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Abstract

In this paper we discuss an extension of some results obtained by E. Serra and P. Tilli, in
[15, 16], concerning an original conjecture by E. De Giorgi ([4, 5]) on a purely minimization
approach to the Cauchy problem for the defocusing nonlinear wave equation. Precisely, we show
how to extend the techniques developed by Serra and Tilli for homogeneous hyperbolic nonlinear
PDEs to the nonhomogeneous case, thus proving that the idea of De Giorgi yields in fact an
effective approach to investigate general hyperbolic equations.

AMS Subject Classification: 35L70, 35L71, 35L75, 35L76, 35L90, 49J45.

Keywords: nonlinear hyperbolic equations, mimimization, nonhomogeneous PDEs, De Giorgi conjecture.

1 Introduction

In this paper we present an extension, to the case of nonhomogeneous equations, of some recent
results obtained in [15, 16] on a minimization approach to hyperbolic Cauchy problems. This
approach was originally suggested by E. De Giorgi through a conjecture ([4, 5]), essentially proved
in [15] and then extended to an abstract setting in [16] (see also [14, 20, 24] and references therein).

More precisely, we introduce a suitable variant of this method in order to investigate hyperbolic
PDEs having the formal structure of

(1) w′′(t, x) = −∇W
(
w(t, · )

)
(x) + f(t, x), (t, x) ∈ R+ × Rn,

with two prescribed initial conditions

(2) w(0, x) = w0(x), w′(0, x) = w1(x), x ∈ Rn.
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Here, as in [16], ∇W is the Gâteaux derivative of a functional W : W→ [0,∞) (W is some Banach
space of functions in Rn, typically a Sobolev space), the main novely being that we allow for a
function f(t, x) in (1), that acts as a forcing term (a source) in the resulting PDE.

The idea behind De Giorgi’s approach is to obtain solutions of hyperbolic Cauchy problems as
limits (when ε ↓ 0) of the minimizers wε of a sequence of suitable functionals Fε of the Calculus of
Variations, defined as integrals in space-time of a suitable Lagrangian with an exponential weight.
De Giorgi’s conjecture, in its original formulation [4], concerns the defocusing NLW equation

(3) w′′ = ∆w − |w|p−2w (p ≥ 2),

which falls within the general scheme (1) if we let

W(v) =

∫
Rn

(
1

2
|∇v|2 +

1

p
|v|p
)
dx and f ≡ 0.

If wε denotes the minimizer of the convex functional in space-time

(4) F hε (w) :=

∫ ∞
0

e−t/ε
(
ε2

2

∫
Rn

|w′′(t, x)|2 dx+W
(
w(t, · )

))
dt

subject to the boundary conditions (2), De Giorgi conjectured that wε → w, where w solves (3) and
satisfies (2), now meant as initial conditions of the Cauchy problem (for more details see [4, 10, 15]).
This conjecture was essentially proved in [15] (see also [20]), and then generalized in [16] with an
abstract version of the result, which shows that the NLW equation (3) can be replaced with the
abstract equation (1) for quite general functionalsW, but still in the homogeneous case where f ≡ 0.

Of course, when a nontrivial source f(t, x) is present in (1), the functional F hε defined in (4)
(being independent of f) is no longer appropriate: instead of F hε , a natural choice is to minimize,
subject to the boundary conditions (2), the functional

(5) Fε(w) := F hε (w)− F sε (w)

where F sε is the linear functional

(6) F sε (w) :=

∫ ∞
0

∫
Rn

e−t/ε fε(t, x)w(t, x) dx dt

and fε(t, x) is a suitable approximation of f(t, x). Intuitively, this can be justified by the following
heuristic argument: if wε is a minimizer of Fε subject to (2), by elementary computations one can
check that the Euler-Lagrange equations for Fε reduce to

(7) ε2w′′′′ε (t, x)− 2εw′′′ε (t, x) + w′′ε (t, x) = −∇W
(
wε(t, · )

)
(x) + fε(t, x).

Now the connection with (1) is clear: when ε ↓ 0, assuming that fε → f and wε → w, one formally
obtains (1) (coupled with (2)) in the limit (of course choosing fε = f would seem most natural, but
unfortunately this is not possible, as we shall explain later).

In this paper we show that this procedure can be carried out successfully, under the sole assump-
tion that f ∈ L2

loc([0,∞);L2), and under very general assumptions on the functional W (namely
Assumption 2.1 and (17), as in [16]). Our results are summarized in Theorem 2.3, which is a natural
development of the research program initiated in [15, 16] (in fact, letting f ≡ 0 in Theorem 2.3,
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one obtains all the results of [16] as a particular case). In order to illustrate the wide variety of
nonhomogeneous equations covered by Theorem 2.3 we refer to Section 8 which, being independent
of the technical parts of the paper, can serve as a supplement to this introduction.

We wish to emphasize that this is not just a technical extension of the results in [16]. Indeed,
in [15, 16] the main ingredient to obtain estimates on the minimizers wε is a control (uniform in ε)
of the quantity

(8) Eε(t) :=
1

2

∫
Rn

|w′ε(t, x)|2 dx+ ε−2
∫ ∞
0

s e−s/εW
(
wε(t+ s)

)
ds,

the so called approximate energy, to be compared (in view of wε → w) to

E(t) :=
1

2

∫
Rn

|w′(t, x)|2 dx+W
(
w(t)

)
,

the natural energy for a solution of (1), which is formally preserved when f ≡ 0. Now, contrary to
E(t) which depends only on w′(t) and W

(
w(t)

)
, we see that the potential term in (8) (the integral

involving W) depends on the values of W
(
wε(τ)

)
for all τ ≥ t: following [23], we say that this term

is “acausal”.
This acausality is deep-seated: since (7) is of the fourth order in t, prescribing two initial

conditions as in (2) is not enough to uniquely determine the evolution of wε(t). On the other hand,
wε is obtained as a minimizer of Fε subject to (2), and the minimization procedure certainly selects,
among the infinitely many solutions of (7)&(2), one with special features (such as the finiteness of
Fε(wε), which is trivial for a minimizer, but does not follow from (7)&(2)). Thus, the fact that
the global-in-time behaviour of wε(s) is relevant for the approximate energy Eε(t) is not surprising.
Note, however, that the function ε−2se−s in (8) is a probability measure on s > 0, which concentrates
at s = 0 when ε ↓ 0: therefore, the second integral in (8) is just an (acausal) average of W

(
wε(τ)

)
for τ ≥ t, which concentrates around τ = t for small ε (so that, heuristically, acausality becomes
negligible when ε ↓ 0, as long as smoothness is assumed).

Now, in the nonhomogeneous case where f 6≡ 0, the approximate energy Eε(t) (as defined in (8))
is again the natural object to estimate. But we see from (5) and (6) that the presence of fε may
strongly influence the behaviour of wε(t), possibly in a global (hence also acausal) way: and this is
in contrast with the limit problem (1)&(2), where the solution w(T ) depends only on f(t) restricted
to t ∈ [0, T ], in a strictly causal way.

This calls for some new ideas, in addition to those introduced in [15, 16], in order to obtain
strong enough estimates on wε, pass to the limit in (7), and obtain sharp energy estimates as in
(16). Therefore, in our proofs, we shall mainly focus on these new aspects, referring to [16] for those
lemmas or computations which do not require significant changes.

