (2015), which 
proposed an innovative application of the “Playing Cards” method in connection 

with ELECTRE III (Bottero et al., 2015) in order to compare five urban 
requalification projects. Although the topic is different and is not related to the 
energy context, this study constituted an interesting reference highlighting a number 
of benefits of the “Playing Cards” method such as: it is interactive, easy to be 
understood and accepted by the stakeholders involved. In the application of the 
“Playing Cards” method, Bottero et al. (2015) promoted an individual discussion 
with the stakeholders. In the present study, on the contrary, the method is applied 
directly inside a focus group in order to inform the stakeholders and stimulate the 
discussion. In the urban energy retrofitting context, the present study constitutes 
one of the first examples (Lombardi et al., 2017).  

The workshop set-up was well-targeted, for instance, the form of the tables and 
seating were arranged to let separate groups of stakeholders to have an interaction 
as much as possible. Moreover, in order to capture the workshop proceedings, all 
discussions and dialogs were documented by vocally recording and writing drafts. 
After the analyst well introduced the aim of the project and the structure of the focus 
group to the stakeholders, the procedure of Simos (1990) was applied as follows: 

1. The analyst provided to the stakeholders a set of pre-selected criteria of 
Table 27. The name of each criterion was printed on the front of different 
coloured cards together with some other complementary information 
(Figure 44). During the focus group, the stakeholders were divided into 
three heterogeneous groups of work (Figure 45, Figure 46, Figure 47).  Each 
group of stakeholders was asked to select their preferred “cards” discussing 

it and to rank the criteria according to their importance. They have ordered 
the criteria in ascending order according to the importance they wanted to 
assign to the criteria. They were also asked to build a subset of cards 
regrouping them together with a clip if those criteria had the same 
importance (ex-aequo criteria) (Simos, 1990); (Figueira and Roy, 2002).  

2. In this stage, the analyst gave to the stakeholders a number of white cards 
with the same size. The purpose was to make them think about the 
importance of two consecutive criteria. Therefore, the stakeholders were 
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asked to insert the “white cards” between two consecutive cards (Figueira 
and Roy, 2002). 

• no white card means that those two criteria do not have the same 
weights, but there is a minimal difference; 

• one white card means two times the minimal difference; 
• two blank cards correspond to triple the minimal difference, etc. 

3. Finally, the three ranks were showed in a plenary session (Figure 48). In 
this case, the stakeholders were forced to discuss the rank in order to obtain 
a consensual rank of criteria (Table 28). according to the Simos’ algorithm, 

the final ranking of criteria was then converted into weights of criteria. 

 

Figure 44: The colourful cards of playing card game. 
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Figure 45: First focus group at Politecnico di Torino based on Playing Card approach. 

 

Figure 46: First focus group at Politecnico di Torino based on Playing Card approach. 
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Figure 47: First focus group at Politecnico di Torino based on Playing Card approach, 
the third group. 

 

Figure 48: First focus group at Politecnico di Torino based on Playing Card approach, 
final plenary discussion. 
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Table 28: Final results coming from the Playing Cards method. 

Rank Subset  
of Ex-Equo 

Number 
of Cards 

Positions Non-
Normalize 
weights 

Normalized 
Weights 

Total
** 

1 Architectural Impact 1 1 1 1,316 1,32 
2 White cards 3 (2, 3, 4) - - - 
3 Local Job creation 1 5 5 6,579 6,58 
4 White cards 1 (6) - - - 
5 Reliability 1 7 7 9,211 9,21 
6 White cards 2 (8, 9) - - - 
7 Socio/economic 

feasibility + Local 
emissions 

2 10, 11 10,5 13,816 27,63 

8 White cards 1 (12) - - 0 
9 Investment costs 1 13 13 17,105 17,10 
10 Payback Period 1 14 14 18,421 18,42 
11 Global emissions CO2 1 15 15 19,737 19,73 
SUM 

  
76* 

  
100 

*This sum does not include the positions of the white cards (in brackets). 
** The total column reports the normalized weights multiplied for the number of cards of each 

position.  

From Table 28 emerges that some of the initially considered criteria (Table 27) 
have been removed from the stakeholders during the discussion since they were 
considered not important for the analysis at stake. In details, the aspect “Social 

acceptability” has not been considered as a decision criterion from the stakeholders 
involved due to several reasons: 1) the construction phases are usually very short 
and therefore they do not constitute an inconvenience; 2) the stakeholders believed 
that the possible inconveniences occurring during a construction phase are 
unavoidable and uncontrollable. Instead, the criterion “Maintenance costs” has been 

first considered as a fundamental one. However, the stakeholders decided to be 
eliminated it and suggest considering it together with the “Payback period” 

criterion. Finally, following the same reasoning, the criterion “Technical life” has 

been eliminated and considered in the “Payback period” calculation.  

It is interesting to notice that, even if the literature strongly suggests to consider 
the social criteria as fundamental (Wang et al., 2009), the practice tends to partially 
deny this evidence. During this exercise, the stakeholders expressed some 
perplexities related to the calculation methods of the social aspects with particular 
reference to the “Local job creation”. This is probably one of the reasons why the 

social aspects are partially neglected. Similarly, the “Architectural impact” has been 

considered not fundamental from the stakeholders involved since this kind of 
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impact is nowadays reduced thanks to International and National norms. On the 
contrary, the economic and environmental aspects are considered much more 
important with respect to the technical and social ones. Particularly, the local and 
global emissions have been generally considered as crucial. The correlation with 
human health in a specific area will have to take into account the actual 
concentration of those pollutants in the district environment (air) (Becchio et al., 
2016) and to propose risk methodology for the augmented potential risk created. 

6.4 Impact assessment  

This section illustrates the assessment impact methodology of each selected 
evaluation criterion regarding the retrofitting measures developed in section 6.3. 
The impact assessment constitutes the external basis of MC-SDSS and it is then 
directly integrated into the tool (chapter 7). Impact assessments provide quantitative 
and qualitative information through different algorithms, which are capable to 
support the stakeholders’ decisions according to “what-if” scenarios they will give 
some numeric supports for each retrofitting measurements.   

6.4.1 Assessment of economic criteria  

The economic criteria provided in this research is composed by a group of 
algorithms developed for the implementation of the MC-SDSS tool. The aim of 
these criteria was to estimate different costs for the energy retrofitting scenarios. 
The economic criteria constitute a significant part of this thesis. This category of 
criterion estimates the following costs:  

• Existing buildings: fuel costs, operation and maintenance costs; 
• Refurbished buildings: fuel costs, operation and maintenance costs and 

intervention costs.  

6.4.1.1 Investment cost 

Investment cost incurs all the costs regarding the purchase of building material, 
connection to the supplier, technological installation and manpower and set up the 
cost for each individual element of the renovation project (building envelope and 
energy systems) (Cavallaro and Ciraolo, 2005); (Becchio et al., 2016). The 
investors take into account strongly the investment costs and the subsequent 
benefits (Løken, 2007a). Many studies consider investment costs as the most 
important criterion to evaluate the energy saving interventions (Jovanović et al., 
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2009); (Doukas et al., 2007); (Georgopoulou et al., 1997); (Marinakis et al., 2016); 
(Ertay et al., 2013), (Theodorou et al., 2010);(Wang et al., 2008); (Giaccone et al., 
2016). Indeed, Wang et al. (2009) reported that this criterion is the most widespread 
economic criteria to assess the energy problems.  

For applying the investment costs method for energy refurbishment project in 
buildings, the model evaluates different retrofit strategies including initial 
investment, operation and maintenance costs during the calculation period. 
Calculation period (τ) for the analysis were set equal to 30 years for residential 

buildings, following Regulation N° 244/2012 precepts (EC 2012/C 115/01, 2012). 

Generally, these methods pass through the principles of economic, the Net 
Present Value (NPV) criterion and traditional discounting (Fregonara, 2016). The 
following steps have been executed, which are shown in Table 29: 

• The initial investment cost (𝐶𝐼) that means all the needed costs in order to 
deliver the building or the building element to the customer when it is ready 
to use (EC 2012/C 115/01, 2012). All retrofit measures prices were found 
by referring to the Italian Regional databases “Pricelist of the Piedmont 
Region” suggested by (Becchio et al., 2016). Typically from an Italian 
literature, manpower and setup costs have been assumed 30% of the 
investment costs (Delmastro et al., 2016a) 

• Annual costs (𝐶𝑎) that means the sum of periodic costs or replacement costs 
or running costs paid in a determined year (EC 2012/C 115/01, 2012): 
o Running costs (𝐶𝑟) that take into account annual maintenance costs 

(𝐶𝑚), operational costs (𝐶𝑜) and energy costs (𝐶𝑒).  
- 𝐶𝑚 and 𝐶𝑜 are calculated as percentages of the related initial 
investment cost according to the indicative data given in Annex A of 
EN15459 (2007). Normally, operation and maintenance costs are 
considered equal to 0% for envelope components and 2% for energy 
system components (EN 15459, 2007).  
- (𝐶𝑒): energy prices were assumed constant during the calculation 
period including energy taxes. Energy tariffs are considered as: (Natural 
Gas = 0.072 €/kWh+22% VAT = 0.093 €/kWh) and (District Heating 
for space heating = 0.076 €/kWh +22% VAT= 0.097 €/kWh)4. 

                                                 
4 Data source: (Delmastro et al., 2016b). 



134 Identification of Evaluation Criteria for Multi Criteria 
Spatial Decision Support System (MC-SDSS) 

 
o Replacement costs (𝑉𝑛), were quantified according to the lifespan of the 

components installed in the buildings that need to be replaced. The 
lifespan of each component is determined on the basis of values provided 
by in Annex A of the European standard (EN 15459, 2007).  

• It was necessary to specify that the calculation of the maintenance and 
replacement costs were performed by NPV. NPV refers to the difference 
between the present value of cash inflows and the present value of cash 
outflows (Buso, 2017). NPV of costs are referred to the starting year of the 
calculation period and rely on the discount rate (𝑅𝑑) for their calculation. 
𝑅𝑑 was set to 3% in line with the study conducted by Copiello et al. (2017). 
The NPV factor adapts the future costs to the time when the economic 
evaluation is performed (OPEN HOUSE, 2013). 

Table 29 summarizes investment costs assessment regards to the 
aforementioned procedure. 

Table 29: Investment cost assessment for individual retrofitting measures in 
geodatabase of MC-SDSS. 

Code 
 

Lifespan 
(year) 

Price of 
measure  

Manpower 
costs 

 𝑪𝒎  𝑽𝒏 𝑪𝑰
* 𝑪𝒇,𝛕(𝒋)

** Unit 

b1 50 72.56 22 0.00 0.00 94 94 (€/m2) 
b2 50 48.97 15 0.00 0.00 64 64 (€/m2) 
b3 50 40.88 12 0.00 0.00 53 53 (€/m2) 
b4 30 392.23 118 0.00 0.00 510 510 (€/m2) 
b5 20 1878.82 564 957.47 1312.95 2442 4713 (€/piece) 

*𝐶𝑰 (€/m2) is the initial investment cost at the year τ=0. 
**𝐶𝑓,τ(𝑗)(€/m2/y) is the final value of component j at the end of the calculation period. 

6.4.1.2 Pay Back Period (PBP) 

Pay Back Period (PBP), simple or discounted, is another popular criterion that 
gives the number of years it takes to compensate the sum of the investment capitals 
(Wang et al., 2009). It is based on the amount of the total investment for the 
retrofitting and the energy saving caused by the retrofitting actions such as windows 
replacement (Volvačiovas et al., 2013). This criterion gives immediate insights to 
investors, where the investor clearly prefers the shorter period of payback (Doukas 
et al., 2007). PBP is assessed by diving the overall investment costs and the annual 
saving in energy running costs (𝐶𝑟). For the calculation of PBP, the following steps 
have been executed (Gupta and Gregg, 2018):  
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• The total investment costs (𝐶𝐼) for the energy retrofitting measures will be 

calculated automatically by MC-SDSS each time the specific scenario will 
be defined. Basing on the number of buildings to be retrofitted, the amount 
of 𝐶𝐼will have changed (for example 𝐶𝐼 (€/m2) * transparent retrofitted area 
(m2) = total investment for that specific retrofit application €). 

• The yearly savings in 𝐶𝑟 (€) have been calculated by subtracting the running 

costs energy of the retrofitted building from the running costs energy of the 
original building.  

(Cr) Yearly saving in running costs energy (€) =  

Building Cr energy original-Building Cr energy retrofitted 

• PBP is calculated based on a static reduction in annual running costs 𝐶𝑟 and 
current cost to install a measure 𝐶𝐼. 

𝑃𝐵𝑃 = 𝐶𝐼/𝐶𝑟 

6.4.1.3 Socio-economic feasibility 

Socio-economic feasibility is a substantial criterion since it evaluates the level of 
economic willingness and the capacity of the inhabitants to invest in retrofitting 
solutions (Delmastro et al., 2016a). This criterion is introduced by Mutani and 
Vicentini (2015), which measures the ability of people to invest; even if the 
designed retrofitting packages are well-appropriate in terms of energy 
performances. They reported that the socio-economic feasibility is characterized by 
different variables as follows:  

• 𝑓𝑎: age factor is the percentage of the probable active population of 25-69 
years old with respect to the total population. Naturally, this range of 
population has higher interest in investing energetic renovation. Figure 49 
illustrates the spatial distribution of 𝑓𝑎  for the study area. 
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Figure 49: 𝒇𝒂 mapping for Settimo Torinese by GIS. 

• 𝑓𝑒𝑚: employment factor is the percentage of the employed population and 
the total active people of 15-74 years old. This factor can therefore show the 
initial economic ability of the people to invest as well as their ability to pay 
their loan funded by the banks. Figure 50 illustrates the spatial distribution 
of 𝑓𝑒𝑚 for the study area. 

 

Figure 50: 𝒇𝒆𝒎 mapping for Settimo Torinese by GIS. 

• 𝑓𝑝: property factor is the percentage of a number of buildings occupied by 
the owner families and the total number of buildings (only residential). This 
factor influences since the owners have more interest to requalify 
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energetically their own buildings rather than tenants. Figure 51 illustrates 
the spatial distribution of 𝑓𝑝for the study area. 

 

Figure 51: 𝒇𝒑 mapping for Settimo Torinese by GIS. 

• 𝑓𝑓: family factor is the percentage of 1-2 components families over the total 
number of families. This factor presents the eventual occupancy presence 
schedule in dwelling stock. Figure 52 illustrates the spatial distribution of 
𝑓𝑓for the study area. 

 

Figure 52: 𝒇𝒇 mapping for Settimo Torinese by GIS. 
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• 𝑓𝑔𝑚: gender factor is the percentage of male-gender to the total population. 

Figure 53 illustrates the spatial distribution of (𝑓𝑔𝑚) for the study area. 

 

Figure 53: 𝒇𝒈𝒎 mapping for Settimo Torinese by GIS. 

• 𝑓𝑒𝑑: education factor is the percentage of graduated people (high school 
diploma or higher instruction level) with respect to the total population.  The 
educated population may have higher awareness about detrimental 
environmental impacts and energy technologies. Figure 54 illustrates the 
spatial distribution of fed for the study area. 

 

Figure 54: 𝒇𝒆𝒅 mapping for Settimo Torinese by GIS. 
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• 𝑓𝑝𝑐: period of construction is the percentage of buildings built before 1960 

over the total number of buildings. 𝑓𝑝𝑐 represents the older buildings that 
need to be energetically requalified. Figure 55 illustrates the spatial 
distribution of 𝑓𝑝𝑐  for the study area. 

 

Figure 55: 𝒇𝒑𝒄 mapping for Settimo Torinese by GIS. 

• 𝑓𝑜: buildings occupation factor is the ratio of an occupied building. 𝑓𝑜 shows 
the occupied buildings, consequently, those ones may consume more. 
Figure 56 illustrates the spatial distribution of 𝑓𝑜 for the study area. 

 

Figure 56: 𝒇𝒐 mapping for Settimo Torinese by GIS. 

Obviously, when the aforementioned factors are higher the feasibility 
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renovation interventions is more probable (Delmastro et al., 2015). The main 
objective was to provide a unique global Feasibility Index (F) for the city including 
all factors though MLR method (Mutani and Vicentini, 2015). Unfortunately, the 
small number of relative APE data (Energy Performance Certificates) was 
available. APE data provide the information regarding the people who have 
renovated their own apartments in each census section. In the consequence, this 
criterion will not be considered as a “major” criterion, but as visualization criteria. 
Although this criterion impact on the decisions of DMs, it will not have involved in 
the calculation phases. 

6.4.2 Assessment of environmental criteria  

6.4.2.1 Global emissions CO2 

As mentioned before, this criterion was the first rank in the preferred of 
stakeholders. CO2 is a kind of gas without colour, smell and taste, which may 
contribute about 26% to the GHG effect (Kiehl and Trenberth, 1997). The energy 
systems that are fed by coal, oil and natural gas are the main causes to release CO2 
(Wang et al., 2009). Innovative technologies and retrofitting strategies can help 
practically in diminishing of CO2 emissions. Especially, dwelling stock is 
responsible for about 30%-40% of the total energy demand and must be prioritized 
to reach a sustainable target within a determined time 2020 horizon (Jeong, 2017). 
Reported by several researchers such as (Jovanović et al., 2009); (Beccali et al., 
2003); (Marinakis et al., 2016); (Ertay et al., 2013); (Giaccone et al., 2016); 
(Cavallaro and Ciraolo, 2005), CO2 emission of the energy system is undoubtedly 
a criterion to be assessed for the sustainable development of cities. The assessment 
methodology of global emissions was assessed based on the conversion coefficients 
of (ARPA Lombardia, 2003). The assessments will directly perform internally into 
the MC-SDSS. 

