
Doctoral Dissertation

Doctoral Program in Computer and Control Engineering (29thcycle)

Network Infrastructures for Highly
Distributed Cloud-Computing

By

Francesco Lucrezia
******

Supervisor(s):
Prof. Guido Marchetto

Doctoral Examination Committee:
Prof. Flavio Esposito
Prof. Barbara Martini
Dr. Domenico Siracusa
Dr. Balazs Sonkoly

Politecnico di Torino

2018





Declaration

I hereby declare that, the contents and organization of this dissertation constitute my
own original work and does not compromise in any way the rights of third parties,
including those relating to the security of personal data.

Francesco Lucrezia
2018

* This dissertation is presented in partial fulfillment of the requirements for Ph.D.
degree in the Graduate School of Politecnico di Torino (ScuDo).





To my parents,
my partner in life Cinzia and
my newborn son Alessandro





Acknowledgements

Thanks to my supervisor Guido who has been a precious guide in this - sometimes
suffered - journey called PhD.

Thanks to Fulvio, my second advisor who has always been capable of giving me the
right advises.

Thanks to my family who always supports me, in the good and in the bad.

Thanks to all my colleagues and friends.

Thanks,
Francesco





Abstract

Software-Defined-Network (SDN) is emerging as a solid opportunity for the Net-
work Service Providers (NSP) to reduce costs while at the same time providing
better and/or new services. The possibility to flexibly manage and configure highly-
available and scalable network services through data model abstractions and easy-
to-consume APIs is attractive and the adoption of such technologies is gaining
momentum. At the same time, NSPs are planning to innovate their infrastruc-
tures through a process of network softwarisation and programmability. The SDN
paradigm aims at improving the design, configuration, maintenance and service
provisioning agility of the network through a centralised software control. This
can be easily achievable in local area networks, typical of data-centers, where the
benefits of having programmable access to the entire network is not restricted by
latency between the network devices and the SDN controller which is reasonably
located in the same LAN of the data path nodes. In Wide Area Networks (WAN),
instead, a centralised control plane limits the speed of responsiveness in reaction to
time-constrained network events due to unavoidable latencies caused by physical
distances. Moreover, an end-to-end control shall involve the participation of multiple,
domain-specific, controllers: access devices, data-center fabrics and backbone net-
works have very different characteristics and their control-plane could hardly coexist
in a single centralised entity, unless of very complex solutions which inevitably lead
to software bugs, inconsistent states and performance issues.

In recent years, the idea to exploit SDN for WAN infrastructures to connect
multiple sites together has spread in both the scientific community and the indus-
try. The former has produced interesting results in terms of framework proposals,
complexity and performance analysis for network resource allocation schemes and
open-source proof of concept prototypes targeting SDN architectures spanning mul-
tiple technological and administrative domains. On the other hand, much of the



x

work still remains confined to the academy mainly because based on pure Openflow
prototype implementation, networks emulated on a single general-purpose machine
or on simulations proving algorithms effectiveness. The industry has made SDN a
reality via closed-source systems, running on single administrative domain networks
with little if no diversification of access and backbone devices.

In this dissertation we present our contributions to the design and the imple-
mentation of SDN architectures for the control plane of WAN infrastructures. In
particular, we studied and prototyped two SDN platforms to build a programmable,
intent-based, control-plane suitable for the today highly distributed cloud infrastruc-
tures. Our main contributions are: (i) an holistic and architectural description of a
distributed SDN control-plane for end-end QoS provisioning; we compare the legacy
IntServ RSVP protocol with a novel approach for prioritising application-sensitive
flows via centralised vantage points. It is based on a peer-to-peer architecture and
could so be suitable for the inter-authoritative domains scenario. (ii) An open-source
platform based on a two-layer hierarchy of network controllers designed to provision
end-to-end connectivity in real networks composed by heterogeneous devices and
links within a single authoritative domain. This platform has been integrated in
CORD, an open-source project whose goal is to bring data-center economics and
cloud agility to the NSP central office infrastructures, combining NFV (Network
Function Virtualization), SDN and the elasticity of commodity clouds. Our platform
enables the provisioning of connectivity services between multiple CORD sites,
up to the customer premises. Thus our system and software contributions in SDN
has been combined with a NFV infrastructure for network service automation and
orchestration.



Contents

List of Figures xiv

List of Tables xvi

1 Introduction 1

2 ONOS: Open Network Operating System 5

2.1 ONOS Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Control vs Configuration . . . . . . . . . . . . . . . . . . . . . . . 7

3 ICONA: A Peer-to-Peer Approach for Software Defined Wide Area Net-
works Using ONOS 10

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 ICONA Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.1 ICONA Provider . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.2 ICONA Southbound Mechanisms . . . . . . . . . . . . . . 17

3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.1 Reaction to Network Events . . . . . . . . . . . . . . . . . 19

3.3.2 Startup Convergence Interval . . . . . . . . . . . . . . . . . 22

4 A Proposal for End-to-End QoS Provisioning in Software-Defined Net-
works 23



xii Contents

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 System Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 QoS Provisioning . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3.1 General Discussion . . . . . . . . . . . . . . . . . . . . . . 27

4.3.2 Comparison with RSVP . . . . . . . . . . . . . . . . . . . 29

4.3.3 End-to-End Behaviour . . . . . . . . . . . . . . . . . . . . 31

4.4 East-West Resource Exchange . . . . . . . . . . . . . . . . . . . . 34

4.4.1 Pre-Shared Network Parameters and Bandwidth Resource . 35

4.4.2 On-demand Network Parameters and Bandwidth Resource . 36

4.4.3 Inter-Domain Resource Scope . . . . . . . . . . . . . . . . 37

4.5 Policy Enforcement . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.6 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.6.1 High-level System Components . . . . . . . . . . . . . . . 39

4.6.2 The Manager Application . . . . . . . . . . . . . . . . . . 40

4.6.3 Routing and Scalability . . . . . . . . . . . . . . . . . . . . 42

4.7 Algorithm Computation Time Evaluation . . . . . . . . . . . . . . 42

5 Hierarchical End-to-End Network Control with ONOS 46

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2.1 Topology Abstraction . . . . . . . . . . . . . . . . . . . . . 48

5.2.2 Service Orchestration . . . . . . . . . . . . . . . . . . . . . 50

5.2.3 The Communication Channel . . . . . . . . . . . . . . . . 50

5.2.4 Domain-specific Network Provisioning . . . . . . . . . . . 52

5.3 Enterprise CORD . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3.1 CORD: Central-Office-Rearchitected-as-a-Datacenter . . . . 53

5.3.2 CORD for Enterprise . . . . . . . . . . . . . . . . . . . . . 54



Contents xiii

6 Related Work 59

7 Conclusion 64

References 67

Appendix A ONOS Driver based on YANG Data Model compiled with
BUCK 74



List of Figures

2.1 ONOS distributed architecture . . . . . . . . . . . . . . . . . . . . 6

2.2 Model-based device drivers implementation via Yang/Netconf . . . 9

3.1 ICONA topology abstraction. . . . . . . . . . . . . . . . . . . . . . 14

3.2 Service request accomplished with ICONA. . . . . . . . . . . . . . 16

3.3 High level view of the ICONA components. . . . . . . . . . . . . . 18

3.4 Average, maximum and minimum latency to reroute 100 paths in
case of link failure for ONOS and ICONA (2, 4 and 8 clusters) . . . 20

3.5 GÉANT pan-European network . . . . . . . . . . . . . . . . . . . 21

4.1 Reference scenario . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Domain topology abstraction . . . . . . . . . . . . . . . . . . . . . 28

4.3 Driver modules in the controller are the means for device-level
configuration of the queues . . . . . . . . . . . . . . . . . . . . . . 34

4.4 Two allocation schemes for two layers of the network . . . . . . . . 35

4.5 Controller’s Main Components . . . . . . . . . . . . . . . . . . . . 40

4.6 Admission control workflow. . . . . . . . . . . . . . . . . . . . . 42



List of Figures xv

4.7 Percentage of requests served within a certain amount of time ex-
pressed in milliseconds. With a concurrency level c=100 (Fig. a, c)
1000 thousands requests are processed in less than 1sec. (Fig. a)
and in about 3 sec. (Fig. c). With a c=1000, the processing time
increases exponentially w.r.t. the total number of served requests n
(Fig. b, f ). With hundreds of nodes (Fig. e, f ), even with c=1000 we
are in the order of tens of seconds for 1000 requests. The goodness
of these results is relative to the type of service and network involved.
For example, does a HQ streaming video on-demand for premium
customers expect a request rate of thousands of requests per second?
Is the QoS applied to all the network nodes along the path or on a
small subset of them? . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1 Bottom-up topology discovery phase. . . . . . . . . . . . . . . . . 49

5.2 Top down service request elaboration. . . . . . . . . . . . . . . . . 50

5.3 Optical domain transport network . . . . . . . . . . . . . . . . . . 53

5.4 CORD Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.5 ECORD scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.6 ECORD topology abstraction . . . . . . . . . . . . . . . . . . . . . 56

5.7 EVC on data path . . . . . . . . . . . . . . . . . . . . . . . . . . . 57



List of Tables

3.1 GÉANT network: average, maximum and minimum latency to
reroute 100 paths in case of link failure for ONOS and ICONA
(2, 4 and 8 clusters) . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Amount of time required to obtain the network convergence after
disconnection for ONOS and ICONA . . . . . . . . . . . . . . . . 22

4.1 Single-request computation time . . . . . . . . . . . . . . . . . . . 43



Chapter 1

Introduction

New IT system models are driven by the composition of software services exposed
to consumer entities that can benefit from the functionalities such services export
transparently, in the most technology and protocol independent way. Composition of
very complex system involves synergies of distributed infrastructures of network,
storage and compute elements with the objective of achieving very large scale of
provisioning and automation.

In this highly dynamic world of Cloud-Computing and Everything-as-a-Service,
Network Service Providers (NSPs) are facing important challenges to keep up with
the changing, striving to innovate their network infrastructures at the pace con-
tent providers do with their services whose proliferation leverages on high-volume
standard servers (e.g., x86-based blades), computing/storage virtualisation and dis-
tributed applications running on a massive number of heterogeneous devices. Digital
contents are consumed by smart phones and sophisticated terminal stations that
continuously evolve together with the applications they host. Interestingly enough,
the evolution of the Over-The-Top (OTT) services is mainly happening without the
aid of the NSPs, within the best-effort data traffic channel in the access networks.
OTT providers are widely exploiting the cloud infrastructure to scale in/out without
worrying about the infrastructure itself. Connectivity services spanning Wide-Area-
Networks (WANs), metro areas and geographically distributed data-centers, instead,
are still mainly statically provisioned. This is due to a variety of reasons: standards,
protocols and interoperability heavily impact the adoption of dynamic and automated
systems; networking problems are complex in nature and networking solutions are



2 Introduction

strongly constrained by hardware equipment. Moreover, network management and
control tools have been always considered matter for device manufacturers, which
offer their solution under closed source code and proprietary platforms inevitably
leading to vendor lock-ins and degradation in flexibility, freedom, security, rev-
enues and accountability which are inherent benefits in the adoption of open-source
software.

A huge effort is being placed by the Telcos, followed by device vendors, in
supporting and financing large open-source projects dedicated to the control plane
of the network infrastructures exploiting SDN and NFV [1–5]. In fact these new
technologies have radically changed the concept of network architectures decoupling
the control plane from the data packet plane, introducing new ways of exploiting
the functionalities of network equipments via virtualisation. This enables the net-
work modelling to be dynamic, flexible and scalable, able to guarantee a simpler
management and a faster speed of development and deployment of new services
and technologies, reducing issues and limitations due to the staticity of hardware
components.

Although the early SDN products primarily focus on automation and orches-
tration within a data-center, the more mature SDN solutions, such as those from
Google and Amazon, are designed to take intercloud federation across WAN and
software-defined WAN into consideration ([6]). A common factor of innovation
growth of these companies is their ability to potentially exploit the benefits of having
programmable access to the entire network stack, from the lowest-level hardware to
the highest-level software elements for the control of the east-west (data-center to
data-center) traffic; rather than being forced to create compromised solutions based
on available insertion points, they can design end-to-end secure and performant solu-
tions, by coordinating across the network stack. In this regard, NSPs are in a more
disadvantaged position because of vendors, protocols and standards bonds. Many
SDN platforms have been conceived and developed by the scientific community, but
either they target base platform for application development environment to build
network applications on top of it, without providing solutions to actual networking
problems (e.g. [7, 8]), or they present a broad overview of SDN platforms for dis-
tributed and/or multi domain networks focusing on the distribution mechanisms of
the network state in the control plane, taking into account solely the forwarding part
via the Openflow protocol, leaving aside the prescriptions to implement real network



3

services on such platforms [9–13]; some proposals focus on theoretical modeling
and placement problems for distributed control plane in SDN ([14–18]).