In [16], where f ≡ 0, it is proved that E ′ε(t) ≤ 0, so that Eε(t) ≤ Eε(0) ≤ E(0) + o(1), and this is
the key to all the subsequent estimates for wε(t), uniform in ε and t. Here, instead, the presence of
the forcing term f prevents any apriori monotonicity, and every bound for Eε(t) will depend on f
itself. In fact, E ′ε(t) depends on f (more precisely on fε) in a nonlocal, acausal way (see Section 5),
and this requires new strategies and a careful analysis based (among the other things) on the tools
introduced in Section 3. Indeed, we can obtain estimates only over bounded time intervals and up
to some residual terms, which however can be proved to vanish in the limit when ε ↓ 0.

In the light of these considerations, it appears that letting fε = f in (6) (though formally correct)
is not appropriate, and some nontrivial approximation fε → f is therefore mandatory. Moreover,
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we wish to work with f ∈ L2
loc([0,∞);L2) (which is the natural assumption if one seeks solutions

of (1) with finite energy – see e.g. [3, 8]), while the integral in (5), in order to be defined, requires
some restriction on the growth of ‖fε(t)‖L2 . The crucial properties of fε (necessary for the control
of the residual terms in our estimates), as listed in Lemma 6.1, may look awkward: fortunately,
however, a neat and simple procedure is available to construct fε from f , as described in the proof
of the lemma.

The full strength of Theorem 2.3 is obtained under the structural assumption (17), which forces
the evolution equation (1) to be semilinear (albeit of arbitrary order in space, including wave
equations with the fractional Laplacian – see Section 8).

It should be pointed out, however, that assumption (17) is required only in item (e) of Theo-
rem 2.3 (the passage to the limit in (7) to obtain (1)): all the other claims of the theorem (items
(a)–(d), including estimates and convergence to a function that satisfies the energy inequality) are
valid in the much wider setting of Assumption 2.1, which is typically satisfied by any reasonable
functional of the Calculus of Variations (not necessarily convex, and possibly nonlocal). As shown
in Section 8, this broad framework includes wave equations with the p-Laplacian such as (62) and
nonlocal evolutions like the Kirchhoff equation (63), for which the existence of global weak solu-
tions is an open problem: the validity of items (a)–(d) of Theorem 2.3 for these equations suggests
a possible new strategy in this direction, since no counterexample is known to the claim of item (e),
for which (17) is just a sufficient condition.

Of course, in several concrete examples where (17) is satisfied (e.g. the NLW equation (61))
the existence of global weak solutions provided by Theorem 2.3 is not new (for an overview of
other techniques we refer the reader to [3, 7, 13, 17, 18, 19, 21, 22, 23] and references therein).
However, we point out that the variety of different examples of equations that can be treated by
this unifying approach is remarkable, and we believe that this variational technique would deserve
further investigations.

In the applications, it would also be interesting to consider the same kind of problems on a
bounded time interval [0, T ], as done in [20] for the NLW equation with no forcing term. In fact,
the techniques of our paper can be adapted to handle the case where t ∈ [0, T ]: this, however, would
call for several minor modifications, and therefore we will not pursue this issue here.

Finally, we recall that suitable variants of this variational approach to evolution problems have
recently been developed to study other kind of equations: we refer the reader to [1, 2, 9] for
applications to parabolic equations, and to [6] (and references therein) for the application to ODE
systems.

Remark on Notation. If g = g(t, x), we write g(t) or equivalently g(t, · ) to denote the function
of x that is obtained fixing t. We also write g′, g′′ etc. to denote partial derivatives with respect
to t, while differential operators like ∇, ∆ etc. are referred to the space variables only. Concerning
function spaces, we agree that Lp = Lp(Rn), Hm = Hm(Rn) etc., the domain Rn being understood.
Finally, 〈· , · 〉 denotes a duality pairing (usually clear from the context), while (· , · )H denotes the
inner product in a Hilbert space H.

Acknowledgements. The authors wish to thank the anonymous referees for their corrections
and useful comments. The second author acknowledges the support of MIUR through the FIR grant
2013 “Condensed Matter in Mathematical Physics (Cond-Math)” (code RBFR13WAET).
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2 Functional setting and main results

The abstract equation (1) and the functional (4) are defined in terms of the abstract functional W.
In order to develop our approach, the properties that W must safisfy are the same as in [16], and
can be summarized as follows.

Assumption 2.1. The functional W : L2 → [0,∞] is lower semicontinuous in the weak topology
of L2. Moreover, we assume that its domain, i.e. the set of functions

(9) W := {v ∈ L2 :W(v) <∞},

is a Banach space such that

(10) C∞0 ↪→W ↪→ L2 (dense embeddings).

Finally, W is Gâteaux differentiable on W and its derivative ∇W : W→W′ satisfies

(11) ‖∇W(v)‖W′ ≤ C
(
1 +W(v)θ

)
, ∀v ∈W,

for suitable constants C ≥ 0 and θ ∈ (0, 1).

Remark 2.2. This assumption (in particular, inequality (11)) is typical of Dirichlet-type functionals
like W(v) = ‖∇kv‖pLp with p > 1 (in this case W is a suitable Sobolev space). We refer to Section
8 for some examples. Here we just point out that Assumption 2.1 is additively stable, i.e. if two
functionals satisfy Assumption 2.1, then so does their sum (for further remarks on this assumption,
see [16]).

Theorem 2.3. Let W be a functional satisfying Assumption 2.1 and w0, w1 ∈ W. Let also f ∈
L2
loc([0,∞), L2). Then, there exists a sequence (fε), converging to f in L2

loc([0,∞), L2), such that:

(a) Minimizers. For every ε ∈ (0, 1), the functional Fε defined by (5) has a minimizers wε,
among all functions in H2

loc([0,∞);L2) that satisfy (2).

(b) Estimates. For every T > 0, τ ≥ 0, there exist constants CT , Cτ,T independent of ε such that

(12) sup
t∈[0,T ]

∫
Rn

(
|w′ε(t, x)|2 + |wε(t, x)|2

)
dx ≤ CT ,

(13)

∫ τ+T

τ
W
(
wε(t)

)
dt ≤ Cτ,T , ∀T > ε,

(14)

∫ T

0
‖w′′ε (s)‖2W′ ds ≤ CT .

(c) Convergence. Every sequence wεi (with εi ↓ 0) admits a subsequence which is convergent
in the weak topology of H1

loc([0,+∞);L2) to a function w that satisfies (2) (where the latter
condition is meant as an equality in W′). In addition,

(15) w′ ∈ L∞loc([0,∞);L2) and w′′ ∈ L2
loc([0,∞); W′).
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(d) Energy inequality. Letting

E(t) :=
1

2

∫
Rn

|w′(t, x)|2 dx+W
(
w(t)

)
,

there holds

(16) E(t) ≤

√E(0) +

√
t

2

∫ t

0

∫
Rn

|f(s, x)|2 dx ds

2

, for a.e. t ≥ 0.

(e) Weak solution of (1). Assuming furthermore that, for some real numbers m > 0, λk ≥
0, pk > 1, W takes the form of

(17) W(v) =
1

2
‖v‖2

Ḣm +
∑

0≤k<m

λk
pk

∫
Rn

|∇kv(x)|pk dx,

then the limit function w satisfies

(18)

∫ ∞
0

∫
Rn

w′(t, x)ϕ′(t, x) dx dt =

∫ ∞
0

〈
∇W

(
w(t)

)
, ϕ(t)

〉
dt−

∫ ∞
0

∫
Rn

f(t, x)ϕ(t, x) dx dt

for every ϕ ∈ C∞0 (R+ × Rn), namely, solves (1) in the sense of distributions.