6.4.2.2 Local emissions NOX 

NO2 and NO are collectively known as a NOx that is mainly formed by mono-
nitrogen oxides. They are the most significant causes of harmful air pollution. They 
easily react with common organic chemicals, volatile organic compounds, ozone, 
ammonia and moisture (Wang et al., 2009). In the consequence, NOx leads to 
produce toxic pollution that damage meaningfully the people’s health. Moreover, 
air pollution can also harm the built environment, climate, vegetations (EEA, 2014). 
This means also an indirect impact on the social health of communities (Jovanović 

https://en.wikipedia.org/wiki/Air_pollution
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et al., 2009). The assessment methodology of global emissions was based on the 
conversion coefficients from the report conducted by ARPA Lombardia (2003). 
The local emissions assessments will directly perform internally into the MC-
SDSS. 

6.4.2.3 Local emissions PM10 

Particles emissions are the detrimental environmental impact that is caused by coal, 
oil, and biomass as well as photovoltaic power plants during their cell construction 
(Wang et al., 2009). PM10 are very harmful to the human health, such as lung 
diseases, heart attacks and arrhythmias, cancer, atherosclerosis, childhood 
respiratory disease and premature death (EEA, 2014). During a first workshop, 
stakeholders specifically asked to consider a criterion regarding the health of the 
local community. Therefore, this criterion has been associated with the geodatabase 
of MC-SDSS tool and it was calculated based on ARPA Lombardia (2003). 

6.4.3 Assessment of technical criteria 

6.4.3.1 Reliability 

Generally, in the literature, the reliability of retrofitting measures can be assessed 
by both quantitative and qualitative evaluations manner (Ertay et al., 2013); 
(Beccali et al., 2003). In fact, the retrofit measures that are considered for this study 
(see Table 24) are broadly available on the market, and so, they are mostly reliable. 
However, some of these measures performances depend on the context while others 
are independents of the context (Dall’O’ et al., 2013). For this research, the 
reliability criterion is determined according to Dall’O’ et al. (2013) in qualitative 
terms: high, medium, low and none. Only the measures b4, b5 present lower 
performances and the situations of b1, b2 and b3 have almost the same level.  

Table 30: Qualitative evaluation of the reduced performance. 

Retrofitting Measures b1 b2 b3 b4 b5 
user interaction none none none high low 
risk of breaking  none none none none low 
dependence on weather effects none none none none none 
score 4 4 4 3 3 

6.4.4 Assessment of social criteria 

6.4.4.1 Local job creation 
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For stakeholders, an increase in the local job creation was fundamental in order 

to ensure the community to be socio-economically healthy. Since the focus of this 
study limits to the local level, the manpower needed for each retrofit solution is 
considered only based on the installation and maintenance phases. Indeed, job 
creation criteria do not meet the manpower necessary to produce the building 
materials or machinery (Dall’O’ et al., 2013). Again, this criterion can be assessed 
in qualitative or quantitative way. As is shown in Table 31, a quantitative approach 
is performed for each measure based on man-day assessment according to Dall’O’ 

et al. (2013) and a national reference (UNI EN 15459, 2008). 

Table 31: Manpower in the installation and maintenance of the measures developed 
100% of the potential in thirty years. 

Retrofitting Measures b1 b2 b3 b4 b5 
No. of interventions 1.0 1.0 1.0 1.0 1.0 
No. installation in thirty years for installation 1.0 1.0 1.0 1.0 1.0 
N. of workman per team 7.0 7.0 7.0 3.0 2.0 
Days for installation 3.0 3.0 3.0 3.0 3.0 
Man-days for installation MAX 21.0 21.0 21.0 9.0 6.0 
man-day euro/m2 594.3 401.1 334.8 1376.7 4396.4 
No. of interventions 1.0 1.0 1.0 1.0 1.0 
No. maintenance in thirty years  0.0 0.0 0.0 0.0 1.5 
No. Of workmen for maintenance 5.0 5.0 5.0 2.0 2.0 
Days for maintenance 4.0 4.0 2.0 1.5 3.0 
Man-days for maintenance MAX 20.0 20.0 10.0 3.0 6.0 
man-day euro/m2 0.0 0.0 0.0 0.0 87.9 
Tot. 41.0 41.0 31.0 12.0 12.0 

6.4.4.2 Architectural impact 

This criterion evaluates the visual nuisance that may be created by applying of 
some retrofitting measurements for of a city, which is an important social aspect 
(Cavallaro and Ciraolo, 2005). When retrofit measures lead to aesthetic 
improvement of the city, this criterion worth higher. Five scores of impact are 
presented in Table 32 according to the study conducted by Dall’O’ et al. (2013), 
with the reference to the specific measures. This criterion adopts an ordinal scale to 
rank the strategies, from the best to the worst. In all cases the considered retrofitting 
measures achieve positive (b1) or neutral (b2, b3, b5) score since they improve an 
aesthetic vision of the city. For example, the possible future retrofitting measure 
like a photovoltaic solution, will be assumed with a negative value since they can 
have a strong negative architectural and visual impact.   
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Table 32: Architectural impact criterion. 

Positive great positive impact b1 1 
positive impact b4 2 

Neutral no impact b2, b3, b5  3 
Negative little negative impact         - 4 

negative impact - 5 

6.5 Concluding remarks 

Nowadays, there is an increasing concern about sustainable urban energy 
development considering national priorities of each city. Many cities have started 
to define future strategies and plan to reduce energy consumption and GHG 
emissions. One of the main problems, in relation to urban energy retrofitting 
scenarios, is the lack of appropriate knowledge and relevant evaluation criteria. The 
latter is crucial for delivering and assessing urban energy scenarios through MC-
SDSS tool. 

This chapter illustrated how a sensible set of criteria for this thesis were defined 
and ranked through the “Playing Cards” approach. The main features of this 
approach can be summarized as (Lombardi et al., 2017):  

• Selecting and weighting method: subjective (subjective scale) 
• Participation Structure: semi-structured participative based on free 

discussion 
• Approach: participants are asked to rank the cards according to their 

personal knowledge and background  
• Importance ranking: rank importance position by inserting a set of cards 

“white cards” between coloured cards 
• Stakeholders acceptance: intuitive and entertaining 

The “Playing Cards” method is stakeholder-based approach and it is based on 
stakeholders’ preferences. This method showed to be flexible with the ability to 
stimulate the discussion among the stakeholders involved in the focus group. 
Thanks to its characteristics, the method is useful to support decisions with 
subjective criteria. Moreover, the stakeholders perceived the “Playing Cards” 

method as a very intuitive and engaging method, able to support discussion on the 
criteria involved and useful for ranking them according to their preferences. As 
shown in Table 28, playing card method highlighted that the most important criteria 
for the development of energy urban retrofitting scenarios are related to both 
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economic and environmental aspects. On the other hand, the social aspects proved 
to be difficult to be taken into account.  

Finally, it is important to underline that the application of the “Playing Cards” 

method presented in this study represents a validation step (Landry et al., 1983) 
aiming at verifying whether the key issues have been appropriately considered in 
the decision making process (Tsoukiàs, 2008) and testing the model by using 
experimental or real data. In conclusion, this chapter is one-step toward the goal of 
developing urban energy scenarios through the development of the MC-SDSS tool 
in the next and last chapter (7). This will support DMs to deliver retrofitting GIS-
based alternative scenarios.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 



Chapter 7 

7 Development of a New MC-SDSS 
for Urban Energy Planning 

7.1 Introduction 

The present chapter will discuss the process of the developing MC-SDSS tool. This 
tool is an interactive plug-in of GIS environment, which has been adapted from an 
existing urban planning tool, called CommunityViz. The developed MC-SDSS tool 
supports the stakeholders in urban energy planning through participatory and 
collaborative processes. It helps make better decisions by expressing the 
stakeholders’ preferences and their conflicting objectives. Generally, section 7.2 
introduces CommunityViz. Section 7.3 presents the architecture design of the new 
developed MC-SDSS. Section 7.4 describes how the developed tool was tested 
through the workshop organized for this Ph.D. research side-by-side with relative 
stakeholders. In the last section 7.6, the concluding remarks are provided. For 
schematic summary of this chapter refer to Table 33. 
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Table 33: Schematic summary of chapter 7, Phase III. 

 
Research limitation Research question Addressing the 

question 
Related publications 

the lack of an 
interactive and real-

time decision support 
system to help the 

stakeholders in 
making their 

How useful are 
interactive MC-

SDSS in supporting 
the stakeholders in 

urban energy 
planning decisions? 
and how can their 

usability be 
improved? 

development an 
interactive decision 
support system and 
test it through the 

workshop 

[Paper 14] 
In preparation 

Interactive Multi-
Criteria Spatial 

Planning Support 
System for Energy 
Retrofitting Using 
CommunityViz. 

 

7.2 CommunityViz 

CommunityViz is an ArcView modular GIS-based decision support system 
developed by the Orton Family Foundation (http://www.communityviz.com), 
which is designed, especially, for regional and local planning processes. The above-
said tool is able to integrate different types of data such as scripts, numbers, 2D 
maps, 3D visualization, raster in a real-time and multidimensional environment 
(Kwartler and Bernard, 2001). CommunityViz encompasses two main components 
as extensions to ArcGIS: (i) Scenario 360 to map and analyse, and (ii) Scenario 3D 
to visualize. Conceptually, Scenario 360 can be described as a spatial spreadsheet 
allowing for calculations on spatially related data and formulas that call standard 
GIS functions (Janes and Kwartler, 2007). Since each formula, assumption and 
dependency is viewable and editable, there is not any “black box” element to a 

model defined in Scenario 360 (Janes and Kwartler, 2007).  

CommunityViz Scenario 360 adds interactive analysis tools and a decision-
making framework to the ArcGIS platform with which stakeholders can understand 
the planning processes easily. Stakeholders can define different decision 
assumptions and visualize on-the-fly how the changes may affect environmentally, 
economically, technically, and socially the future scenarios. This dynamic process 
helps urban actors to negotiate in order to make better decisions (Kwartler and 
Bernard, 2001). Moreover, it helps facilitate an understanding of the complex 
problems such as UIEP (Wang et al., 2009). Within this tool, many presentation 

http://www.communityviz.com/
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features are available to assist in sharing information with the users including maps, 
alerts and charts. In these views, stakeholders can ask “what-if” questions and 

visualize “if-then” scenarios in a real-time and discuss it very quickly and 
effectively (Pelzer et al., 2015). 

 
Figure 57: CommunityViz Interface; the case study of Settimo Torinese. 

CommunityViz Scenario 360 is selected for this research due to its several 
strengths (Li and Jiao, 2013). It helps analyse and understand the potential 
alternatives and their impacts through visual investigation and scenario analysis by 
a wide range of people. Moreover, it creates a real-time experiment with different 
scenarios, changing the assumptions quickly, and viewing influences on changes. 
Furthermore, it engages stakeholders in participative and collaborative decision-
making processes through visualization and interactive media (Eikelboom and 
Janssen, 2017). All aforementioned strengths lead to stronger consensus and better 
decisions in resolving complex problems. Figure 57 shows the interface of Scenario 
360 modelled for the case study of Settimo Torinese.  

7.3 Architecture model design of a new MC-SDSS using 
CommunityViz 

As mentioned before, CommunityViz Scenario 360 is broadly used for urban 
planning containing a wide variety of interactive tools to model, analyse, and 
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visualize geospatial information (Walker and Daniels, 2011); (Pelzer et al., 2015). 
This section aims at illustrating how CommunityViz Scenario 360 is modelled, 
coded, and adapted for urban energy retrofitting planning issues. The design and 
implementation modelling approach were an iterative process. Two main integrated 
instruments, (i) Interactive impact assessment and (ii) Suitability analysis, of 
CommunityViz 360 are used in order to build a new MC-SDSS. These two 
integrated instruments are modelled and adapted through different functions such 
as Advanced Formula Editors in order to achieve the target of this research. The 
possibility to edit formulas and to alter assumptions became one of the major 
strengths of the system developed (Janes and Kwartler, 2007). 

(i) The target of interactive impact assessment is to create different dynamic 
energy saving scenarios considering the five selected retrofitting measurements 
(i.e., b1, b2, b3, b4, b5) illustrated in Table 24 (chapter 5). Moreover, the building 
stock is divided into 5 macro-clusters considering the building types and age classes 
(Table 22). The reason for these choices is completely explained in chapter 5. 
Moreover, the previous external analysis of the impact assessments for considered 
criteria (i.e., economic, environmental, social and technical) are performed through 
Microsoft Excel-sheet in section 6.4. The percentages of energy saving associated 
with each retrofitting measures for five clusters of buildings are shown in Table 22. 
These results have previously emerged from chapter 5, where the archetype model 
is simulated in order to see the short-term future scenarios.  

(ii) The target of suitability analysis is to understand the ability of a system to 
meet the needs of stakeholders. Through this instrument, the stakeholders can 
understand if their defined scenario would enter into a suitable range or not. In other 
words, stakeholders can see if their decisions are suitable. They can also associate 
different weight values to each criterion to analyse the changes the suitability 
outcomes. Changing the weights help them to evaluate the scenarios within 
different importance to each criterion.  

According to retrofitting assumptions, a series of relative algorithms presented 
in section 6.4  capable of assessing indicators over a short-time period have been 
developed. The developed algorithms assess the following indicators at the district 
level both for each retrofit measure and for the total value considering all the 
measures: (i) total energy consumption (GWh); (ii) energy saving reduction (%); 
(iii) initial investment costs (M€); (iv) investment cost (€/m2), (v) PBP (year), (vi) 
CO2 emissions (tonnes); (vii) CO2 emissions (tonnes/GWh), (viii) local emissions 

https://en.wikipedia.org/wiki/Project_stakeholder
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NOX (tonnes) (ix) local emissions PM10 (kg); (x) job potential (man-day), (xii) 
architectural impact (rank), and (xiii) reliability of the retrofitting measure (rank). 

A conceptual framework is created to model relative instruments and data 
processing sketching out what would eventually become.  

7.3.1 Interactive impact assessment 

Figure 58 illustrates the architecture design flowchart of the Interactive Impact 
Assessment (IIA) function for the new MC-SDSS. The target of this step is to create 
different energy saving scenarios and visualize the relative impact assessment in 
real-time. 

 

Figure 58: Architecture of MC-SDSS design: modelling and adapting process. 

The modelling process starts with a creation of Formula-based GIS dynamic 
attributes. Dynamic attributes are automatically updated when changes are made in 
the analysis. In fact, Scenario 360 enlarges the quantitative capabilities of ArcGIS 
by formula-based spreadsheet-like calculations, which are to be performed on 
geospatial data (Lieske and Hamerlinck, 2013). Formula-based GIS data attributes 
create dynamic analysis providing rapid changes of geographic and numeric inputs 
as well as an automated recalculation of maps and quantitative outputs (Walker and 
Daniels, 2011). It is possible to write Scenario 360 formulas directly with the 
Formula Editor wizard very easily due to its similarity to Excel formulas. Indeed, 
formula editor does not only assist in the structuring, editing, and display of the 
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formulas, but also keeps syncing all components of the model (Janes and Kwartler, 
2007). When new “Dynamic Attribute” or “Indicator” is needed to be created, the 

Formula Editor wizard constructs the most common types of analysis formulas 
(Placeways LLC, 2014). These values are dynamically controlled and updated. A 
formula is linked to each dynamic attribute, which specifies how the attribute 
should be calculated. A relative value is calculated for each feature within the data 
layer. As an example, a snapshot of the Formula Editor showing the formula that 
calculates the amount of total investment cost for wall insulation retrofitting appears 
below in Figure 59. 

 

Figure 59: A snapshot of Scenario 360 Formula Editor Interface, an example 
of investment cost wall insulation formula. 

The dynamic attributes change based upon: 

• Data: dynamic data layers create new or add existing layers to the Scenario 
360 analysis geodatabase. An important feature of Scenario 360 is that it 
provides a dynamic data about features on a map that can be performed by 
formulas. Therefore, when one aspect changes, the software recalculates the 
entire analysis. Dynamic data are used for geo-designing; that means 
experimenting with alternatives and visualizing the impacts of changes in 
real-time. 
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• Assumption: slider bars or tables let change assumptions during analysis. 

Using the assumptions, the stakeholders can express their preferences and 
decisions. When an assumption is changed, all associated formulas with that 
assumption are automatically recalculated within the scenario (Janes and 
Kwartler, 2007). Figure 60 shows a user-friendly interface for altering 
assumptions allowing sensitivity testing (Janes and Kwartler, 2007). The 
stakeholders can visualize the consequences of their changes in real-time. 

• Indicators: formula-driven analysis results that are updated automatically 
while the analysis is performed. Indicators can show the outcome of one or 
several dynamic attributes. 

 
Figure 60: Representative CommunityViz assumption sliders for retrofitting actions, 

which are applicable for buildings cluster, Settimo Torinese. 

