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TAME: an Efficient Task Allocation Algorithm
for Integrated Mobile Gaming

Tianzhu Zhang, Member, IEEE, Carla Fabiana Chiasserini, Fellow, IEEE,
and Paolo Giaccone, Senior Member, IEEE

Abstract—We consider an integrated mobile gaming platform, in which the mobile device (e.g., smartphone) of a player can offload
some game tasks toward a server as well as some neighboring mobile devices. The advantages of such a platform are manyfold: it can
lead to an improved game experience, to a better use of energy resources, and, while offloading tasks to other mobile users, to the
exploitation of the unused computing and storage resources of the mobile equipments, thus reducing the bandwidth and computing
costs of the overall system. In this context, we formulate the problem of offloading the game computational tasks as an optimization
problem that minimizes the maximum energy consumption across a set of mobile devices, under the constraints of a maximum
response time and a limited availability of computation, communication and storage resources. In light of the problem complexity, we
then propose a heuristic, called TAME, which is shown to closely approximate the optimal solution in all scenarios we considered.
TAME also outperforms state-of-the-art algorithms under both synthetic and real scenarios, which have been devised based on a
realistic and detailed energy consumption model for computation and communication resources. Our results, although tailored to
mobile gaming, could be extended to other applications where it may be beneficial to offload computational and storage tasks through
device-to-device communications, as enabled by Wi-Fi, Bluetooth, or the upcoming 5G technology.

Index Terms—Fog computing, online games, task offloading algorithms, optimization.
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1 INTRODUCTION

MOBILE Cloud Gaming (MCG) [1] offers the possibility
of running sophisticated games on thin mobile de-

vices by offloading heavy tasks to the cloud. In this way,
mobile games can be accessed on any device from anywhere
with a simple setup. During the last few years, MCG has
sharply motivated the expansion of mobile game industry.
According to the report by Newzoo [2], in 2016 game users
generated $99.6 billion of revenues, with an increase of
8.5% compared with 2015, and mobile games began to
take a larger market share than their PC counterpart for
the first time. Additionally, the Asia Pacific cloud gaming
market is expected to witness a compound annual growth
rate of 22% between 2016-2022 [3]. Finally, as a prevalent
gaming model, MCG is widely supported by many famous
online gaming platforms including Onlive [4], GaiKai [5]
and GamingAnywhere [6].

In spite of the increasing popularity of MCG, several
important challenges still need to be faced. First, offloading
tasks to the remote cloud imposes extra communication
latency, which may degrade users’ quality of experience
(QoE) and limit user coverage due to strict requirements
on the response delay [7], [8]. Second, a large amount of
bandwidth is required in order to guarantee high game
quality, which in turn increases the costs for gaming service
providers [1]. Third, cloud infrastructure requires more and
more resources to cater the ever increasing demands of large
scale mobile games (e.g., World of Warcraft) [9].

In this paper, we propose a general mobile gaming
platform, named Integrated Mobile Gaming (IMG), which

• All the authors are with the Electronics and Telecommunications De-
partment, Politecnico di Torino, Italy. C.F. Chiasserini is also a Research
Associate with IIET-CNR, Italy. E-mail: firstname.lastname@polito.it

combines the available resources at both a game server
and the neighbor mobile nodes, denoted as mobile fog, to
run a game on behalf of the player’s device. This new
model shares MCG’s idea of augmenting mobile devices
with computation offloading, whereas it overcomes the in-
trinsic drawbacks of traffic offloading such as long response
latency, wireless bandwidth consumption and limited avail-
able energy and computational resources. By partitioning a
game into fine-granularity tasks and offloading part of them
to either the game server or neighbor nodes cognitively, not
only the player’s local device can save energy but also the
available resources of the network can be better utilized.
Similar to [10], [11], we partition games into multiple tasks,
at both object and method level, for the sake of offloading
flexibility. Then we determine the offloading strategy by
solving an integer linear programming (ILP) problem as
well as by devising an approximation algorithm exhibiting
excellent scalability.

As an example, consider the IMG scenario depicted in
Fig. 1, including the player’s device (denoted by n0) and
some mobile devices in proximity, a Point of Access (PoA)
and a game server, located at the edge of the network.

Game
serverPoA

n0
n1 n2

Edge network

Fig. 1: Exemplifying scenario of Integrated Mobile Gaming
(IMG).
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Notably, the PoA can be a standard Wi-Fi AP or can be
the access node of a cellular network. Beside the connection
with the game server through the PoA, each of the mobile
devices can exploit device-to-device (D2D) communications
with the neighboring nodes, enabled by Bluetooth or Wi-
Fi Direct technologies. According to the IMG model, the
game running on n0 is firstly partitioned into tasks, part of
which can be offloaded to the neighboring devices (e.g., n1
and n2) or the game server, without degrading gameplay
experience. Through task offloading, we aim to minimize
the maximum energy consumption across all mobile nodes,
instead of just at the player’s device, since, as shown in [12],
the case of multiple players in the network minimizing
unilaterally the energy cost for their own devices may end
up with a lose-lose situation.

To the best of our knowledge, this is the first paper that
exploits both edge computing and mobile fog computing for
energy-efficient mobile gaming. In mode detail, we provide
the following contributions: (i) we formulate the optimal
energy-aware task offloading problem for mobile gaming
under the IMG model; (ii) we devise an approximate al-
gorithm, named Task Allocation with Minimal Energy cost
(TAME), which is able to account for both computation and
communication costs; (iii) we evaluate the performance of
TAME under synthetic and realistic scenarios, and show
numerically that it approximates very closely the optimal
solution and outperforms other state-of-the-art offloading
algorithms.

The remainder of the paper is organized as follows. Sec. 2
presents the system model of IMG, and describes the avail-
able computation and communication network resources as
well as the game structure in terms of tasks and their in-
teraction. Sec. 3 introduces the optimal energy-efficient task
offloading problem, while Sec. 4 describes our approximate
algorithm TAME. Sec. 5 presents the methodology used to
investigate the system performance, which is then shown in
Sec. 6. Finally, Sec. 7 discusses related work highlighting the
novelty of our contribution.

2 SYSTEM MODEL FOR IMG
We first introduce the network graph GN , which describes
the network topology and all its computation, communica-
tion and storage resources. Then we define the task graph
GT , characterizing the game tasks and their dependency.

2.1 Network model

We consider the network topology depicted in Fig. 1. Each
mobile device can communicate with a Point of Access
(PoA), e.g., a Wi-Fi access point or a base station, and with
its neighbor mobile nodes through any device-to-device
(D2D) communication technology. We envision that the mo-
bile game server is implemented as an NFV application in
the mobile network operator infrastructure and connected
to the PoA through a wired connection. Leveraging the
information available at the PoA on the user presence, the
server can provide the application at the player’s device
with the list of nodes that can be involved in the task
offloading. Communication links between the player’s de-
vice and its neighbors can be established using standard

game
 serverPoA

Fig. 2: A sample network graph GN with three mobile nodes:
one player’s node n0 and two neighbor nodes n1 and n2.

procedures for D2D communications [13]. Alternative solu-
tions where the game server is located in the cloud can be
envisioned as well.