In this context are located the activities of the PhD defining this dissertation. We
consider concrete networking problems, specifically the per-flow QoS provisioning
and the Carrier-Ethernet virtual circuits provisioning, to present two SDN platforms
aimed at overcoming the limitations of a single logically centralised SDN controller
when dealing with geographical and heterogeneous networks. The main focus of
the studies have been on the architectural perspective and the software design of
such platforms. In particular, part of the thesis will cover an SDN platform based
on ONOS (Chapter 2), a network controller that targets scalability, high availability,
high performance and abstractions to make it easy to create networking apps and
services. Thus we leverage on ONOS high availability for the state distribution
among a cluster of controller instances. The platform enables:

• A single administrative domain network to be divided into multiple regions
piloted by different network controllers to decrease event-to-response delays,
increase the overall robustness to geographical network faults and distribute
the load among the cluster of network controllers (Chapter 3). An event can
be something happening in the data path for which there is a feedback control
implemented in ONOS (e.g. port state change, device or link discovery) or
something generated in the controller surface, such as a policy update.

• The communication with other administrative domains leveraging on an east-
west interface to ensure full control of services and events between domains
and enforce configuration policies between domains (Chapters 3, 4).

• Dynamic setup of end-to-end priority paths with guaranteed bandwidth for data
packet flows over WANs and/or geographically distributed data-centers and
users (Chapter 4). We describe how the flow-based QoS model conceived with
RSVP [19] can be revised and implemented in a distributed SDN platform to
bring end-to-end QoS provisioning over WAN on a pre-application basis which
is still missing in today networks. We present an algorithm for admission
control implemented on top of ONOS.

Chapter 5 will focus on the rationale and the insights behind the design and the
development of a platform that is part of a wider open-source project: CORD [1];



4 Introduction

it was conceived upon the need of an open-source reference platform for connec-
tivity service and bandwidth on-demand, end-to-end control over an heterogeneous
network and to enable a unified view/orchestration of the access and transport re-
sources. It enables on-demand mobility and migration of services such as VMs and
storage between geographically distributed data-centers by unifying intra and inter
data-center network control and management. The ambition of the project is to shift
much of the concepts embraced by the SDN paradigm from the academic to the
industry world, and from the single data-center premise to geographic networks with
particular emphasis for dedicated connectivity services for enterprises such as Carrier
Ethernet circuits provisioning on-demand. The system is able to drive a network
composed of different commercial devices, from whitebox Openflow switches to
proprietary Netconf-enabled CPE devices and disaggregated ROADMs. We believe
that being able to properly control real physical devices is essential for a meaningful
system and software wise contribution to the SDN control-plane infrastructures,
because ultimately, it is the hardware that processes and transmits bits over the wire.
This is one major contribution and distinction factor from related proposals, to the
best of our knowledge, there is no open-source system able and tested to drive a
chain of physical devices from the very access customer premises to the backbone
optical transport switches. And it can be easily extended to other different domain
technologies such su G/MPLS networks. Moreover, being a sub-project of CORD,
it is seamlessly integrated with NVF service chaining provided in CORD. In this
open-source project we designed and developed the hierarchical platform of network
controllers using ONOS [20].



Chapter 2

ONOS: Open Network Operating
System

2.1 ONOS Overview

ONOS (Open Networking Operating System) [7] is a distributed network controller
created and maintained by the ONF team [21]. It is an open-source joint community
effort with substantial contribution from various partners including AT&T, NEC,
Huaweii and Verizon [2]. Most of our contributions have resolved into prototype
applications running on it. In this chapter we give a broad description of it and then
we will further dig into its architecture in later discussion.

ONOS is an SDN operating system for Service Providers, that is targeting
scalability, high availability, high performance and abstractions to make it easy to
create apps and services. It implements a distributed architecture using RAFT [22]
in which multiple controller instances share multiple distributed data stores with
different level of consistency. The entire data plane is managed simultaneously by
the whole cluster of instances. However, for each device a single controller instance
acts as a master, while the others are ready to step in if a failure occurs. With these
mechanisms in place, ONOS achieves scalability and resiliency. Figure 2.1 shows
the ONOS internal architecture within a cluster of four instances. ONOS is based on
software modules managed by the Apache Karaf suite [23], a set of java OSGi based
runtime and applications. It provides a container into which various component can



6 ONOS: Open Network Operating System

Application

Northbound – Intent Framework
(policy enforcement, conflict resolution)

Distributed Core
(scalability, persistence, availability)

Southbound
(discover, observe, program, configue)

Openflow NetConf OVSDB

Fig. 2.1 ONOS distributed architecture

be deployed, installed, upgraded, started and stopped at runtime, without interfering
other components. The southbound modules manage the physical topology, react to
network events and program/configure the devices leveraging on different protocols.
The distributed core is responsible to maintain coherent information, to elect the
master controller for each network portion and to share information with the adjacent
layers. In case of a failure in the data path (switch, link or port down), an ONOS
instance becomes aware of the event through the southbound modules, computes
alternative paths for all the traffic crossing the failed element, and notifies them to
the distributed core; then, each master controller configures accordingly its portion
of the network. The northbound subsystem offers an abstraction of the network
and the interface for applications to interact and program the NOS. Finally, the
Application layer offers a container in which third-party applications can be deployed.
Applications on top of ONOS can benefit of the Intent Framework. An intent is an
abstraction used by applications to specify their high-level desires in form of policies.
The ONOS core accepts the intent specifications and translates them into actionable
operations on the network environment. These actions are carried out by the intent
installation process, such as flow rules being installed on a switch, or optical lambdas
(wavelengths) being reserved.



2.2 Control vs Configuration 7

2.2 Control vs Configuration

The basic idea of SDN is to achieve dynamic control over forwarding plane behaviour
from a logically centralised vantage point. Telco operators have been doing config-
uration and management for quite a long time, from a logical centralised vantage
point and for very large network, but the increased demand for performance, agility
and reliability due to the advent of cloud-based applications pushed the interest for
new automated platform from human time-scales to machine time-scales and with re-
duced tolerance for control plane failures. Performance and scalability are important
for configuration as well, but the time-scale is different w.r.t to control: configuration
and management requires around 1000 operations per day, while control requires
around 1000 if not 1000000 operations per second.

Operators want to create and sell customised services with agility and minimal
human intervention and create automated ways to instantiate such network services.
These services comprise both configuration and control of forwarding devices, (e.g.
setting-up lambdas and Openflow rules, provision NFV service chains and steer
traffic through them). For this reason operators need a resilient and scalable platform
capable of both control and configuration.

ONOS was originally designed to be an SDN platform focusing solely on the
control of the forwarding behaviour and for this reason it adopts an API-driven
approach that stems from the forwarding rules’ abstractions of the Openflow protocol
[24]. Before ONOS, since 2008, multiple controllers were developed with this
approach: Beacon [25], Floodlight[26], NOX [27], POX [28] and Ryu [29]. Each
controller implemented Openflow as the sole southbound protocol towards the packet
forwarding function, and provided access to its control plane functions through
northbound REST APIs. Over the years, ONOS has introduced the support for other
important protocols such as Netconf and Restconf to add configuration capabilities.
ONOS is an API-driven platform because the control abstractions and APIs are semi-
fixed, borne out of following the Openflow standard, while configuration abstractions
are harder to fix, though standards exist, vendors want to expose their unique features
(this explains the explosion of SNMP MIB variables). The pros of the API-driven
approach are:

• Application developers are presented with a solid surface.



8 ONOS: Open Network Operating System

• The platform is not tied to a closed set of protocols: device drivers can use
YANG/NETCONF, SNMP, REST, Openflow and any other to interact with
physical devices.

• Applications portability and stable evolution is facilitated.

While the cons of are:

• Limit access to new or differentiating device features (unless API is sufficiently
open-eneded).

• Enhancements and new features require development resources.

A pure configuration and management platform (see OpenDaylight [8]) would
adopt the model-driven approach instead. It consists of a framework based on
consistent relationships between (different) models, standardised mappings and
patterns that enable model generation and, by extension, code/API generation from
models. This generalisation can overlay any specific modelling language although
YANG has emerged as the data modelling language for the networking domain.
The model driven approach is being increasingly used in the networking domain to
describe the functionality of network devices, services, policies and network APIs
[30]. Here pros and cons are listed together given their intertwined nature:

• Code-generation avoids manual boilerplate code. Consideration must be given
to versioning and to the impact of a model change on the (re)generated API.

• Applications have access to nuanced features, not limited by fixed APIs and
they are presented with a fluid surface on the platform. But this implies
that applications must be model-aware, that is, they must know the model
semantics. This has a strong impact on application portability.

• Enhancements require fewer development resources since much code is auto
generated by the models.

The ONOS releases used in our prototypes, 1.9.0 and 1.10.0, adopt an hybrid
approach that is a combination of, and a compromise of, the stability given by the
semi-fixed APIs used by the NB applications and the elasticity and rich capabilities



2.2 Control vs Configuration 9

Netconf Controller

NetconfDevice

NetconfSession

YANG Compiler

Driver

*.yang

YANG Runtime

Behavior
.javaDriver

Behavior
.javaDriver Behavior

.java

model.jar

schema
*.yang

*.class

send,	receive	config
data	in	xml	format

validate	config data,
decode	into	Java	object,
encode	into	xml	data

Model	Registry

Models	included	in	the	driver	to	implement
logic	behind	device	configuration

Models	registered	
for	runtime	use

Apps ONOS CLI

Apps	and	cli	commands	interact	with	
device	behaviours (e.g.	InterfaceConfig)

Fig. 2.2 Model-based device drivers implementation via Yang/Netconf

enabled by YANG/Netconf within the device drivers (Fig. 2.2). Micro-APIs abstract-
ing many facets of configuration are expressed in ONOS by extending the Behaviour
interface to implement effectively an API per feature (e.g. VXLAN, VLAN, Queues
configuration). The implementation encapsulates specific logic and code of the
exported capability and within it one can use whatever modelling language (YAML,
YANG, SNMP schema etc.) to define semantics and syntax for interacting with the
device. Apps and other ONOS subsystems instead are completely independent of
such modelling languages and refers to the device capability through such Behaviour
abstractions. A collection of behaviours describes the capabilities of a device in
ONOS and they are accessible via class projections and casting, while macro APIs
remain unchanged (stable) to the northbound applications.

In Chapter 4 we make use of the driver subsystem to implement the logic behind
the QoS configuration of the virtual switch OpenVSwitch [31]. In Chapter 5 we
use multiple ONOS drivers to control and configure the data path nodes. One of
these devices is entirely described via YANG models. The drivers for the Openflow-
enabled switches instead are implemented after the ONOS core APIs written in Java.
The rest of our system contributions to ONOS touches the application, the core and
the provider layers which are device agnostic.



Chapter 3

ICONA: A Peer-to-Peer Approach
for Software Defined Wide Area
Networks Using ONOS

Part of the work described in this chapter has been published in [32]

3.1 Motivation

As mentioned in the introduction, WAN networks are composed by a huge number
of distributed network devices and terminal stations. Reliability, scalability and avail-
ability are among the major elements of attention expressed by Service and Cloud
Providers. Existing deployments show that standard IP/MPLS networks natively
offer fast recovery in case of failures. Their main limitation lies in the complexity
of the distributed control plane, implemented in the forwarding devices. IP/MPLS
networks fall short when it comes to designing and implementing new services that
require changes to the distributed control protocols and service logic.

The SDN architecture, that splits data and control planes, simplifies and speeds
up the introduction of new services, by moving the intelligence and most of network
state from the physical devices to a logically centralised Network Operating System
(NOS), also known as controller, in charge of all the forwarding decisions. It is also



3.1 Motivation 11

clear, as described in the work of Heller et al. [5], that even if a single controller
may suffice to guarantee round-trip latencies on the scale of a typical mesh restora-
tion delays (200 msec), this is not enough for all network topologies. Furthermore,
ensuring an adequate level of fault tolerance (i.e., avoiding excessive packet loss
and session termination) can be guaranteed only if controllers are spaced apart in
different locations of the network. A logical step towards robustness in SDN is to
distribute the load of the control plane between entities, each taking care of a portion
of the entire geographical network and each providing an east-west communication
interface to enable programmability of the entire network. To guarantee the proper
level of redundancy in the control plane, several distributed NOS architectures have
been proposed in the last years: ONIX [33], Kandoo [13], HyperFlow [9] to name a
few. Mainly, these architectures fall into two categories: (i) hierarchy of controllers
and (ii) peer-to-peer interconnections between controllers. While the former gives
adequate scalability for resources under the control of the same domain, the latter
offers more benefits in case of a multi administrative domain solution, removing a
top-level entity, possibly managed by a third party, controlling the interconnections
between networks belonging to different providers.

In the ONOS architecture, a cluster of controllers shares a logically centralised
network view: network resources are partitioned and controlled by different ONOS
instances in the cluster. Resilience to faults is guaranteed by design, with automatic
traffic rerouting in case of node or link failure. However, despite the distributed archi-
tecture, ONOS is designed to be placed in a single geographical location, because its
distributed architecture requires negligible communication delays between instances.
Given this consideration, we engineered an open-source ONOS application called
ICONA (Inter Cluster Onos Network Application). ICONA is designed to work in a
single administrative WAN network scenario, increasing the robustness to network
faults by redounding ONOS clusters in several geographical locations and decreasing
event-to-response delays, as well as in a multi administrative domain scenario. To
better support the latter use-case, ICONA is based on a peer-to-peer architecture,
and implements configuration policies between clusters (i.e., domains belonging
to different owners), that ensure the full control of services and events between
domains.