Finally, it is possible to visualize all the changes in dynamic charts and alerts. 
Alerts appear when the outcomes do not meet the specific target value based on 
related normative or based on stakeholders requested. Once the modelling process 
is finished (e.g., formulas are coded and linked, dynamic attributes are created etc.), 
the scenario creation and analysis phase are started to be performed. Indeed, alerts 
will notify participants if a target, threshold, or constraint condition has been 
reached (Placeways LLC, 2013). An alert is needed to monitor values during 
analysis and to report specific conditions. It may be connected with a dynamic 
attribute, an assumption, or an indicator (Placeways LLC, 2013).  

Scenarios 
As mentioned before, the project did not aim at creating the specific scenarios. The 
significant innovative approach is the ability of tool that allows for working on the 
of future scenarios definition side-by-side with stakeholders using interactive 
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impact assessment and suitability analyses instruments. This section describes some 
examples of defined scenarios and methods used to model them. 

Scenario 0 “baseline”  
The first step in establishing future scenarios was to create a baseline scenario (East 
and Corridor, 2015) as shown in Figure 62. Setting up a baseline analysis is 
significant to understand what future opportunities exist and where the hot-spots 
are already concentrated. Obviously, this scenario represents the baseline 
conditions in which no new retrofitting, modification and investment are planned. 
This might be a basis for the future scenarios comparison to analyse the differences. 
As is shown in Figure 62, the results are visible by maps and charts. In the baseline 
scenario, some indicators such as CO2 emissions (tonnes) and energy consumption 
(GWh) indicate a current value of the city. This means that some values do not start 
from zero value since they already existed in the current state. This description of 
current conditions can commonly be compared with different future scenarios (e.g., 
from Scenario 1 to Scenario n).  

An additional indicator, so-called “Active Action Control” shown in Figure 61, 
is created in order to control the active assumptions, especially, when there are 
several assumptions to be considered. Actions in Figure 61 will be activated when 
the retrofitting solutions are applied to each cluster of the buildings (see Figure 62). 
Through this indicator, the analyst and stakeholders can easily control the 
assumptions considered for each scenario. 

 
Figure 61: Active Action Control for assumptions of Scenario 0 “baseline”, there is no 

retrofitting actions. 
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Figure 62: Scenario 0 “baseline” without any retrofitting action. 
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Future Scenarios  

In the next step of this procedure, it is possible to create different scenarios altering 
the assumptions and data (Figure 63). Each scenario can consist of different 
alternatives meaning that the stakeholders can experiment their preferences by 
changing the assumptions and establish their preferred scenario. These scenarios 
are evaluable by indicators, alerts, and selected thresholds.  

In fact, it is possible to establish the thresholds as a target for created scenarios, 
for example achieving minimum 20% of energy consumption or CO2 emissions 
reduction. An alert appears on the chart indicating that a pre-set threshold has not 
been satisfied, in this case, a 20% of energy consumption reduction. If the scenario 
meets the requested threshold, it could be acceptable. If not, the alerts appear in 
order to inform the stakeholders. In fact, some scenarios can be discarded 
immediately when they do not reach the target of 20% energy saving. 

 
Figure 63: Schematic flowchart of MC-SDSS design; scenario analysis. 

The results of different scenarios are displayable by maps and charts in real 
time. As an example, Figure 65 demonstrates the changes from scenario 0 
“baseline” to scenario 1, named “expert-oriented”. The scenario “expert-oriented” 

is defined by experts (forming an internal focus group) with the aim at creating a 
scenario characterized by moderate energy performances. This scenario is 
performed with aim at illustrating it as an example to non-expert stakeholders.  
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Figure 64: Active Action Control for assumptions for Scenario 1 “expert-oriented”. 

In the Scenario 1, the selected technologies were chosen according the experts 
point of view. They suggested to replace the glazing ratio windows of older 
buildings (clusters 1 and 2). Likewise, they improved of the floors and roofs thermal 
insulation of clusters 1 and 2 (building age 1961-1970). The thickness of the 
insulation is 35 cm, which corresponds to a zero-energy building (see Table 24). 
Actually, an insulation with a thickness more than 35cm does not help in any 
additional significant protection to the element. Finally, the experts decided to 
substitute the boilers for the buildings built during to 1971-1990 (cluster 3). This 
decision was made because the boilers of the older buildings were have been 
already replaced due to their lifespan of 20 years.  
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Figure 65:  Scenario 1 “expert-oriented” in CommiuntyViz; maps and charts. 
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Comparing scenarios  
After creating different scenarios, it is possible to compare the scenarios 

between them and also with the baseline Scenario (0) through maps and charts. As 
an example, the comparison between scenario 0 “baseline” and scenario 1 “expert-
oriented” is shown in Figure 66. The comparison between all the Scenarios is 
possible (i.e., scenario 1, scenario 2 and scenario n), handling also many scenarios 
at once. Moreover, modelling approach that is created will automatically be applied 
to all scenarios, unless scenario-specific changes are needed. When comparing 
different scenarios, side-by-side maps, charts, and results table are available to 
facilitate the comparison. 

 

Figure 66: The comparison between scenario 0 (baseline) and scenario 1 (expert-
oriented) through analysing maps and charts. 

7.3.2 Suitability Analysis 

As shown in Figure 67 the outputs of scenarios become as inputs for suitability 
analysis. After stakeholders have selected their eventual preferred scenarios, at this 
stage, they need to know the level of their suitability. In the current study, suitability 
analysis refers to identify the level of suitable retrofitting solutions, that are able to 
meet the needs of a stakeholder and decision makers (Koulamas et al., 2018). It is 
required to define energy retrofitting strategies that are acceptable from economic, 
environmental and social criteria and, mostly, energy. Suitability modelling 
identifies the continuum of best or worst retrofitting scenarios. The modelling and 
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adapting process is similar to IIA procedure; however, the weights are added 
playing a key role in the suitability analysis.  

According to (Lieske and Hamerlinck, 2013), “CommunityViz suitability model 
meets the requirements for planning methods, including increasing insight to a 
decision situation, the ability to quickly handle changing inputs, transparency, and 
making values incorporated in a decision process explicit”.  

Indeed, CommunityViz is a powerful tool for suitability modelling and spatial 
MCA, which is built on a Weighted Linear Combination (WLC) model (Lieske and 
Hamerlinck, 2013). WLC is one of the most best-known analytical methods for 
GIS-MCA (Malczewski, 2011). It links the weight values to each criterion and 
automatically updates the model when there are changes in either weight or 
geographic data inputs. First, evaluation criteria are normalized to a specific 
numeric range between 1 to 100. Next, the numeric range is combined with a 
weighted average to create a composite score for each decision scenario by WLC 
(Lieske and Hamerlinck, 2013). Of course, weights present the importance of each 
evaluation criterion. For each decision scenario, a score is calculated for each 
criterion by multiplying the weight by the normalized value of that criterion. Scores 
are summed for all evaluation criteria to provide an overall suitability score (Lieske 
and Hamerlinck, 2013). The scores are calculated for all the scenarios and the ones 
with the highest score may be chosen. The results are visible by maps in which the 
scores are displayed with a graduated colour ramp as: Unsuitable; Low suitability; 
Medium suitability; High suitability and Suitable (Figure 68). 
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Figure 67: Schematic flowchart of MC-SDSS design; suitability modelling. 

Generally, suitability model creates two kinds of evaluation criteria scores: raw 
and standardized. A raw evaluation criterion score is calculated by using a formula-
based dynamic attribute (Lieske and Hamerlinck, 2013).  Figure 69 shows how 
easily it is possible to change the weights by changing the assumption sliders 
(Walker and Daniels, 2011), which are linked to dynamic attributes. 
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Figure 68: Suitability modelling, Scenario 1 “expert-oriented”, same weights. 

Stakeholders can easily change the weights of evaluating criteria by using the 
graphical display of value (sliders) shown in Figure 69. Consequently, MC-DSS 
recalculates the suitability analysis considering the new weights. The new results 
are displayed again by maps and charts (Figure 70). The scale of weights is often 
set on using numeric point in order to rapidly recalculate a model. Zero is inserted 
when stakeholders don’t want provisionally or permanently consider some criterion 
in the analysis. This interactive approach aids to discuss the importance of each 
criterion. Moreover, it provides a supportive method for working on conflicting 
preferences and supports sensitivity analysis. It permits SDSS-based suitability 
analysis to be used as a thinking tool in retrofitting scenarios selection (Lieske and 
Hamerlinck, 2013). 
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Figure 69: Representative CommunityViz weight sliders on a 10-point scale. 

 

Figure 70: Suitability modelling, i.e., Scenario 1 “expert-oriented”, different weights. 

After selecting scenarios, they can be analysed and also compared as it is 
explained in the previous section Figure 70. 
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Figure 71: Schematic flowchart of MC-SDSS design; Scenario analysis. 

Again, the comparison between different suitability scenarios is possible as 
shown in Figure 72. 

 

Figure 72: The comparison between suitability scenarios (1 same weights-1 different 
weights) through analysing maps and charts. 
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7.4 Test and validation of MC-SDSS 

In section 7.3, the basis of MC-SDSS is modelled and adapted for the case study of 
Settimo Torinese. Afterward, the second workshop is organized in order to test and 
assess the usability of the developed tool for urban energy planning. In this second 
workshop, scenario 1 as an example was shown to the participants to provide them 
information and guideline how to define scenarios. During the workshop, two focus 
groups were formed to test the tool. Indeed, focus group provide a more natural 
environment rather than an individual interview since participants are influencing 
and influenced by each others (Krueger and Casey, 2000). As MC-SDSS tool is still 
in its pilot phase, receiving opinions from the stakeholder and DMs, was the best 
option in order to improve it (Brömmelstroet et al., 2014). For more detail, the 
material of workshop is attached in Appendix B. 

7.5 Results of the validation process of MC-SDSS: 
through the 2nd workshop design  

Setting the workshop 
The second half-day workshop was set up on 12th July 2017 at Politecnico di Torino 
(Italy) (Figure 73 and Figure 74). The purpose of the workshop was to assess the 
usability of the developed MC-SDSS tool, especially collecting feedback from 
stakeholders in order to improve it. The stakeholders involved in this workshop 
were mostly the same as those in the first one (9 participants). However, the new 
stakeholders, DH provider and the environmental representative of the municipality 
of Turin were added. 
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Figure 73: Second workshop at Politecnico di Torino with the aim of testing the 
usability of the developed MC-SDSS. 

 
Figure 74: The participants in the second focus group. 

First, a brief introduction about the progress of the research project and the 
structure of the workshop organization is reduced to the participants. Moreover, the 
MC-SDSS tool, its functionality and practical applications are presented (Figure 
75). The progress of the workshop depends strongly also on the stakeholders’ 

knowledge. Therefore, there is a need to precisely describe the tool and maps in 
order to give them a comprehensive vision about the data used and the type of 
analyses (Brömmelstroet et al., 2014). Notably, strong moderation skills are 
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required to moderate an exchange of opinions when the discussion gets stuck in the 
focus groups (Brömmelstroet et al., 2014). 

 
Figure 75: Presentation of the instrument. 

Describing the workshop 
The workshop was structured into three main steps to facilitate the understanding 
and working with the interactive energetic plug-in (Figure 76). Moreover, these 
three steps ease the comprehension of the workshop process for the participants. At 
the end of each step, evaluations took place (i.e., questionnaires). The stakeholders 
were asked to fill out the questionnaires regarding the usability of the tool for each 
step. All participants were asked 17 questions about the usability of the instrument. 
The number of participants who answered the questions was limited to 8 
participants because one of the stakeholders left before the appointed time. The 
limited number of invited stakeholders was targeted due to the complexity and 
specificity of the theme of the workshop. Therefore, high levels of concentration 
and expertise were needed in order to fulfil the objective of the workshop, which 
was improving the tool and its usability. Step 1 included a two-hour interactive 
focus group to define different energy saving scenarios utilizing IIA instrument of 
MC-SDSS. In this step, the facilitator (author) worked side-by-side with the 
stakeholders. As said before, initially, facilitator showed the already created 
scenario, so-called scenario 1 “expert-oriented” to the stakeholders in order to give 
them a better understanding how to use the tool. Scenario 1 “expert-oriented” 

represents that moderate investments in building renovations lead to the moderate 
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emissions reduction. The choice of the strategy depends on the willingness to invest 
relative to achieving the emissions target (Delmastro et al., 2017). Thereafter, 
different scenarios were defined altering and experimenting the sliders 
(assumptions) directly by stakeholders. Stakeholders changed the assumptions 
several times and they were greatly interested to see the results changing in the 
consequence of their decisions very quickly.  

When this step was finished, the participants were asked to fill out the 
questionnaire by giving them about 30 minutes to evaluate the first step usability. 
Summing up the step, the major activities were performed in this step: 

• Demonstrating how to use the tool for defining different scenarios;  
• Experimenting the energy refurbishment assumption to achieve different 

energy saving scenarios in real-time;  
• Questionnaire compiling. 

In step 2, the stakeholders could visualize the suitability maps of the scenarios 
which were created in step 1. Likewise, in this step, the side-side collaboration of 
facilitator and the stakeholders was requested. After step 2, another brief 
questionnaire regarding the usability of the tool is provided to the participants. 
Again, summing up the step 2, the major activities were performed in this step: 

• Demonstrating how to use the suitability maps; 
• Experimenting the changes in the weights and seeing their real-time 

impacts; 
• Questionnaire compiling. 
Finally, the workshop survey was designed as step 3 in order to analyse the 

general evaluation of the workshop organization. For the whole workshop process, 
the voices and notes are recorded just like the first workshop. 
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Figure 76: Workshop Structure. 

The questionnaire included eleven end-closed questions and the six open-ended 
ones. The close-ended questions were designed in order to answer the following 
three criteria: Usefulness (U), Ease of use (E) and Visualization effectiveness (V). 
While the open-ended questions sought further suggestions regarding each step. For 
each question, respondents were asked to answer by selecting: very much, 
somewhat, a little and not at all. The results emerged from this workshop are 
graphically shown and some important stakeholders’ considerations are reported in 
this dissertation. The questions are presented in Table 35, Table 36 and Table 38, 
and consequently, the responses are presented in Figure 80, Figure 81, Figure 82, 
Figure 83 and Figure 84.  

Step 1 
The first step aimed at defining different energy saving scenarios considering 
stakeholders’ preferences. In this step, the participants worked with the MC-SDSS 
tool and they defined different scenarios in real-time. They experimented changing 
the assumptions (i.e. retrofitting measures). For instance, they moved the sliders 
based on their desires such as glazing window replacement for certain cluster of 
buildings. At this point, the scenario 1(Figure 65) which was previously created by 
the expert is illustrated to the participants in order to make them understand how to 
define the new scenarios by altering the assumptions.  

With the help of the double-display visualization and printed maps (of the 
current states of the city), the stakeholders could discuss several alternatives. The 
double-display facilitated the negotiation task, giving the participants a better 
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understanding and vision of the scenarios on their proposed changes (Pelzer et al., 
2015). Additionally, a better understanding increases the participants’ interactions. 

Indeed, the workshop was scheduled to give an opportunity for more discussions 
on each participant's own practices relative to their daily work. 

 

Figure 77: Double-display in order to facilitate the analysis of charts and maps 
simultaneity. 

Figure 79 shows an example of one of the scenarios defined by stakeholders, 
so-called scenario 2 “stakeholder-oriented”. Finally, they could compare different 
scenarios. In this specific scenario, they replaced the glazing ratio windows of most 
older buildings (clusters 2,3 and 4) and they isolated the walls and floors of clusters 
2 (building age 1961-1970) and 3 (building age 1971-1990); while, they preferred 
to do not renovate any intervention in terms of energy system (see Figure 78). This 
decision was made because they wanted to see the impact of the envelope system 
refurbishment that leads to significantly reduce the energy consumption. In this 
workshop, the aim of defining different scenarios was not to find the “best” 

performance scenarios, but it was to test the usability of the tool experimenting it. 
Therefore, here the author recalls just one of the defined scenarios among others 
(from scenario 1 “expert-oriented” to scenario 2 “stakeholders-oriented”) in order 

to illustrate the potentiality of the tool as well as its functionality. 
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Figure 78: Active Action Control for assumptions of Scenario 2 “stakeholder-

oriented”. 
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Figure 79: Scenario 2 “stakeholder-oriented” in MC-SDSS; maps and charts. 
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At the end of step 1, each individual participant completed a questionnaire, 

which had two primary objectives: 

• To understand how the stakeholders experienced the process of energy 
saving scenarios creation. 

• To collect their suggestions in order to improve the tool.  

Further goals were to collect opinions on the utility of the assumptions, 
indicators, and attributes. They also sought to evaluate the clarity of the charts and 
maps and the potential barriers to planning practice (Brömmelstroet et al., 2014). 
The aim was to address any weaknesses in order to improve the tool for future 
experiences. The ultimate goal was to apply the stakeholders’ requests into the 

future development of a new MC-SDSS tool for planning practices. The 
questionnaire of the step 1 was divided into three main macro-sections: (i) 
Questions regarding the considered “Retrofitting Measure”; (ii) Questions 
regarding created “Indicators”; (iii) Questions regarding the emerged “Map of 

Results”. The questions types of each macro-section are shown below (see Table 
34, Table 35 and Table 36): 

Table 34: Questions regarding considered (i) macro-section “Retrofitting Measure”. 