Let N be the set of all network nodes, comprising the
mobile nodes and the PoA. We denote by n a generic
network node; with an abuse of notation, we will use a,
with a ∈ N , to refer to both the PoA and the game server.
We assume that the network evolves through a sequence of
temporal epochs, each with duration of the order of tens of
seconds or minutes. During each epoch, the communication
capacity between pairs of nodes remains constant; indeed,
we include in the N set only those neighbor nodes whose
movement with respect to the player’s device is negligible
during an epoch.

Let GN be the network graph representing our network
during an epoch: each vertex corresponds to a network
node while edges represent communication links between
nodes in radio visibility. An example of GN in the case
of a network including three mobile users is depicted in
Fig. 2, while Table 1 summarizes the notation we use to
describe the network. Let n0 be the game player’s device.
A generic mobile node n is characterized by computation
capacity Cn, available storage Sn, and available energy En.
The server node a has computation capacity Ca, while its
available storage and energy are considered as unbounded.
Let Bn,m be the throughput between node n and m, and
Bn,a the throughput between node n and the PoA. We
assume that the propagation delay from any mobile node
to the PoA is negligible, and that the available bandwidth
between the PoA and the game server is so high that the
only contribution to the communication delay between the
PoA and the server is due to the propagation delay, denoted
with Dac. Regarding the energy consumption, we define
ECn as the per-clock-cycle energy cost due to computing
at node n. With regard to the transmission from node n
to node m, let ETn,m and ERn,m be the per-bit energy cost
for the transmission and the reception of data, respectively,
similarly to the models adopted in [12], [14].

2.2 Mobile game model

The software of a game can be partitioned into several tasks.
Different levels of granularity for the definition of the tasks
can be adopted. For example, in a shooter game, the collision
detection could be a single task defined at method level,
i.e., shared across the objects requiring the evaluation of
collisions. Instead, the automata governing different entities
interacting in the game (e.g., the enemies) could run as
individual tasks at object level, i.e. one automata task for each
entity. Finally, the artificial intelligence module, comprising
a compound of multiple classes, could run as a single
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TABLE 1: Network model notation

Symbol Description
GN Network graph
N Set of all network nodes
m, n Generic node in the network, m,n ∈ N
a PoA and/or game server, a ∈ N
n0 Player’s mobile device
Bn,m Throughput from node n to m [bit/s]
Bn,a Throughput between node n and the PoA [bit/s]
Dac Propagation delay between the PoA and the edge node [s]
ETn,m Energy consumption for node n to transmit data to m [J/bit]
ERn,m Energy consumption at node m to receive data from n [J/bit]
ECn Processing energy consumption at node n [J/cycle]
Cn Computation capacity at node n [Hz]
Sn Storage availability at node n [bit]
En Available energy at node n [J]

Fig. 3: A sample task graph GT , composed of one local task
t0 and two generic tasks t1, t2.

TABLE 2: Game model notation

Symbol Description
GT Task graph
T Set of all game tasks
t, τ Generic task of a game, t, τ ∈ T
t0 Local task on n0

F Frame period duration [s]
st Size of task t (code + state) [bit]
O Set of all the objects
so Size of object o [bit]
ct CPU required by task t [cycles]
Wt,τ Data from task t to task τ [bit]

task. As another example, in a chess game with two self-
playing opponents, the artificial intelligence module could
run as a single task at class level (if shared between the two
opponents), or as two distinct tasks at object level (i.e. one
for each opponent). In Sec. 5.3.2, we will describe in details
the tasks, defined at class level, that can be obtained for two
real-world games.

Additionally, in real-time games, the software manages
the calls of the tasks within a main event loop, which is
responsible to update the entire state of the game, given the
players’ inputs, and to render the scene. The duration of the
event loop is typically bounded by the scene frame period
(e.g., 33 ms for 30 fps) with duration F .

For the sake of generality, we describe the tasks and their
dependencies through a directed graph, called task graph
and denoted by GT . Each vertex corresponds to a task, and
an edge connects two vertices if there exists a dependency
between the corresponding tasks, e.g., the output of the first
task is used as input to the second one, or the second task
runs only after the first has been completed. Fig. 3 shows a
sample graph with 3 tasks; in Sec. 5.3.2, we will then discuss
a methodology to obtain such task graph in the case of real-
world games.

The notation we use for the task graph is summarized
in Table 2. Let T be the set of all tasks, assumed to run
in real-time. Let t0 be a special task (possibly comprising
a set of specific sub-tasks) that must run locally on the
player’s device n0 (e.g., I/O processing, video rendering or
decoding). Each task t is characterized by a computation
requirement ct, expressed as number of CPU cycles in a

TABLE 3: Decision and auxiliary variables in the optimiza-
tion problem

Symbol Description
Xt,n 1 if t is offloaded to n, 0 else
πt,τn,m 1 if task t on n sends data to task τ on m, 0 else
ηo,m,n 1 if n downloads object o from m, 0 else
νn,o 1 if some task on n needs object o, 0 else

frame period, coherently with standard practice [12], [14].
Let Wt,τ be the average amount of data, measured in bits,
sent from task t to task τ during a frame period. Some
tasks may need some objects for their execution (e.g., the
textures shown in the game, or the sounds), which must
be stored at the nodes running the tasks. We assume that
the game server has a copy of every object and that, at
the beginning of each frame period, both the availability of
objects at each node and the set of objects required by a task
are known. With an abuse of notation, we say that o ∈ n
if object o is locally available at node n, and o ∈ t if object
o is required by task t. Finally, for simplicity we assume
that only one portable device within the neighborhood is
involved actively in the game playing activity.

3 PROBLEM FORMULATION

We formulate the problem of optimal energy-aware task
offloading, under the system constraints presented in Sec. 2.
Aim of the problem is to allocate each task to the most
suitable node, so that the maximum energy consumption
across the mobile nodes, including the player’s one, is min-
imized. This ensures fairness in the energy toll requested to
the mobile nodes for the game execution, and it can also
be easily adapted to the case where the player’s device
is supposed to pay a higher energy toll than its neighbor
devices. Notably, a different optimization objective could
lead to a lower total energy consumption, but with very
unfair allocation of the tasks across the nodes, which may
be unacceptable for the user devices.