12 ICONA: A p2p Approach for SD-WANs Using ONOS

3.2 ICONA Architecture

ICONA is a new southbound ONOS provider that offers an east-west interface and
a powerful abstraction layer to allow a single ONOS cluster to be interconnected
with several other clusters, both in the same and in different administrative domains.
Providers in ONOS are standalone ONOS applications based on OSGi components
that can be dynamically activated and deactivated at runtime. The main purpose
of providers is to abstract the configuration, control and management operations
of a specific family of devices (e.g. OpenFlow, SNMP, Netconf, etc.). ONOS
interacts with the underlying network with the help of these components. Being
a provider, ICONA is completely transparent to the ONOS core systems and to
other applications, thus offering the same functionalities of ONOS, but extended to a
geographically distributed environment, including multiple administrative domains.
From an application perspective, all the features offered by ONOS are then available
in an multi administrative domain composed of several ICONA clusters. The main
architectural goals of ICONA are to:

• Enable east-west communication between ONOS clusters. In a single-domain,
this implies partitioning the Service Providers network into several geograph-
ical regions, each one managed by a different cluster of ONOS instances.
The network architect can select the number of clusters and their geograph-
ical dimension depending on requirements (e.g., leveraging on some of the
tools being suggested within the aforementioned work [5]), without losing
any features offered by ONOS, neither worsening the system performance.
In a multi-domain scenario, several ONOS clusters, belonging to different
administrative domains, can exchange network services based on respective
policies and network abstractions.

• Provide an abstraction to ONOS, able to: (i) abstract and communicate exter-
nal topologies (i.e., devices, links and ports not directly managed by the local
cluster), (ii) configure these external devices from local applications, leverag-
ing on the Intent Framework and (iii) enforcing policies between clusters.

Clusters, policies and topology abstractions can be easily injected in ICONA
through the ONOS configuration service. ICONA extrapolates the local topology
from the ONOS core, abstracts it based on the configuration and finally exposes it to



3.2 ICONA Architecture 13

remote clusters; likewise, it receives the external topologies from the remote clusters
and notifies them to ONOS. In case of a multi domains, this external topology is
exposed as a single big switch. Moreover, it takes care of reporting relevant updates
to the remote clusters about changes affecting the abstracted topology by listening
to events reported by the ONOS subsystems (e.g., devices, links, ports and edge
hosts). The east-west communication between clusters is not bounded to a single
peer-to-peer mechanism, but it allows different implementations, leveraging on the
ICONA Southbound Interface (ISBI).

Figure 3.1a depicts two clusters, A and B, sharing their topologies through
ICONA. In Figure 3.1b, cluster A exposes its 4 switches topology as a single big
switch, that is abstracted and communicated to the local ONOS core by the ICONA
provider of cluster B.

The communication between clusters relies on the ISBI interface, that can be
implemented by different mechanisms. To make ICONA as flexible as possible, its
structure is vertically split in two logical layers:

• the ICONA Provider which contains the main logic and lays between the
ONOS core and the ISBIs.

• multiple ISBI drivers, each one tied to a specific for a communication mecha-
nism. For each remote cluster, it’s possible to specify a different mechanism,
thus allowing several ISBI implementations to be used simultaneously.

This architecture allows to integrate several communication mechanisms, just by
implementing the ISBI logic, without any modifications in the ICONA provider.

3.2.1 ICONA Provider

The provider contains the main logic behind ICONA, and performs various func-
tionalities. As a Topology Manager (see 3.2.1), it builds an abstraction of the local
topology to be exposed to remote clusters. Currently ICONA supports two topology
abstractions: BigSwitch (single switch representing the entire network with edge
ports) and FullMesh (network topology in which there is a direct link between all
pairs of edge nodes). While the former shrinks the entire topology in a single switch,
the latter builds a full virtual mesh topology between all the edge switches (e.g.



14 ICONA: A p2p Approach for SD-WANs Using ONOS

(a) ICONA as a peering provider

Apps

NB	API

Core

SB	API

Providers

Protocols

Network	Elements

ICONA

Apps

NB	API

Core

SB	API

Providers

Protocols

Network	Elements

ICONA

CLUSTER	A CLUSTER	B

INTERLINK

CLUSTER	A
COMPLETE	TOPOLOGY

CLUSTER	B
BIG	SWITCH	
TOPOLOGY

CLUSTER	A
BIG	SWITCH	
TOPOLOGY

CLUSTER	B
COMPLETE	TOPOLOGY

EAST-WEST	INTERFACE

(b) Topology exchange

Apps

NB	API

Core

SB	API

Providers

Protocols

Network	Elements

ICONA

CLUSTER	B

CLUSTER	A	TOPOLOGY

REMOTE	TOPOLOGY	
ELEMENTS

(CLUSTER	A	TOPOLOGY)
LOCAL	TOPOLOGY	

ELEMENTS
(CLUSTER	B	TOPOLOGY)

Fig. 3.1 ICONA topology abstraction.



3.2 ICONA Architecture 15

the ones with edge ports) of the network. The provider, after receiveing remote
topologies from the southbound mechanisms, notifies them to the local ONOS core,
and reacts to network events which could reflect a change in the topology exposed
to/from the remotes. As a Service Manager (see 3.2.1), it manages service requests
coming from the local applications to remote clusters and vice versa. Finally, as a
Policy Manager (see 3.2.1), it enforces configuration policies between clusters. The
next sections detail the features offered by the three provider modules, depicted in
Figure 3.3.

Topology Manager

The Topology Manager (TM) is responsible to (i) analyse the remote topologies and
install them in ONOS with the relevant metric and annotations, and (ii) reacts to
network events, both local and remote. Each TM shares with the other clusters an
abstraction of the local topology, that may vary from cluster to cluster, based on the
configuration. The topology is composed of:

• Inter-links (IL): links belonging to different ONOS clusters. Each IL is pro-
vided trough the ONOS configuration subsystem and it’s tagged by some
metrics, such as the link delay, available bandwidth and number of flows
crossing the link.

• Virtual devices and intra-links: links within the local cluster/domain.

• End-points (EP): interconnection ports between the customer’s gateway router/switch
and the ONOS network.

Service Manager

The Service Manager (SM) is the ICONA component, that provides inter-cluster
path computation whenever a northbound application, on-top of ONOS, requires
connectivity between two or more EPs crossing multiple clusters. The SM intercepts
an intent requests from the ONOS core targeting one or more virtual devices of the
remote topology and sends it to the target remote cluster (Fig. 3.2). The recipient
translates the remote intent request into a local intent request and submits it to the
ONOS Core. The translation consists in resolving the mapping between the abstract



16 ICONA: A p2p Approach for SD-WANs Using ONOS

ONOS
CLUSTER	A

ICONA

ONOS	
CLUSTER	B

ICONA

HA1

HB2

CLUSTER	A	LOCAL	TOPOLOGY
CLUSTER	B	EXPOSED

TOPOLOGY

HB2

CLUSTER	B	LOCAL	TOPOLOGY

1. An	intent is requested
between HA1	and	HB2

2. ICONA	intercepts the	
flow	rule for	the	
remote	abstract
device

3. ICONA(a)	sends the	
request to	the	remote	
one

4. ICONA(b)	generates
one or	multiple	
intents,	that
transparently are	
installed by	ONOS	
into the	switches

13

Fig. 3.2 Service request accomplished with ICONA.

ingress and egress points of the original request into local ingress and egress points
of the underlying network. The evaluation on the feasibility of the intent installation
is also performed, both in terms of policy and capabilities. If the request is accepted,
the SM waits for the ONOS core to accomplish the task of installing the intent and
then notifies the requester about the outcome.

Policy Manager

A multi administrative domain scenario is characterized by the presence of networks
under control of different authorities. Usually, the mutual trust between these
domains is limited to specific agreements, which identify a list of constraints to be
applied at the edge of the network. To support such use-case, ICONA is policy-
oriented and enforces, through configuration, the compliance to those agreements.
Currently ICONA allows to set at runtime several parameters, such as (i) the external
peering clusters information, (ii) the topology abstraction exposed to each domain,
(iii) the list of EPs, (iv) the type and number of intents installable by a remote cluster,



3.3 Evaluation 17

(v) the ILs and their metrics (i.e., bandwidth, delay and type), (vi) the preferred path
for specific classes of traffic (based on L2 and L3 fields). However, we are currently
analysing the common design patterns of BGP policies, that are typically used by
ISPs [34], to implement innovative policy mechanisms in the future releases.

3.2.2 ICONA Southbound Mechanisms

A southbound mechanism is an implementation of the communication system be-
tween clusters (Fig. 3.3). Basically, it’s a software component in charge of translating
the provider’s requests into protocol-specific, network operations and the remote
clusters messages into abstracted notifications via the ISBI. This component per-
forms the exchange of the information with message encoding and decoding, and
does not retain any system state except the status of the remote clusters. Currently
ICONA supports two different mechanisms:

• BGP: an extension of the BGP protocol with a new Type-Length-Value (TLV)
field to offload the communication system to an external router (e.g. Quagga
based) and to use BGP as a pure transport protocol for data exchange.

• REST: a REST client/server peer-to-peer architecture has been implemented
between clusters. The client is in charge of sending local topology elements
and to request service installation, while the server is responsible to receive
remote topology elements and service requests from the other clusters. We
implemented a distributed architecture, in which every ICONA instance is
responsible to interconnect the local cluster with a set of remote clusters and the
communication is balanced among multiple end-points providing resiliency.

3.3 Evaluation

The purpose of the experimental tests described in this section is to compare ICONA
with a standard ONOS setup, and evaluate the performances of the two solutions in
an emulated environment. It is important to highlight that these evaluation has been
achieved with a preliminary version of ICONA, working on an old ONOS version
(Blackbird release). For these reasons, the results presented in this section should



18 ICONA: A p2p Approach for SD-WANs Using ONOS

PROVIDER

Southbound Mechanisms

REST CHANNEL

BGP CHANNEL

Topology Manager

Service	Manager

Policy	Manager

BGP REST …

Southbound	Interface

CLUSTER	A

PROVIDER

Southbound Mechanisms

Topology Manager

Service	Manager

Policy	Manager

BGP REST …

Southbound	Interface

PROVIDER

Southbound Mechanisms

Topology Manager

Service	Manager

Policy	Manager

BGP REST …

Southbound	Interface

CLUSTER	B CLUSTER	C

Fig. 3.3 High level view of the ICONA components.



3.3 Evaluation 19

not be considered as benchmark, but they can offer a comparison between the fully
centralized solution versus the peer-to-peer architecture offered by ICONA.

The control plane is composed of several virtual machines, each configured to
use 4 Intel Core i7-2600 CPUs @ 3.40GHz and 8GB of RAM. For the ONOS tests
we used 8 instances, while with ICONA we created 2, 4 and 8 clusters, respectively
with 8, 5 and 3 instances each. The data plane is emulated by Mininet [35] and
Netem [36]: the former creates and manages the network based on OpenFlow 1.3,
while the latter emulates the properties of wide area networks, introducing variable
delays, throughput and packet loss. Both solutions (ONOS and ICONA) have been
tested on top of “grid” networks and of the GÉANT [37] topology.

3.3.1 Reaction to Network Events

Grid network

The first measured performance metric is the overall latency of the system for
updating the network state in response to events; examples include rerouting traffic
in response to link failure or moving traffic in response to congestion. To evaluate
how the system performs when the forwarding plane scales-out, few standard grid
topologies (from 4*4 to 10*10) have been chosen, with a fixed link delay of 5ms
(one-way) and the latency needed to reroute a certain number of installed paths when
an inter-cluster link fails is compared between ONOS and ICONA with various
clustering settings.

The total latency is defined as the amount of time that ONOS or ICONA requires
to react to the failure. It is computed as the sum of: (i) the amount of time taken
by the OpenFlow messages (PORT_STATUS and FLOW_MOD) to traverse the control
network, (ii) the alternative path computation, (iii) the installation of new flows in
the network devices and (iv) the deletion of the pre-existing flows. In particular, we
have been running several simulations by installing 103 paths in the network and
then causing failure of an inter-cluster link carrying al least 102 flows.

Figure 3.4 shows the latency (avg, min, max) required for the different case
to execute the four tasks previously mentioned. Each test has been repeated 103

times. Despite the same mechanism used by ICONA to compute and install the new
paths, the difference is mainly due to the following reasons: (i) each ICONA cluster



20 ICONA: A p2p Approach for SD-WANs Using ONOS

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

4x4 6x6 8x8 10x10

L
a

te
n

c
y
 [

m
s
]

Network size

ICONA 8 Clusters
ICONA 4 Clusters
ICONA 2 Clusters

ONOS

Fig. 3.4 Average, maximum and minimum latency to reroute 100 paths in case of link failure
for ONOS and ICONA (2, 4 and 8 clusters)



3.3 Evaluation 21

Fig. 3.5 GÉANT pan-European network

is closer to the devices, thus reducing the amount of time required for OpenFlow
messages to cross the control channel and (ii) the ICONA clusters are smaller, with
fewer links and devices, thus decreasing the time used for computation and the
overall numbers of flows to be installed and removed from the data plane.