Remark 2.4. Note that the functional defined in (17) satisfies Assumption 2.1 with W = {v ∈ Hm :
∇kv ∈ Lpk , 0 ≤ k < m} (for details see [16]). Recall also that ‖v‖Ḣm is the L2 norm of |ξ|m v̂(ξ),
where v̂ is the Fourier transform of v. The typical case is m ∈ N when ‖v‖Ḣm reduces to ‖∇mv‖L2 .

Remark 2.5. Throughout, solutions of (1)-(2) obtained via Theorem 2.3, are called variational
solutions.

Remark 2.6. We mention that several variants of Theorem 2.3 can be proved. For instance, one
can introduce nonconstant coefficients in (17), possibly exploiting some G̊arding type inequalities
to keep W coercive. Also, one can consider more general lower-order terms (with proper convexity
and growth assumptions) like powers of single partial derivatives. In any case, the main point
is that W be quadratic (and coercive) in the highest order terms, namely that equation (1) be
semilinear. Furthermore, as pointed out in [15, 16], the minimization approach can be adapted,
without significative changes, to the case of a generic (sufficiently smooth) open set Ω ⊂ Rn with
Dirichlet or Neumann boundary conditions.

We point out that E is formally preserved by variational solutions of (1)-(2), in the sense that

(19) E(t) = E(0) +

∫ t

0
(f(s), w′(s))L2 ds, ∀t ≥ 0

follows from formal differentiation. However, we are not able to prove enough regularity for such
solutions in order to solve the long-standing problem of the energy conservation for weak solutions
of (1). Anyway, a formal Grönwall argument based on (19) reveals that the energy estimate (16) is
close to being optimal.
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3 A preliminary tool: the average operator

The study of integrals with an exponential weight plays a central role in our investigation. Therefore,
it is worth recalling the definition of average operator, introduced in [16].

Definition 3.1. The average operator is the linear operator that associates any measurable function
h : [0,∞]→ [0,∞] with the function Ah, given by

Ah (t) :=

∫ ∞
t

e−(s−t) h(s) ds, t ≥ 0.

We also recall that, if Ah (0) < ∞, then Ah is absolutely continuous on intervals [0, T ], for all
T > 0, and that

(20) (Ah)′ = Ah− h.

In addition, one can iterate the action of A, thus obtaining

(21) A2h (t) := A(Ah) (t) =

∫ ∞
t

e−(s−t) (s− t)h(s) ds

(for details see [16]). Finally, we note that Ah is well defined (and all the previous properties are
valid) even when h is a changing sign function, provided that it satisfies A|h| (0) <∞.

Now, we show some relevant results that will be widely used in the sequel.

Lemma 3.2. Let h : [0,∞) → [0,∞) be a function such that Ah (0) < ∞. Then, for every τ ≥ 0
and every δ > 0

(22)

∫ τ+δ

τ
Ah (s) ds =

∫ τ+δ

τ
h(s) ds+Ah (τ + δ)−Ah (τ).

If, in addition, A2h (0) <∞, then

(23)

∫ τ+δ

τ
A2h (s) ds =

∫ τ+δ

τ
h(s) ds+Ah (τ + δ)−Ah (τ) +A2h (τ + δ)−A2h (τ).

Proof. Integrating (20) on [τ, τ + δ] one obtains (22) and then, simply iterating the same argument
for A2, there results (23).

Lemma 3.3. For every α > 1 there exists a constant Cα > 0 such that for all h ∈ H1
loc([0,∞);L2)

(24) A‖h(·)‖2L2 (t) ≤ α‖h(t)‖2L2 + CαA‖h′(·)‖2L2 (t), ∀t ≥ 0.

Proof. Let t ≥ 0 and a > t. By assumption, for a.e. x ∈ Rn the function h( · , x) belongs to
H1((t, a)). Then, integrating by parts and using Cauchy-Schwarz,∫ a

t
e−s |h(s, x)|2 ds ≤ e−t |h(t, x)|2 + 2

∫ a

t
e−s h(s, x)h′(s, x) ds

≤ e−t |h(t, x)|2 + 2

(∫ a

t
e−s |h(s, x)|2 ds

)1/2(∫ a

t
e−s |h′(s, x)|2 ds

)1/2

.
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Since 2
√
bc ≤ νb + 1

ν c for every ν > 0, we can split the last product and, for any choice of ν < 1,
we find that ∫ a

t
e−s |h(s, x)|2 ds ≤ 1

1− ν
e−t |h(t, x)|2 +

1

ν(1− ν)

∫ a

t
e−s |h′(s, x)|2 ds.

Now, integrating over Rn and letting a → ∞, we obtain (24), where α = 1
1−ν and Cα = 1

ν(1−ν) =
α2

α−1 .

Lemma 3.4. For every β > 1 there exists a constant Cβ > 0 such that for all h ∈ H1
loc([0,∞);L2)

(25) A2‖h(·)‖2L2 (t) ≤ β‖h(t)‖2L2 + Cβ
(
A‖h′(·)‖2L2 (t) +A2‖h′(·)‖2L2 (t)

)
, ∀t ≥ 0.

Proof. Let again t ≥ 0 and a > t. Setting τ = s− t yields∫ a

t
e−(s−t)(s− t) |h(s, x)|2 ds =

∫ a−t

0
e−ττ |g(τ, x)|2 dτ,

with g(τ, x) = h(τ + t, x). Then, arguing as in the proof of the previous lemma, we see that∫ a−t

0
e−ττ |g(τ, x)|2 dτ ≤

∫ a−t

0
e−τ |g(τ, x)|2 dτ+

+ 2

(∫ a−t

0
e−ττ |g(τ, x)|2 dτ

)1/2(∫ a−t

0
e−ττ |g′(τ, x)|2 dτ

)1/2

.

Now, by Young inequality, for every ν ∈ (0, 1)∫ a−t

0
e−ττ |g(τ, x)|2 dτ ≤ 1

1− ν

∫ a−t

0
e−τ |g(τ, x)|2 dτ +

1

ν(1− ν)

∫ a−t

0
e−ττ |g′(τ, x)|2 dτ.

Hence, integrating over Rn, changing the variables back and letting a→∞, we have

A2‖h(·)‖2L2 (t) ≤ αA‖h(·)‖2L2 (t) + CαA2‖h′(·)‖2L2 (t)

(where α = 1
1−ν and Cα = 1

ν(1−ν)). Finally, combining with (24) and setting β = α2 and Cβ = αCα,

we obtain (25).

Remark 3.5. Setting t = 0 in Lemma 3.3 we recover [15, Lemma 2.3]. In addition, note that we do
not claim that any integral appearing in (24) and (25) is necessarily finite.

4 Minimizers and first properties

The search of the minimizers mentioned in the previous sections is actually performed on an auxiliary
functional. For a given a function φ : [0,∞)× Rn → R, define

(26) Jε(u) := Hε(u)− S(u),

where

Hε(u) :=

∫ ∞
0

e−t
(

1

2ε2

∫
Rn

|u′′(t, x)|2 dx+W
(
u(t)

))
dt,

8



and

(27) S(u) :=

∫ ∞
0

∫
Rn

e−t φ(t, x)u(t, x) dx dt.