Input to the optimization problem are the network
model, described by GN , and the game model, described by
GT . The main decision variable is the binary variable Xt,n,
which takes 1 iff task t is offloaded to node n and zero oth-
erwise, with Xt,a = 1 denoting that the task is allocated to
the game server. The related decision and auxiliary variables
are summarized in Table 3. The objective function is:

min max
n∈N\{a}

εn (1)

where εn is the energy cost on node n (excluding the PoA)
due to the game execution, during a given frame period. As
detailed in Sec. 3.1, εn accounts for the energy consumption
due to task processing as well as to the communication
required for task offloading, retrieval of non-local objects
and data exchange between tasks. In addition, our optimiza-
tion framework accounts for the performance perceived by
the user, defined as response delay of the game software.
Indeed, a game with high response delay or low frame rate
cannot guarantee accurate and fluent game scenes, thus in
our optimization problem, we constraint the response time
to be below a given threshold. This performance metric is
defined in detail in Sec. 3.2, while the system constraints
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under which the optimization problem should be solved are
reported in Sec. 3.3.

3.1 Mobile node energy consumption
The total energy cost for any mobile node n, with n ∈ N \
{a}, in the given frame period is the summation:

εn = εPn + εCn + εMn + εOn (2)

Each term is defined below.
Task processing energy consumption εPn . The total en-

ergy consumption of mobile node n, due to the computation
of the tasks that node n hosts, is given by:

εPn =
∑
t∈T

Xt,n · ECn · ct (3)

where ECn denotes the per-clock-cycle energy cost of node
n and ct is the required number of CPU cycles for task t.
Thus, Xt,n ·ECn ·ct is the energy consumption due to t being
offloaded to n.

Task communication energy consumption εCn . Each
mobile node transmits and receives data from other nodes
on behalf of the hosted tasks. The corresponding energy
consumption at the generic node n is evaluated as follows:

εCn =
∑
t,τ∈T
t 6=τ

∑
m∈N\{n}

Wt,τ · (πt,τn,m ·ETn,m + πt,τm,n ·ERm,n) (4)

where we recall that Wt,τ represents the amount of data that
task t sends to task τ . The first term within the summation
denotes the energy used by node n to transmit to m (i.e.,
ETn,m), whenever t is running on n and τ on m (i.e.,
πt,τn,m = 1). Similarly, the second term is the energy used
by n, running τ , to receive data from task t running on m
(i.e., ERm,n). Notably, we consider also the reception of data
from the PoA (i.e., m = a).

Task migration energy consumption εMn . In the case of
task migration from the player’s node n0 to another node m
(possibly including the game server a), the energy cost at n0
due to the task transmission is:

εMn0
=
∑
t∈T

∑
m∈N\{n0}

st ·Xt,m · ETn0,m (5)

where st denotes the size of task t. Similarly, the energy cost
at a generic destination node n receiving a task from n0 is:

εMn =
∑
t∈T

st ·Xt,n · ERn0,n n 6= n0, a (6)

Note that we excluded the energy consumption at the
PoA (i.e., n 6= a), since the PoA operates without energy
limitations.

Object retrieval energy consumption εOn . Since tasks
may need to load some objects as input for execution, the
nodes hosting the tasks are in charge of downloading the
required objects from other nodes if not locally available. As
a result, a node may need to transfer its locally available
objects to others, or receive objects from other nodes. Thus,
any n ∈ N \ {a} may experience the following energy
consumption:

εOn =
∑
o∈O

∑
m∈N\{n}

so · (ηo,m,n · ERm,n + ηo,n,m · ETn,m) (7)

where so denotes the size of object o and ηo,m,n indicates
whether n needs to download object o from m or not. In
particular, the two terms in the above equation represent the
total energy cost for node n to, respectively, retrieve objects
from others and transmit objects to others.

3.2 Response delay
The response delay δ experienced by the player in a given
frame period is given by:

δ = δM + δR + δP + δE (8)

where each term is described below.
Task migration delay δM . The tasks that are offloaded

from n0 to other nodes or to the game server for remote
execution, require to be transmitted; thus, they experience
some migration latency given by:

δM =
∑
t∈T

∑
n∈N\{n0,a}

(
Xt,n · st
Bn0,n

+Xt,a ·
(

st
Bn0,a

+Dac

))
(9)

The first term in (9) is the transmission time of task t, of
size st, from n0 to another mobile node n, given that the
expected throughput between the two nodes is Bn0,n. The
second term in (9) is instead the migration delay from n0
to the game server, given the transmission time to the PoA
(i.e., st/Bno,a) and the propagation delay Dac from the PoA
to the game server.

Task processing delay δP . The processing time of task
t, requiring ct cycles and running on node n with Cn
processing capability, is ct/Cn. Notably, in the case the
task runs in the server, this turns out to be ct/Ca. The
overall execution time depends on the degree of parallelism
allowed to run the tasks. If we assume that all tasks are
executed sequentially, the total task processing delay δSeq is:

δSeq =
∑
t∈T

∑
n∈N

Xt,n · ct
Cn

Instead, if all tasks are executed in parallel, the total task
delay δPar is the maximum among all the processing nodes:

δPar = max
n∈N

∑
t∈T

Xt,n · ct
Cn

We expect that in realistic scenarios some tasks can be
executed in parallel and others sequentially. As a result, the
actual task processing time is bounded as follows:

δPar ≤ δP ≤ δSeq (10)

In the following, for a worst case design, we will consider
δP = δSeq.

Task communication delay δE . As shown in Fig. 3, tasks
may need to exchange data, introducing communication
latency. For a worst case design, we assume sequential
communications, and thus the task communication delay
can be formulated as follows:

δE =
∑
t,τ∈T
t 6=τ

( ∑
n,m∈N
n 6=m,a

Wt,τ · πt,τn,m
Bn,m

+

∑
n∈N\{a}

(
πt,τa,n + πt,τn,a

)
·
(
Wt,τ

Bn,a
+Dac

))
(11)
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The first term in (11) includes the duration of the transmis-
sion from task t to task τ occurring from mobile node n to
mobile node m, and equal to Wt,τ/Bn,m, whenever such
transmission occurs (i.e., πt,τn,m = 1). The second term in (11)
considers the communications between the game server and
a mobile node. It includes the transmission time Wt,τ/Bn,a
from/to the PoA and the propagation delay Dac between
PoA and the game server whenever such communication
occurs, either from the mobile node to the game server (i.e.,
πt,τn,a = 1) or vice versa (i.e., πt,τa,n = 1).

Object retrieval delay δR. We assume that objects, if
needed, are retrieved sequentially, thus the total object re-
trieval delay is formulated as follows:

δR =
∑
o∈O

∑
n∈N\{a}

∑
m∈N\{n,a}

(
ηo,m,n · so
Bm,n

+

ηo,a,n ·
( so
Bn,a

+Dac

))
(12)

The first term in (12) represents the total delay so/Bm,n
for mobile node n to retrieve object o from mobile node m
whenever convenient (i.e., ηo,m,n = 1). The second term
refers to the download time of o from the game server,
i.e., between the game server and the PoA (i.e., Dac) and
between the PoA and node n (i.e., so/Bn,a), whenever this
case happens (i.e., ηo,a,n = 1). We recall that the game server
has a copy of any object, thus objects are never uploaded to
the server.

3.3 Constraints

Given the variables defined above, the IMG system is subject
to the constraints listed below.