GEANT network

The same metrics have been evaluated on the GÉANT topology (see Figure 3.5).
Circuits have various one-way delays (from 10 to 50ms) and throughputs (from 1 to
100Gbps).

Table 3.1 depicts similar results as the previous test. While the GÉANT network
is smaller than the grid topology, with 41 switches and 58 bi-directional links, the



22
ICONA: A Peer-to-Peer Approach for Software Defined Wide Area Networks Using

ONOS

Control plane Avg latency [ms] Min latency [ms] Max latency [ms]
ONOS 297 284 308

ICONA2 272 261 296
ICONA4 246 232 257
ICONA8 221 199 243

Table 3.1 GÉANT network: average, maximum and minimum latency to reroute 100 paths
in case of link failure for ONOS and ICONA (2, 4 and 8 clusters)

higher delay in the data plane adds an additional time before convergence to a stable
state.

3.3.2 Startup Convergence Interval

This second experiment measures the overall amount of time required for both
solutions to re-converge after a complete disconnection between the control and data
planes. The tests have been performed over the GÉANT topology, and replicated
103 times. Table 3.2 shows the average, maximum and minimum values in seconds.

Control plane Average Time [s] Minimum Time [s] Maximum Time [s]
ONOS 6,98 6,95 7,06
ICONA 6,96 6,88 7,02

Table 3.2 Amount of time required to obtain the network convergence after disconnection for
ONOS and ICONA

The result shows that ICONA and ONOS require comparable time intervals to
return to a stable state, in case of a complete shutdown or a failure of the control
plane.

In the next chapter we are going to describe a QoS framework architecture on top
of ONOS which exploit the functionalities provided by ICONA for the inter domain
control over WAN.



Chapter 4

A Proposal for End-to-End QoS
Provisioning in Software-Defined
Networks

Part of the work described in this chapter has been published in [38].

4.1 Motivation

Cloud-based, real-time applications are likely to spread over the next years with the
advent of IoT and smart mobility systems. Recently, a new plethora of applications
requiring a RTT delay of around 1ms have been grouped under the hat of tactile-
Internet applications: a tactile sensor reads information and a connected system
reacts with actuators seen by a human within 1 ms [39]. Although we are still far
from achieving end-to-end RTT of around 1ms with wireless communications, ISPs
need to be ready to re-architect their software control-plane in order to fully exploit
the enormous potentials offered by their infrastructures.

Current adoption of distributed control algorithms forces the use of the same
signaling protocol (e.g. RSVP, BGP-LS) in all the data-path nodes, not taking into
account the resistances inevitably present between device vendors and between
administrative domains. For this reason the Service-Level-Agreements (SLAs) be-



24 A Proposal for End-to-End QoS Provisioning in Software-Defined Networks

tween a service provider and its customers or between providers are still mainly static.
Moreover, the experience has shown that the scalability issue of the core network
in maintaining per-flow state for resource reservation in each node along a path
prevented the diffusion of RSVP and integrated services in general. As discussed in
[40], per-flow service treatment does not scale in the Internet core; backbone routers
must be fast and only an aggregate behaviour is feasible. Instead, it is important
to enable such treatment at the edge of the network where mass of users enjoying
a mixture of heterogeneous applications share indistinctly the same portion of the
network as in the case of cellular access networks; performance degradation is likely
to happen in the access links where an increasing number of traffic sources and sinks
can introduce a significant amount of queueing delay. Given these considerations, we
believe that an hybrid combination of flow-based and class-based traffic treatment,
respectively at the edge and in the core of the network, could enable guaranteed
services for current and future real-time applications. Since these applications could
have terminals deployed all around the globe, the end-to-end provisioning will have
to span a chain of administrative domains, requiring an east-west communication
interface to convey data that vary from classic inter-domain routing information
exchanged via BGP. If we make the assumption that QoS requirements requested by
the customer applications are satisfied in the core network, at least for what concerns
a delay bound, and up to a maximum bandwidth allocation, then we can think to
overlay an integrated service scheme on top of the current deployments where class-
based treatment is applied, as long as the resource admission control system is able
to map the dynamic service requests to the statically allocated resources in the core.

In this Chapter we present the design and a prototype implementation, partially
based on ICONA (Chapter 3), of a control-plane network application for provision-
ing dynamic end-to-end QoS profiles to end-user applications. Our proposal is a
signaling scheme for path reservation and configuration whose implementation does
not require the involved data-path devices to be bound to a single control protocol.
The aim is to solve the interoperability problem in provisioning end-to-end guaran-
teed services, in a multi-vendor, multi-technology and multi-domain environment
by exploiting current software technologies advances; in particular, the decoupling
between functional intents and the way they are accomplished is crucial.



4.2 System Workflow 25

The next sections are organised as follows: Section 4.2 gives a high level descrip-
tion of the complete system workflow, the first part of Section 4.3 is dedicated to a
general introduction to the QoS and to the Internet technologies adopted to achieve it.
Here is where the most of the related works are considered. Then in Section 4.3.2 the
critical issues of RSVP are presented and in Section 4.3.3 the end-to-end behaviour of
the QoS system is taken into account. In Section 4.4 we discuss the communication
interface between clusters or domains of networks required to achieve the end-to-end
provisioning, while in Section 4.5 a brief contextualisation of our work into a policy
management system is presented. Section 4.6 contains the details of our prototype
implementation while Section 4.7 presents some benchmark results on the service
request computation time.

4.2 System Workflow

The overall process is activated upon the occurrence of an event triggering the dis-
patch of a request sent by an Over-The-Top (OTT) application. The request contains
a user authentication token, an application identifier, information about an endpoint
to contact together with additional flow specifications, and a QoS profile containing
delay and bandwidth requirements, plus an amount of time (or an estimate of it) for
which the profile is required. A previous agreement between the user and the network
operator is made in order to convey to a traffic plan based on its dynamism, amount
of data, QoS parameters, number of requests and possibly other parameters. The
request is sent to a manager application running on top of the local domain controller
that is listening for incoming connections from registered users. The authentication
token, previously generated in a hand-shake phase is verified and the content of the
payload is parsed and elaborated as follows.

The endpoint information, either a destination address (L2 or L3, depending on
the use-case) or the hostname of the machine to be contacted, is used as look-up key
to get the collection of candidate paths existing between the end terminals of the user
application. Then an admission control routine runs to check the availability of a
suitable path where resources are to be reserved for the subject QoS profile. Once a
path is selected, the network application has to instruct the core controller to setup a
priority flow between the endpoints of the user application; for the sake of simplicity,



26 A Proposal for End-to-End QoS Provisioning in Software-Defined Networks

we will refer to point-to-point paths, although the solution is equally applicable to
paths with multiple destinations ( > 2).

It may be necessary to establish connectivity between the endpoints, other than
traffic control’s rules. For example, in a pure Openflow network where none of the
routing protocol suite runs in the data-path devices, the controller would prescribe a
set of flow rules containing forwarding instructions, together with QoS constraints.
If forwarding rules have been previously installed on the data-path devices, then only
traffic classification and shaping is to be done through device-specific configurations.

To setup a priority flow, the manager application issues the setup of custom
queues in the devices along the selected path and sends an intent request to the
controller’s core with the specification of the target flow. An intent is an abstraction
used by the applications to specify their high-level desires in form of policies. The
ONOS network controller (Chapter 2), used in our prototype implementation, is the
first open-source controller that provide such feature to its applications. The intent is
then split by the core into device-specific flow rule requests dispatched to the proper
software drivers of the underlying devices. Queues are also configured by means of
device-specific drivers. Unfortunately the ONOS Intent subsystem does not support
the configuration of queues and its southbound level yet, and so we had to implement
the configuration in our application.

As mentioned before, the endpoints can normally span multiple domains and,
clearly, each domain has to take care of its portion of the network. A key point of
the system is the topology abstraction (Figure 4.2): all forwarding devices of the
local domain are exposed to the controller with the same abstraction model, as is
an entire remote domain topology, viewed as a single device (a big switch) whose
ports are connected to terminal endpoints or to other domain topologies. When the
endpoint of the application requesting a priority path resides on a different domain,
the admission control routine recognises the presence of a virtual device associated
to the remote domain and as a consequence queries the network manager application
of the remote domain in order to establish an end-to-end resource reservation along
the path between the endpoints (Figure 4.1). Once the process converges, the domain
controllers can simultaneously setup the path in their own portion of the network,



4.3 QoS Provisioning 27

(2) Request

(1) Topology discovery

(4) Path setup

(3) Resource reservation

DOMAIN 
CONTROLLER A

Peering Provider

Admission Control

(4) Path setup

DOMAIN 
CONTROLLER B

Peering Provider

Admission Control

Fig. 4.1 Reference scenario

the manager application that received the original request sends a response back to
the user application that can start sending priority data over the network.

4.3 QoS Provisioning

4.3.1 General Discussion

QoS is introduced in packet-switched networks in order to apply a special treatment
to specific data packet flows. At the device level, QoS is achieved through traffic
classification, shaping, and scheduling at the egress ports; at the ingress ports packets
are filtered for policing. Classification determines which treatment each data packet
has to undergo, shaping is used to control customer input data rate to conform to
the SLAs, while scheduling affects delay and throughput of the data packet flows.
Given conformance to a SLA, scheduling at the network interfaces is the lowest level
operation gearing QoS provisioning, also known as service discipline.

At the path level, QoS is achieved through resource reservation over the whole set
of nodes along the path. The reservation must be secured end-to-end and the resource
allocation in one node must be consistent with the others along the path. A path
selection with the end-to-end delay constraint is subject to inaccurate information



28 A Proposal for End-to-End QoS Provisioning in Software-Defined Networks

10

End-Point
interlink

CLUSTER 
A

CLUSTER 
B

Network view of 
cluster A

Fig. 4.2 Domain topology abstraction

due to the dynamic nature of the delay and hence subject to theoretical intractability
([41] [42]). However, end-to-end delay and delay jitter bounds have been computed
by means of network calculus applied to queueing systems modelling the networks
([43–45]). Academic and industrial communities have been very active in the last
decades in investigating network models and algorithms to solve the QoS routing
problem, also known as the multi-constrained path computation problem ([46–52]).
In [40] they cover all the important components of the QoS provisioning in Internet as
it has been conceived in the last decades: integrated services, RSVP ([19, 53]), Diff-
Serv [54], Multi Protocol Label Switching (MPLS [55]) and constraint-based routing.

Today network operators employ MPLS mainly for layer 2 and Layer 3 Virtual-
Private-Network (VPN) services ([56]), while constrain-based routing for Traffic
Engineering (TE) operations is complex to achieve in a complete distributed control-
plane. Moreover, TE is not useful in presence of congestion. This happens at the
bottleneck links that typically reside in the last mile towards the customers. DiffServ
model within a single AS is employed by ISPs for class-based treatment of the data
packets; but the validity of the Type of Service (ToS) field in the packet IP header
may lose completely meaning when traversing multiple administrative domains. In
other words, within a single administrative domain the class-based QoS provisioning
is theoretically easy to achieve and technology is not the hurdle, while policy and
economic factors have the major impact on the fate of the QoS provisioning in the



4.3 QoS Provisioning 29

multi-domain scenario. IntService and the RSVP signaling protocol instead did not
take off even within the single administrative domain. RSVP is used for labels distri-
bution in G/MPLS but it failed in its primordial intent. In order to accomplish the
process described in Section 4.2 an end-to-end guaranteed service must be provided.
In the next section we discuss the critical issues of RSVP and in what our proposal
differs from it.

4.3.2 Comparison with RSVP

Path Computation and Routing. RSVP uses a combination of Constrained Shrotest
Path First (CSPF) algorithm and Explicit Route Objects (EROs) to determine how
reserved traffic and signaling messages are routed over the network; RSVP is a
distributed signaling protocol and it needs routing to work. EROs are a mean to
explicit indicate some nodes that must belong to the reserved path; in order to force
a specific path through a set of nodes you should enter and configure each node with
specific EROs instructions. If the total bandwidth reservation exceeds the available
bandwidth specified across the link for a particular path segment, the path must
be recomputed through another route. If no segments can support the bandwidth
reservation, path setup fails and the RSVP session is not established.

In our solution the path computation is independent from the routing proto-
col. Different routing and forwarding scheme can be used to build the path in the
underlying network: flow-rules, labels, tunnels. But no routing of the signaling
scheme is needed; centralised path computation is clearly much faster and protocol-
independent. The controller only needs the view of the topology as a connected
graph. To force the reservation in a specific path, you can directly reserve resources
and install forwarding rules into the proper devices at once. The candidate paths
are collected from the store and a suitable one is found before injecting resource
reservation rules into the network. This occurs in the centralised controller within a
single software process.

RSVP is simplex. In RSVP the reservation process is applied in a single direc-
tion of the path. To have full duplex reservation, the number of operations and the



30 A Proposal for End-to-End QoS Provisioning in Software-Defined Networks

messages exchanged are doubled.

In a centralised network controller, you can equally provide simplex or duplex
reservation via a single software entity.