One can see that Jε is equivalent to Fε in the sense that, setting φ(t, x) = fε(εt, x), there results
Fε(w) = εJε(u), whenever u and w are related by the change of variable u(t, x) = w(εt, x). Hence,
properly scaling the boundary conditions (namely, as in (32)), the existence of minimizers wε for
Fε is equivalent to the existence of minimizers uε for Jε and, in particular,

wε(t, x) = uε(t/ε, x), t ≥ 0, x ∈ Rn.

On the other hand, in contrast to Fε, the weight in Jε does not depend on ε, thus simplifying the
investigation.

For functions v = v(t, x), it is convenient to define the weighted L2-norm

‖v‖2L :=

∫ ∞
0

∫
Rn

e−t |v(t, x)|2 dx dt,

with the proviso that we regard it as a functional with values in [0,+∞].

Throughout, for fixed ε, we make the following assumptions on φ(t, x):

∃T ∗ ∈
(

0, ε−3/2
]

such that φ(t, x) = 0, ∀t > T ∗,(28)

‖φ‖L ≤ ε,(29)

ε

∫ t

0
A2‖φ(·)‖2L2 (s) ds ≤ γ(εt+ tε) + ε2 ∀t ≥ 0,(30)

where tε > 0 satisfies limε↓0 tε = 0 while

(31) γ(t) :=

∫ t

0
‖f(s)‖2L2 ds, t ≥ 0,

quantifies the growth in time of the forcing term f ∈ L2
loc([0,∞);L2) of (1).

Proposition 4.1. Let w0, w1 ∈W (with W defined by (9)) and ε ∈ (0, 1). Then, under Assumption
2.1, Jε admits a minimizer uε in the class of functions u ∈ H2

loc([0,∞);L2) satisfying the boundary
conditions

(32) u(0) = w0, u′(0) = εw1.

Moreover,

(33) Hε(uε) ≤ W(w0) + εC.

In order to prove Proposition 4.1, we recall the following facts (for more see [15, Lemma 2.3]).

9



Lemma 4.2. If u ∈ H2
loc([0,∞);L2), then

(34) ‖u′‖2L ≤ 2 ‖u′(0)‖2L2 + 4 ‖u′′‖2L

and

‖u‖2L ≤ 2 ‖u(0)‖2L2 + 8 ‖u′(0)‖2L2 + 16 ‖u′′‖2L.(35)

Proof of Proposition 4.1. Let M be the set of functions in H2
loc([0,∞);L2) satisfying (32). If u ∈M ,

then S(u) is finite by (28), so that Jε(u) is well defined (possibly equal to +∞). If Jε(u) is finite,
then, since W ≥ 0, the finiteness of Hε(u) implies that the last integral in (35) is finite, and using
Cauchy-Schwarz, (29) and (35) we have

|S(u)| ≤ ‖φ‖L‖u‖L ≤ εC
(
1 + ‖u′′‖L

)
,

where C takes into account (via (32)) also the L2 norms of u(0) and u′(0). Moreover, from the
definition of Jε and last inequality we have

(36) Jε(u) ≥ 1

2ε2
‖u′′‖2L +

∫ ∞
0

e−tW
(
u(t)

)
dt− εC

(
1 + ‖u′′‖L

)
,

so that ‖u′′‖L can be controlled in terms of Jε(u): using again (34) and (35), we see that Jε is
coercive in M with respect to the topology of H2

loc([0,∞);L2), so that every minimizing sequence
has a subsequence weakly convergent in H2

loc([0,∞);L2), which also preserves (32). The weak
semicontinuity of Hε(u) (building on Assumption 2.1) was proved in [16, proof of Lemma 3.1]: since
S(u) is a weakly continuous functional, the existence of a minimizer uε is established.

Now set ψ(t, x) := w0(x)+εtw1(x), and observe that ψ ∈M and ψ′′ ≡ 0. Moreover in [16, proof
of Lemma 3.1] it is proved that

Hε(ψ) =

∫ ∞
0

e−tW
(
ψ(t)

)
dt ≤ W(w0) + Cε,

while by a direct computation, using Cauchy-Schwarz and (29), one has

−S(ψ) ≤
(
‖w0‖L2 +

√
2 ε‖w1‖L2

)
‖φ‖L ≤ Cε.

Thus Jε(ψ) ≤ W(w0) + Cε, and then also Jε(uε) ≤ W(w0) + Cε since uε is a minimizer. So, in
particular, Jε(uε) ≤ C: combining with (36) (written with u = uε), by Young’s inequality one can
easily obtain ‖u′′ε‖L ≤ εC as a byproduct. This, in turn, can be plugged into (36) (with u = uε) to
estimate the last term, thus finding

Jε(uε) ≥
1

2ε2
‖u′′ε‖2L +

∫ ∞
0

e−tW
(
uε(t)

)
dt− εC.

Finally, (33) follows from the last inequality, recalling that Jε(uε) ≤ W(w0) + Cε.

Remark 4.3. In the sequel we will always assume that ε ∈ (0, 1), as in Proposition 4.1.
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Now, we introduce some notation. Given a minimizer uε of Jε, we define

(37) Wε(t) :=W
(
uε(t)

)
, ∀t ≥ 0, Dε(t) :=

1

2ε2
‖u′′ε(t)‖2L2 , for a.e. t > 0,

and
Lε(t) := Dε(t) +Wε(t).

We also set
Φε(t) :=

(
φ(t), u′ε(t)

)
L2 , ∀t ≥ 0,

and define the kinetic energy function as

(38) Kε(t) :=
1

2ε2
‖u′ε(t)‖2L2 , ∀t ≥ 0.

Note that Kε is absolutely continuous on intervals [0, T ], with T > 0, and that

K ′ε(t) =
1

ε2
(
u′ε(t), u

′′
ε(t)

)
L2 , for a.e. t > 0.

Proposition 4.4. Let w0, w1 and W satisfy the assumptions of Proposition 4.1 and let uε be a
minimizer of Jε. Then, for every g ∈ C2([0,∞)) constant for large t and with g(0) = 0,

(39)

∫ ∞
0

e−t
(
g′(t)− g(t)

)
Lε(t) dt+

∫ ∞
0

e−t g(t)Φε(t) dt+

−
∫ ∞
0

e−t
(
4g′(t)Dε(t) + g′′(t)K ′ε(t)

)
dt = g′(0)R(uε),

where the remainder

(40) R(uε) := ε

∫ ∞
0

e−t t
(
−
〈
∇W

(
uε(t)

)
, w1

〉
+ (φ(t), w1)L2

)
dt

satisfies the estimate

(41) |R(uε)| ≤ Cε.