(i) Retrofitting Measures   
A-Retrofitting the heating energy system for building groups (i.e., boiler replacement) 
Q1. Are the heating system retrofitting simulations for buildings clusters useful? U □ Very much 

□ Somewhat  
□ A Little 
□ Not at all 

Q2. Are they understandable and easy to use? E 
Q3. Are the results of these simulations visualized effectively? V 
Q4. Do you have any suggestions to improve these simulations and/or their visualization? 
B- Retrofitting the envelope system of buildings (i.e., window replacement, wall insulation) 
Q5. Are the envelope system retrofitting simulations for buildings clusters 
useful? U □ Very much 

□ Somewhat  
□ A Little 
□ Not at all 

Q6. Are they understandable and easy to use? E 
Q7. Are the results of these simulations visualized effectively? V 
Q8. Do you have any suggestions to improve these simulations and/or their visualization? 
Q9. Do you have any suggestions to modify or add retrofitting measures?   

Explain your motivation. 

Table 35: Questions regarding created (ii) macro-section “Indicators”. 

(ii) INDICATORS   
Q10. How useful are the indicators in the instrument? 

• Investment Cost (M€) 
• Investment Cost (M€/GWh)  
• Global CO2 Emissions (tonnes) 
• Global CO2 Emissions-Reduction (%) 

U 

□ Very much 
□ Somewhat  
□ A Little 
□ Not at all  



172 Development of a New MC-SDSS for Urban Energy 
Planning 

 
• Local NOX emission (tonnes) 
• Local PM10 emission (kg) 
• Architectural Impact (rank) 
• Job Potential (man-day) 
• Reliability (rank) 
• Energy Consumption (GWh) 
• Energy Saving (%) 
• Socio-Economic feasibility (%) 

Q11. Are they understandable and easy to use? E □ Very much 
□ Somewhat  
□ A Little 
□ Not at all 

Q12. Do the proposed indicators adequately provide the information you need 
to support the understanding of energy scenarios on a local scale? V 

Q13. Do you have any suggestions to improve their visualization / other 
indicators that might be essential? Which?   

Explain your motivation. 

Table 36: Questions regarding emerged (iii) macro-section “Map of Results”. 

(iii) MAP OF RESULTS   
Q14. Are the final results of the energy saving map in percent useful? U □Very 

□ Enough 
□ Little 
□ Not at al 

Q15. Are they understandable and easy to use? E 

Q16. Are the results of these maps visualized effectively? V 
Q 17. Do you have any suggestions to improve these simulations and/or their visualization? 

Explain your motivation. 

 
Figure 80: Answers received in step 1. 
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Figure 81: Answers received for Q10 regarding individual indicator. 

The questions regarding the retrofitting measures simulations and their 
usability were designed in the first nine questions (Figure 80). Generally, the 
participants expressed very positive views regarding the usefulness of the 
instrument (U: q1, q5: 75%). Moreover, they stated that the MC-SDSS tool is easy 
enough to use emerged from questions 2 and 6 (E). However, about 13% of 
respondents reported that the simulations were not very easy to understand. They 
had some difficulties to understand how the simulations were previously calculated. 
Finally, they stated that the results are visualized around 38% in a very effective 
way and about 63% in a way that was effective enough (V: q3, q7). Regarding the 
(ii) Indicators, fifty-eight percent of the participants responded that the indicators 
were very useful for them (U: q10), just 4% found the indicators of little use.  

Q10 is also separately analysed as shown in Figure 81. An interesting outcome 
from this figure is that they were satisfied enough with the created indicators. This 
fact emerges due to their effective participation from an early phase of the 
development of MC-SDSS tool. Indeed, in the first workshop, the same 
stakeholders were asked to define their preferred criteria and indicators. However, 
it can be seen that the stakeholders stated that especially two qualitative indicators, 
architectural impact and reliability, were little useful them, while most of the 
quantitative indicators seemed very useful. One participant did not answer the 
indicator question stating that the time was not enough to evaluate all the indicators. 
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Q14 to Q16 were about the maps of results and their presentation. The instruments 
were useful and easy to understand to stakeholders. Regarding the presentation of 
maps, the stakeholder who was an expert in the visualization stressed the attention 
of the grade of the colour of the maps.  

Listening to the voice records, during the discussion some important points 
emerged. A number of respondents found that they needed to have more options for 
retrofitting measurements (i.e., photovoltaic panel, district heating, etc.). In 
particular, they found it is significantly necessary to implement more energy system 
retrofitting, which increase the energy efficiency of buildings at the district level. 
One suggested that: 

“I think the presence of the energy system refurbishment is significantly 

necessary. In this tool, I see more envelope system refurbishment for a demand-side 
of energy but not retrofitting solutions for the energy supply-side. Please add 
photovoltaics and DH connection solutions. They help decrease the harmful 
environmental impacts and they enhance the energy efficiency system in the 
buildings”. 

They also insistency asked to enlarge the number of clusters in order to have 
more flexibility for applying the retrofitting actions. They desired to regroup the 
building into more than thirty clusters instead of five considering buildings age and 
typology. Currently, five clusters of the building were identified.  

“In order to make better decisions, I need to have more flexibility to apply the 

refurbishment actions. I think it is better to be able to choose the number of 
buildings by ourselves and not by default”. 

They also suggested to consider the renovation ratio for the buildings, however, 
the data regarding the renovation status is not available yet in order to add it within 
the tool. Moreover, the stakeholders asked strongly to add some back-costing 
objectives. This means fixing an objective for energy saving (e.g., 20% for all 
scenarios) and to define the different scenarios which can always achieve that 
target. While, currently they could define what-if scenarios where the energy saving 
targets were different in each scenario, however, the different alerts and threshold 
were set to give them the indications. The regards made by one of the participants 
are reported as follows: 
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“In my opinion, instead of achieving different targets for each energy saving 

scenario, it is better to fix a specific target for all scenarios, for example, the target 
of the reducing energy consumption by 20% as an European 20-20-20 targets. 
Then, we can try to create different scenarios which lead to achieving that specific 
target". 

Another interesting discussion was related to installing the sensors in order to 
obtain the real-time data instead of the historical ones. However, installing the 
sensors for obtaining the real-data data needs a huge effort in terms of costs ad time. 

Step 2 

The second step aimed at generating the suitability maps from the scenarios that 
were defined in the first step. In this step, participants were asked to change weights 
through sliders (Figure 69). Consequently, the participants made a comparison 
between different suitability maps based on different distributed weights. Again, at 
the end of step 2, each stakeholder was asked to fill out the relative questionnaire, 
which had two primary objectives: 

• To understand how the stakeholders experienced the process of suitability 
analysis. 

• To collect their suggestions in order to improve the suitability modelling in 
MC-SDSS. 

Further goals were to collect opinions on the clarity of the charts and maps of 
suitability (Brömmelstroet et al., 2014). As mentioned before, the aim was to 
improve the tool. The questionnaire of the step 2 has only one macro-sections: (iii) 
Information regarding the emerged Map of Results.  

Table 37: Questions regarding emerged (iii) macro-section “Map of Results”. 

(iii) MAP OF RESULTS   
Q18. Are the final results of the suitability map in percent useful? U □Very  

□ Enough  
□ Little 
□ Not at al 

Q19. Are they understandable and easy to use? E 
Q20. Are the results of these maps visualized effectively? V 
Q21. Any suggestions to improve this simulation and/or its display mode.   
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Figure 82: Perceived usability of the instruments in step 2. 

Regarding the suitability maps, the participants were asked four questions 
(Figure 82 and Table 37). Most of the respondents stated that the suitability maps 
were very useful. This is because they needed to visualize an aggregated evaluation 
about their decisions. Moreover, they wanted to see the impact of changes made to 
weighing on their decisions. For about 50 % of the stakeholders, the complexity 
level of the generated suitability maps was simple; while for 50 percent found them 
very complex. Around 85% of the respondents stated that the emerged results of 
suitability were presented and visualized in an effective manner.  

Specifically, during the discussion, the participants stated that the suitability 
map was significantly useful. This instrument aided the DMs in order to analyse 
their decisions by visualizing a unique map. One of the very important statements 
in this step made by all participants was: 

“The suitability maps instrument is very useful because it assembles all our 
decisions outcomes together and we can see the decision suitability by colours. 
Sometimes, we made the decisions without knowing if they were suitable or not. For 
making our decisions, we absolutely need instruments such as suitability in order 
to be able to visualize the best scenario”. 

Step 3 

The final evaluation was conducted to see how the workshop was organized. the 
following questions were used (Brömmelstroet et al., 2014). 

Table 38: General questions on the workshop Session. 
General Questions on the Workshop Session  
Q1. The session produced useful results 

□Very  
□Enough  
□ Little 
□ Not at al 

Q2. I am confident that the group solution is correct 
Q3. I am satisfied with this session 
Q4. Now I have more information about energy-related decision-making on the 
urban level 
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Q5. Now I have a better vision regarding the views of the other participants 
Q6. I would use the presented tool and the results of this session in working practice 
Q7. We have reached a shared view of the problem 
Q8. We have achieved a shared vision of the goals 
Q9. We have achieved a shared vision of possible solutions 
Q10. I felt as part of a working group 
Q11. The presented instrument has highlighted a new approach to energy at the 
urban level 
Q12. The basic hypothesis presented for model development is clear 
Q13. The terms used during the session are understandable 

All participants were asked 13 questions about the session evaluation survey. 
Their answers are evaluated in Figure 83. The participants shared a very positive 
general opinion about the process. Specifically, most of the participants (88%) 
stated that the session resulted in useful results (q1). Fifty percent of the 
stakeholders felt that the results of the session were based on correct assumptions, 
and consequently, they were confident that the group solution they had reached was 
correct (22). Furthermore, 88% of participants were satisfied with the session itself 
by answering q3. Question 4 explored how the workshop was useful to increase the 
information regarding urban energy planning. As many as 63% of the respondents 
stated that the session provided better information. According to the answers to 
Question 5, 63% of stakeholders stated that the session was very useful in order to 
understand the other stakeholders’ opinion. While 25% thought it was useful 

enough, and 1 participant didn’t answer in this case. Seventy-five percent of the 
respondents also stated that they would probably use the tool from the session in 
their daily planning practice (q6). Questions 7 to 9 explore how the patricians 
achieved a shared vision problem (q7; 50%) and the goals (q8: 50%) and solutions 
(q9; 25%). 75% had a strong sense of being part of a group during the session (q10).  
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Figure 83: Perceived usability of the instruments step 3. 

 

Figure 84: The total received answers based on usefulness, ease of 
understanding and visual effectiveness of the tool. 

Finally, Figure 84 Shows the total answers received regarding the usability of 
the developed MC-SDSS tool based on three criteria of usefulness, ease of use, and 
the visual effectiveness. Most participants found that the tool was very useful to use 
for making better decisions in the sustainable development of their city. Regarding 
the ease of use, most stakeholders found that tool was easy enough to use and it was 
effective in its visualization way. However, the improvements are to be performed 
based on the stakeholders’ opinions are needed. 
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7.6 Concluding remarks 

This chapter started by identifying the potential of developing MC-SDSS tool 
to support planning practices. Two integrated instruments of CommunityViz 
software, Interactive Impact Assessment and Suitability Analysis, are modelled and 
adapted in order to provide an appropriate MC-SDSS for urban energy planning 
purposes. It should be noted that the CommunityViz suitability model closely 
follows the methods of MCA modelling, WLC. The main advantages of the 
developed MC-SDSS in the field of urban energy planning can be summarized as 
follows:  

• To allow the participative processes;  
• To give a visualization opportunity for the decision process in specific 

areas;  
• To consider multiple criteria (e.g., economic, environmental, technical 

and, particularly, social aspects);  
• To manage and store a very large amount of georeferenced data; to 

illustrate results requested by users according to different spatial forms 
(e.g., maps, graphs);  

• To show the distribution of buildings’ geometrical characterization and 

buildings’ energy consumption. 

Moreover, an experiential research design is set up to investigate the usability 
of the tool and to gain insights into the types of interventions that can improve 
usability. In this regard, the second workshop, which is fully reported in section 7.5, 
has been organized to test the tool by stakeholders in order to improve the future 
development design of the tool. Within this workshop, three main considerations 
emerged that will be linked to the tool for future developments: (i) improve data 
entry accuracy; (ii) access to real-time data, and (iii) enlarge retrofitting solution.  

 

 

 



 



Chapter 8 

8 Conclusion and future work  

8.1 Conclusive summary 

This chapter summarizes the overall research and conclusions. Additionally, 
suggestions are made for further development in research. As illustrated in chapter 
1, the foremost goal of this Ph.D. dissertation was to develop a new MC-SDSS to 
support the participative process for defining effective scenarios to improve the 
energy performance of the urban areas. In particular, this work creates a link 
between energetical, economical, societal, technical and environmental 
performances of retrofitting interventions. The research boundaries were delineated 
by focusing on existing residential building stock since they characterize the context 
of most European cities. The relative available data of these buildings were first 
collected and georeferenced from various sources. Based on the created geospatial 
database, the buildings energy consumption patterns were statistically modelled to 
map the current energy patterns over the entire city. Afterwards, the archetype 
model of the city was created in order to speed up and ease the future energy saving 
simulations by applying the retrofitting solutions. The geospatial database was used 
as the object of multi-criteria analysis assessments. Finally, an interactive MC-
SDSS was created to support the DMs in defining energy saving scenarios in real-
time. This Ph.D. work provides a significant innovative progress in the research 



Key findings and main limitations 181 

 
field as it has developed an interactive plug-in for UIEP in the GIS environment 
(MC-SDSS). 

Given the goal and the boundaries of the research, three research questions were 
formulated, and they were addressed within the Ph.D. research path. As shown in 
Table 1, corresponding Ph.D. chapter/s contributed to response to each research 
question. In this concluding section, instead, the synthetic answer is proposed by 
the author summing up the key findings presented throughout the thesis. 

8.2 Key findings and main limitations 

Research question 1 

Are current research studies able to support the challenges provided by Urban 
Integrated Energy Planning (UIEP), taking into account the variety of all the 
sustainable planning aspects? What are current challenges and barriers in this 
research field? 

As described in chapter 2, this study has drawn on an understanding of UIEP 
towards a more sustainable development of the built environment. A systematic 
review of the available spatial approaches has been proposed towards UIEP. This 
systematic review showed that many spatial energy modelling approaches have 
been recently developed. Nevertheless, a unique UIEP framework is not available 
or agreed on among the several experts and scientific disciplines dealing with 
sustainable energy planning. The meta-analysis shown in Figure 8 highlighted that 
how the great majority of current approaches do not integrate all the phases of 
UIEP. Consequently, not all planning aspects are taken into account in conventional 
practices to guide policies along sustainable development paths. Hence, this study 
suggests reinforcing the collaboration between different research disciplines 
dealing with socio-economic, environmental, and technical aspects with emphasis 
on spatial issues.  In order to understand how to structure the UIEP, it is important 
to analyse how it is possible to implement the interaction among the different 
stakeholders, how to select different approaches and how to choose them 
considering the decision context peculiarities and the type of planning project. From 
this perspective, the proposed SWOT analysis of the conducted literature review in 
section 2 (see Figure 9) is useful for all urban actors including the new research and 
DMs in order to understand the most important characteristics of the available 
approaches for different planning phases. Although the approaches have not yet 
been integrated in order to cover and accomplish the whole UIEP, it is important to 
push future research and practice to take into account the integration process.  This 
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will allow the possibility to explore urban energy transition strategies in the spatial 
planning field according to sustainable development. The ultimate aim of this 
research is to highlight the potential of existing approaches to be combined in order 
to cover all UIEP phases and to reduce the current uncertainty faced by DMs at the 
urban energy planning level. As a preliminary theoretical framework proposed by 
this study, the outcome helps urban actors to develop energy planning projects, 
guiding them in the choice among a significant number of existing planning 
approaches. Finally, the theoretical framework represents a substantial step towards 
the sustainable urban development in the contexts of built environment.  

Limitations 
This study suggests an integrated procedure of urban energy planning. This faces 
several barriers including: 

• the necessity of changing traditional thinking that may lead users to be 
discouraged since it requires integrating a wide range and diversity of 
disciplines.  

• a high level of expertise is required to combine the different methods and to 
simultaneously handle the different sustainability aspects.  

• the evaluation process difficulties may be time-consuming and costly. This 
fact emerges from the need for high-level data (quantity and quality) and 
expertise for the assessment processes. 

• the availability and reliability of large standardized databases and public 
data sources are limited at the local level. This issue is very challenging 
since the data is not always open-source, available and updated. 
Furthermore, the data collection process requires new instruments (e.g. 
smart meters) and new physical resources to analyse them.  

Research question 2 

How to model the energy consumption at urban scale in a spatial way for the 
current and future scenarios? Which kind of data are needed? And how to connect 
different data type from different and scattered sources? 

As illustrated the full development of this part in chapters 4 and 5, for modelling 
the energy consumption over the entire city, a large number of historical data are 
needed. The most challenging issue was related to collecting and integrating the 
built environment data and information since the data are significantly scattered 
among several entities at the local level, and there is a lack of interoperability 
among the data sources (see section 4.3.1). Actually, this section reports that one of 
the main barriers to developing a robust and detailed analysis is correlated with the 
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data collection procedure. Especially in Italy, information about building stock and 
their energy performances are derived from different regional and local authorities 
and they are not often homogeneous. Therefore, in order to set up an effective 
energy planning at the local scale, it is crucial to improve the quality of data 
availability and management. Data availability of buildings energy consumption 
will hopefully improve in the future thanks to smart metering and real-time data 
monitoring following recent open data policy. To this end, a supportive GIS 
database where all the scattered information and data were geo-referenced is first 
created (Figure 18). 