Admission and Policy Control. RSVP Admission and policy control is applied
to each node. So RSVP implementation must be integrated with each node’s traffic
and policy control module, thus increasing the chance of interoperability. RSVP
must provide QoS service characterisation within opaque objects parsed by each
network node.

In our proposal the QoS service characterisation is completely decoupled by
the signaling protocol/scheme and must be embedded only into the front-end APIs
consumed by the customer applications. The admission and policy control is applied
only once, in each domain, in the central controller. An RPC-based mechanism
is used for configuring the traffic control module given the possibility to fulfil the
request. Our prototype relies on ONOS. ONOS provides common abstracted be-
haviours for traffic selection and treatments that are translated into device-specific
rules.

First speaker. RSVP session initiator is the inbound router running RSVP in
conjuction with other protocols (e.g. MPLS or GMPLS in case of label distribution).
If RSVP is embedded in a host application, then the first network node should speak
RSVP, otherwise a tunnel between the application and the first RSVP-capable device
shall be created thus increasing the number of operation required for RSVP signaling
to work.

In the presented solution the session initiator is a user application featured with
proper APIs for contacting the controller. The idea is to keep the API consumer
implementation as simple as a REST client that has the capability to create, remove,
update and delete a priority path. Such client would be provided for different soft-
ware environments.



4.3 QoS Provisioning 31

Scalability. As per [57], the scaling problems of RSVP are linked to the resource
requirements (in terms of processing and memory) of running RSVP. The resource
requirements increase proportionally with the number of sessions. Each session
requires the generation, transmission, reception and processing of RSVP Path and
Resv messages per refresh period. Supporting a large number of sessions, and the
corresponding volume of refresh messages, presents a scaling problem.

A centralised control plane presents the same scalability issues concerning the
state maintenance of an increasing number of sessions in the data-path nodes. But
it only matters the traffic control and flow rules, while processing and singnaling
overhead are significantly lowered.

Complexity. Finally, and maybe the most relevant obstacle to success, RSVP is
complex because it was designed with IP multicast in mind, intermediate nodes have
to merge resource reservation requests coming from the receiver nodes. Moreover,
the basic RSVP reservation model is "one pass": a receiver sends a reservation
request upstream, and each node in the path either accepts or rejects the request.
This scheme provides no easy way for a receiver to find out the resulting end-to-end
service. To solve this issue an enhancement was proposed [58], introducing further
complexity in the concretization of RSVP and the integrated services in general.

Orchestrating the data-path nodes from within a central controller avoids the
issues related to the exchange of asynchronous signaling messages. The decision
process not being distributed decreases the complexity in maintaining a single state
of the system.

4.3.3 End-to-End Behaviour

The end-to-end QoS profile model shall follow the one described in the Specification
of Guaranteed Quality of Service [59]. As per [59], "the end-to-end behaviour
provided by a series of network elements is an assured level of bandwidth that, when
used by a policed flow, produces a delay-bounded service with no queueing loss
for all conforming datagrams". We invite to refer to the specifications for further
clarification about the QoS model taken into account. Each network node must



32 A Proposal for End-to-End QoS Provisioning in Software-Defined Networks

provide a service that matches, with some error bounds, the fluid model ([60, 61])
through the token bucket scheme with paramters (b,r, p), respectively the bucket size,
the token rate and the peak rate. The QoS request includes a maximum end-to-end
delay bound, dreq, that shall be guaranteed between the application terminals.

In the centralised controller, the link providers are responsible for notifying the
presence of links they are provider for and their characteristics (propagation delay,
transmission capacity and the maximum transmission unit); these information are
stored in the controller database upon discovery of the link itself. Likewise, the
device providers in the southbound must export other relevant information, such as
the delay error terms representing how the device’s implementation of the guaranteed
service deviates from the fluid model in each network interface (the Ctot and Dtot in
the formula 4.2 below).

On a link l with capacity cl , we define a minimum bandwidth reserved to the
best effort traffic, Rbel . Let Ri be the allocated bandwidth for a flow i. On each link,
the total number of accepted profiles N is subject to:

N : cl ≥ Rbel +
N

∑
i

Ri (4.1)

The end-to-end delay bound as defined in [59] is:

[(b−M)/R∗ (p−R)/(p− r)]+(M+Ctot)/R+Dtot +∑
l

dpl (4.2)

With r <= p <= R, M being the path Maximum-Transmission-Unit and ∑l dpl the
propagation delay sum.

Statement 4.1 imposes that the sum of the allocated bandwidths for N flows must
not exceed the capacity of the link. Flows requesting a maximum delay bound are
assigned to higher priority queues w.r.t. to the best effort traffic. It is possible to
assign the same high priority queue to more distinct flows, as long as statement 4.1
holds. R shall be chosen such that dreq is greater or equal to the value computed
in equation 4.2, provided that dreq is greater than the fixed delay terms Dtot and

∑l dpl . These constraints must apply on all links of a candidate path between the end



4.3 QoS Provisioning 33

terminals of the customer application; a new queue is created for a new flow if they
are satisfied. As mentioned in the previous section, the admission control routine
occurs only once per domain (more details in Sec. 4.4), in the central controller.
Network elements must export the proper information, while the drivers have to
translate a service request into device-specific traffic control rules.

The provisioning of a guaranteed service along a path of several devices and links
is possible only through a cross-vendor and cross-technology solution. This leads
to the adoption of software driver modules installed into the centralised controller.
These drivers converts the protocol-agnostic rules into device-specific instructions
and are essential to solve the interoperability problem derived by the presence of
devices from multiple vendors and technologies. For example, in a LTE cellular
network, the high-level profile is mapped to a standardised QoS Class Identifier
(QCI) by the proper software driver; the mapping would be followed by the setup
of the packet data network gateway and the mobile station with some scheduling
rules applied to the target data flow [62]. The same high-level profile has to be
translated into a specific setup on the backhaul that provides the connectivity towards
the core network consisting of all the required switches to aggregate the traffic from
the access cellular network [63]. These switches could be, for instance, pure Linux
devices in which case the driver would execute a remote procedure call configuring
the involved interfaces with the well-known commands suite tc qdisc, tc filter and tc
class for setting up the queues. If instead a switch is an Openflow-enabled device,
classification and priority come within the forwarding rules, while the queue con-
figuration for the service discipline must be supplied on a separate communication
channel, for example, through OVSDB protocol in Open-vSwitch [31] (Fig 4.3).
Together with the local domain (or local cluster in the single administrative domain)
our framework adds the reflection of such operations into the remote domain (cluster)
where the endpoint of the customer application requesting the service resides.

Note that we control the edge devices on each side of the communication while
leaving aside the backbone routers where per-flow service treatment does not scale.
While rfc-2212 states that all the nodes of a path should take part of the resource
reservation process for equation 4.2 to hold, we argue that the dynamic resource
reservation at the edge of the network can occur transparently w.r.t. the statically
allocated resources of the core where the QoS exists only for classes of traffic,



34 A Proposal for End-to-End QoS Provisioning in Software-Defined Networks

rather than flows, in form of virtual circuits created with protocols such as MPLS
or GMPLS (Fig. 4.4). If the backbone is treated as a composition of these circuits
rather than a composition of nodes and links, then a resource mapping between the
dynamic and the static portions of the network resolves in representing these circuits
as aggregate elements into the topology view of the controller. Path-Computation-
Element (PCE) describes a model to address the problem of constrain-based path
computation in conjunction with a label switched protocol ([64, 65]). An all in one
orchestration framework for the complete set of the network elements is presented in
Chapter 5.

Ingress 
Policing

Forwarding

PRIO 0

PRIO 1

Queuing

Ingress 
Policing

Forwarding

Queuing

Controller

Linux tc
driver

Openflow
driver

OVSDB
driver

Linux device

OVS bridge

RPC
• tc qdisc
• tc filter
• tc class Queue config

• queue id
• queue min bw
• queue max bw

Flow config
• set queue
• set priority

Fig. 4.3 Driver modules in the controller are the means for device-level configuration of the
queues

4.4 East-West Resource Exchange

When the terminals of the application requiring a priority path are located in two
portion of the network piloted by distinct controllers, a communication mechanism
between these controllers is necessary in order to exchange the proper information
during the reservation process. From hereafter, we will use the term domain and
cluster interchangeably to indicate distinct portions of the network.



4.4 East-West Resource Exchange 35

Dynamic	resource	allocation	

Static	resource	allocation
(e.g.	MPLS	channels)	

Fig. 4.4 Two allocation schemes for two layers of the network

At the origin of the communication, there is the route discovery phase to share the
endpoints of each domain. A design choice is to be made on how and when to
expose the network element parameters related to the topology itself. There are two
options: i) sharing these information during the route discovery phase, or ii) avoid to
pre-share the parameters and collect them during the resource reservation process
on-demand, that is, every time a new request arrives.
Suppose we have a portion of the network under domain A, and another portion
under domain B, then suppose that at some point in time an application connected to
A asks for a priority path that includes an endpoint in domain B. The two different
approaches are described in the following sections.

4.4.1 Pre-Shared Network Parameters and Bandwidth Resource

With option (i), the controller A has already all the information required for the
end-to-end admission control routine when the request arrives. This means that the
topology exposed by B to A shall include all the necessary network infrastructure
parameters, (cl,MTU,Ctot ,Dtot ,d

prop
tot )p for all p in the set of paths that B is willing

to expose to A, which in turns implies that the exposed topology shall be detailed
enough for A to select a suitable path. This requires a more complex topology
abstraction than the single big switch depicted in Fig. 4.2, because clearly with the
single node abstraction you cannot have as many path properties as you would have
with a network of nodes.



36 A Proposal for End-to-End QoS Provisioning in Software-Defined Networks

You could achieve a certain level of aggregation by hiding elements of the B
topology, by computing the aggregate parameters for some paths towards the des-
tinations and then exposing a virtual topology composed by only these paths to A.
In this case, each domain controller should maintain a mapping between the local
physical devices and links and the virtual ones exposed to the remote domains which
adds further complexity.

Other than the topology abstraction, there is one major issue with this approach:
the computation of the aggregate, rate-related delay error term, Ctot , which is the-
oretically not feasible when the computation occurs, for instance, in the domain
controller A for some devices of domain B, because C depends on the parameter
r, the rate requested by a user application. So either C is expressed as a function
of r for each device and shared during the topology discovery phase, which means
exposing the entire topology, or it must be computed on-demand, by the domain
controller B as described in the next section.

4.4.2 On-demand Network Parameters and Bandwidth Resource

In this case, the path parameters are collected and exchanged during the admission
control routine. The domain B is requested to run the resource reservation process in
its own domain. Controller A forwards the application request parameters (i.e. dreq,
the tuple (b,r, p), the domain ingress point and the target destination) to B, which
replies with a tuple (M,Ctot ,Dtot ,dp)

B and an upper bound on R, chosen based on a
proper selected path, if available, so that A can compute the end-to-end delay bound
before proceeding with the actual reservation and path setup. This way the topology
abstraction can be kept as simple as a single big switch whose function is to merely
offer a point of connection to the remote destinations to any domain controllers with
which there is a peering. The network parameters and the resource selection comes
directly from an up-to-date decision process made within the concerned domain. The
computation of Ctot can be actually computed while masking the details of the local
topology. This approach is the choice of our implementation prototype described in
the rest of the article.



4.4 East-West Resource Exchange 37

4.4.3 Inter-Domain Resource Scope

The network parameters used for the delay bound computation in equation 4.2 are
mainly static, except for the bandwidth R, the dynamic network resource under
consideration. We assume unlimited buffer space for the queues, or at least enough
to support the traffic bursts in any link of the network. Within each domain a resource
management system should track the allocated and the available bandwidth in each
link of the underlying network. From the inter-domain communication perspective,
the bandwidth resource management unfolds three cases depending on the use-case
scenario:

• Full share. The bandwidth is completely shared between applications, regard-
less of the domain they reside. This can be the case where the control plane of
a single administrative domain is split into multiple regions for performance
reason (see ICONA, Chapter 3) or because of different underlying physical
networks. In this scenario, it is necessary to update the exposed resource each
time an application obtains or releases a portion of the bandwidth. Upon a
new allocation or release in one domain, a message is sent in broadcast to all
the other domains with which there is a peering. The message is read by the
remote controllers and their local resource stores are updated accordingly. In
the on-demand mode of communication, Section 4.4.2, each domain manages
its bandwidth resource independently and only during a reservation process
the resource availability in a remote domain is determined.

• Partial share. This case is equal to the previous one but only a portion of the
bandwidth is shared with the remote domains.

• Partial static share. A domain controller advertises to each remote controllers
a virtual value of the bandwidth resource during the route discovery phase
and no further update messages are exchanged between controllers. This
value is the static portion of the bandwidth allocated to each remote domain.
In this case, also with the on-demand mode of communication a controller
can determine the availability of bandwidth even before contacting a remote
domain. This is the case of the multi administrative domains scenario.