Proof. We proceed exactly as in [16, proof of Proposition 4.4]. For small δ, we use the diffeo-
morphism ϕδ(t) := t − δg(t) to define Uδ(t) := uε

(
ϕδ(t)

)
+ tεδg′(0)w1, which is an admissible

competitor of uε in the minimization of Jε, since it satisfies the initial conditions (32). Then, since
uε is a minimizer and Uδ = uε when δ = 0, one has

(42)
∂

∂δ
Jε(Uδ)

∣∣∣∣
δ=0

=
∂

∂δ
Hε(Uδ)

∣∣∣∣
δ=0

− ∂

∂δ
S(Uδ)

∣∣∣∣
δ=0

= 0,

which (computing the derivatives) yields (39). Indeed, the derivative of Hε(Uδ) has been computed
in [16, proof of Proposition 4.4], and it produces all the terms in (39) except, of course, the integral
of Φε and the integrand involving φ(t) in (40). On the other hand, recalling (27), using (28), (29)
and dominated convergence one can check that

∂

∂δ
S(Uδ)

∣∣∣∣
δ=0

=

∫ ∞
0

e−t
∫
Rn

φ(t, x)
(
− g(t)u′ε(t, x) + tεg′(0)w1(t, x)

)
dx dt

= −
∫ ∞
0

e−tg(t)Φε(t) dt+ εg′(0)

∫ ∞
0

e−tt
(
φ(t), w1

)
L2 dt,
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whence (42) reduces to (39).
Finally, combining (11) and (33) as in [16], one has∣∣∣∣∫ ∞

0
e−t t

〈
∇W

(
uε(t)

)
, w1

〉
dt

∣∣∣∣ ≤ C

(
1 +

∫ ∞
0

e−t tWθ(uε(t)) dt

)
≤ C

(
1 +Hε(uε)

)
≤ C(1 + ε),

while from Cauchy-Schwarz and (29)∣∣∣∣∫ ∞
0

e−t t
(
φ(t), w1

)
L2 dt

∣∣∣∣ ≤ ‖w1‖L2

∫ ∞
0

e−t t ‖φ(t)‖L2 dt ≤ ‖w1‖L2

(∫ ∞
0

e−t t2 dt

) 1
2

‖φ‖L ≤ Cε

and hence inequality (41) is satisfied.

This result has an immediate consequence.

Corollary 4.5. Using the notation of Section 3 for the operator A, one has

(43) A2Lε (0) + 4ADε (0)−ALε (0) = A2Φε (0)−R(uε)

and

(44) A2Lε (t) + 4ADε (t)−ALε (t) = A2Φε (t)−K ′ε(t), for a.e. t > 0.

Proof. Recalling (21), (43) is formally obtained choosing g(t) = t in (39), but this goes beyond the
assumptions of Proposition 4.4. However, as shown in [16, proof of Corollary 4.5], it suffices to
approximate g(t) = t from below, by suitable functions gk satisfying the assumptions of Proposi-
tion 4.4, and pass to the limit in (39). Since one can arrange for g′k(0) = 1, only the integrals on
the left hand side of (39) are actually involved, and the one with Φε (the only novelty with respect
to [16, Corollary 4.5]) passes to the limit by dominated convergence, using (28) and (29).

Finally, also (44) is proved exactly as in [16, proof of Corollary 4.7] (the only novelty being the
term with Φε that can be treated as described above), and we omit the details. We just mention
that (44) (if written with T in place of t) is formally obtained choosing g(t) = (t − T )+ in (39):
then g′′(t) is a Dirac delta at t = T , which produces the last term in (44).

5 The approximate energy

Now we study the approximate energy, a quantity that has been first introduced in [16] and whose
investigation is crucial for the proof of our main results.

Definition 5.1. Let uε be a minimizer of Jε obtained via Proposition 4.1. The approximate energy
associated with uε is the function Eε : [0,∞)→ [0,∞) defined by

(45) Eε(t) :=
1

2ε2

∫
Rn

|u′ε(t, x)|2 dx+

∫ ∞
t

e−(s−t)(s− t)W
(
uε(s)

)
ds.

Remark 5.2. Recalling (21), (37) and (38), (45) reads

Eε(t) = Kε(t) +A2Wε (t), t ≥ 0.

In addition we note that, in view of (8), Eε(t) = Eε(t/ε).
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The value of Eε at t = 0 can be estimated simply using (43).

Lemma 5.3 (Estimate for Eε(0)). We have

(46) Eε(0) ≤ 1

2
‖w1‖2L2 +W(w0) + C

√
ε.

Proof. From (32), Eε(0) = 1
2‖w1‖2L2 +A2Wε (0). Since A2Wε (0) ≤ A2Lε (0), from (43) we obtain

A2Wε (0) ≤ A2Φε (0) +ALε (0)−R(uε).

Now, as ALε (0) = Hε(uε), combining the previous inequality with (33) and (41) yields

(47) A2Wε (0) ≤ A2Φε (0) +W(w0) + Cε.

Moreover, using first (28) and then (29) we have

|A2Φε (0)| ≤ T ∗
∫ ∞
0

e−t
(
|u′ε(t)|, |φ(t)|

)
L2 dt ≤ T ∗‖φ‖L ‖u′ε‖L ≤ C

‖u′ε‖L√
ε
.

Since from (34), (32) and (33) we have

‖u′ε‖2L ≤ Cε2 ‖w1‖2L2 + C

∫ ∞
0

e−tDε(t) dt ≤ Cε2 (1 +Hε(uε)) ≤ Cε2,

we find that |A2Φε (0)| ≤ C
√
ε. Hence, plugging back into (47), (46) is proved.

Furthermore, we establish an upper bound for the time evolution of the approximate energy.

Proposition 5.4 (Approximate energy estimate). For every β > 1, there exists a constant Cβ > 0
such that for every T ≥ 0

(48)
√
Eε(T/ε) ≤

√
Eε(0) +

(√
εCβ +

√
Tβ/2

)√
γ(T + tε) + ε2 ∀ε ∈ (0, 1).

In particular, for every T ≥ 0 there exists CT such that

(49) Eε(t/ε) ≤ CT ∀ε ∈ (0, 1), ∀t ∈ [0, T ].

To prove Proposition 5.4, we must previously compute the derivative of Eε.

Lemma 5.5. The approximate energy Eε is absolutely continuous on every interval [0, T ], and

(50) E′ε(t) = −3ADε (t)−A2Dε (t) +A2Φε (t), for a.e. t ≥ 0.

Proof. Arguing as in [16, proof of Theorem 4.8] one can see that

E′ε(t) = K ′ε(t)−ALε (t) +ADε (t) +A2Lε (t)−A2Dε (t).

Then (44) can be used to eliminate K ′ε(t), and (50) follows.

Now, it also is convenient to recall, without proof, a well-known variant of the Grönwall’s lemma
(see e.g. [3, Proposition 2.3.1]).
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Lemma 5.6. Let c : [a, b]→ R be a positive, differentiable and nondecreasing function. Let also u
and v be two nonnegative functions such that u ∈ C0([a, b]) and v ∈ L1([a, b]). If we assume that
c, u and v satisfy

u(t) ≤ c2(t) + 2

∫ t

a
v(s)

√
u(s) ds, ∀t ∈ [a, b],

then there results √
u(t) ≤ c(t) +

∫ t

a
v(s) ds, ∀t ∈ [a, b].

Proof of Proposition 5.4. First, recall that by definition

A2Φε (t) =

∫ ∞
t

e−(s−t)(s− t)
(
φ(s), u′ε(s)

)
L2 ds.

Now, observing that e−(s−t)(s− t) is a probability kernel on [t,∞), (50) implies

(51) E′ε(t) ≤ −3ADε (t)−A2Dε (t) +Nφ(t)
(
A2‖u′ε(·)‖2L2 (t)

)1/2
where Nφ(t) =

(
A2‖φ(·)‖2L2 (t)

)1/2
. By Lemma 3.4, applied with h = u′ε, for every β > 1 there

exists a constant Cβ > 0 such that(
A2‖u′ε(·)‖2L2 (t)

)1/2 ≤√β ‖u′ε(t)‖L2 +
√
Cβ
(
A‖u′′ε(·)‖2L2 (t) +A2‖u′′ε(·)‖2L2 (t)

)1/2
.