Referring to the energy consumption modelling at the urban scale developed in 
section 4, this research proposed a geospatial statistical modelling. Generally, 
statistical methods estimate the energy consumption based on a historical data. The 
proposed model was based on MLR approach considering various predictors, which 
are cross-validated. The results show a good agreement on error around 20% at the 
city as reported in Table 13. The model succeeded to estimate the energy 
consumption of most existing buildings, where the monitored data was not 
available. However, due to the strong dependency of statistical models on existing 
available data, these methods are not able to predict the impact of the future 
refurbishment solutions. Therefore, there was a need to simulate the future city 
energy performances. However, the simulation of the whole city may be extremely 
time-consuming.  

Therefore, the research in section 5 proposed a novel engineering methodology 
to accelerate the urban area energy consumption simulations, including urban 
planning renovation scenarios. The energy demand of cities, as well as the 
microclimatic conditions, was calculated by using a simplified archetype 3D model 
designed as a function of the city urban characteristics. This method shows that the 
number of buildings to be simulated can be drastically reduced with no particular 
influence on the accuracy of the results. On one hand, the main advantage of an 
engineering-based method is the capability of predicting energy savings for 
buildings after the application of renovation measures. On the other hand, these 
methods are very detailed models based on thermodynamic relationships and heat 
transfer calculations. As a general remark, the historical data can be used for the 
comparison against measured consumption data.  
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Limitations 
This study suggests first a spatial data collection and then an integrated procedure 
of urban energy modelling approaches based on the data collected (i.e., statistical 
and engineering). This faces several barriers including: 

Regarding the data collection: 
• the energy consumption data is not usually open source; thus, a huge effort 

was needed to collect the data from different entities and to ask the 
collaboration from local stakeholders.  

• the geo-referencing procedure of data could be also a challenging issue. In 
many cases, the necessary information related to the buildings are associated 
with the buildings number (as points) rather than the buildings polygon. The 
tricky issue is that these points are sometimes situated between two or three 
buildings having the same distance. Thus, it is not easy to understand that 
the data belongs precisely to which building. Especially, when we talk about 
a vast number of building like 3600 buildings in this research, the geocoding 
process cannot be manual, and some errors will emerge.  

Regarding the statistical modelling approach: 
• a vast amount of historical available data is needed. For many regions, it is 

almost impossible to have a monitored data in terms of energy 
performances.  

• the intrinsic limitation of statistical methods concerns the microclimate 
effects, which were not taken into account in the present work. In fact, a 
microclimate model that would give a single value for the whole city for air 
temperature would not significantly improve the results of the current model 
presented in this work. 

Regarding engineering modelling approach: 
• the need for high-level detailed thermo-physical data of the buildings in the 

city.  
• setting up the simulations can be a tedious task requiring a lot of time and 

expertise.  
• the simulations themselves are very time-consuming and they require high-

performing processors in order to perform the entire city. 

Research question 3 

How useful are interactive MC-SDSS in supporting the stakeholders in urban 
energy planning decisions? how their usability can be improved? 
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As illustrated in chapters 6 and 7, a MC-SDSS has been developed to support 

the stakeholders with different background and preferences. The tool is an 
interactive plug-in in ArcGIS environment. MC-SDSS is able to help participants 
in a user-friendly way to define energy refurbishment scenarios. Moreover, the tool 
gives an opportunity to generate the suitability maps, with which the stakeholders 
can analyse the grade of the suitability of their decisions. The development of MC-
SDSS is based on an existing tool, named CommunityViz. Originally, 
CommunityViz is a software used to support urban planning purposes. Within this 
research, CommunityViz was adapted and modelled to support UIEP. Two main 
integrated instruments, Interactive Impact Assessment and Suitability Analysis, 
were modelled. The main difficulties were to adapt the tool to energy urban 
planning, considering many complex aspects of this issue. Modelling of all retrofit 
dynamic attributes and the type of connection between all the attributes was another 
difficulty of this part. The modelling design process is quite complex. The model 
should chain all the data, attributes and indicators. This means that once the 
stakeholders change one parameter, others will change automatically in their 
proposed scenario. In fact, by this research, an attempt is made to create a basic 
model considering five retrofitting measures for five clusters (Table 22 and Table 
24) of buildings and evaluate eight criteria simultaneously (Table 28). The 
participants are able to rapidly experiment different energy renovation scenarios 
and change the assumption. This creates an effective interaction between the 
stakeholders. They can visualize very complex problem of energy saving scenarios 
simply by different dynamic colourful maps, charts and indicators. Two workshops 
were organized to fulfil the objective of the research.  

• The first workshop involved real stakeholders in order to identify the related 
evaluation criteria and their importance (section 6.3). 

• The second workshop involved almost the same stakeholders in order to test 
the usability of the MC-SDSS tool based on their considerations of the first 
workshop, and especially, to improve the tool (section 7.5).  

Furthermore, the answers collected from the distributed questionnaires during 
the second workshop were analyzed considering three criteria: usefulness, ease of 
use, and the visual effectiveness (Figure 84). Most participants found that the tool 
was very useful for making better decisions, easy enough to use and it was effective 
in visualizing processes. Besides comments on the tool usability, three main 
suggestions to improve the instrument were as following: the improvement of the 
data entry quality in order to increase the accuracy of scenarios analyses; the 
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installation of smart metres in order to access to real-time data; and the enlargement 
of retrofitting solutions (e.g., adding photovoltaics and DH network options).  

Limitations 
This study suggests the development of a new MC-SDSS, which can define 
dynamic retrofitting scenarios side-by-side with stakeholders. This faces several 
barriers including: 

• The need for the tool that to be Open Source. 
• The limitation of the number of retrofitting solutions, buildings cluster and 

stakeholders in this Ph.D. research.  
• The difficulty of the workshops to be time-consuming involving real 

stakeholders. 
• The difficulty of the inclusion of conflicting point of views and then 

aggregation of stakeholders’ preferences in a participative decision-making 
context. 

8.3 Future developments 

The current MC-SDSS provides a basic framework for developing scenarios in 
IUEP area. The MC-SDSS tool has a high potential to be developed. First, one case 
study was selected for applying the methodology in this Ph.D. research since an 
immense detailed data is required. However, more case studies will be necessary 
for exploring the applicability and the usability of new developed MC-SDSS.  

The refurbishment solution, as well as the building clusters, will need to be 
extended. Furthermore, more historical data will be added to the geospatial database 
including other new databases regarding natural gas measured consumption (for a 
larger part of the city) and regarding building stock characterization (for each 
building). Additionally, Smart Meters can be installed in future to transfer directly 
real-time data to the MC-SDSS tool. Possessing more data helps significantly in the 
validation process of modelling phase (statistical and engineering) presented in 
chapters 4 and 5. Interestingly, the MC-SDSS developed during this Ph.D. work 
could be a basis for many further spatial analysis areas such as transportation, 
territorial, environmental, real estate and landscaping. It is possible to adapt the tool 
to its functions; however, technical expertise and relative data are needed for 
modelling and adaption. Another fruitful area of research would be to further 
investigate the details of understanding the topic of social evaluation criteria related 
to energy retrofitting projects. To fulfil this goal, more qualitative methods such as 
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interviews as well as online questionnaire are needed. The willingness of the citizen 
to requalify their buildings need to be investigated by a real data.  

As mentioned in section 7.2, this research uses the Weighted Linear 
Combination (WLC) model to analyse the suitability of the defined scenarios. 
Further research can be dedicated to investigate about MCA methods, which give 
ratings outcome to DMs. Some methods which might be particularly interesting for 
this purpose are ELECTRE, PROMETHEE, and MACBETH. These methods could 
be integrated with the developed tool in order to give a more comprehensive vision 
regarding the “best” decision-making process. This will be a challenging 
development because it requires a complicated programming language and more 
efforts on speed reduction of the process will be required.  

An additional development is to integrate BIM (Building Information System) 
into GIS platform. This will help to analyse different target scales from building to 
district and urban level. Some mid-term results are described in [Papers 6 and Paper 
9], which were not included in this dissertation. 

 Finally, an interesting possibility that can be developed further is to create an 
Open Access MC-SDSS for UIEP in order to spin it off. During this Ph.D. research, 
a new web-based MC-SDSS has been developed and it is still on progress. This is 
named V-smart (Visualisation-sustainable multicriteria analysis retrofitting for 
territory); it allows dynamically interactive sessions among stakeholders permitting 
the exchange of information in order to support UIEP processes (Figure 85). V-
smart is developed in collaboration of the technical support of the Information 
System Consortium of the Piedmont region (CSI-Italy). It is mainly based on the 
Quantum GIS (QGIS) software (GNU General Public License, free available at 
www.qgis.org) and the virtual globe CESIUM (cesiumjs.org) systems. The 
guidelines of V-smart are under preparation in order to aid urban actors and DMs 
in planning low-carbon cities.  



188 Conclusion and future work 

 

  

Figure 85: V-smart interface, an Open Access tool under progress by Ph.D. candidate. 
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A1. Thermo-physical properties of building envelope  

1. Cluster-Period of construction-Before 1919-Before 1919-TH 
-<Composite name="P01 Wall" category="Wall" id="4"> 

<Layer ubp="0" gwp="0" nre="0" Density="1000" Cp="849" Conductivity="0.4" 
Thickness="0.02"/> 

<Layer ubp="0" gwp="0" nre="0" Density="1800" Cp="1045" Conductivity="1" 
Thickness="0.37"/> 

<Layer ubp="0" gwp="0" nre="0" Density="900" Cp="849" Conductivity="0.21" 
Thickness="0.01"/> 

</Composite> 
-<Composite name="P01 Roof" category="Roof" id="12"> 

<Layer ubp="0" gwp="0" nre="0" Density="2000" Cp="799" Conductivity="1.00" 
Thickness="0.005"/> 

<Layer ubp="0" gwp="0" nre="0" Density="1.23" Cp="640" Conductivity="0.068" 
Thickness="0.01"/> 

<Layer ubp="0" gwp="0" nre="0" Density="700" Cp="1598" Conductivity="0.18" 
Thickness="0.04"/> 

</Composite> 
-<Composite name="P01 Floor" category="Floor" id="10"> 

<Layer ubp="0" gwp="0" nre="0" Density="1500" Cp="700" Conductivity="0.7" 
Thickness="0.22"/> 

<Layer ubp="0" gwp="0" nre="0" Density="1800" Cp="900" Conductivity="1.8" 
Thickness="0.01"/> 

</Composite> 
-<Composite name="Concrete" category="Ground" id="21"> 

<Layer ubp="0" gwp="0" nre="0" Density="2100" Cp="1000" Conductivity="1.5" 
Thickness="0.10"/> 

<Layer ubp="0" gwp="0" nre="0" Density="2000" Cp="1051.19995" Conductivity="2.0000" 
Thickness="0.0200"/> 

<Layer ubp="0" gwp="0" nre="0" Density="2000" Cp="1051.19995" Conductivity="2.0000" 
Thickness="0.1000"/> 

<Layer ubp="0" gwp="0" nre="0" Density="1500" Cp="2098.80005" Conductivity="1.5000" 
Thickness="3.8550"/> 

</Composite> 
 
• Minergie-P 
-<Composite name="P01 Wall" category="Wall" id="4"> 

<Layer ubp="0" gwp="0" nre="0" Density="1000" Cp="849" Conductivity="0.4" 
Thickness="0.02"/> 

<Layer ubp="0" gwp="0" nre="0" Density="17" Cp="1080" Conductivity="0.03" 
Thickness="0.35"/> 

<Layer ubp="0" gwp="0" nre="0" Density="1800" Cp="1045" Conductivity="1" 
Thickness="0.37"/> 

<Layer ubp="0" gwp="0" nre="0" Density="900" Cp="849" Conductivity="0.21" 
Thickness="0.01"/> 

</Composite> 
-<Composite name="P01 Roof" category="Roof" id="12"> 

<Layer ubp="0" gwp="0" nre="0" Density="2000" Cp="799" Conductivity="1.00" 
Thickness="0.005"/> 
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<Layer ubp="0" gwp="0" nre="0" Density="17" Cp="1080" Conductivity="0.03" 

Thickness="0.35"/> 
<Layer ubp="0" gwp="0" nre="0" Density="1.23" Cp="640" Conductivity="0.068" 

Thickness="0.01"/> 
<Layer ubp="0" gwp="0" nre="0" Density="700" Cp="1598" Conductivity="0.18" 

Thickness="0.04"/> 
</Composite> 

-<Composite name="P01 Floor" category="Floor" id="10"> 
<Layer ubp="0" gwp="0" nre="0" Density="1500" Cp="700" Conductivity="0.7" 

Thickness="0.22"/> 
<Layer ubp="0" gwp="0" nre="0" Density="17" Cp="1080" Conductivity="0.03" 

Thickness="0.35"/> 
<Layer ubp="0" gwp="0" nre="0" Density="1800" Cp="900" Conductivity="1.8" 

Thickness="0.01"/> 
</Composite> 

-<Composite name="Concrete" category="Ground" id="21"> 
<Layer ubp="0" gwp="0" nre="0" Density="2100" Cp="1000" Conductivity="1.5" 

Thickness="0.10"/> 
<Layer ubp="0" gwp="0" nre="0" Density="2000" Cp="1051.19995" 

Conductivity="2.0000" Thickness="0.0200"/> 
<Layer ubp="0" gwp="0" nre="0" Density="2000" Cp="1051.19995" 

Conductivity="2.0000" Thickness="0.1000"/> 
<Layer ubp="0" gwp="0" nre="0" Density="1500" Cp="2098.80005" 

Conductivity="1.5000" Thickness="3.8550"/> 
</Composite> 
 

• Tabula 
-<Composite name="P01 Wall" category="Wall" id="4"> 

<Layer ubp="0" gwp="0" nre="0" Density="1000" Cp="849" Conductivity="0.4" 
Thickness="0.02"/> 

<Layer ubp="0" gwp="0" nre="0" Density="17" Cp="1080" Conductivity="0.04" 
Thickness="0.11"/> 

<Layer ubp="0" gwp="0" nre="0" Density="1800" Cp="1045" Conductivity="1" 
Thickness="0.37"/> 

<Layer ubp="0" gwp="0" nre="0" Density="900" Cp="849" Conductivity="0.21" 
Thickness="0.01"/> 

</Composite> 
-<Composite name="P01 Roof" category="Roof" id="12"> 

<Layer ubp="0" gwp="0" nre="0" Density="2000" Cp="799" Conductivity="1.00" 
Thickness="0.005"/> 

<Layer ubp="0" gwp="0" nre="0" Density="17" Cp="1080" Conductivity="0.04" 
Thickness="0.10"/> 

<Layer ubp="0" gwp="0" nre="0" Density="1.23" Cp="640" Conductivity="0.068" 
Thickness="0.01"/> 

<Layer ubp="0" gwp="0" nre="0" Density="700" Cp="1598" Conductivity="0.18" 
Thickness="0.04"/> 

</Composite> 
-<Composite name="P01 Floor" category="Floor" id="10"> 

<Layer ubp="0" gwp="0" nre="0" Density="1500" Cp="700" Conductivity="0.7" 
Thickness="0.22"/> 

<Layer ubp="0" gwp="0" nre="0" Density="17" Cp="1080" Conductivity="0.04" 
Thickness="0.11"/> 
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<Layer ubp="0" gwp="0" nre="0" Density="1800" Cp="900" Conductivity="1.8" 

Thickness="0.01"/> 
</Composite> 

-<Composite name="Concrete" category="Ground" id="21"> 
<Layer ubp="0" gwp="0" nre="0" Density="2100" Cp="1000" Conductivity="1.5" 

Thickness="0.10"/> 
<Layer ubp="0" gwp="0" nre="0" Density="2000" Cp="1051.19995" Conductivity="2.0000" 

Thickness="0.0200"/> 
<Layer ubp="0" gwp="0" nre="0" Density="2000" Cp="1051.19995" Conductivity="2.0000" 

Thickness="0.1000"/> 
<Layer ubp="0" gwp="0" nre="0" Density="1500" Cp="2098.80005" Conductivity="1.5000" 

Thickness="3.8550"/> 
</Composite> 
 

2. Cluster-Period of construction-1919-1945-SFH 
-<Composite name="P02 Wall" category="Wall" id="4"> 

<Layer ubp="0" gwp="0" nre="0" Density="900" Cp="1400" Conductivity="0.7" 
Thickness="0.01"/> 

<Layer ubp="0" gwp="0" nre="0" Density="1080" Cp="2000" Conductivity="0.55" 
Thickness="0.26"/> 

<Layer ubp="0" gwp="0" nre="0" Density="900" Cp="1200" Conductivity="0.58" 
Thickness="0.01"/> 

</Composite> 
-<Composite name="P02 Roof" category="Roof" id="12"> 

<Layer ubp="0" gwp="0" nre="0" Density="2000" Cp="799" Conductivity="1.00" 
Thickness="0.005"/> 

<Layer ubp="0" gwp="0" nre="0" Density="1.23" Cp="640" Conductivity="0.068" 
Thickness="0.01"/> 

<Layer ubp="0" gwp="0" nre="0" Density="700" Cp="1598" Conductivity="0.18" 
Thickness="0.04"/> 

</Composite> 
-<Composite name="P02 Floor" category="Floor" id="10"> 

<Layer ubp="0" gwp="0" nre="0" Density="1500" Cp="700" Conductivity="0.7" 
Thickness="0.22"/> 