Maximum response delay. The execution of all tasks
related to a given frame period needs to be completed
within the frame itself:

δ ≤ F (13)

Task mapping. Each task can only be offloaded to either
a mobile node or the game server, i.e.,∑

n∈N
Xt,n = 1 ∀t ∈ T (14)

Additionally, since t0 is the local task that must run on node
n0, we force Xt0,n0 = 1.

Task communication. The auxiliary binary variable πt,τn,m
is related to the main decision variable Xt,n as follows:

πt,τn,m =

{
Xt,n ·Xτ,m if Wt,τ > 0

0 else
(15)

i.e., a data transfer between tasks t and τ running, respec-
tively, on nodes n and m, occurs only if τ gets as input
t′s output, and t and τ are actually assigned to the two
mobile nodes. In order to obtain linear constraints, we can
equivalently express (15), when Wt,τ > 0, as:

πt,τn,m ≥ (Xt,n +Xτ,m − 1) , πt,τn,m ≤ Xt,n, πt,τn,m ≤ Xτ,m

Object demand. Let νn,o be a binary variable such that
νn,o = 1 iff one or more tasks on node n need object o to be
executed. Thus, the value of νn,o should be such that:∑

t|o∈t

Xt,n ≤ K · νn,o (16)

∑
t|o∈t

Xt,n ≥ νn,o (17)

where K is a large enough constant. Indeed, if at least one
task t running on node n needs object o (thus, Xt,n = 1 and
o ∈ t) then the summation across all tasks in (16) implies
νn,o = 1; otherwise, (17) imposes νn,o = 0. We remark
that (17) is superfluous, since the energy minimization will
prevent the case νn,o = 1 to occur whenever task t does not
require object o.

Object retrieval. If node n hosts tasks requiring an object
that is not locally available, then one copy of the object must
be downloaded from other nodes, i.e., for any o /∈ n:

K ·
∑

m∈N\{n}

ηo,m,n ≥ νn,o (18)

An object is downloaded by n from other nodes (i.e.,∑
m∈N\{n} ηo,m,n = 1) iff it is not locally available (i.e.,

o /∈ n) and it is needed by the tasks running on node n (i.e.,
νn,o = 1), as modeled in (18). Similarly to (17), we remark
that νn,o will take 0 zero unless (18) is satisfied.

3.3.1 Resource capacity

Since mobile devices have limited battery and computation
capabilities, they must have enough resources in order to
host tasks. For each mobile device, we define four kinds of
resource capacity constraints: CPU, bandwidth, storage and
energy constraints, as described below.

Node CPU constraint. Each node n (either a mobile node
or the game server) must have enough CPU to satisfy the
computation requirements of all the tasks it hosts in the
given frame period. Thus, for any n ∈ N :∑

t∈T
Xt,n · ct ≤ F · Cn (19)

The left side is the summation of CPU cycles required by
all tasks running on node n, while the right side is the total
number of CPU cycles available at the node.

Node bandwidth constraint. In the given frame period,
each node n (either a mobile node or the PoA/server)
must have enough bandwidth to support the data exchange
between the local tasks and the remote tasks running on
other nodes. Hence, for any n,m ∈ N :∑

t,τ∈T
t6=τ

Wt,τ · (πt,τn,m + πt,τm,n) ≤ F ·Bn,m (20)

The left side of (20) is the total amount of data that node
n transmits/receives to/from m (i.e., πt,τn,m and/or πt,τm,n are
equal to 1). The right side of (20) is the total amount of data
node n can exchange with m, in the given frame period.

Node storage constraint. In a given frame period, each
mobile node n has to store the objects needed by its local
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tasks, i.e., for any n ∈ N \{a}, the total size of stored objects
cannot be larger than the available storage at n:∑

o∈O
νn,o · so ≤ Sn (21)

Note that we implicitly assume non-persistent storage, and
we expect that non-needed objects can be deleted by node n
at the beginning of a frame period whenever νn,o = 0 and
the storage is full. We stress however that the set of objects
stored by a node at the beginning of one frame period is
given, and used as input to the optimization problem for
the current frame period.

Node energy constraint. The energy consumption εn
cannot be larger than the available energy En of a mobile
node n, during the frame period, i.e., for any n ∈ N \ {a}:

εn ≤ En (22)

Recall that the game server has CPU and bandwidth limita-
tions only.

3.4 Problem complexity

The above ILP formulation involves four kinds of de-
cision variables and six kinds of constraints. It can
be shown that the total number of variables grows as
O(|N |2|O|, |T |2|N |2), and the total number of constraints
grows as O(|T ||N |, |O||N |). According to [15], for a linear
programming problem with v variables and α constraints,
the complexity of an ILP solver is O(22

v

α). Thus, the final
complexity to solve our optimization problem is:O(22

|T |2·|N|2 |T ||N |) for |T | > |O|
O(22

|O|·|N|2 |O||N |) for |T | ≤ |O|

which underlines that the problem complexity greatly in-
creases with the number of tasks and mobile nodes.

4 THE TAME ALGORITHM

The optimization problem presented in Sec. 3 can be
solved with ILP solvers in the case of small problem in-
stances, but, due to its high complexity, it cannot scale
to large network/game instances. We therefore devise a
low-complexity, greedy algorithm, named Task Allocation
with Minimum Energy (TAME), which is amenable to an
implementation in mobile user devices and can provide a
swift solution to the problem of computational task offload-
ing. TAME is inspired by the well-known greedy BestFit
approximation algorithm, which has low complexity and
has been shown to be very efficient in the allocation of
virtual machines in cloud computing systems [16].

At each iteration, TAME assigns a task to the node
that minimizes the energy cost. This cost depends on both
communication and computation. To minimize the com-
plexity when evaluating the energy costs, TAME identifies
the dominant factor (either computation or communica-
tion) contributing to the total energy cost, based on all
unallocated tasks. The task to offload is chosen according
to the dominant factor, while ensuring compatibility with
the resources (computation, communication and storage)
that are available locally and at the neighbor nodes. In

Algorithm 1 TAME algorithm
Require: GT ,GN
1: Xt,n = 0, ∀t ∈ T ,∀n ∈ N . Init with no allocated task
2: Xt0,n0 = 1 . Allocate local task/s to n0

3: Ω = T \ {t0} . Init set of unallocated tasks
4: while Ω 6= ∅ do . For all unallocated tasks
5: εcpu = ÊC · (

∑
t∈Ω ct) . Energy due to computation

6: εcom = (ÊT + ÊR) · (
∑

t,τ∈Ω,τ 6=t
Wt,τ ) . Energy due to comm.