Since ‖u′′ε(·)‖2L2 (t) = 2ε2Dε(t), multiplying by Nφ(t) and using Young’s inequality we find

Nφ(t)
(
A2‖u′ε(·)‖2L2 (t)

)1/2 ≤√β Nφ(t)‖u′ε(t)‖L2 + Cβε
2Nφ(t)2 +

(
3ADε(t) +A2Dε(t)

)
(where Cβ has been possibly redefined). Plugging into (51), we obtain

E′ε(t) ≤
√
β Nφ(t)‖u′ε(t)‖L2 + Cβε

2Nφ(t)2 ≤
√

2β εNφ(t)
√
Eε(t) + Cβε

2Nφ(t)2

and then, integrating,

Eε(t) ≤ Eε(0) + Cβε
2

∫ t

0
N2
φ(s) ds+

√
2β ε

∫ t

0
Nφ(s)

√
Eε(s) ds.

Now, setting

u(t) = Eε(t), v(t) = ε
√
β/2Nφ(t), c(t)2 = Eε(0) + Cβ ε

2

∫ t

0
N2
φ(s) ds,

assumptions of Lemma 5.6 are satisfied and thus for every t ≥ 0

√
Eε(t) ≤

(
Eε(0) + Cβε

2

∫ t

0
N2
φ(s) ds

)1/2

+ ε
√
β/2

∫ t

0
Nφ(s) ds.

Therefore, √
Eε(t) ≤

√
Eε(0) +

√
Cβ ε

√∫ t

0
N2
φ(s) ds+ ε

√
β/2

∫ t

0
Nφ(s) ds
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and, applying Cauchy-Schwarz in the last integral, we find

√
Eε(t) ≤

√
Eε(0) +

√
ε
(√

Cβ +
√
tβ/2

)√
ε

∫ t

0
N2
φ(s) ds.

On the other hand, (30) gives

ε

∫ t

0
N2
φ(s) ds = ε

∫ t

0
A2‖φ(·)‖2L2 (s) ds ≤ γ(εt+ tε) + ε2

so that, setting t = T/ε, we obtain (48). Then (49) is immediate, since the right hand side of (48)
is increasing with respect to T ; moreover, tε ↓ 0 (decreasingly), β can be fixed (e.g. β = 2) and
Eε(0) ≤ C by (46).

6 Proof of Theorem 2.3: parts (a) and (b)

Now, we can use the tools developed in the previous sections in order to to prove the first parts of
Theorem 2.3.

Preliminarily, we need a result on the approximation of functions in L2
loc([0,∞);L2).

Lemma 6.1. For every function f ∈ L2
loc([0,∞);L2) there exists a sequence (fε) ⊂ L2

loc([0,∞);L2)
satisfying the following properties:

(i) as ε ↓ 0, fε → f in L2([0, T ];L2) and ‖fε‖L2([0,T ];L2) ↑ ‖f‖L2([0,T ];L2), for every T > 0;

(ii) supp{fε} ⊂ [tε, Tε]× Rn, with tε > 0 and Tε <∞;

(iii) as ε ↓ 0, tε ↓ 0 and Tε ↑ ∞, and moreover εTε ≤
√
ε, e−tε/ε

(
1 + Tε

ε

)
≤ ε3;

(iv) for every ε ∈ (0, 1),

∫ Tε

tε

‖fε(t)‖2L2 dt ≤ 1/ε;

(v) for every ε ∈ (0, 1),

∫ ∞
0

e−t ‖fε(εt)‖2L2 dt ≤ ε3.

Proof of Lemma 6.1. Defining
fε(t, x) = χ(tε,Tε)(t) f(t, x),

it is clear that (i) and (ii) are satisfied, as soon as tε ↓ 0 and Tε → +∞. We first construct Tε. The
function

Γ : [0,∞)→ [0,∞), Γ(t) :=

∫ t

0

(
1 + ‖f(s)‖2L2

)
ds

is continuous, increasing and surjective, and therefore the same is true of its inverse Γ−1. Letting,
for instance, Tε = min

{
Γ−1(1/ε), 1/

√
ε
}

, we have that Tε → +∞ and that the first part of (iii) is
satisfied, as well as (iv), since∫ Tε

tε

‖fε(s)‖2L2 ds =

∫ Tε

0
‖f(s)‖2L2 ds < Γ(Tε) ≤ 1/ε.
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Finally, we see that∫ ∞
0

e−t ‖fε(εt)‖2L2 dt =
1

ε

∫ ∞
0

e−t/ε ‖fε(t)‖2L2 dt =
1

ε

∫ Tε

tε

e−t/ε ‖fε(t)‖2L2 dt ≤
e−tε/ε

ε2

having used (iv). Hence, to fulfill (v), it suffices to have e−tε/ε ≤ ε5 for every ε ∈ (0, 1), which is
achieved choosing for instance tε = k

√
ε with k large enough. Finally, since Tε ≤ 1/

√
ε, the same

choice can also guarantee the second inequality in (iii).

The previous lemma has an important corollary.

Corollary 6.2. Let f ∈ L2
loc([0,∞);L2) and (fε) be a sequence obtained via Lemma 6.1. If we fix

ε ∈ (0, 1), then the function

(52) φ(t, x) := fε(εt, x), t ≥ 0, x ∈ Rn,

satisfies (28)–(30).

Proof. First, one can easily see that (28) and (29) are direct consequences of properties (ii), (iii)
and (v) of Lemma 6.1.

On the other hand, if one applies Lemma 3.2 with τ = 0, δ = t and h(t) = φ(t) = fε(εt), then∫ t

0
A2‖φ(·)‖2L2 (s) ds ≤

∫ t

0
‖φ(s)‖2L2 ds+A‖φ‖2L2 (t) +A2‖φ‖2L2 (t).

Now, from (ii) of Lemma 6.1 (with some changes of variable) we find that

A‖φ‖2L2 (t) +A2‖φ‖2L2 (t) =

∫ T ∗

0
e−s (1 + s) ‖φ(s+ t)‖2L2 ds

= ε−1
∫ Tε

0
e−s/ε

(
1 + s

ε

)
‖fε(s+ εt)‖2L2 ds.

If we split the integral in two parts, then, from (iii) and (iv) in Lemma 6.1,

ε−1
∫ Tε

tε

e−s/ε
(
1 + s

ε

)
‖fε(s+ εt)‖2L2 ds ≤ ε−1e−tε/ε

(
1 + Tε

ε

) ∫ Tε

tε

‖fε(s+ εt)‖2L2 ds ≤ ε,

while, recalling that e−x (1 + x) ≤ 1 for every x ≥ 0,

ε−1
∫ tε

0
e−s/ε

(
1 + s

ε

)
‖fε(s+ εt)‖2L2 ds ≤ ε−1

∫ tε

0
‖fε(s+ εt)‖2L2 ds = ε−1

∫ εt+tε

εt
‖fε(s)‖2L2 ds.

Therefore, recalling the definition of γ given by (31),∫ t

0
A2‖φ(·)‖2L2 (s) ds ≤

∫ t

0
‖φ(s)‖2L2 ds+ ε−1

∫ εt+tε

εt
‖fε(s)‖2L2 ds+ ε ≤ ε−1γ(εt+ tε) + ε

and (30) follows.

We can now prove the first part of Theorem 2.3.
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Proof of Theorem 2.3: part (a). Let (fε) be a sequence obtained via Lemma 6.1. If we set (52)
in (27), (28)–(30) and all the hypothesis of Proposition 4.1 are satisfied and hence we obtain a
minimizer uε, in the class of functions u ∈ H2

loc([0,∞);L2) subject to (32), that fulfills (33). Now,
as

Fε(w) = εJε(u) whenever u(t, x) = w(εt, x),

if wε is defined by

(53) wε(t, x) = uε(t/ε, x) t ≥ 0, x ∈ Rn,

then it is the required minimizer.