<Layer ubp="0" gwp="0" nre="0" Density="1800" Cp="900" Conductivity="1.8" 
Thickness="0.01"/> 

</Composite> 
-<Composite name="Concrete" category="Ground" id="21"> 

<Layer ubp="0" gwp="0" nre="0" Density="2100" Cp="1000" Conductivity="1.5" 
Thickness="0.10"/> 

<Layer ubp="0" gwp="0" nre="0" Density="2000" Cp="1051.19995" Conductivity="2.0000" 
Thickness="0.0200"/> 

<Layer ubp="0" gwp="0" nre="0" Density="2000" Cp="1051.19995" Conductivity="2.0000" 
Thickness="0.1000"/> 

<Layer ubp="0" gwp="0" nre="0" Density="1500" Cp="2098.80005" Conductivity="1.5000" 
Thickness="3.8550"/> 

</Composite> 
 
• Minergie-P 
-<Composite name="P02 Wall" category="Wall" id="4"> 

<Layer ubp="0" gwp="0" nre="0" Density="900" Cp="1400" Conductivity="0.7" 
Thickness="0.01"/> 
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<Layer ubp="0" gwp="0" nre="0" Density="17" Cp="1080" Conductivity="0.03" 

Thickness="0.35"/> 
<Layer ubp="0" gwp="0" nre="0" Density="1080" Cp="2000" Conductivity="0.55" 

Thickness="0.26"/> 
<Layer ubp="0" gwp="0" nre="0" Density="900" Cp="1200" Conductivity="0.58" 

Thickness="0.01"/> 
</Composite> 

-<Composite name="P02 Roof" category="Roof" id="12"> 
<Layer ubp="0" gwp="0" nre="0" Density="2000" Cp="799" Conductivity="1.00" 

Thickness="0.005"/> 
<Layer ubp="0" gwp="0" nre="0" Density="17" Cp="1080" Conductivity="0.03" 

Thickness="0.35"/> 
<Layer ubp="0" gwp="0" nre="0" Density="1.23" Cp="640" Conductivity="0.068" 

Thickness="0.01"/> 
<Layer ubp="0" gwp="0" nre="0" Density="700" Cp="1598" Conductivity="0.18" 

Thickness="0.04"/> 
</Composite> 

-<Composite name="P02 Floor" category="Floor" id="10"> 
<Layer ubp="0" gwp="0" nre="0" Density="1500" Cp="700" Conductivity="0.7" 

Thickness="0.22"/> 
<Layer ubp="0" gwp="0" nre="0" Density="17" Cp="1080" Conductivity="0.03" 

Thickness="0.35"/> 
<Layer ubp="0" gwp="0" nre="0" Density="1800" Cp="900" Conductivity="1.8" 

Thickness="0.01"/> 
</Composite> 

-<Composite name="Concrete" category="Ground" id="21"> 
<Layer ubp="0" gwp="0" nre="0" Density="2100" Cp="1000" Conductivity="1.5" 

Thickness="0.10"/> 
<Layer ubp="0" gwp="0" nre="0" Density="2000" Cp="1051.19995" 

Conductivity="2.0000" Thickness="0.0200"/> 
<Layer ubp="0" gwp="0" nre="0" Density="2000" Cp="1051.19995" 

Conductivity="2.0000" Thickness="0.1000"/> 
<Layer ubp="0" gwp="0" nre="0" Density="1500" Cp="2098.80005" 

Conductivity="1.5000" Thickness="3.8550"/> 
</Composite> 

 
• TABULA 
-<Composite name="P02 Wall" category="Wall" id="4"> 

<Layer ubp="0" gwp="0" nre="0" Density="900" Cp="1400" Conductivity="0.7" 
Thickness="0.01"/> 

<Layer ubp="0" gwp="0" nre="0" Density="17" Cp="1080" Conductivity="0.04" 
Thickness="0.11"/> 

<Layer ubp="0" gwp="0" nre="0" Density="1080" Cp="2000" Conductivity="0.55" 
Thickness="0.26"/> 

<Layer ubp="0" gwp="0" nre="0" Density="900" Cp="1200" Conductivity="0.58" 
Thickness="0.01"/> 

</Composite> 
-<Composite name="P02 Roof" category="Roof" id="12"> 

<Layer ubp="0" gwp="0" nre="0" Density="2000" Cp="799" Conductivity="1.00" 
Thickness="0.005"/> 

<Layer ubp="0" gwp="0" nre="0" Density="17" Cp="1080" Conductivity="0.04" 
Thickness="0.10"/> 
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<Layer ubp="0" gwp="0" nre="0" Density="1.23" Cp="640" Conductivity="0.068" 

Thickness="0.01"/> 
<Layer ubp="0" gwp="0" nre="0" Density="700" Cp="1598" Conductivity="0.18" 

Thickness="0.04"/> 
</Composite> 

-<Composite name="P02 Floor" category="Floor" id="10"> 
<Layer ubp="0" gwp="0" nre="0" Density="1500" Cp="700" Conductivity="0.7" 

Thickness="0.22"/> 
<Layer ubp="0" gwp="0" nre="0" Density="17" Cp="1080" Conductivity="0.04" 

Thickness="0.11"/> 
<Layer ubp="0" gwp="0" nre="0" Density="1800" Cp="900" Conductivity="1.8" 

Thickness="0.01"/> 
</Composite> 

-<Composite name="Concrete" category="Ground" id="21"> 
<Layer ubp="0" gwp="0" nre="0" Density="2100" Cp="1000" Conductivity="1.5" 

Thickness="0.10"/> 
<Layer ubp="0" gwp="0" nre="0" Density="2000" Cp="1051.19995" 

Conductivity="2.0000" Thickness="0.0200"/> 
<Layer ubp="0" gwp="0" nre="0" Density="2000" Cp="1051.19995" 

Conductivity="2.0000" Thickness="0.1000"/> 
<Layer ubp="0" gwp="0" nre="0" Density="1500" Cp="2098.80005" 

Conductivity="1.5000" Thickness="3.8550"/> 
</Composite> 

 
3. Cluster-Period of construction-1946-1960-SFH 
-<Composite name="P03 Wall" category="Wall" id="4"> 

<Layer ubp="0" gwp="0" nre="0" Density="900" Cp="1400" Conductivity="0.7" 
Thickness="0.01"/> 

<Layer ubp="0" gwp="0" nre="0" Density="1080" Cp="2000" Conductivity="0.5" 
Thickness="0.3"/> 

<Layer ubp="0" gwp="0" nre="0" Density="900" Cp="1200" Conductivity="0.5" 
Thickness="0.01"/> 

</Composite> 
-<Composite name="P03 Roof" category="Roof" id="12"> 

<Layer ubp="0" gwp="0" nre="0" Density="2000" Cp="799" Conductivity="1.00" 
Thickness="0.05"/> 

<Layer ubp="0" gwp="0" nre="0" Density="2400" Cp="1100" Conductivity="0.9" 
Thickness="0.35"/> 

</Composite> 
-<Composite name="P03 Floor" category="Floor" id="10"> 

<Layer ubp="0" gwp="0" nre="0" Density="700" Cp="1500" Conductivity="0.7" 
Thickness="0.22"/> 

<Layer ubp="0" gwp="0" nre="0" Density="900" Cp="1800" Conductivity="1.8" 
Thickness="0.01"/> 

</Composite> 
-<Composite name="Concrete" category="Ground" id="21"> 

<Layer ubp="0" gwp="0" nre="0" Density="2100" Cp="1000" Conductivity="1.5" 
Thickness="0.10"/> 

<Layer ubp="0" gwp="0" nre="0" Density="2000" Cp="1051.19995" Conductivity="2.0000" 
Thickness="0.0200"/> 

<Layer ubp="0" gwp="0" nre="0" Density="2000" Cp="1051.19995" Conductivity="2.0000" 
Thickness="0.1000"/> 
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<Layer ubp="0" gwp="0" nre="0" Density="1500" Cp="2098.80005" Conductivity="1.5000" 

Thickness="3.8550"/> 
</Composite> 

 
4. Cluster-Period of construction-1961-1970-MF 
-<Composite name="P04 Wall" category="Wall" id="4"> 

<Layer ubp="0" gwp="0" nre="0" Density="900" Cp="850" Conductivity="0.21" 
Thickness="0.02"/> 

<Layer ubp="0" gwp="0" nre="0" Density="1200" Cp="1000" Conductivity="0.7" 
Thickness="0.15"/> 

<Layer ubp="0" gwp="0" nre="0" Density="1.23" Cp="1000" Conductivity="0.656" 
Thickness="0.12"/> 

<Layer ubp="0" gwp="0" nre="0" Density="1200" Cp="1000" Conductivity="0.7" 
Thickness="0.08"/> 

<Layer ubp="0" gwp="0" nre="0" Density="900" Cp="850" Conductivity="0.21" 
Thickness="0.01"/> 

</Composite> 
-<Composite name="P04 Roof" category="Roof" id="12"> 

<Layer ubp="0" gwp="0" nre="0" Density="1000" Cp="1100" Conductivity="0.3" 
Thickness="0.20"/> 

</Composite> 
-<Composite name="P04 Floor" category="Floor" id="10"> 

<Layer ubp="0" gwp="0" nre="0" Density="1200" Cp="900" Conductivity="0.7" 
Thickness="0.20"/> 

<Layer ubp="0" gwp="0" nre="0" Density="500" Cp="1000" Conductivity="0.16" 
Thickness="0.10"/> 

</Composite> 
-<Composite name="Concrete" category="Ground" id="21"> 

<Layer ubp="0" gwp="0" nre="0" Density="2100" Cp="1000" Conductivity="1.5" 
Thickness="0.10"/> 

<Layer ubp="0" gwp="0" nre="0" Density="2000" Cp="1051.19995" Conductivity="2.0000" 
Thickness="0.0200"/> 

<Layer ubp="0" gwp="0" nre="0" Density="2000" Cp="1051.19995" Conductivity="2.0000" 
Thickness="0.1000"/> 

<Layer ubp="0" gwp="0" nre="0" Density="1500" Cp="2098.80005" Conductivity="1.5000" 
Thickness="3.8550"/> 

</Composite> 

• Minergie-P 
-<Composite name="P04 Wall" category="Wall" id="4"> 

<Layer ubp="0" gwp="0" nre="0" Density="900" Cp="850" Conductivity="0.21" 
Thickness="0.02"/> 

<Layer ubp="0" gwp="0" nre="0" Density="17" Cp="1080" Conductivity="0.03" 
Thickness="0.35"/> 

<Layer ubp="0" gwp="0" nre="0" Density="1200" Cp="1000" Conductivity="0.7" 
Thickness="0.15"/> 

<Layer ubp="0" gwp="0" nre="0" Density="1.23" Cp="1000" Conductivity="0.656" 
Thickness="0.12"/> 

<Layer ubp="0" gwp="0" nre="0" Density="1200" Cp="1000" Conductivity="0.7" 
Thickness="0.08"/> 

<Layer ubp="0" gwp="0" nre="0" Density="900" Cp="850" Conductivity="0.21" 
Thickness="0.01"/> 



220 Appendix A. Simulation Material 

 
</Composite> 
-<Composite name="P04 Roof" category="Roof" id="12"> 
<Layer ubp="0" gwp="0" nre="0" Density="17" Cp="1080" Conductivity="0.03" 

Thickness="0.35"/> 
<Layer ubp="0" gwp="0" nre="0" Density="1000" Cp="1100" Conductivity="0.3" 

Thickness="0.20"/> 
</Composite> 
-<Composite name="P04 Floor" category="Floor" id="10"> 
<Layer ubp="0" gwp="0" nre="0" Density="1200" Cp="900" Conductivity="0.7" 

Thickness="0.20"/> 
<Layer ubp="0" gwp="0" nre="0" Density="17" Cp="1080" Conductivity="0.03" 

Thickness="0.35"/> 
<Layer ubp="0" gwp="0" nre="0" Density="500" Cp="1000" Conductivity="0.16" 

Thickness="0.10"/> 
</Composite> 
-<Composite name="Concrete" category="Ground" id="21"> 
<Layer ubp="0" gwp="0" nre="0" Density="2100" Cp="1000" Conductivity="1.5" 

Thickness="0.10"/> 
<Layer ubp="0" gwp="0" nre="0" Density="2000" Cp="1051.19995" Conductivity="2.0000" 

Thickness="0.0200"/> 
<Layer ubp="0" gwp="0" nre="0" Density="2000" Cp="1051.19995" Conductivity="2.0000" 

Thickness="0.1000"/> 
<Layer ubp="0" gwp="0" nre="0" Density="1500" Cp="2098.80005" Conductivity="1.5000" 

Thickness="3.8550"/> 
</Composite> 

• TABLUA 
-<Composite name="P04 Wall" category="Wall" id="4"> 

<Layer ubp="0" gwp="0" nre="0" Density="900" Cp="850" Conductivity="0.21" 
Thickness="0.02"/> 
<Layer ubp="0" gwp="0" nre="0" Density="17" Cp="1080" Conductivity="0.04" 
Thickness="0.09"/> 

<Layer ubp="0" gwp="0" nre="0" Density="1200" Cp="1000" Conductivity="0.7" 
Thickness="0.15"/> 

<Layer ubp="0" gwp="0" nre="0" Density="1.23" Cp="1000" Conductivity="0.656" 
Thickness="0.12"/> 

<Layer ubp="0" gwp="0" nre="0" Density="1200" Cp="1000" Conductivity="0.7" 
Thickness="0.08"/> 

<Layer ubp="0" gwp="0" nre="0" Density="900" Cp="850" Conductivity="0.21" 
Thickness="0.01"/> 

</Composite> 
-<Composite name="P04 Roof" category="Roof" id="12"> 

<Layer ubp="0" gwp="0" nre="0" Density="17" Cp="1080" Conductivity="0.04" 
Thickness="0.11"/> 

<Layer ubp="0" gwp="0" nre="0" Density="1000" Cp="1100" Conductivity="0.3" 
Thickness="0.20"/> 

</Composite> 
-<Composite name="P04 Floor" category="Floor" id="10"> 

<Layer ubp="0" gwp="0" nre="0" Density="1200" Cp="900" Conductivity="0.7" 
Thickness="0.20"/> 

<Layer ubp="0" gwp="0" nre="0" Density="17" Cp="1080" Conductivity="0.04" 
Thickness="0.11"/> 
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<Layer ubp="0" gwp="0" nre="0" Density="500" Cp="1000" Conductivity="0.16" 

Thickness="0.10"/> 
</Composite> 

-<Composite name="Concrete" category="Ground" id="21"> 
<Layer ubp="0" gwp="0" nre="0" Density="2100" Cp="1000" Conductivity="1.5" 

Thickness="0.10"/> 
<Layer ubp="0" gwp="0" nre="0" Density="2000" Cp="1051.19995" 

Conductivity="2.0000" Thickness="0.0200"/> 
<Layer ubp="0" gwp="0" nre="0" Density="2000" Cp="1051.19995" 

Conductivity="2.0000" Thickness="0.1000"/> 
<Layer ubp="0" gwp="0" nre="0" Density="1500" Cp="2098.80005" 

Conductivity="1.5000" Thickness="3.8550"/> 
</Composite> 

5. Cluster-Period of construction-1971-1990-MFH 
-<Composite name="P05 Wall" category="Wall" id="4"> 

<Layer ubp="0" gwp="0" nre="0" Density="1200" Cp="900" Conductivity="0.58" 
Thickness="0.02"/> 

<Layer ubp="0" gwp="0" nre="0" Density="40" Cp="1029" Conductivity="0.058" 
Thickness="0.05"/> 

<Layer ubp="0" gwp="0" nre="0" Density="1200" Cp="1029" Conductivity="0.7" 
Thickness="0.12"/> 

<Layer ubp="0" gwp="0" nre="0" Density="1200" Cp="900" Conductivity="0.58" 
Thickness="0.01"/> 

</Composite> 
-<Composite name="P05 Roof" category="Roof" id="12"> 

<Layer ubp="0" gwp="0" nre="0" Density="2400" Cp="850" Conductivity="2.1" 
Thickness="0.02"/> 

<Layer ubp="0" gwp="0" nre="0" Density="65" Cp="1450" Conductivity="0.043" 
Thickness="0.05"/> 

<Layer ubp="0" gwp="0" nre="0" Density="2100" Cp="1000" Conductivity="1.5" 
Thickness="0.10"/> 

</Composite> 
-<Composite name="P05 Floor" category="Floor" id="10"> 

<Layer ubp="0" gwp="0" nre="0" Density="2400" Cp="1000" Conductivity="2.1" 
Thickness="0.02"/> 

<Layer ubp="0" gwp="0" nre="0" Density="65" Cp="1450" Conductivity="0.043" 
Thickness="0.03"/> 

<Layer ubp="0" gwp="0" nre="0" Density="2100" Cp="850" Conductivity="1.5" 
Thickness="0.09"/> 

</Composite> 
-<Composite name="Concrete" category="Ground" id="21"> 

<Layer ubp="0" gwp="0" nre="0" Density="2100" Cp="1000" Conductivity="1.5" 
Thickness="0.10"/> 

<Layer ubp="0" gwp="0" nre="0" Density="2000" Cp="1051.19995" Conductivity="2.0000" 
Thickness="0.0200"/> 

<Layer ubp="0" gwp="0" nre="0" Density="2000" Cp="1051.19995" Conductivity="2.0000" 
Thickness="0.1000"/> 