7: if εcpu ≥ εcom then . Computation energy is dominant
8: t∗ ← arg max

t∈Ω
{ct} . Task with highest computation

requirement
9: τ∗ = {} . Task τ∗ is undefined

10: else . Communication energy is dominant
11: t∗, τ∗ ← arg max

t,τ∈Ω
{Wt,τ +Wτ,t} . Task pair with highest

communication requirement
12: for all n ∈ N do . Find most energy-convenient node
13: assume t∗ (and, possibly, τ∗) is offloaded to n
14: if all the constraints are satisfied then
15: ên ← maximum energy cost across the mobile nodes if

t∗ (and, possibly, τ∗) is offloaded to n
16: else
17: ên ←∞ . n is not suitable
18: n∗ = arg min

n∈N
{ên} . Find the node with minimum energy

19: if εn∗ <∞ then . A feasible choice exists
20: Xt∗,n∗ = 1 . Offload t∗ on n∗
21: Ω = Ω \ {t∗} . t∗ will not be further considered
22: if τ∗ 6= {} then . If τ∗ is defined
23: Xτ∗,n∗ = 1 . Offload τ∗ on n∗
24: Ω = Ω \ {τ∗} . t∗ will not be further considered
25: else
26: return . Task offloading is not possible
27: return X

other words, at each iteration TAME adapts its “energy-
awareness” to the most relevant energy contribution. It
is worth mentioning that knowledge about the neighbors’
resources can be acquired by the player’s node through the
assistance of the game server.

The pseudocode of TAME is presented in Algorithm 1,
which takes both the task graph GT and the network graph
GN as input and returns the task allocation X = {Xt,n}.
After initialization, TAME allocates the local tasks t0 to
the player’s device n0 (line 2). Then it considers the re-
maining tasks iteratively, until all of them have been al-
located (lines 4-26). At each iteration, TAME estimates the
total energy cost due to computation and communication,
for all the unallocated tasks. This allows identifying the
major contribution to the energy cost, and, based on that,
the optimal task allocation. In more detail, let ÊC be the
energy consumption corresponding to one computation
unit, averaged across all the mobile nodes, then εcpu is
the estimated total energy cost due to computation for all
unallocated tasks (line 5). Likewise, let ÊT and ÊR be the
energy consumption due to the transmission and reception,
respectively, averaged across all possible pairs of mobile
nodes. Then εcom is the estimated total energy cost due to
communication between all unallocated tasks (line 6). If the
dominant energy contribution is due to computation, the
unallocated task with the maximum energy (t∗) is selected
(line 8). Otherwise, the dominant energy is due to communi-
cation, thus the pair of unallocated tasks with the maximum
communication cost (t∗ and τ∗) are selected. After having
selected the task (or the pair of tasks) to allocate, all the
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mobile nodes are considered as candidates to host such
task/s (line 12-17). When a generic candidate node n is
considered, the constraints on the maximum response delay
and on the CPU, bandwidth, storage and energy resources
are evaluated (as detailed in Sec. 3.3) If all constraints are
satisfied (line 14), then ên records the maximum energy cost
among all the nodes, assuming that t∗ (and possibly τ∗) is
allocated on the node under consideration. Among all nodes
for which the allocation is feasible, TAME selects the node
n∗ for which the cost ên∗ is minimum (line 18). Finally, t∗,
and possibly τ∗, are offloaded to node n∗ (lines 20-24).

Note that, since TAME greedily allocates tasks in each
iteration, at some point it may happen that the response
delay constraint cannot be met under the current partial task
allocation thus resulting into an allocation failure. To solve
this issue, TAME adopts a worst case prediction approach:
when it verifies the response delay constraint (line 14), it
assumes that for the future iterations the unallocated tasks
will run in the player’s node n0. All nodes that fail to satisfy
this response delay constraint are excluded from further
inspection. So doing, TAME minimizes the probability of
task offloading failure.

5 PERFORMANCE EVALUATION METHODOLOGY

We now introduce the methodology adopted to assess the
performance of our scheme and to compare it against state-
of-the-art solutions. In particular, Sec. 5.1 describes the two
algorithms we use as benchmarks for the TAME algorithm,
while Sec. 5.2 and Sec. 5.3 present, respectively, the network
scenarios and the network task graphs used in our experi-
ments.

5.1 Benchmark schemes

We evaluate the performance of our TAME algorithm
against the following three approaches: (1) BESTFIT con-
siders the tasks in decreasing order of CPU requirements
and offloads each task to the node with the minimum
available CPU resource, thus consolidating the tasks into
the minimum number of mobile nodes such that the system
constraints are met. As an example, assume that all mobile
nodes have the same CPU capacity: since the local task t0 is
initially allocated to node n0, all other tasks will be allocated
into n0 until possible. Then BESTFIT will assign tasks to
the node with maximum available CPU till its capacity is
saturated, and it will proceed in this way till no further
allocation is possible. It follows that often BESTFIT does not
offload any task. (2) GRAPHMERGE [17] is based on the idea
of combining tasks with low computation requirements and
high communication cost into a “super-task”, which is then
allocated to the most suitable node. This is equivalent to
merging nodes in the task graph, and it has the advan-
tage of nullifying the energy cost due to communication
between tasks that fall within the same super-task since they
will be co-located in the same physical node. (3) OPTIMAL
solves optimally the ILP optimization problem formulated
in Sec. 3.

TAME, BESTFIT and GRAPHMERGE are implemented in
Python, while in OPTIMAL the solution is obtained by using
the Gurobi solver [18]. We evaluate the approximation ratio

TABLE 4: Experimental setting for the network model GN
Parameter Value
|N | {4, 6, 8, 10, 12}
Bn,a {10, 20, 100}Mbps
Bn,m 2 Mbps (Bluetooth), 20 Mbps (Wi-Fi Direct)
Sn {16, 32, 64, 128} GB
Cn 0.8 - 2.7 GHz, for n 6= a
Ca 3 GHz
En 18000 J = 1350 mAh
so 1000 bytes
ECn Randomly chosen from Table 5

ETn,m, ERn,m Randomly chosen from Table 6
Dac {1, 20, 50} ms
|O| {0, 10} objects

TABLE 5: Energy cost due to computation

Processor Max power [W] Max frequency [GHz] ECn [nJ/cycle]
name

Exynos 5433 0.22 1.5 0.147
Exynos 7420 1.29 2.1 0.614

of each algorithm defined as the ratio of the cost function
maxn∈N\{a} εn (as defined in (1)) obtained through the
algorithm, to that of OPTIMAL. Clearly, by construction, the
approximation ratio is always equal or greater than one.

5.2 Network scenarios

To generate the network model described by GN , we con-
sider a network scenario characterized by the parameters
listed in Table 4. The chosen CPU clock frequencies are
derived from commercial products:Ca is coherent with Intel
i7/i9 CPU cores, and Cn with Samsung Exynos processors
(considered later in Table 5) as well as with state-of-art Qual-
comm Snapdragon processors. The values we selected as
size of storage resources are compatible with the maximum
size available in high-level smartphones (e.g., iPhone 8).
We vary the total number of network nodes |N | (which
we recall it includes the player’s node n0 and the game
server a) from 4 to 12; this corresponds to a number of
neighbor mobile nodes for n0 varying from 2 to 10. Node n0
is connected to the neighbor nodes through a Wi-Fi Direct
or Bluetooth interface, while it communicates with the PoA
through a Wi-Fi interface. The delay Dac varies from 1 ms
(which is very small and typical of edge computing systems)
to 50 ms (which is reasonable for a game server in the
cloud [19]). The energy consumption for computation (ECn )
and communication (ETn,m, E

R
n,m) are all derived from real-

world mobile processors and wireless modules, as detailed
below.