38 A Proposal for End-to-End QoS Provisioning in Software-Defined Networks

4.5 Policy Enforcement

Policy-based QoS management is of primary importance for network operators. If
the service discipline at the network interface is the lowest level operation gearing
QoS, at the top level we have the SLAs expressed in terms of policies. The SLAs
consist of a set of specifications that are translated by the network manager into
device level primitives (e.g., forwarding rules, queue configurations, traffic shaping
policies, etc.). In [66] [67] the authors propose automatic policy based management
system in the Internet DiffServ architectures. They present a framework for policy
management that reacts to network state changes or customer users requests to
dynamically re-adapt the policy enforcement. In [68] a management framework for
automatic policy enforcement is introduced in a network controller based on Open-
flow; they describe all the necessary functional components of the system without
entering in the implementation details of any of them thus avoiding to discuss how
do they actually interact between each other.

The focus of the present article is on the QoS provisioning in the economic
context of dynamic SLAs; this framework foresees the possibility to be integrated
with an existing policy-based management system. The concerned SLAs are between
a service provider and its customers and between service providers who cooperate to
provide an overall service that can span multiple administrative domains. Between
the customer and the provider, a set of APIs can be embedded directly into the cus-
tomer applications and layered on top of an existing policy management system. The
network operator could also provide ready-to-use applications for specific services
(e.g. a remote health control system). Here we limit the discussion by listing the
additional information needed by the policy manager in order to conform the ingress
traffic to the dynamic SLAs.

Policy to regulate the interaction with customer applications:

• List of user and application IDs that are allowed to request a service.

• Upper bound on the amount of bandwidth each user could request.

• Maximum amount of time each user is allowed to retain a priority path.

• Amount of bandwidth reserved to the best effort traffic.



4.6 Architecture 39

• Set of destinations for which a user could request a priority path.

• Set of network elements that cannot be part of the reservation process.

• Pre-configured queues for selected customers or applications.

Policy to regulate the interaction between providers:

• List of peer domains that are allowed to interact with the local domain.

• List of destinations to expose to the remote domains.

• Topology abstraction to expose to the remote domains.

• Virtual bandwidth resource associated to the exposed destinations.

• Aggregate parameters selection, MTU,Ctot ,Dtot ,dp.

• Number of total service requests that a remote cluster is able to perform.

• Pre-configured queues for selected peers.

4.6 Architecture

4.6.1 High-level System Components

The main functional modules in the control plane are protocol agnostic thanks to the
separation of concerns given by the network controller architecture of ONOS that is
partitioned into:

• Protocol-aware network-facing modules that interact with the network.

• Protocol-agnostic system core that tracks and serves information about network
state.

• Applications that consume and act upon the information provided by the core.

At the application layer resides the admission control and resource allocation routine.
It guarantees the correctness of the QoS provisioning to the end-user applications; it



40 A Proposal for End-to-End QoS Provisioning in Software-Defined Networks

has to dynamically setup and teardown multiple and concurrent QoS profile sessions
and verify that everything in the underlying network is up-to-date and in a consistent
state. In the core controller there are several components required to accomplish the
complete reservation process, see Figure 4.5, while in the network-facing layer we
have as many drivers as the number of different devices in the underlying network
and a communication interface used to exchange data between the domain network
controllers. Such interface has to take into account several aspects of the system:
routes to destinations discovery, network topology elements exposition, resource
reservation parameters and a policy-driven mechanism to abide to the SLA made
between the involved administrative domains. We leverage on ICONA to fulfil
the remote topology and destinations discovery function. The resource reservation
parameters are currently exchanged during the admission control routine at the
application layer, using a prototype REST channel interface. The integration with a
policy manager is left as a future work.

Path Manager

Admission Control

Front-End APIs Profile Store

Queue Configuration Intent Installer

Topology Manager

Net. Elem. Store

Resource Manager

Device Manager

Domain Manager

Intent Manager

FlowRule Manager

Driver Manager

Device Drivers Remote Domain Topology
Provider

Application

Core

ProtocolsProtocols

Fig. 4.5 Controller’s Main Components

4.6.2 The Manager Application

The manager application is a standard, on-platform ONOS application. Its main
function is the admission control routine. We separate the routing and resource
assignment process into two steps: the collection of candidate paths between the ap-
plication terminals through the ONOS PathManager and the selection of the one that



4.6 Architecture 41

satisfies the constraints imposed by the basic admission control scheme described
in Section 4.3.3. The state of the underlying network resources is tracked by the
ResourceManager, backed by a distributed store, which is queried during this process
to reserve the bandwidth resource. The local path parameters are collected by the
internal store populated with the information of the underlying network elements,
while in presence of virtual domain devices, the parameters are queried to the remote
controllers and then merged with the local ones. If a suitable path is found using
Algorithm 1, the bandwidth in each link is temporary reserved (locked), priorities
queues are setup in each device through the QueueManager module and an intent
is submitted by the IntentInstaller (Fig. 4.6). If the installation is successful, the
ResourceManager is requested to allocate the previously locked resource, otherwise
a rollback is performed on all the previous actions, bandwidth reservation and queues
configuration. The collection of the candidate paths is subject to the constraint
imposed by the eq. 4.1; other criterions may be applied, taken, for instance, by
a configured policy. A REST applet that implements the APIs consumed by the
end-user applications and by the remote domain controllers to request and terminate
the setup of priority paths is also part of the manager bundle. All these components
exploit the service-based OSGi model to communicate each other within the platform.

Algorithm 1 Pseudo-code of the admission control routine. *Assuming p >> r,R

1: (b,r, p,mtu,dreq): user app request

2: R← r
3: collect all paths whose spare capacity on each link is ≥ R
4: for all p in paths do
5: if p contains a domain device then
6: collect (R,MTU,C,D,dprop)p from the remote domain
7: merge local and remote path parameters
8: end if
9: R←max{r, (M+Ctot)/(dreq−Dtot −dprop

tot )}*
10: if R can be allocated along the path then
11: allocate R and setup queues
12: else
13: rollback and try next path
14: end if
15: end for



42 A Proposal for End-to-End QoS Provisioning in Software-Defined Networks

(r, b, p)
Front-End APIs Admisson control

(C, D, MTU, dp)

PathManager

(src, dst, r) Set<Path>

NetElementStore

(R)

QueueConfing

IntentInstaller
(path, Fspec)

(R, b, p)

TopologyManager

(Fspec)

Config. subsytem

updates

(R, b, p)

(intent)

ResourceManager

IntentManager

QueueManager

Fig. 4.6 Admission control workflow.

4.6.3 Routing and Scalability

With a complete view of the network topology, routing becomes a problem of graph
searching; the ONOS PathManager exports the proper APIs to the northbound appli-
cations. Destinations addressing is a matter of use-case scenario; in our prototype
implementation the endpoints are identified by L2 addresses and the infrastructure
devices are Openflow devices, but this does not affect the generality of the system
because, as mentioned in 4.6.1, the main functional modules like the admission
control routine are protocol-agnostic. Currently the topology discovery is imple-
mented by a full-mesh communication between clusters of ONOS and each cluster
only advertises the destinations that are directly connected to the local devices, thus
avoiding to implement a distance vector or link state routing protocol. Every instance
of a cluster handles the peering with a subset of all the other clusters through a
leader election process implemented in ONOS in order to load-balance the number
of peering connections among the ONOS instances.

4.7 Algorithm Computation Time Evaluation

The purpose of this section is to report some benchmark results on the scalability
performance of the control plane of our prototype implementation.



4.7 Algorithm Computation Time Evaluation 43

Table 4.1 Single-request computation time

N = 50, pl = 0.75 N = 100, pl = 0.75 N = 450, pl = 0.05 N = 500, pl = 0.05
Response 6.392 9.109 201.842 331.055time (ms)

The resource reservation process overhead within a single domain is proportional
to:

Dapp,ctl +Talgo +max
n∈N
{Dctl,n}

where:

• Dapp,ctl: latency between the application and the controller.

• Talgo: admission control computation time.

• Dctl,n: latency between the controller and the nth device.

The overhead when considering the endpoints placed in M domains is propor-
tional to:

Di
app,ctl +T i

algo + max
j∈M\i
{Di j +T j

algo}+ max
n∈N, j∈M

{D j
ctl,n}

where Di j is the latency between domain controller i and j. In [32] we show that
splitting the control plane into multiple clusters improves the event-to-response
reactivity by decreasing the Dctl,n term at the expense of adding communication
overhead between clusters. Splitting the control-plane into multiple regions also
decrease the algorithm computation time that here we benchmark within a single
region.

The overhead is reported against increasing number of concurrent HTTP requests
and increasing topology dimension for a single instance of an ONOS cluster running
on a bare metal HP EliteDesk 800 G1 SFF with Intel Core i7-4770 CPU @ 3.40GHz,
16 GB RAM. Random topologies are generated by assigning a probability pl of link
existence between any two nodes (Bernoulli model) and injected into the ONOS
core database. N is the number of infrastructure devices, c the concurrency level and
n the total number of requests per experiment. For N = 450 and N = 500 we exploit
the limit theorem according to which the probability that a Bernoulli random graph
is fully connected is distributed as 1−N(1− pl)

(N−1). The thread pool is configured
to use up to a maximum of 300 threads. The computation time Talgo is assumed to



44 A Proposal for End-to-End QoS Provisioning in Software-Defined Networks

 0

 100

 200

 300

 400

 500

 600

 700

 800

 50  60  70  80  90  100

M
illi

se
co

nd
s

Percentage of served requests

c=50, n=100
c=100, n=1000

(a) N = 50, pl = 0.75

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 50  60  70  80  90  100

M
illi

se
co

nd
s

Percentage of served requests

c=1000, n=5000

(b) N = 50, pl = 0.75

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 50  60  70  80  90  100

M
illi

se
co

nd
s

Percentage of served requests

c=50, n=100
c=100, n=1000

(c) N = 100, pl = 0.75

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 50  60  70  80  90  100

M
illi

se
co

nd
s

Percentage of served requests

c=1000, n=5000

(d) N = 100, pl = 0.75

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 50  60  70  80  90  100

M
illi

se
co

nd
s

Percentage of served requests

c=50, n=100
c=100, n=1000

(e) N = 450, pl = 0.05

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 50  60  70  80  90  100

M
illi

se
co

nd
s

Percentage of served requests

c=50, n=100
c=100, n=1000

(f) N = 500, pl = 0.05

Fig. 4.7 Percentage of requests served within a certain amount of time expressed in millisec-
onds. With a concurrency level c=100 (Fig. a, c) 1000 thousands requests are processed
in less than 1sec. (Fig. a) and in about 3 sec. (Fig. c). With a c=1000, the processing
time increases exponentially w.r.t. the total number of served requests n (Fig. b, f ). With
hundreds of nodes (Fig. e, f ), even with c=1000 we are in the order of tens of seconds for
1000 requests. The goodness of these results is relative to the type of service and network
involved. For example, does a HQ streaming video on-demand for premium customers
expect a request rate of thousands of requests per second? Is the QoS applied to all the
network nodes along the path or on a small subset of them?



4.7 Algorithm Computation Time Evaluation 45

start as soon as the request arrives to the REST applet of the manager application
until the drivers for setting up the queues are called. We use a modified version of
algorithm 1 in which the set of candidate paths is chosen with the Dijkstra algorithm
for a maximum of five shortest paths, using a link cost function that forces to infinite
the cost of the direct link between two endpoints, if present, while the cost of all the
other links is uniformly distributed between zero and one. The endpoints for each
single request are also randomly generated so are the network parameters for the
admission control formula. The Talgo overhead even for networks with hundreds of
nodes (and links and hosts) is of the order of milliseconds (Table 4.1); in Figure 4.7e
50% of the requests, at the origin point, are served within one second. However,
we encountered serious problems in processing requests with a concurrency level
of 1000 connections with N equal to 450 and 500 so much so that we decided to
not report the numbers. This inefficiency is intrinsic to the ONOS controller that
showed a greedy cpu usage of some hundreds percentage during the tests, due to
possibly unnecessary operations on the simulated network elements. Nevertheless,
note that the overhead Talgo includes the read time to get the collection of candidate
paths, the transactional allocation process on the bandwidth resource on each link
of any scanned path, the collection and the access to the device drivers for setting-
up the queues. The high values reported in 4.7e 4.7f with a concurrency level of
one hundred are given by the failure in the transactional operation for bandwidth
allocation due to possible collisions among the requests. This is certainly a point
of investigation and the prototype application and control framework would need
an engineering effort in terms of scalability and performance for a production-ready
application.