<Layer ubp="0" gwp="0" nre="0" Density="1500" Cp="2098.80005" Conductivity="1.5000" 
Thickness="3.8550"/> 

</Composite> 
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• Minergie-P 
-<Composite id="4" name="P05 Wall" category="Wall"> 

<Layer Thickness="0.02" Conductivity="0.58" Cp="900" Density="1200" nre="0" 
gwp="0" ubp="0"/> 

<Layer Thickness="0.35" Conductivity="0.03" Cp="1080" Density="17" nre="0" 
gwp="0" ubp="0"/> 
 <Layer Thickness="0.05" Conductivity="0.058" Cp="1029" Density="40" nre="0" 
gwp="0" ubp="0"/> 
 <Layer Thickness="0.12" Conductivity="0.7" Cp="1029" Density="1200" nre="0" 
gwp="0" ubp="0"/> 
 <Layer Thickness="0.01" Conductivity="0.58" Cp="900" Density="1200" nre="0" 
gwp="0" ubp="0"/> 

</Composite> 
-<Composite id="12" name="P05 Roof" category="Roof"> 
 <Layer Thickness="0.02" Conductivity="2.1" Cp="850" Density="2400" nre="0" 
gwp="0" ubp="0"/> 
 <Layer Thickness="0.35" Conductivity="0.03" Cp="1080" Density="17" nre="0" 
gwp="0" ubp="0"/> 
 <Layer Thickness="0.05" Conductivity="0.043" Cp="1450" Density="65" nre="0" 
gwp="0" ubp="0"/> 
 <Layer Thickness="0.10" Conductivity="1.5" Cp="1000" Density="2100" nre="0" 
gwp="0" ubp="0"/> 

</Composite> 
-<Composite id="10" name="P05 Floor" category="Floor"> 
 <Layer Thickness="0.02" Conductivity="2.1" Cp="1000" Density="2400" nre="0" 
gwp="0" ubp="0"/> 
 <Layer Thickness="0.35" Conductivity="0.03" Cp="1080" Density="17" nre="0" 
gwp="0" ubp="0"/> 
 <Layer Thickness="0.03" Conductivity="0.043" Cp="1450" Density="65" nre="0" 
gwp="0" ubp="0"/> 
 <Layer Thickness="0.09" Conductivity="1.5" Cp="850" Density="2100" nre="0" 
gwp="0" ubp="0"/> 

</Composite> 
-<Composite id="21" name="Concrete" category="Ground"> 
 <Layer Thickness="0.10" Conductivity="1.5" Cp="1000" Density="2100" nre="0" 
gwp="0" ubp="0"/> 

<Layer Thickness="0.0200" Conductivity="2.0000" Cp="1051.19995" Density="2000" 
nre="0" gwp="0" ubp="0"/> 
 <Layer Thickness="0.1000" Conductivity="2.0000" Cp="1051.19995" Density="2000" 
nre="0" gwp="0" ubp="0"/> 
 <Layer Thickness="3.8550" Conductivity="1.5000" Cp="2098.80005" Density="1500" 
nre="0" gwp="0" ubp="0"/> 

</Composite> 
 
• TABULA 
-<Composite name="P05 Wall" category="Wall" id="4"> 

<Layer ubp="0" gwp="0" nre="0" Density="1200" Cp="900" Conductivity="0.58" 
Thickness="0.02"/> 

<Layer ubp="0" gwp="0" nre="0" Density="40" Cp="1029" Conductivity="0.058" 
Thickness="0.12"/> 

<Layer ubp="0" gwp="0" nre="0" Density="1200" Cp="1029" Conductivity="0.7" 
Thickness="0.12"/> 
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<Layer ubp="0" gwp="0" nre="0" Density="1200" Cp="900" Conductivity="0.58" 

Thickness="0.01"/> 
</Composite> 

-<Composite name="P05 Roof" category="Roof" id="12"> 
<Layer ubp="0" gwp="0" nre="0" Density="2400" Cp="850" Conductivity="2.1" 

Thickness="0.02"/> 
<Layer ubp="0" gwp="0" nre="0" Density="65" Cp="1450" Conductivity="0.043" 

Thickness="0.15"/> 
<Layer ubp="0" gwp="0" nre="0" Density="2100" Cp="1000" Conductivity="1.5" 

Thickness="0.10"/> 
</Composite> 

-<Composite name="P05 Floor" category="Floor" id="10"> 
<Layer ubp="0" gwp="0" nre="0" Density="2400" Cp="1000" Conductivity="2.1" 

Thickness="0.02"/> 
<Layer ubp="0" gwp="0" nre="0" Density="65" Cp="1450" Conductivity="0.043" 

Thickness="0.13"/> 
<Layer ubp="0" gwp="0" nre="0" Density="2100" Cp="850" Conductivity="1.5" 

Thickness="0.09"/> 
</Composite> 

-<Composite name="Concrete" category="Ground" id="21"> 
<Layer ubp="0" gwp="0" nre="0" Density="2100" Cp="1000" Conductivity="1.5" 

Thickness="0.10"/> 
<Layer ubp="0" gwp="0" nre="0" Density="2000" Cp="1051.19995" 

Conductivity="2.0000" Thickness="0.0200"/> 
<Layer ubp="0" gwp="0" nre="0" Density="2000" Cp="1051.19995" 

Conductivity="2.0000" Thickness="0.1000"/> 
<Layer ubp="0" gwp="0" nre="0" Density="1500" Cp="2098.80005" 

Conductivity="1.5000" Thickness="3.8550"/> 
</Composite> 

 
6. Cluster-Period of construction-1991-2005-MFH 
-<Composite name="P07 Wall" category="Wall" id="4"> 

<Layer ubp="0" gwp="0" nre="0" Density="900" Cp="900" Conductivity="0.21" 
Thickness="0.02"/> 

<Layer ubp="0" gwp="0" nre="0" Density="1200" Cp="1000" Conductivity="0.7" 
Thickness="0.15"/> 

<Layer ubp="0" gwp="0" nre="0" Density="1.23" Cp="1000" Conductivity="0.546" 
Thickness="0.10"/> 

<Layer ubp="0" gwp="0" nre="0" Density="40" Cp="1260" Conductivity="0.035" 
Thickness="0.03"/> 

<Layer ubp="0" gwp="0" nre="0" Density="1200" Cp="1000" Conductivity="0.7" 
Thickness="0.08"/> 

<Layer ubp="0" gwp="0" nre="0" Density="900" Cp="900" Conductivity="0.21" 
Thickness="0.01"/> 

</Composite> 
-<Composite name="P07 Roof" category="Roof" id="12"> 

<Layer ubp="0" gwp="0" nre="0" Density="2400" Cp="850" Conductivity="2.1" 
Thickness="0.05"/> 

<Layer ubp="0" gwp="0" nre="0" Density="425" Cp="1600" Conductivity="0.085" 
Thickness="0.12"/> 

<Layer ubp="0" gwp="0" nre="0" Density="2400" Cp="1000" Conductivity="0.7" 
Thickness="0.10"/> 
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</Composite> 

-<Composite name="P07 Floor" category="Floor" id="10"> 
<Layer ubp="0" gwp="0" nre="0" Density="1200" Cp="1000" Conductivity="0.7" 

Thickness="0.10"/> 
<Layer ubp="0" gwp="0" nre="0" Density="1600" Cp="1450" Conductivity="0.085" 

Thickness="0.08"/> 
<Layer ubp="0" gwp="0" nre="0" Density="2400" Cp="850" Conductivity="2.1" 

Thickness="0.05"/> 
</Composite> 

-<Composite name="Concrete" category="Ground" id="21"> 
<Layer ubp="0" gwp="0" nre="0" Density="2100" Cp="1000" Conductivity="1.5" 

Thickness="0.10"/> 
<Layer ubp="0" gwp="0" nre="0" Density="2000" Cp="1051.19995" Conductivity="2.0000" 

Thickness="0.0200"/> 
<Layer ubp="0" gwp="0" nre="0" Density="2000" Cp="1051.19995" Conductivity="2.0000" 

Thickness="0.1000"/> 
<Layer ubp="0" gwp="0" nre="0" Density="1500" Cp="2098.80005" Conductivity="1.5000" 

Thickness="3.8550"/> 
</Composite> 

 
• Minergie-P 
-<Composite name="P07 Wall" category="Wall" id="4"> 

<Layer ubp="0" gwp="0" nre="0" Density="900" Cp="900" Conductivity="0.21" 
Thickness="0.02"/> 

<Layer ubp="0" gwp="0" nre="0" Density="17" Cp="1080" Conductivity="0.03" 
Thickness="0.35"/> 

<Layer ubp="0" gwp="0" nre="0" Density="1200" Cp="1000" Conductivity="0.7" 
Thickness="0.15"/> 

<Layer ubp="0" gwp="0" nre="0" Density="1.23" Cp="1000" Conductivity="0.546" 
Thickness="0.10"/> 

<Layer ubp="0" gwp="0" nre="0" Density="40" Cp="1260" Conductivity="0.035" 
Thickness="0.03"/> 

<Layer ubp="0" gwp="0" nre="0" Density="1200" Cp="1000" Conductivity="0.7" 
Thickness="0.08"/> 

<Layer ubp="0" gwp="0" nre="0" Density="900" Cp="900" Conductivity="0.21" 
Thickness="0.01"/> 

</Composite> 
-<Composite name="P07 Roof" category="Roof" id="12"><Layer ubp="0" gwp="0" nre="0" 
Density="2400" Cp="850" Conductivity="2.1" Thickness="0.05"/> 

<Layer ubp="0" gwp="0" nre="0" Density="17" Cp="1080" Conductivity="0.03" 
Thickness="0.35"/> 

<Layer ubp="0" gwp="0" nre="0" Density="425" Cp="1600" Conductivity="0.085" 
Thickness="0.12"/> 

<Layer ubp="0" gwp="0" nre="0" Density="2400" Cp="1000" Conductivity="0.7" 
Thickness="0.10"/> 

</Composite> 
-<Composite name="P07 Floor" category="Floor" id="10"> 

<Layer ubp="0" gwp="0" nre="0" Density="1200" Cp="1000" Conductivity="0.7" 
Thickness="0.10"/> 

<Layer ubp="0" gwp="0" nre="0" Density="17" Cp="1080" Conductivity="0.03" 
Thickness="0.35"/> 
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<Layer ubp="0" gwp="0" nre="0" Density="1600" Cp="1450" Conductivity="0.085" 

Thickness="0.08"/> 
<Layer ubp="0" gwp="0" nre="0" Density="2400" Cp="850" Conductivity="2.1" 

Thickness="0.05"/> 
</Composite> 

-<Composite name="Concrete" category="Ground" id="21"> 
<Layer ubp="0" gwp="0" nre="0" Density="2100" Cp="1000" Conductivity="1.5" 

Thickness="0.10"/> 
<Layer ubp="0" gwp="0" nre="0" Density="2000" Cp="1051.19995" 

Conductivity="2.0000" Thickness="0.0200"/> 
<Layer ubp="0" gwp="0" nre="0" Density="2000" Cp="1051.19995" 

Conductivity="2.0000" Thickness="0.1000"/> 
<Layer ubp="0" gwp="0" nre="0" Density="1500" Cp="2098.80005" 

Conductivity="1.5000" Thickness="3.8550"/> 
</Composite> 

 
• TABULA 
-<Composite name="P07 Wall" category="Wall" id="4"> 

<Layer ubp="0" gwp="0" nre="0" Density="900" Cp="900" Conductivity="0.21" 
Thickness="0.02"/> 

<Layer ubp="0" gwp="0" nre="0" Density="17" Cp="1080" Conductivity="0.04" 
Thickness="0.06"/> 

<Layer ubp="0" gwp="0" nre="0" Density="1200" Cp="1000" Conductivity="0.7" 
Thickness="0.15"/> 

<Layer ubp="0" gwp="0" nre="0" Density="1.23" Cp="1000" Conductivity="0.546" 
Thickness="0.10"/> 

<Layer ubp="0" gwp="0" nre="0" Density="40" Cp="1260" Conductivity="0.035" 
Thickness="0.03"/> 

<Layer ubp="0" gwp="0" nre="0" Density="1200" Cp="1000" Conductivity="0.7" 
Thickness="0.08"/> 

<Layer ubp="0" gwp="0" nre="0" Density="900" Cp="900" Conductivity="0.21" 
Thickness="0.01"/> 

</Composite> 
-<Composite name="P07 Roof" category="Roof" id="12"> 

<Layer ubp="0" gwp="0" nre="0" Density="2400" Cp="850" Conductivity="2.1" 
Thickness="0.05"/> 

<Layer ubp="0" gwp="0" nre="0" Density="17" Cp="1080" Conductivity="0.04" 
Thickness="0.08"/> 

<Layer ubp="0" gwp="0" nre="0" Density="425" Cp="1600" Conductivity="0.085" 
Thickness="0.12"/> 

<Layer ubp="0" gwp="0" nre="0" Density="2400" Cp="1000" Conductivity="0.7" 
Thickness="0.10"/> 

</Composite> 
-<Composite name="P07 Floor" category="Floor" id="10"> 

<Layer ubp="0" gwp="0" nre="0" Density="1200" Cp="1000" Conductivity="0.7" 
Thickness="0.10"/> 

<Layer ubp="0" gwp="0" nre="0" Density="17" Cp="1080" Conductivity="0.04" 
Thickness="0.08"/> 

<Layer ubp="0" gwp="0" nre="0" Density="1600" Cp="1450" Conductivity="0.085" 
Thickness="0.08"/> 

<Layer ubp="0" gwp="0" nre="0" Density="2400" Cp="850" Conductivity="2.1" 
Thickness="0.05"/> 



226 Appendix A. Simulation Material 

 
</Composite> 

-<Composite name="Concrete" category="Ground" id="21"> 
<Layer ubp="0" gwp="0" nre="0" Density="2100" Cp="1000" Conductivity="1.5" 

Thickness="0.10"/> 
<Layer ubp="0" gwp="0" nre="0" Density="2000" Cp="1051.19995" 

Conductivity="2.0000" Thickness="0.0200"/> 
<Layer ubp="0" gwp="0" nre="0" Density="2000" Cp="1051.19995" 

Conductivity="2.0000" Thickness="0.1000"/> 
<Layer ubp="0" gwp="0" nre="0" Density="1500" Cp="2098.80005" 

Conductivity="1.5000" Thickness="3.8550"/> 
</Composite> 
 

7. Cluster-Period of construction-since 2006-TH 
-<Composite name="P09 Wall" category="Wall" id="4"> 

<Layer ubp="0" gwp="0" nre="0" Density="1200" Cp="900" Conductivity="0.58" 
Thickness="0.02"/> 

<Layer ubp="0" gwp="0" nre="0" Density="40" Cp="1450" Conductivity="0.041" 
Thickness="0.10"/> 

<Layer ubp="0" gwp="0" nre="0" Density="1200" Cp="1000" Conductivity="0.7" 
Thickness="0.24"/> 

<Layer ubp="0" gwp="0" nre="0" Density="1200" Cp="900" Conductivity="0.58" 
Thickness="0.02"/> 

</Composite> 
-<Composite name="P09 Roof" category="Roof" id="12"> 

<Layer ubp="0" gwp="0" nre="0" Density="1200" Cp="1100" Conductivity="0.7" 
Thickness="0.15"/> 

<Layer ubp="0" gwp="0" nre="0" Density="40" Cp="1450" Conductivity="0.0041" 
Thickness="0.12"/> 

<Layer ubp="0" gwp="0" nre="0" Density="500" Cp="1100" Conductivity="0.16" 
Thickness="0.05"/> 

</Composite> 
-<Composite name="P09 Floor" category="Floor" id="10"> 

<Layer ubp="0" gwp="0" nre="0" Density="2400" Cp="850" Conductivity="2.1" 
Thickness="0.10"/> 

<Layer ubp="0" gwp="0" nre="0" Density="40" Cp="1450" Conductivity="0.041" 
Thickness="0.08"/> 

<Layer ubp="0" gwp="0" nre="0" Density="700" Cp="1600" Conductivity="0.18" 
Thickness="0.05"/> 

</Composite> 
-<Composite name="Concrete" category="Ground" id="21"> 

<Layer ubp="0" gwp="0" nre="0" Density="2100" Cp="1000" Conductivity="1.5" 
Thickness="0.10"/> 

<Layer ubp="0" gwp="0" nre="0" Density="2000" Cp="1051.19995" Conductivity="2.0000" 
Thickness="0.0200"/> 

<Layer ubp="0" gwp="0" nre="0" Density="2000" Cp="1051.19995" Conductivity="2.0000" 
Thickness="0.1000"/> 

<Layer ubp="0" gwp="0" nre="0" Density="1500" Cp="2098.80005" Conductivity="1.5000" 
Thickness="3.8550"/> 

</Composite> 
 
• Minergie-P 

-<Composite name="P09 Wall" category="Wall" id="4"> 
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<Layer ubp="0" gwp="0" nre="0" Density="1200" Cp="900" Conductivity="0.58" 

Thickness="0.02"/> 
 

<Layer ubp="0" gwp="0" nre="0" Density="17" Cp="1080" Conductivity="0.03" 
Thickness="0.35"/> 

<Layer ubp="0" gwp="0" nre="0" Density="40" Cp="1450" Conductivity="0.041" 
Thickness="0.10"/> 