Computation energy cost ECn . We estimate the energy
consumption per clock cycle by dividing the nominal max-
imum power of a mobile processor by its maximum CPU
frequency. Specifically, we consider two mobile processors:
the Exynos 5433 equipping the Samsung Note 4 [20], and
the Exynos 7420 equipping the Samsung Galaxy S6 [21]. The
resulting values are shown in Table 5.

Communication energy costs ETn,m and ERn,m. We esti-
mate the energy cost to transmit (ETn,m) and receive (ERn,m)
data by computing the per-bit energy consumption through
the formula V ·I/r applied to the considered communication
chipset, where V is the voltage supply and I is the current
when transmitting/receiving at the physical data rate r. We
consider different Wi-Fi and Bluetooth chipsets, and we set
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TABLE 6: Energy cost due to communication.

Technology Module name V [V] IT ; IR [mA] ET ;ER [nJ/bit]
SPWF01SA 3.3 243.0; 105.0 14.8; 6.4

WiFi-Direct QFM-2202 3.3 201.2; 66.7 12.3; 4.1
QCA6234 3.3 250.0; 69.0 15.3; 4.2
WGM110 4.8 246.0; 81.0 22.0; 7.2
RN-42(N) 3.3 30.0; 30.0 99.0; 99.0
HC-06 3.3 8.0; 8.0 26.4; 26.4

Bluetooth BT4 BLE 3.3 8.5; 8.5 28.0; 28.0
BT24 3.3 29.0; 29.0 95.0; 95.0
SPBT2632 2.5 23.0; 23.0 57.5; 57.5

TABLE 7: Experimental setting for synthetic task graphs

Parameter Value
|T | {4, 6, 8, 10} tasks
dT 2
ct Uniformly distributed in [105, 106] clock cycles
Wt,τ Exponentially distributed with average 220 bytes
F {33, 150} ms

their physical-layer data rate to r = 54 Mbps for Wi-Fi and
r = 3 Mbps for Bluetooth. Indeed, in order to achieve, e.g., a
20 Mbps-throughput in Wi-Fi a data rate of 54 Mbps should
be adopted. Note that the Wi-Fi chipsets support also Wi-Fi
Direct since the two technologies share the same physical
layer.

5.3 Task graph generation
To describe the game graph GT , we take two approaches.
First, we build synthetic task graphs, which emulate mobile
games and allow us to easily vary the system parameters.
Then we profile two real-world games and create the corre-
sponding task graphs, so as to further verify the algorithms
performance in real-world scenarios.

5.3.1 Synthetic task graphs
We generate random task graphs with a given number of
tasks |T | and a given average out-degree of each task dT .
The graph generation process starts with a graph of |T |
isolated nodes. Then an ordered pair of tasks (t1, t2) is
randomly selected and a directed edge from t1 to t2 is added
to the graph. Such select-and-add operation continues until
the number of distinct edges in the graph equals |T | · dT , so
as to achieve the expected average degree. The amount of
data exchanged between each pair of tasks is exponentially
distributed with 500 bytes as the mean value. The frame
period is fixed to either 33 ms (for a frame rate equal to
30 fps), or 150 ms (for a generic real-time application). All
the settings for this scenario are reported in Table 7.

5.3.2 Real task graphs
We select two open-source python games: MICshooter [22]
and Minecraft clone [23]. MICshooter is a classic single-
person arcade space shooting game, while Minecraft is a
clone of the popular multi-player sandbox game. For both
games, we first analyze the source code and partition the
game into relevant tasks at the class level. In our experiment,
we partition MICshooter into 6 tasks and Minecraft clone
into 5 tasks. Then we run the game and get the real task
graphs for both games as follows. First, the game call
graph can be obtained in real-time using the pycallgraph
module [24]. We then process the call graph by categorizing
the method calls at class level to get the actual task graph

Main (c=100000)

Hud (c=97600)

W=26632

Enemy (c=26320)

W=328064

Background (c=25000)

W=56

Ship (c=23600)

W=96

W=54856 W=1168

W=72

W=1232

W=400

W=24

Lasers (c=59200)

W=768

W=2816

Fig. 4: Experimental task graph GT for MICshooter: c is
expressed in CPU cycles and W in bytes.

Window (c=708890)

Sectorize (c=232440)

W=130

Normalize (c=198330)

W=1047

Model (c=1312900)

W=271

Cube (c=186670)

W=1628W=130

W=133

W=1040

W=132

W=415

W=128

W=416

W=40304

Fig. 5: Experimental task graph GT for Minecraft clone: c is
expressed in CPU cycles and W in bytes.

TABLE 8: Average approximation ratio for Wi-Fi Direct (top)
and Bluetooth (bottom) connections, |N | ∈ {4, 6, 8, 10, 12}
and |O| = 0

XXXXXXXAlg.
|T | 4 6 8 10

TAME 1.01-1.01 1.01-1.02 1.01-1.02 1.02-1.03
BESTFIT 3.16-3.40 4.59-4.77 5.81-6.04 6.80-6.92
MERGEGRAPH 1.23-1.30 1.45-1.48 1.46-1.51 1.48-1.56

XXXXXXXAlg.
|T | 4 6 8 10

TAME 1.01-1.01 1.01-1.01 1.02-1.04 1.09-1.12
BESTFIT 3.21-3.46 4.52-4.80 5.78-5.93 6.53-6.61
MERGEGRAPH 1.21-1.32 1.54-1.59 2.25-2.33 4.75-5.01

GT . The average CPU requirement ct of each task t in a
frame period can be approximated by the total CPU time
provided by cProfile [25] divided by the number of
frames. The average amount of exchanged data between
tasks is obtained by parsing the source code and setting up
interception points to measure the size of exchanged data,
considering the input variables and the output ones of each
call. Notably, to obtain the actual size of the whole data
structure referred by a variable, we adopt the python mod-
ule asizeof [26], which recursively measures the referents
of a data structure.

Fig. 4 and 5 depict the resulting task graphs, highlighting
the computation requirement (c) and the communication
requirement (W ) of each task.

6 NUMERICAL RESULTS

Here we compare the performance of the TAME algorithm
against our benchmark schemes, under both synthetic and
real-world scenarios.
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Fig. 8: Tasks offloaded to the game server, for Wi-Fi Direct
communications.