Chapter 5

Hierarchical End-to-End Network
Control with ONOS

The work described in this chapter has not been published, neither it is under
submission to a conference or a journal. This work describes part of the open-source
platform maintained by the ONF [69, 21]

5.1 Overview

In Chapters 3 and 4 we presented a peer-to-peer architecture for SDN controllers.
Here we discuss a hierarchical platform of ONOS controllers which is partially based
on the codebase developed for the peer-to-peer model. This platform is currently
one of the building block of the ECORD project (Section 5.3.1 and 5.3) the code
is open-source [20]. One key motivation behind this work resides in the lack of
an open-source reference platform for unified network resource orchestration from
a centralised vantage point and fine-grained bandwidth and connectivity service
on-demand. End-to-end connectivity involves the control of multiple heterogeneous
underlying networks. ONOS already provides separation of concerns by separating
northbound and southbound APIs, but it falls short when heterogeneity of the physical
layer becomes dense; in fact the northbound APIs of ONOS do not fully express
the capabilities that many device drivers support, nor it would make sense to run all
network applications on a single controller because virtual network isolation and
resource multiplexing is hard to achieve within a single process platform, in the



5.2 Architecture 47

machine hosting the JVM. Moreover, it is much more likely that different portion of
the networks are driven by different controllers to fully exploit the potential of the
infrastructure. For example, in data-center networks, a pure Openflow controller is
the best candidate while in the transport network it is likely that you shall interface
with proprietary Network Management System (NMS) platforms. We want to
separate the controllers into a domain-agnostic one, the global ONOS orchestrator,
and multiple domain-specific controllers. This way it is easier to maintain the
platform up and running during temporary down times due to failures or software
releases. By using ONOS as global orchestrator for network services, we are
presented with a platform that has well-defined structures for topology and network
elements, stable primitives for HA and network applications. We also address
scalability for WAN networks by delegating full routing and forwarding control to
the leafs controllers. At the time of writing, the state of the art of hierarchical SDN
controllers mentioned in Chapter. 6 were confined within the academia and they
did not have any successful feedback from the industry. ECORD is under field trial
of an handful of service providers such as China Mobile and TIM and undergoing
continuous enhancements by the ONF community.

5.2 Architecture

The platform is composed by a two layer hierarchy of controllers, the root global
controller and the leafs local controllers. They all leverage on the ONOS core to
store and distribute the state among the instances of a cluster. For the rest of the
chapter we will use the term domain and network interchangeably since it is the
expression to refer to a local site or network under the control of a single ONOS
cluster. Clearly, it is not required that all the local domains are controlled by ONOS,
as long as a different choice implements the APIs defined in the communication
channel between the local and the global.
The global node has three main logical components:

• A service orchestrator exports northbound APIs to off-platform orchestrators
and splits service requests into instructions targeting the virtual devices the
global node is aware of.



48 Hierarchical End-to-End Network Control with ONOS

• A virtual topology provider receives notifications form the underlying do-
mains about devices, ports and inter-connection links between devices.

• A communication channel to talk with the underlying domain controllers.
The platform is not bound to a single transport protocol very much like we
thought the communication mechanism for ICONA (see 3.2.2).

While in each local controller we have:

• A topology aggregation mechanism to aggregate topology elements into
virtual topology data structures.

• A communication channel to talk with the global controller to notify topology
elements and receives network provisioning requests.

• A domain-specific network provisioning application implements the net-
work provisioning (forwarding, filtering rules, policing etc.) interacting with
physical devices.

The latter component is different in each domain while the topology aggregation
mechanism and the communication channel are common to all local controllers. The
discussion follows by considering each single logical component of the platform.

5.2.1 Topology Abstraction

The global node maintains an abstract view of the underlying topology for sake
of scalability and to separate domain-specific and domain-agnostic concerns. For
each local controller, a BigSwitchSerive component exposes one abstract device
to the global node: it represents an aggregation of the real network elements that
compose the topology of a local site. This way, the global ONOS has fewer devices
and link data structures to deal with. Path computation will involve only these
aggregated items, while the actual network provisioning will be achieved by the
local site controllers. The relevant topology information for the global node are the
connect points representing the demarcation line between a Service Provider and its
customers network, the connect points between two Service Provider networks, and
relative ports characterisation relevant to the services deployed at the global level,
such as bandwidth for an admission control scheme and the geographical coordinates



5.2 Architecture 49

(Local site)
ONOS

BigSwitch
Service

HTTP 
channel

Device
drivers

(GLOBAL)
ONOS

Service 
orchestration

HTTP 
channel

Virtual[Dev,Link]
Provider

UNI UNI

CPEs
UNI

(Local site)
ONOS

BigSwitch
Service

UNI HTTP 
channel

NNI

NNI

Virtual BigSwitch with 
aggregated resource 
description

Device
drivers

Fig. 5.1 Bottom-up topology discovery phase.

to display the connect points into a graphical map.

The bottom up procedure depicted in Fig. 5.1 shows the topology discovery
phase where the local controller’s BigSwitchService aggregates the physical devices
into a single device data structure with related relevant connect points to expose
to the global controller via an HTTP channel. In the picture, the connect points
are marked as UNI (User-to-Network Interface) for those facing the customer side
and NNI (Network-to-Network Interfaces) for those neighboring with an external
network, following the terminology adopted by the MEF consortium [70]. This
stems from our primal use case of the platform that was the Carrier Ethernet service
orchestration. The BigSwitchSerive is responsible to apply the one-to-one mapping
between physical and virtual connect points and to notify the global about those
changes in the local topology that would affect the aggregated virtual topology; it
listens for events of the local topology and propagates events related to the virtual
topology using the well-known Whiteboard Pattern of OSGi.



50 Hierarchical End-to-End Network Control with ONOS

HTTP 
channel

LxVPN request

Network 
Provisioning

BigSwitch
Service

CPEs
UNI

NNI
Ethernet Edge 
(EE) switch

UNI UNI

tx

ONOS
acess

CO

global

ONOS
acess

ONOS
acessAccess	

Topology

- Admission control
- Request split
- Routing
- Service ID/tag 
generation

- Admission control
- QoS profile setup
- Traffic control rules

Service 
orchestration

HTTP 
channel

Device
drivers

Virtual[Dev,Link]
Provider

Fig. 5.2 Top down service request elaboration.

5.2.2 Service Orchestration

The service orchestration is the most generic part of the platform in the sense that
different connectivity services could be implemented here, exploiting the virtual
topology stored in the global node. A service implementation is accompanied by a
proper extension of the communication channel to enable data exchange and a proper
implementation of the domain-specific network provisioning application within the
local controllers. In Fig. 5.2 it is depicted the elaboration of a generic LxVPN request:
the common actions applied in the global node are the admission control routine, the
split of the request into rules for the virtual devices, path computation and isolation
of target traffic. We will talk a bit more of a specific service implementation in
Sect. 5.3 about Carrier Ethernet service.

5.2.3 The Communication Channel

There are different options to implement a communication mechanism for data ex-
change between controllers. Our primal abstractions are defined through java APIs,
decoupled by the actual communication protocol. The simplest and fastest way to
design and implement the communication was via REST, because the Apache Karaf
container is delivered with the HTTP server Jetty, on top of which a framework based



5.2 Architecture 51

on the javax library to build REST applications is available in ONOS; so we took
that choice: a REST server in the global controller to sense topology events from
the underlying domains and a REST server in the local controllers to receive service
requests.

The client side of the communication is a single-threaded executor OSGi com-
ponent. In the global node, it is actuated every time a service request needs to be
propagated to a remote domain. In the local nodes, the executor is actuated upon
reception of topology events posted by the BigSwitchService mentioned above. The
HTTP client component implements as many Java APIs as the number of specific
services offered by the platform and registers itself as a listener object. When a
service request arrives to the global node, the request is typically split into multiple
instructions targeting the virtual domain devices and, for each device, the service
orchestration calls all the registered listeners among which only the one that im-
plements the communication with the domain the device belongs to processes the
instructions for that device. The remote domain endpoints, IP, port and credentials,
are given by configuration. Choosing a client/server REST channel gave us the
opportunity to prototype quickly the platform and to use it in E-CORD for field trials
in different Telco laboratories with a variety of network devices.

Even if the stream of application data is bidirectional, topology information in
one direction and service data in the other, they present different characteristics.
Topology data models are limited and fixed while service data can vary a lot. For
stable data, stable APIs are good enough and REST remains a very good choice.
For variable data, a model-driven approach is the best candidate (as discussed also
in Sect. 2.2). For this reason, an interesting approach to investigate is a compound
solution of REST and YANG/Netconf. ONOS implements the client side of the
communication with Netconf-enabled devices. This means that for the virtual devices
of the global node, we should define a proper driver modelled using yang to express
service data to exchange and then use the auto-generated Java classes to insert the
logic into the device drivers and send messages via the Netconf subsystem of ONOS.
In the local controllers we should simply add a Java implementation of a Netconf
server and use the same yang models to parse the messages coming from the global
node.



52 Hierarchical End-to-End Network Control with ONOS

5.2.4 Domain-specific Network Provisioning

This part of the local controllers is the boundary between common abstractions and
domain-specific provisioning. It can be compared to the device drivers of ONOS,
but instead of interacting with a single physical device, it is an application of ONOS
that can use either the NB APIs or directly device behaviours (see Chapt. 2.2) to
interact with the whole local topology to fully exploit device capabilities (Fig. 5.2).
For each service definition, we define a Java interface implemented by both the
client component of the global node and by this component so that encoding from
Java to json in the global node and decoding from json to Java in the local nodes of
service data is achieved with the same helper classes called codecs and packaged
in the same bundle of the service interface class, named following the convention:
organisation.service_name.api.

The network provisioning component translates the service interface methods into
some actions on the network; in the access networks we control Customer Premise
Equipments (CPEs), in the Telco’s Central Offices we have NFV infrastructures
built on top of bare-metal servers inter-connected by white-box switches that replace
legacy networking appliances (see next section), on the transport network it is plenty
of diverse technologies for the physical, the data-link and IP layer. Fig. 5.2 illustrates
an access network with CPEs connected to an Ethernet Edge device; as a counter
example, in Fig. 5.3 we show an optical transport domain under the control of our
platform. A common procedure to all domain-specific components is the resolution
of the actual ingress and egress points associated to whatever service request into
the real physical connect points of the local topology. The application does so by
querying a method exported by the BigSwitchService that maps a virtual port to the
physical one and viceversa. Then, if the retrieved physical connect points belong to
different physical devices, the network provisioning shall happen via intent-based
programming if the actual Intent subsystem of the controller support the specific kind
of provisioning; otherwise path computation should be applied to the local topology
to get the complete list of devices involved. It is not always the case that a service
request contains more than a single virtual port, for example, the instantiation of a
QoS profile usually targets a single interface.

In the following section we present a concrete use-case of the presented platform.



5.3 Enterprise CORD 53

Transport	
Network

ROADM
/Switch

• Admission control
• Routing-and-Wavelength-

Assignment  (RWA)

pkt-optical 
driver

vTransport

tx
CO

onos
transport

global

BigSwitch
Service

ROADM
/Switch

ROADM
/Switch

ROADM
/Switch

HTTP 
channel

Fig. 5.3 Optical domain transport network

5.3 Enterprise CORD

5.3.1 CORD: Central-Office-Rearchitected-as-a-Datacenter

CORD is an architecture for the Telco Central Office that combines SDN, NFV, and
elastic cloud services - all running on commodity hardware - to build cost effective,
agile networks with significantly lower CAPEX/OPEX and to enable rapid service
creation and monetisation. For a detailed description of the project, the rationale
behind its architectures and software components, refers to the white paper [71].
The goal of CORD is not only to replace today’s purpose built hardware devices
with their more agile software conunter parts, but also to make the Central Office
an integral part of every Telco’s larger cloud strategy, enabling them to offer more
valuable services. The illustrative example of value proposition offered by CORD in
Fig. 5.4 shows commodity hardware infrastructures, connected by a leaf-spine fabric
for the East-West traffic between the access networks that connect customers to the
Central Office and the upstream links that connect the Central Office to the operator’s
backbone. The NFV and SDN control plane is composed by ONOS, Openstack and
XoS as orchestrator [72]. All controller entities run on Docker containers along with
the deployed VNFs. On top of the software infrastructure different use-case domains
leveraged on CORD: Residential, Mobile and Enterprise.



54 Hierarchical End-to-End Network Control with ONOS

RO
ADM

(Core)

Commodity	Servers,	Storage,	Switches,	and	I/O

PON
OLT	
MACs

Leaf-Spine
Fabric

BBUs
(Multi
-RATs)

Mobile
Virtual	infra,	
mobile	edge	
over	multi-

RAT		

Residential	
Virtual	infra	
vOLT,	vCPE,
vCDN ...

Enterprise
Virtual	infra,	
VPN,	TE,	
vCDN,	... …

Enterprise
Metro	
Ethernet

NFV&SDN Control Plane (XoS, Openstack, ONOS)

Services

Fig. 5.4 CORD Infrastructure

5.3.2 CORD for Enterprise

Enterprise CORD (E-CORD) is a CORD use-case that offers enterprise connectivity
services over metro and wide area networks, using open source software and com-
modity hardware. E-CORD builds on the CORD infrastructure to support enterprise
customers, and allows Service Providers to offer enterprise connectivity services
(L2 and L3VPN). It can go far beyond these simple connectivity services, as it
includes Virtual Network Functions (VNFs) and service composition capabilities
to support cloud-based enterprise services. In turn, enterprise customers can use
E-CORD to rapidly create on-demand networks between any number of endpoints or
company branches. These networks are dynamically configurable, implying connec-
tion attributes and SLAs can be specified and provisioned on the fly. Furthermore,
enterprise customers may choose to run network functions such as firewalls, WAN
accelerators, traffic analytic tools, virtual routers, etc. as on-demand services that are
provisioned and maintained inside the service provider network.