Remark 6.3. We notice that, under the assumptions of Theorem 2.3 and (52), (53) provides a direct
connection between the minimizers of Jε obtained via Proposition 4.1 and the minimizers of Fε.
Throughout, we will repeatedly use this relation and, in particular, the fact that, setting (52) with
(fε) obtained via Lemma 6.1, all the results proved in Sections 4&5 are valid. We will also tacitly
assume that the hypothesis of Theorem 2.3 are satisfied.

The proof of item (b) of Theorem 2.3 requires two further auxiliary results.

Lemma 6.4 (Euler-Lagrange equation of uε). If η(t, x) = ϕ(t)h(x), where h ∈ W and ϕ ∈
C1,1([0,∞)) satisfies ϕ(0) = ϕ′(0) = 0, then

(54)
1

ε2

∫ ∞
0

e−t
(
u′′ε(t), η

′′(t)
)
L2 dt =

∫ ∞
0

e−t
(
−
〈
∇W

(
uε(t)

)
, η(t)

〉
+
(
fε(εt), η(t)

)
L2

)
dt.

Moreover, the same conclusion holds if η ∈ C∞0 (R+ × Rn).

Proof. When η(t, x) = ϕ(t)h(x), (54) is obtained letting g(δ) = Jε(uε + δη) and observing that
g′(0) = 0, since uε is a minimizer of Jε and uε + δη is an admissible competitor. The case where
η ∈ C∞0 (R+ × Rn) follows by a density argument (see [16, proof of Lemma 5.1] for more details).
The novelty here, with respect to [16], is just the term with fε in (54), which originates from the
additional term S(u) in (26).

Lemma 6.5 (Representation formula for u′′ε). For all h ∈W

(55)
1

ε2
(
u′′ε(τ), h

)
L2 = −A2ω1 (τ) +A2ω2 (τ), for a.e. τ > 0,

where ω1(τ) =
〈
∇W

(
uε(τ)

)
, h
〉

and ω2(τ) =
(
fε(ετ), h

)
L2.

Proof. For every h ∈W and every τ > 0, (55) formally follows from (54) choosing η(t, x) = ϕ(t)h(x),
with ϕ(t) = (t− τ)+ so that ϕ′′(t) is a Dirac delta at t = τ . Indeed, (55) can be proved rigorously
(at every Lebesgue point τ of

(
u′′ε(τ), h

)
L2) by approximating ϕ(t) = (t− τ)+ with C1,1 functions,

exactly as in [16, proof of (2.11)&(2.16)].

Proof of Theorem 2.3: part (b). Note that, by (53) and (38), Kε(t/ε) = 1
2‖w

′
ε(t)‖2L2 and, since

Kε(t/ε) ≤ Eε(t/ε), (49) entails (12).
On the other hand, arguing as in [16, proof of Theorem 2.4], we see that∫ s+1

s
Wε(t) dt ≤ C

(
1 + Eε(s− 1)χ[1,∞)(s)

)
, ∀s ≥ 0,
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so that, setting s = τ/ε, (with some changes of variable)∫ τ+ε

τ
W
(
wε(t)

)
dt ≤ Cε

(
1 + Eε(τ/ε− 1)χ[ε,∞)(τ)

)
≤ Cε

(
1 + Cτ−εχ[ε,∞)(τ)

)
, ∀τ ≥ 0,

where Cτ−ε is the constant provided by (49) (when T = τ − ε). As this constant is increasing with
respect to time, one sees that for every τ ≥ 0 and every T > ε

∫ τ+T

τ
W
(
wε(t)

)
dt ≤ Cε

[Tε ]+1∑
i=1

(1 + Cτ+(i−1)ε) ≤ C(1 + CT+τ+1)

(where
[
T
ε

]
denotes the integer part of T

ε ), so that (13) is proved.
Finally, we must prove (14). By (11), one can see that |ω1(t)| ≤ C‖h‖W

(
1 + Wε(t)

)
and

consequently

(56) |A2ω1 (t)| ≤ C‖h‖W
(
1 + Eε(t)

)
.

On the other hand

|A2ω2 (t)| ≤ ‖h‖L2

∫ ∞
t

e−(s−t) (s− t) ‖fε(εs)‖L2 ds

and then, from (10) and Jensen inequality, there results

(57) |A2ω2 (t)| ≤ C‖h‖W
(
A2‖fε(ε · )‖2L2 (t)

)1/2
.

Combining (56) and (57) with (55), we obtain that

1

ε2
|
(
u′′ε(t), h

)
L2 | ≤ C‖h‖W

(
1 + Eε(t) +

(
A2‖fε(ε · )‖2L2 (t)

)1/2)
, for a.e. t > 0

and hence, as (10) entails L2 ↪→W′, that

1

ε2
‖u′′ε(t)‖W′ ≤ C

(
1 + Eε(t) +

(
A2‖fε(ε · )‖2L2 (t)

)1/2)
, for a.e. t > 0.

Furthermore, in view of (53) and (49), the last inequality reads

(58) ‖w′′ε (t)‖W′ ≤ C
(

1 + Ct +
(
A2‖fε(ε · )‖2L2 (t/ε)

)1/2)
, for a.e. t > 0.

Now, recalling (30) and (31), in view of Corollary 6.2, one finds that for every T > 0∫ T

0
A2‖fε(ε · )‖2L2 (t/ε) dt ≤ γ(T + tε) + ε2.

Therefore, since tε ↓ 0 when ε ↓ 0, squaring and integrating inequality (58) on [0, T ], we get (14).

Remark 6.6. Due to the presence of the source term in (1), the estimate that we establish on (w′′ε )
is much “weaker” than the one obtained in [16] in the homogeneous case. However, as we show
below, this does not compromise the proof.
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7 Proof of Theorem 2.3: parts (c), (d) and (e)

In the following proofs, we will extract several subsequences from a given sequence of minimizers
wεi : for ease of notation, however, we will simply denote by wε the original sequence, as well as the
subsequences we extract. The same holds for all the other quantities depending on ε.

Proof of Theorem 2.3: part (c). Let T > 0. By (12) and (14), we see that

‖wε‖H1([0,T ];L2) ≤ CT , ‖w′ε‖L∞([0,T ];L2) ≤ CT , ‖w′ε‖H1([0,T ];W′) ≤ CT .

Arguing as in [16, proof of Theorem 2.4], this is sufficient to prove convergence in H1([0, T ];L2),
(2) (with the second condition meant as an equality in W′) and (15).

Proof of Theorem 2.3: part (d). Observe that, letting l(t) := Wε(t) and m(t) := Eε(t) − Kε(t) in
[16, Lemma 6.1], we obtain that for every T > 0, a > 0, δ ∈ (0, 1)

Y (δa)

∫ T+a

T+δa
Wε(t) dt+

∫ T+a

T
Kε(t) dt ≤

∫ T+a

T
Eε(t) dt,

where Y (z) :=
∫ z
0 e
−s s ds. Replacing a with a/ε and T with T/ε, with a change of variable, the

previous inequality reads

Y

(
δa

ε

)∫ T+a

T+δa
W
(
wε(t)

)
dt+

1

2

∫ T+a

T
‖w′ε(t)‖2L2(t) dt ≤

∫ T+a

T
Eε(t/ε) dt.