6.1 Synthetic scenarios

We first use synthetic scenarios since they allow us to
easily vary all the experimental settings. In particular, we
first investigate the effect of the number of nodes and
tasks, under Wi-Fi communications in Sec. 6.1.1 and under
Bluetooth communications in Sec. 6.1.2. Then, in Sec. 6.1.3,
we study the impact of different communication delays
between the player’s device and the game server; this allows
us to better understand the benefit of task offloading in the
case of different architectures such as cloud, edge and fog
computing. Finally, in Sec. 6.1.4 we study how the system
performance varies as the number of objects shared among
the nodes changes.

6.1.1 Scenario with Wi-Fi Direct communications

Initially, we neglect the process of object retrieval by setting
|O| = 0 and assume that the game server is “close” to the
PoA, i.e., we set Dac = 1 ms. We fix F = 33 ms, corre-
sponding to the common 30 fps refresh rate. Table 8(top)
reports the average approximation ratio of TAME, BESTFIT
and GRAPHMERGE, assuming only Wi-Fi Direct D2D com-
munications. Given a number of tasks |T | and a number of
nodes |N |, we run 1000 different experiments and evaluate
the approximation ratio averaged over 1000 instances. In
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Fig. 9: Offloaded tasks for Wi-Fi Direct communications and
F = 33 ms

Table 8, we fix |T | and vary |N | ∈ {4, 6, 8, 10, 12}; in each
cell, for each |T |, we report the minimum and maximum
(average) approximation ratio obtained by varying |N |.

Observe that the TAME algorithm is always very close to
the optimal solution, with a maximum approximation ratio
of 1.03, and always outperforms the other algorithms. On
the contrary, BESTFIT gives the worst performance, since
it concentrates the tasks in one (n0) or few nodes thus
increasing their energy consumption, while the other algo-
rithms tend to balance the task load across multiple nodes.
As expected, this problem is exacerbated as |T | increases.
With regard to GRAPHMERGE, it behaves worse than TAME,
because it assumes that the problem is mainly dominated by
communication energy costs (which is not the case in this
scenario), hence it tends to co-locate different tasks on the
same node, regardless their computation energy cost. TAME
instead is able to adapt its choices to the dominant energy
contribution.

To better understand the behavior of TAME and OP-
TIMAL, we show how the tasks are distributed across the
local node (Fig. 6), the neighbor nodes (Fig. 7) and the game
server (Fig. 8), in the same scenario as for Table 8(top). We
report the results as functions of the number of neighbor
nodes (which is equal to |N | − 2). TAME behaves almost
identically to OPTIMAL in terms of number of offloaded
tasks toward the neighbor nodes and the game server, and
this justifies the approximation ratio very close to 1 reported
in Table 8(top). In particular, according to Fig. 6, the number
of local tasks is 1 most of the times, and 2 in all other cases,
independently from the number of neighbor nodes, thus
TAME is very effective in offloading tasks. By comparing
Fig. 7 to Fig. 8 as the number of neighbor mobile nodes
increases, we note that fewer tasks are offloaded to the
game server while more tasks are delegated to the neighbor
nodes. This is because a higher number of neighbor mobile
nodes provides more choices to offload tasks. Notably, the
number of offloaded tasks per node is on average at most
one, thus TAME tends to distribute equally the load across
all neighbor nodes, although some of them do not host any
task since offloading is not convenient. All other tasks are
offloaded to the game server.

Figs. 9 and 10 show how the tasks are offloaded across
the game server and the neighbor nodes, as the number
of tasks increases. Both small (F = 33 ms) and large
(F = 150 ms) values of the frame period are considered,
while the other parameters are set as reported in Table 5.3.
The results refer only to TAME since for such large numbers
of tasks it is not possible to run the solver and obtain
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Fig. 10: Offloaded tasks for Wi-Fi Direct communications
and F = 150 ms

the optimal solution of the ILP problem. Interestingly, the
number of offloaded tasks show a bell behavior: when the
tasks are few, it is convenient to offload most of them, either
to the game server or to the neighbor nodes. However, as the
number of tasks grows further, the latency due to the data
transfer between tasks allocated at different nodes becomes
predominant, thus leading to a reduction in the number of
offloaded tasks. When the delay requirement is very strict
(F = 33 ms), for a number of tasks higher than 35, it is not
possible to obtain any feasible solution, not even by keeping
all tasks locally. Instead, relaxing the time requirement as in
Fig. 10, it is still convenient to offload some tasks (even in
the case of a total of 80 tasks).

In general, the level of granularity in the task partition
affects the efficiency of the offloading scheme and it is
clear that it is better to partition into aggregation of tasks
that limit the communication needs between the different
partitions. The optimal way to partition a given application
is outside the scope of this work.

6.1.2 Scenario with Bluetooth communications
Table 8(bottom) shows the average approximation ratio
when mobile nodes communicate via Bluetooth, and Wi-
Fi is used to communicate with the PoA. In this case too,
TAME greatly outperforms the other algorithms. Note that
TAME performs a little worse for 10 tasks, compared to
the Wi-Fi Direct case in Table 8(top). Indeed, Wi-Fi Direct
and Bluetooth have quite different link speeds. Since in
our experiment the link speed of Wi-Fi Direct (20 Mbps)
is 20 times higher than that of Bluetooth (1 Mbps), the
response delay constraint becomes more critical in the latter
case. As a result, TAME is reluctant to offload tasks to the
neighbor nodes and inclined to keep more tasks locally
on the player’s node n0. This behavior is exacerbated by
a larger number of tasks, since the bandwidth required
for the communication between tasks increases. Similarly,
GRAPHMERGE performs worse when adopting Bluetooth
than in the case of Wi-Fi Direct communications.

6.1.3 Varying the delay between the PoA and the game
server
We now investigate the impact of the propagation delayDac

between the PoA and the game server. We consider |T | =
6 tasks, and the response delay constraint F = 150 ms,
which is the maximum lag for real-time applications. We
then assume Wi-Fi Direct connections between mobile nodes
and vary Dac ∈ {1, 20, 50} ms. Figs. 11-13 show how the
tasks are offloaded across the player’s node, the neighbor
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Fig. 13: Number of tasks offloaded to the game server, for
|T | = 6

nodes and the game server. As in the previous scenario,
TAME behaves almost identically to OPTIMAL. In particular,
the number of tasks running on the player’s node is always
very low as the policy tends to distribute the tasks across all
mobile nodes. With regard to the average number of tasks
offloaded to the game server (see Fig. 13), it is almost the
same for Dac equal to 1 ms and 20 ms, while it significantly
decreases for Dac = 50 ms. Indeed, in the latter case no
tasks, or at most one task, can be offloaded to the game
server to meet the strict response delay, independently from
the number of neighbor nodes.