<Layer ubp="0" gwp="0" nre="0" Density="1200" Cp="1000" Conductivity="0.7" 
Thickness="0.24"/> 

<Layer ubp="0" gwp="0" nre="0" Density="1200" Cp="900" Conductivity="0.58" 
Thickness="0.02"/> 

</Composite> 
-<Composite name="P09 Roof" category="Roof" id="12"> 

<Layer ubp="0" gwp="0" nre="0" Density="1200" Cp="1100" Conductivity="0.7" 
Thickness="0.15"/> 

<Layer ubp="0" gwp="0" nre="0" Density="17" Cp="1080" Conductivity="0.03" 
Thickness="0.35"/> 

<Layer ubp="0" gwp="0" nre="0" Density="40" Cp="1450" Conductivity="0.0041" 
Thickness="0.12"/> 

<Layer ubp="0" gwp="0" nre="0" Density="500" Cp="1100" Conductivity="0.16" 
Thickness="0.05"/> 

</Composite> 
-<Composite name="P09 Floor" category="Floor" id="10"> 

<Layer ubp="0" gwp="0" nre="0" Density="2400" Cp="850" Conductivity="2.1" 
Thickness="0.10"/> 

<Layer ubp="0" gwp="0" nre="0" Density="17" Cp="1080" Conductivity="0.03" 
Thickness="0.35"/> 

<Layer ubp="0" gwp="0" nre="0" Density="40" Cp="1450" Conductivity="0.041" 
Thickness="0.08"/> 

<Layer ubp="0" gwp="0" nre="0" Density="700" Cp="1600" Conductivity="0.18" 
Thickness="0.05"/> 

</Composite> 
-<Composite name="Concrete" category="Ground" id="21"> 

<Layer ubp="0" gwp="0" nre="0" Density="2100" Cp="1000" Conductivity="1.5" 
Thickness="0.10"/> 

<Layer ubp="0" gwp="0" nre="0" Density="2000" Cp="1051.19995" 
Conductivity="2.0000" Thickness="0.0200"/> 

<Layer ubp="0" gwp="0" nre="0" Density="2000" Cp="1051.19995" 
Conductivity="2.0000" Thickness="0.1000"/> 

<Layer ubp="0" gwp="0" nre="0" Density="1500" Cp="2098.80005" 
Conductivity="1.5000" Thickness="3.8550"/> 

</Composite> 
 

• TABULA 
-<Composite name="P09 Wall" category="Wall" id="4"> 

<Layer ubp="0" gwp="0" nre="0" Density="1200" Cp="900" Conductivity="0.58" 
Thickness="0.02"/> 

<Layer ubp="0" gwp="0" nre="0" Density="17" Cp="1080" Conductivity="0.04" 
Thickness="0.15"/> 

<Layer ubp="0" gwp="0" nre="0" Density="40" Cp="1450" Conductivity="0.041" 
Thickness="0.10"/> 
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<Layer ubp="0" gwp="0" nre="0" Density="1200" Cp="1000" Conductivity="0.7" 

Thickness="0.24"/> 
<Layer ubp="0" gwp="0" nre="0" Density="1200" Cp="900" Conductivity="0.58" 

Thickness="0.02"/> 
</Composite> 

-<Composite name="P09 Roof" category="Roof" id="12"> 
<Layer ubp="0" gwp="0" nre="0" Density="1200" Cp="1100" Conductivity="0.7" 

Thickness="0.15"/> 
<Layer ubp="0" gwp="0" nre="0" Density="17" Cp="1080" Conductivity="0.04" 

Thickness="0.15"/> 
<Layer ubp="0" gwp="0" nre="0" Density="40" Cp="1450" Conductivity="0.0041" 

Thickness="0.12"/> 
<Layer ubp="0" gwp="0" nre="0" Density="500" Cp="1100" Conductivity="0.16" 

Thickness="0.05"/> 
</Composite> 

-<Composite name="P09 Floor" category="Floor" id="10"> 
<Layer ubp="0" gwp="0" nre="0" Density="2400" Cp="850" Conductivity="2.1" 

Thickness="0.10"/> 
<Layer ubp="0" gwp="0" nre="0" Density="17" Cp="1080" Conductivity="0.04" 

Thickness="0.15"/> 
<Layer ubp="0" gwp="0" nre="0" Density="40" Cp="1450" Conductivity="0.041" 

Thickness="0.08"/> 
<Layer ubp="0" gwp="0" nre="0" Density="700" Cp="1600" Conductivity="0.18" 

Thickness="0.05"/> 
</Composite> 

-<Composite name="Concrete" category="Ground" id="21"> 
<Layer ubp="0" gwp="0" nre="0" Density="2100" Cp="1000" Conductivity="1.5" 

Thickness="0.10"/> 
<Layer ubp="0" gwp="0" nre="0" Density="2000" Cp="1051.19995" 

Conductivity="2.0000" Thickness="0.0200"/> 
<Layer ubp="0" gwp="0" nre="0" Density="2000" Cp="1051.19995" 

Conductivity="2.0000" Thickness="0.1000"/> 
<Layer ubp="0" gwp="0" nre="0" Density="1500" Cp="2098.80005" 

Conductivity="1.5000" Thickness="3.8550"/> 
</Composite> 
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MISURE DI RETROFITTING 

A – Variazione sistema riscaldamento per gruppi di edifici (sostituzione del Boiler) 

Domanda 1. La simulazione relativa alla variazione del sistema riscaldamento per gruppi di edifici è 

utile? 

❏ Molto 

❏ Abbastanza 

❏ Poco 

❏ Per niente 

 

Motiva la risposta___________________________________________________________________ 

 

Domanda 2. È comprensibile e di facile utilizzo? 

❏ Molto 

❏ Abbastanza 

❏ Poco 

❏ Per niente 

 

Motiva la risposta___________________________________________________________________ 

 

Domanda 3. I risultati derivanti da tale simulazione sono visualizzati in modo efficace? 

❏ Molto 

❏ Abbastanza 

❏ Poco 

❏ Per niente 

 

Motiva la risposta____________________________________________________________________ 

 

Domanda 4. Eventuali suggerimenti per migliorare tale simulazione e/o la sua modalità di 

visualizzazione: 

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________ 
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B– Riqualificazione energetica dell'involucro edilizio (sostituzione delle finestre, 

isolamento dei muri,...) 

Domanda 5. La simulazione relativa alla riqualificazione energetica dell'involucro edilizio per gruppi di 

edifici è utile? 

❏ Molto 

❏ Abbastanza 

❏ Poco 

❏ Per niente 

 

Motiva la risposta___________________________________________________________________ 

 

Domanda 6. È comprensibile e di facile utilizzo? 

❏ Molto 

❏ Abbastanza 

❏ Poco 

❏ Per niente 

 

Motiva la risposta___________________________________________________________________ 

 

Domanda 7. I risultati derivanti da tale simulazione sono visualizzati in modo efficace? 

❏ Molto 

❏ Abbastanza 

❏ Poco 

❏ Per niente 

 

Motiva la risposta____________________________________________________________________ 

 

Domanda 8. Eventuali suggerimenti per migliorare tale simulazione e/o la sua modalità di 

visualizzazione: 

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________ 
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Domanda 9. Eventuali suggerimenti per modificare oppure aggiungere la misure di retrofitting: 

___________________________________________________________________________________

___________________________________________________________________________________

___________________________________________________________________________________ 

___________________________________________________________________________________

___________________________________________________________________________________

___________________________________________________________________________________

___________________________________________________________________________________

___________________________________________________________________________________

___________________________________________________________________________________

___________________________________________________________________________________

___________________________________________________________________________________

___________________________________________________________________________________ 
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STRUMENTO INTERATTIVO ENERGETICO  

Visualizzare dati ed indicatori energetici 

Domanda 10. Quanto sono utili gli indicatori presenti nello strumento? 

Totale dei costi di investimento per ogni misura di retrofitting 
Investment Cost (M€) 
(Totale del costo di acquisizione, installazione e manutenzione dell’intervento 

calcolato in 30 anni considerando VAN, espresso in MilioneEuro) 

❏ Molto 
❏ Abbastanza 
❏ Poco 
❏ Per niente 

Totale dei costi di investimento per GWh per ogni misura di retrofitting 
Investment Cost-GWh (M€/GWh) 
(Totale del costo di investimento per unità di GWh, espresso in 
MilioneEuro/GWh) 

❏ Molto 
❏ Abbastanza 
❏ Poco 
❏ Per niente 

Totale emissioni globali 
Global CO2 Emissions (t) 
(Totale delle emissioni di CO2 (anidride carbonica) a livello globale 
calcolati per ogni misura di retrofitting, espresso in tonnellate) 

❏ Molto 
❏ Abbastanza 
❏ Poco 
❏ Per niente 

Percentuale della riduzione delle emissioni globali 
Global CO2 Emissions-Reduction (%) 
(Riduzione totale delle emissioni di CO2 per ogni misura di retrofitting, 
espresso in Percentuale) 

❏ Molto 
❏ Abbastanza 
❏ Poco 
❏ Per niente 

Totale emission locali  
Local NOX emission (t) 
(Totale delle emissioni di NOX (ossidi di azoto) a livello locale cacolati per 

ogni misura di retrofitting espresso in Tonnellate) 

❏ Molto 
❏ Abbastanza 
❏ Poco 
❏ Per niente 

Totale emission locali  
Local PM10 emission (kg) 
(Totale delle emissioni di PM10 (Materia Particolata di diametro 

equivalente inferiore a 10 m) calcolati a base per ogni misura di 

retrofitting espresso in Chilogrammo) 

❏ Molto 
❏ Abbastanza 
❏ Poco 
❏ Per niente 

Impatto architettonico per ogni misura di retrofitting 
Architectural Impact (rank) 
(Impatto visivo di qualità sull’ambiente costruito espresso in un rank da 1 
=positive a 5=negative) 

❏ Molto 
❏ Abbastanza 
❏ Poco 
❏ Per niente 

Creazione di occupazione locale 
 Job Potential (man-day) 
(Totale del lavoro creato per l’installazione e la manutenzione in un anno 

❏ Molto 
❏ Abbastanza 
❏ Poco 
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per ogni misura di retrofitting e per numero delle azioni, espresso in 
uomo-giorno) 

❏ Per niente 

Affidabilità 
Reliability (rank) 
(Affidabilità della misura retrofitting per quanto riguarda l'interazione con gli 
utenti, il rischio di rompere, la dipendenza dagli effetti della temperatura e alle 
efficienze attese e ai possibili fermi macchina espresso in rank da 1=low a 

5=high) 

❏ Molto 
❏ Abbastanza 
❏ Poco 
❏ Per niente 

Consumo energetico 
Energy Consumption (GWh) 
(Consumo annuo per il riscaldamento GWh) 

❏ Molto 
❏ Abbastanza 
❏ Poco 
❏ Per niente 

Percentuale della riduzione del consumo energetico 
Energy Saving (%) 
(Risparmio del consumo energetico, esresso in percentuale) 

❏ Molto 
❏ Abbastanza 
❏ Poco 
❏ Per niente 

Fattibiltà socio-econimico 
Socio-Econimc feasebility (%) 

a) Fattore d’epoca di costruzione degli edifici: rapporto percentuale 
tra gli edifici prima di 1960 e tutti gli edifici 

b) Fattore di età: rapporto percentuale tra la popolazione con 25-69 
anni e la popolazione Totale 

c) Fattore di Genere: rapport prcentuale tra la popolazione machi e la 
popolazione totale 

d) Fattore di educazione : rapporto percentuale tra la popolazione 
residente con diploma o laurea e la popolazione residente con la 
popolazione residente 

e) Tasso di occupazione: rapporto percentuale tra gli occupati di 15-
74 anni e più e la popolazione residente di 15-74 anni 

f) Fattore di famiglia: rapporto tra la popolazione residente in famiglia 
1 o 2 componenti e il numero delle famiglie 

g) Fattore di proprietà: rapporto percentuale tra le famiglie proprietà 
e il totale numero delle famiglie 

h) Fattore di occupazione degli edifici: Il rapporto percentuale tra 
edifici occupati e aloggi vuoti 

 

❏ Molto 
❏ Abbastanza 
❏ Poco 
❏ Per niente 

 

Motiva Ie principali ragioni della tua risposta______________________________________________ 
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___________________________________________________________________________________

___________________________________________________________________________________ 

___________________________________________________________________________________

___________________________________________________________________________________ 

Domanda 11.  È comprensibile e di facile utilizzo? 

❏ Molto 

❏ Abbastanza 

❏ Poco 

❏ Per niente 

 

Domanda 12. Gli indicatori proposti durante la sessione del workshop rappresentano adeguatamente 

le informazioni di cui si necessita per supportare la comprensione degli scenari energetici a scala 

locale? 

❏ Molto 
❏ Abbastanza 
❏ Poco 
❏ Per niente 

 

Motiva la risposta____________________________________________________________________ 

 

Domanda 13. Eventuali suggerimenti per migliorare la visualizzazione/ Ci sono altri indicatori che 

potrebbero essere essenziali? Quali? 

___________________________________________________________________________________

___________________________________________________________________________________

___________________________________________________________________________________

___________________________________________________________________________________

___________________________________________________________________________________ 

Mappe dei Risultati 
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C – Il risultato finale della mappa “Il risparmio energetico in percentuale” 
 

Domanda 14. Il risultato finale della mappa del risparmio energetico in percentuale è utile? 

❏ Molto 

❏ Abbastanza 

❏ Poco 

❏ Per niente 

 

Motiva la risposta____________________________________________________________________ 

 

Domanda 15. Come reputi il livello di complessità di tale risultato? 

❏ Molto complesso 

❏ Complesso 

❏ Semplice 

❏ Molto semplice 

 

Motiva la risposta___________________________________________________________________ 

 

Domanda 16. I dati derivanti da tale risultato sono visualizzati in modo efficace? 

❏ Molto 

❏ Abbastanza 

❏ Poco 

❏ Per niente 

 

Motiva la risposta____________________________________________________________________ 

Domanda 17. Eventuali suggerimenti per migliorare tale simulazione e/o la sua modalità di 

visualizzazione: 

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________ 
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Mappe dei Risultati 

E – Il risultato finale della mappa finale “Suitability” 

Domanda 1. Il risultato finale della mappa finale “Suitability” è utile? 

❏ Molto 

❏ Abbastanza 

❏ Poco 

❏ Per niente 

 

Motiva la risposta____________________________________________________________________ 

 

Domanda 2. È comprensibile e di facile utilizzo? 

❏ Molto 

❏ Abbastanza 

❏ Poco 

❏ Per niente 

 

Motiva la risposta___________________________________________________________________ 

 

Domanda 3. I dati derivanti da tale risultato sono visualizzati in modo efficace? 

❏ Molto 

❏ Abbastanza 

❏ Poco 

❏ Per niente 

 

Motiva la risposta____________________________________________________________________ 

Domanda 4. Eventuali suggerimenti per migliorare tale simulazione e/o la sua modalità di 

visualizzazione: 

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________ 
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Domande Generali sulla sessione del Workshop 

La sessione ha prodotto risultati utili ❏ Molto 
❏ Abbastanza 
❏ Poco 
❏ Per niente 

Sono fiducioso che la soluzione del gruppo sia corretta ❏ Molto 
❏ Abbastanza 
❏ Poco 
❏ Per niente 

Sono soddisfatto di questa sessione  ❏ Molto 
❏ Abbastanza 
❏ Poco 
❏ Per niente 

Ora ho più informazioni riguardo ai problem decisionali energetici a livello 

urbano 

❏ Molto 
❏ Abbastanza 
❏ Poco 
❏ Per niente 

Ora ho una vision migliore relativa ai punti di vista degli altri partecipanti  ❏ Molto 
❏ Abbastanza 
❏ Poco 
❏ Per niente 

Utilizzerei lo strumento presentato e I risultati di questa sessione nella 
pratica lavorativa 
 
 

❏ Molto 
❏ Abbastanza 
❏ Poco 
❏ Per niente 

Abbiamo raggiunto una visione condivisa del problema ❏ Molto 
❏ Abbastanza 
❏ Poco 
❏ Per niente 

Abbiamo raggiunto una visione condivisa degli obiettivi ❏ Molto 
❏ Abbastanza 
❏ Poco 
❏ Per niente 

Abbiamo raggiunto una visione condivisa sulle possibili soluzioni 
 

❏ Molto 
❏ Abbastanza 
❏ Poco 
❏ Per niente 
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Mi sono sentito parte di un gruppo di lavoro ❏ Molto 
❏ Abbastanza 
❏ Poco 
❏ Per niente 

Lo strumento presentato ha evidenziato un nuovo approccio relativa alla 

pinificazione enerrgetica al livello urbano 

❏ Molto 
❏ Abbastanza 
❏ Poco 
❏ Per niente 

Le ipotisi di base presentate per lo sviluppo del modello sono chiare ❏ Molto 
❏ Abbastanza 
❏ Poco 
❏ Per niente 

I termini utilizzati durante la sesione sono comprensibili  
 

❏ Molto 
❏ Abbastanza 
❏ Poco 
❏ Per niente 

 

Motiva Ie principali ragioni della tua risposta______________________________________________ 

___________________________________________________________________________________

___________________________________________________________________________________ 

___________________________________________________________________________________

___________________________________________________________________________________

___________________________________________________________________________________

___________________________________________________________________________________

___________________________________________________________________________________

___________________________________________________________________________________

___________________________________________________________________________________ 
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