Hence, from (48), we see that for an arbitrary β > 1

Y

(
δa

ε

)∫ T+a

T+δa
W
(
wε(t)

)
dt+

1

2

∫ T+a

T
‖w′ε(t)‖2L2(t) dt

≤
∫ T+a

T

(√
Eε(0) +

(√
εCβ +

√
tβ/2

)√
γ(t+ tε) + ε2

)2
dt.

Now, when ε ↓ 0, by definition Y
(
δa
ε

)
→ 1, whereas by (46) and (31)∫ T+a

T

(√
Eε(0) +

(√
εCβ +

√
tβ/2

)√
γ(t+ tε) + ε2

)2
dt→

∫ T+a

T

(√
E(0) +

√
tγ(t)β/2

)2
dt.

Consequently, arguing as in [16, proof of Theorem 2.4],∫ T+a

T+δa
W
(
w(t)

)
dt+

1

2

∫ T+a

T
‖w′(t)‖2L2(t) dt ≤

∫ T+a

T

(√
E(0) +

√
tγ(t)β/2

)2
dt

and, letting δ ↓ 0 and, subsequently, dividing by a and letting a ↓ 0, we obtain

W
(
w(T )

)
+

1

2
‖w′(T )‖2L2 ≤

(√
E(0) +

√
Tγ(T )β/2

)2
, for a.e. T ≥ 0.

Since the inequality is valid for every β > 1, letting β ↓ 1, (16) follows.
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Finally, before proving part (e) of Theorem 2.3, we state the following result, which can be
established directly by (54) (see [16, Lemma 6.2]).

Lemma 7.1. Let wε be a minimizer of Fε. Then, for every function ϕ ∈ C∞0 (R+ × Rn), there
results

(59)

∫ ∞
0

(
w′ε(t), ε

2 ϕ′′′(t) + 2εϕ′′(t) + ϕ′(t)
)
L2 dt =

=

∫ ∞
0

〈
∇W

(
wε(t)

)
, ϕ(t)

〉
dt−

∫ ∞
0

(
fε(t), ϕ(t)

)
L2 dt.

Proof of Theorem 2.3: part (e). The goal, now, is to prove that, as ε ↓ 0, equation (59) reduces to
(18). Let ϕ ∈ C∞0 (R+×Rn) and w be the function obtained at point (c). We immediately see that∫ ∞

0

(
w′ε(t), ε

2 ϕ′′′(t) + 2εϕ′′(t) + ϕ′(t)
)
L2 dt→

∫ ∞
0

(
w′(t), ϕ′(t)

)
L2 dt.

and, by construction, that ∫ ∞
0

(
fε(t), ϕ(t)

)
L2 dt→

∫ ∞
0

(
f(t), ϕ(t)

)
L2 dt.

Hence the core of the proof is to show that∫ ∞
0

〈
∇W

(
wε(t)

)
, ϕ(t)

〉
dt→

∫ ∞
0

〈
∇W

(
w(t)

)
, ϕ(t)

〉
dt.

However, this follows by exploiting (12), (13), (17) and [8, Theorem 5.1] as in [16].

8 Examples

For the sake of completeness we show some examples of second order nonhomogeneous hyperbolic
equations that satisfy the assumptions of Theorem 2.3.

1. Linear equations. A linear hyperbolic equation (with constant coefficients and without dissi-
pative terms) can be written as

(60) w′′ = −
∑
j∈R

(−1)|j| ∂2jw + f,

where R ⊂ Nn is a finite set of multi-indices and ∂2j denotes partial differentiation in space with
respect to the multi-index 2j. If we set

W(v) =
1

2

∑
j∈R

∫
Rn

|∂jv|2 dx,

then (1) reads like (60) and, letting W = {v ∈ L2 : ∂jv ∈ L2, ∀j ∈ R} and θ = 1/2, assumptions
of Theorem 2.3 are satisfied (in view of Remark 2.6). In particular, for suitable choices of R, (60)
reads:

w′′ = ∆w + f, w′′ = ∆w − w + f, or w′′ = −∆2w + f
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and than all of these equations (namely, D’Alembert, Klein-Gordon and Plate/Bi-harmonic wave
equations, respectively) admit a variational solution.

2. Defocusing NLW equation. The defocusing NLW equation reads

(61) w′′ = ∆w − |w|p−2w + f (p > 1).

Here the proper choice of W is

W(v) =

∫
Rn

(
1

2
|∇v|2 +

1

p
|v|p
)
dx,

with W = H1 ∩Lp and θ = 1− 1/max{2, p}, so that the assumptions of Theorem 2.3 are satisfied.

3. Sine-Gordon equation. For the Sine-Gordon equation

w′′ = ∆w − sinw + f

the suitable definition of W is

W(v) =

∫
Rn

(
1

2
|∇v|2 + 1− cos v

)
dx

and, letting W = H1 and θ = 1/2, Theorem 2.3 applies (again in view of Remark 2.6).

4. Quasilinear wave equations. Two examples of quasilinear hyperbolic equations are

(62) w′′ = ∆pw + f and w′′ = ∆pw − |w|q−2w + f (p, q > 1, p 6= 2).

For these equations, good choices of W are provided by

W(v) =
1

p

∫
Rn

|∇v|p dx and W(v) =

∫
Rn

(
1

p
|∇v|p +

1

q
|v|q
)
dx

(respectively). Here, letting W = {v ∈ L2 : ∇v ∈ Lp} with θ = 1 − 1/p in the former case and
W = {v ∈ L2 : ∇v ∈ Lp, v ∈ Lq} with θ = 1 − 1/max{p, q} in the latter case, Theorem 2.3 holds
up to item (e). It is an open problem then to establish the existence of a variational solution for
both (62)1-(2) and (62)2-(2).

5. Higher order nonlinear equations. An example of higher order hyperbolic equation is the
nonlinear vibrating-beam equation

w′′ = −∆2w + ∆pw − |w|q−2w + f (p, q > 1)

(see e.g. [11, 12]). The suitable choice of W here is

W(v) =

∫
Rn

(
1

2
|∆v|2 +

1

p
|∇v|p +

1

q
|v|q
)
dx

and, setting W = {v ∈ H2 : ∇v ∈ Lp, v ∈ Lq} with θ = 1− 1/max{2, p, q}, Theorem 2.3 holds.
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6. Kirchhoff equations. These are typical examples of nonlocal problems. For instance, consider
the equation

(63) w′′ =

(∫
Rn

|∇w|2 dx
)

∆w + f.

The natural choice of W is given by

W(v) =
1

4

(∫
Rn

|∇v|2 dx
)2

,

and, setting W = H1 and θ = 3/4, Theorem 2.3 applies except for part (e), which consequently
remains an open problem.

7. Wave equations with fractional Laplacian. Further examples of nonlocal problems are
provided by hyperbolic equations involving the fractional Laplacian, as for instance

w′′ = −(−∆)s − λ|w|p−2w + f (0 < s < 1, λ ≥ 0, p > 1).

Here, if one takes the functional

W(v) = cn,s

∫
Rn×Rn

|v(x)− v(y)|2

|x− y|n+2s
dx dy +

λ

p

∫
Rn

|v|p dx,

which is the natural energy associated to the fractional Laplacian, then setting W = Hs ∩ Lp and
θ = 1 − 1/max{2, p} (when λ > 0, or W = Hs and θ = 1/2 when λ = 0) one sees that the
assumptions of Theorem 2.3 are satisfied.
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