6.1.4 Multiple objects

To investigate the effect of object retrieval, we now set
the number of objects |O| = 10 and their size to s0 =
1000 bytes. During every run of simulation, each object
is located in one mobile node selected at random. Each
task requires a given object with probability 0.5, thus it
requires on average 5 objects. Then we run exactly the
same experiments performed to obtain the results in Table 8.
Table 9 shows that TAME approximates within a factor 1.32
the solution obtained by OPTIMAL and still outperforms the
two benchmark algorithms.
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TABLE 9: Average approximation ratio for Wi-Fi Direct (top)
and Bluetooth (bottom) connections, |N | ∈ {4, 6, 8, 10, 12}
and |O| = 10 with so = 1000 bytes

XXXXXXXAlg.
|T | 4 6 8 10

TAME 1.04-1.06 1.10-1.16 1.13-1.19 1.16-1.27
BESTFIT 3.09-3.30 4.57-5.17 5.41-5.93 6.19-6.56
GRAPHMERGE 1.35-1.43 1.47-1.52 1.50-1.65 1.63-1.81
PPPPPAlg.

|T | 4 6 8 10

TAME 1.05-1.07 1.09-1.17 1.10-1.28 1.11-1.32
BESTFIT 3.13-3.59 4.71-5.17 5.21-6.09 6.15-6.77
GRAPHMERGE 1.30-1.36 1.54-1.73 2.30-2.60 4.75-5.55

TABLE 10: Average approximation ratio for Wi-Fi Di-
rect (top) and Bluetooth (bottom) connections and |N | ∈
{4, 6, 8, 10, 12}

XXXXXXXAlg.
Games MICshooter Minecraft clone

TAME 1.00-1.05 1.02-1.06
BESTFIT 1.45-1.45 2.60-2.62

GRAPHMERGE 1.34-1.35 1.15-1.22
XXXXXXXAlg.

Games MICshooter Minecraft clone

TAME 1.01-1.03 1.02-1.03
BESTFIT 1.45-1.45 2.51-2.55

GRAPHMERGE 1.45-1.45 2.48-2.52

6.2 Real-world scenarios

We now consider task graphs obtained from real-world
games. Table 10 shows the approximation ratio for MIC-
shooter and Minecraft clone, considering Wi-Fi Direct and
Bluetooth communications. TAME closely matches the per-
formance of OPTIMAL, with a maximum approximation ra-
tio equal to 1.06, and significantly outperforms BESTFIT and
GRAPHMERGE. As in the previous scenarios, BESTFIT gives
the worst performance, even if with a better approximation
ratio than in the case of synthetic task graphs.

In conclusion, TAME approximates very well the optimal
solution, and always outperforms BESTFIT and MERGE-
GRAPH in all the scenarios we tested, both synthetic and
real-world task graphs.

7 RELATED WORK

Offloading for mobile computing. The problem of mobile
computation offloading has been widely studied. [27] ex-
ploits task offloading to achieve high throughput for data
stream applications. [28] proposes a task offloading and
scheduling framework to minimize energy consumption.
[12] proves that the problem of multi-user computation
offloading converges to a Nash Equilibrium, and proposes
a distributed approach based on game theory to decide
local or cloud execution for the tasks of each user. [17]
proposes a mobile task offloading algorithm that merges
computationally light but heavily communication tasks into
super-tasks, and offloads them to the most suitable mobile
nodes. However, all the above studies only address the
mobile edge/cloud offloading problem without exploiting
the available resource in the mobile fog. One of the al-
gorithms used for our performance comparison, named
MERGEGRAPH and presented in Sec. 5.1, is an adaptation
of the algorithm proposed in [17] to our hybrid edge/fog
scenario.

Other works aim at implementing task offloading plat-
forms in practice, which can be considered as possible key
enabling technologies to support our proposed offloading scheme
in IMG scenarios. Offloading software platforms are available
both for both Windows smartphones [29] and for Android
smartphones [10], [11], [29], [30], [31], [32]. Interestingly,
[11], [32] are able to support offloading without affecting
the source code, thus seamlessly for the developer.

Related to the integration of cloud and edge/fog com-
puting to offload tasks for mobile applications, [33] imple-
ments a framework to offload a face recognition application.
Notably, face recognition applications use predefined task
graphs, which, compared to those of mobile games, are
not real-time. Besides, the energy cost is not considered
since face recognition algorithms are computation intensive
and are always offloaded. [34] proposes a combined cloud
and fog/edge architecture, where the cloud servers, the
neighbor mobile nodes and the edge servers are all consid-
ered as candidates for task offloading. An ILP optimization
problem to allocate tasks is formulated, with the objective
of minimizing latency. The application is modeled as a set
of independent tasks, thus, unlike our work, it does not
consider the dependencies and the communication between
different tasks. Furthermore, [34] considers neither energy
costs nor communication latency.

Mobile gaming. [35] proposes an approach to offload
part of the artificial intelligence (AI) tasks to external servers
and exploit their higher computational power, so as to allow
more complex AI components, hereby more interesting and
challenging games to play. Similarly, [36] studies the perfor-
mance of AI offloading with various network latency and
evaluates the effectiveness of dead reckoning algorithms to
mitigate the performance degradation due to large delays.
Furthermore, [37] exploits the general-purposed GPUs to
offload the AI components of chess games. Besides, [38]
studies the performance of offloading the AI components
to servers available in the local network by varying the
complexity and number of AIs. Obviously, all these works
offload tasks at the component level. In contrast, our work
offloads tasks at a finer granularity (class level), thus pro-
viding higher offloading flexibility.

Instead of studying solely the possibility of offloading
AI components, [39] proposes a framework to decompose
a mobile game into tasks and adaptively migrate them
between the player’s device and the cloud server. The main
difference with respect to our work is that, instead of just
considering the cloud, our model exploits neighbor mobile
devices. [8] and [9] exploit the resource of both the cloud
and the edge servers to enhance the quality of mobile games.
Similarly, [9] envisions servers available at the user premises
as fog servers in charge of video rendering and transmis-
sion, so that the user coverage increases while transmission
delay and bandwidth consumption decrease. Unlike [8], [9],
our work exploits neighbor mobile devices like smartphones
and tablets to offload tasks, thus achieving a higher level of
pervasiveness thanks to the popularity of such devices.

8 CONCLUSIONS

We devised a combined Integrated Mobile Gaming (IMG)
scheme that efficiently offloads some internal tasks of a
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game running on the player’s device toward neighbor
mobile nodes or the game server. We first formalized the
problem of energy-aware task allocation as an ILP problem,
which minimizes the maximum energy consumption across
all the mobile nodes while accounting for the commu-
nication and computation costs involved in running and
migrating tasks. Then, in light of the problem complexity,
we proposed TAME, an algorithm that, at each iteration,
adapts its allocation decisions based on the major fac-
tor (either communication or computation) contributing to
energy consumption. We evaluated TAME in the case of
synthetic and real-world scenarios. Our numerical results
show that TAME closely approximates the optimal solution
in all considered scenarios and outperforms other state-of-
art algorithms. They also highlight the advantages of task
offloading toward neighbor mobile nodes, especially when
communication latency with the game server is significant.
Importantly, thanks to the recent availability of offloading
platforms, our TAME algorithm can be integrated in real
platforms for IMG, enabling highly pervasiveness and effi-
cient real-time mobile gaming.
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