The following is a list of the basic terms used in E-CORD

• Central-Office/Local POD: identified also as E-CORD site, it is a standard
CORD POD equipped with specific access equipment, such as an Ethernet



5.3 Enterprise CORD 55

Transport	Network
(SDN	or	existing)

CORD CORD

Central	
Office

(CORD	site)

HQ

Branch

Regional	HQ

Controller

WAN	Orchestration
XOS ONOS

Per-Site	LxVPN
configuration

Service/Network	
provisioning	application(s)

Service
Portals

CORD

Connectivity	policy Per-Site	LxVPN
configuration

LxVPN
service
request

Fig. 5.5 ECORD scenario

edge switch. It is usually located in the Service Providers’ Central Offices
and is mainly used to: 1) connect the enterprise user to the service provider
network; b) run value added user services at the edge of the network, such
as firewalls, traffic analytic tools or WAN accelerators. Upstream, the POD
connects to the service provider metro/transport network.

• Global node: it is a single machine running either in the cloud, or in any
other part of the Service Provider’s network, used as general orchestrator that
coordinates between all the local PODs of the E-CORD deployment. It is
composed by an instance of XoS and one ONOS cluster.

A typical E-CORD deployment is made of one orchestrator global node and
multiple (min. 2) CORD sites (PODs), connected to the same transport network
(Fig. 5.5). Each site comprises a CORD POD with of one or more compute nodes, and
one or more fabric switches. The transport network provides connectivity between
the CORD sites. It can be almost anything, from an optical network requiring a
converged view of the logical layers to a single packet switch. The transport network
can be composed of white-boxes, legacy equipment, or a mix of both. The minimum
requirement in order to deploy E-CORD is to provide Layer 2 connectivity between
the PODs, specifically between the leaf fabric switches, facing the upstream/metro
network of the COs. Usually, for lab trials, the leaf switches of the two sites (PODs)



56 Hierarchical End-to-End Network Control with ONOS

CPEs
EE

Fabric

UNI	1
UNI	2
UNI	3

UNI	1

UNI	2

UNI	3

UNI	2
UNI	3

NNI	3

NNI	2
NNI	1

NNI	3

NNI	2

NNI	3

NNI	2

NNI	1

ONOS Global

CORD Site

ONOS 
Access

ONOS 
Fabric

UNI	1
NNI	1

(a) Single site topology abstraction

ONOS Global

site x

site y

site z

CORD site x

CORD site y

CORD site z

(b) Multiple CORD sites

Fig. 5.6 ECORD topology abstraction

get connected directly through a cable, or through a legacy L2 switch, but we
successfully integrated ROADM switches, one per site, connected to the leaf switch
of the fabric to simulate the optical transport network.

The hierarchical platform described earlier is used as the SDN control plane
to connect multiple CORD sites together via Carrier Ethernet circuits established
on-demand. Each local site uses two ONOS controllers that are part of the reference
architecture of CORD: ONOS Access and ONOS Fabric. The Carrier Ethernet
application of E-CORD uses both controllers to provision the physical network:

• ONOS Access runs the application that controls the edge network, including the
CPE devices and the Ethernet Edge (EE) devices. In this part of the network it
is performed isolation and policing of the customer traffic.

• ONOS Fabric runs the application configuring the cross connections within
the fabric of CORD to bridge the CPEs to the transport network and eventually
to the remote sites. Alternatively, it bridges customer’s traffic to a chain of
VNFs before being routed to the Internet gateway.

So for each site, the E-CORD application exposes two abstract devices to the global
node: one is exposed by ONOS Access and the other by ONOS Fabric (Fig. 5.6).

The Service Orchestrator of the global node is the Carrier Ethernet application
that exports APIs to setup, tear down and update Ethernet Virtual Circuits (EVCs)
spanning multiple sites. An EVC is identified by a service tag (outer vlan tag of the



5.3 Enterprise CORD 57

CPE WSS WSS CPE
• Push/pop	

Service	Tag
• QoS
• OAM	- CFM

• Policing & QoS
• Forwarding	

to/from	fabric

• Cross-connection	
to/from	transport	
network

• Sterring to/from	
VNFs	chain

• Connection	to/from	
Internet	router

• Electric/lamba
converstion

• Ehternet circuits	
bundle	into	optical	
wavelenght

…EE

End-to-End	Ethernet	Circuit

MAC	DA

MAC	SA

customer
tag

MAC	DA

MAC	SA

Service
tag

customer
tag

payloadpayload

Fig. 5.7 EVC on data path

802.1ad protocol), one or more customer vlan tags (802.1q) mapped to the service
tag, a bandwidth profile and a set of UNI ports among which we want to create the
layer-2 VPN based on Ethernet. The EVC request is split by the Service Orchestrator
into as many forwarding constructs as the number of virtual devices along the path
between the UNIs. The forwarding constructs are sent to the local controllers which
are responsible to allocate the appropriate network resources. The network functions
provided in data path are illustrated in Fig. 5.7; the southbound protocols used to
control the devices are Netconf for the CPE, Openflow 1.3 for the EE and the fabric
switches and OpenFlow 1.3 + Optical Transport Protocol Extensions (ONF TS-022)
for the ROADMs. The CPE in use is a custom SFP of Microsemi, the ea1000 featured
with an embedded Linux operating system and a FPGA board programmable via
Yang/Netconf. This device implements the connection-fault-management (cfm -
IEEE 802.1ag) for standard OAM operations. The developers of the device has made
available the cfm APIs in ONOS to test end-to-end link properties such as packet
loss, delay and delay jitter. The EE is a whitebox switch, the Centec v350. The fabric
whitebox switches are EdgeCore 5712 and the ROADM are custom disaggregated
appliances provided by TIM.

Using our implementation of hierarchical controllers we are able to establish
end-to-end connections on-demand on a composite data path of network devices.
The specific Carrier Ethernet service is used to offer dedicated line to enterprise



58 Hierarchical End-to-End Network Control with ONOS

customers with dynamic SLA that resolves into QoS profiles applied at the edge of
the network and in OAM operations for end-to-end link monitoring. You can update
a circuit any time via REST-API, for example to augment the amount of bandwidth
needed or to add another branch office to the circuit. This makes such scenario
extremely attractive for companies that leverages on their own cloud infrastructure
to offer their services because it opens the path for dynamic SLA based on real-time
traffic load, accelerates revenue and service deployment with operational simplicity
(micro-service architecture) and improves service and application performance by
extending automation from the data-center to the network.



Chapter 6

Related Work

In this dissertation we introduced system and platform design contributions to the
control plane of network infrastructures. We did not cover the analytical problem of
the controller placement in large-scale WAN networks, which is treated in [15, 17,
16], although the authors in [16] only consider networks with less than 100 nodes.
The platforms described in this dissertation provide virtual networks as a service
since the physical network infrastructure is abstracted to the northbound applications
as logical nodes and links with associated resources. Virtual network embedding
problems are deeply investigated in the literature, in [73–75] the authors report the
most recent advances in this field.

We showed how to achieve scalability using the network controller ONOS
with ICONA in Chapter 3; then we presented a framework for end-to-end QoS
provisioning in Chapter 4 which is based on it. An holistic discussion on scalability
in SDN is reported in [76] where it is highlighted that scalability challenges are
not restricted or inherently to SDN, rather they are faced in traditional network
design too; they remark that SDN by itself is neither likely to eliminate the control
plane design complexity or make it more or less scalable, but it allows to rethink
the constraints traditionally imposed on control protocol designs, encourages to
apply common software and distributed systems development practices and frees
the control plane from basic but challenging issues like topology discovery and
state distribution. Our contributions leverage on ONOS clustering for scalability
and high-availability within a local domain, while between ONOS clusters there is
no distribution algorithm but rather an event-driven micro-service communication



60 Related Work

interface to notify topology and service events. In [77] the authors propose a novel
consensus algorithm to provide a resilient service chain in distributed environment
that outperform the Raft consensus algorithm used by ONOS.

To some extent, the most complementary work to the content presented in this
dissertation is Orion [11], a hybrid hierarchical control plane for flow-based large-
scale SDNs. Complementary because it demonstrates analytically how a hybrid
hierarchical structure can effectively reduce the computational complexity of the
control plane; it explains analytically how to represent an abstract view of the
network topology within the root controllers and reports a theoretical evaluation on
the computational complexity and how to overcome the path stretch problem that
appears in hierarchical control plane. On the other side, datapath interoperability is
not addressed, their architecture is based on pure Openflow controllers, thus much
of the features rely on Openflow messages making it unusable in heterogeneous
networks. Beside that, our framework proposal for end-to-end QoS provisioning
could apply to Orion itself, althtough the prototype implementation they describe
is based on Floodlight rather than ONOS, precluding the adoption of the driver
subsystem essential for all brownfield deployments and those greenfield deployment
not based on Openflow.

In [78–80] it is discussed the QoS provisioning in SDN. In [78] a general frame-
work for dynamic QoS control is presented, the authors mention an inter-domain
interface to exchange control and application information between SDN domains
for end-to-end control, although it does not provide any insight on the architectural
details. In [79] the authors present a QoS-guaranteed approach for bandwidth al-
location that satisfies the QoS requirements for all priority cloud users by using
Open vSwitch, while the authors in [80] demonstrate how an SDN/Openflow control
environment can overcome the limitations of the best effort shortest path routing and
IntServ architecture of the Internet. In this regards, their contribution is a motivation
to foster design and architectural contribution for end-to-end QoS provisioning in
SDN as we did in Chapter 4.

The rest of this chapter reports related work on distributed SDN platform which
can be broadly divided into those using a mesh structure and those using a hierarchy
of controllers. Another distinction factor is whether they focus on functionalities or
on scalability, state distribution and fault tolerance. Except for [81–83], the following



61

papers focus on the latter aspects rather than functionalities which basically are
reduced to forwarding control via Openflow.

ONIX [33] provides an environment on top of which a distributed NOS can be
implemented with a logically centralized view. The distributed Network Information
Base (NIB) stores the state of network in the form of a graph; the platform is responsi-
ble for managing the replication and distribution of the NIB, the applications have to
detect and resolve conflicts of network state. Scalability is provided through network
partitioning and aggregation. Regarding the fault tolerance, the platform provides
the basic functions, while the control logic implemented on top of ONIX needs to
handle the failures. ONIX has been used in the B4 network, the private WAN [6]
that inter-connects Google’s data-centers around the world. Its high level design is
similar to ICONA. ICONA however is not tailored to a specific use case, providing a
reusable framework on top of which it is possible to build specific applications.

The Kandoo [13] architecture addresses the scalability issue by creating an
architecture with multiple controllers: the so-called root controller is logically cen-
tralized and maintains the global network state; the bottom layer is composed of
local controllers in charge of managing a restricted number of switches. The Kandoo
architecture does not focus on the distribution/replication of the root controller and
on fault tolerance neither in the data plane nor in the control plane.

HyperFlow [9] focuses on both scalability and fault tolerance. Each HyperFlow
instance manages a group of devices without losing the centralized network view. A
control plane failure is managed by redirecting the switches to another HyperFlow
instance. The applicability of such approach to WAN scenarios with large delays
between the different HyperFlow instances is not considered.

DISCO [10] architecture considers a multi-domain environment. This approach
is specifically designed to control a WAN environment, composed of different geo-
graphical controllers, that exchange summary information about the local network
topology and events. This solution overcomes the HyperFlow limitations, however
it does not provide local redundancy: in the case of a controller failure, a remote
instance takes control of the switches, increasing the latency between the devices



62 Related Work

and their primary controller.

ElastiCon [12] and Pratyaastha [14] aim to provide an elastic and efficient dis-
tributed SDN control plane to address the load imbalances due to static mapping
between switches and controllers and spatial/temporal variations in the traffic pat-
terns.

SMaRtLight [84] considers a distributed SDN controller aiming at a fault-tolerant
control plane. It only focuses on control plane failures, assuming that data plane
failures are dealt with by SDN applications on top of the control platform. Service
Provider-SDN (SP-SDN) [85] envisages for an extended SDN architecture with
the introduction of a service orchestration layer which spans several administrative
domains supporting both network and cloud services. The multi-domain applications
run on top of the service layer. Similarly, Lifecycle Service Orchestration (LSO)
[86] proposes an orchestration layer on top of the SDN control layer. Compared to
SP-SDN, LSO envisages for a hierarchical orchestration layer. The lower layer has
narrow scope, in fact the LSO components run on top of the single SDN controllers
in the different domains. On top of this layer there is a global LSO that orchestrates
the intra-domain LSOs.

In OpenDaylight [3], an initial work on clustering has been provided in the
Helium release using the Akka framework [87] and the RAFT consensus algorithm.
Finally, hierarchical SDN Orchestration solutions for WANs are presented in [81]
and [88]; in [88] the authors discuss general design considerations and alternatives
when considering multiple controllers in a parent-child relationship, while in [81]
they focus on the orchestration of heterogeneous technologies, referred as domains,
of the underlying network.

In [82, 83] the authors highlight the opportunities of having programmable
control and management functions at a number of layers, allowing applications to
control network resources and information across different technology domains, in
particular they focus on data-centers Ethernet and optical transport domains. The
control plane presented in [82] is intended for intra and inter data-centers networks
using Openflow within the data-centers and GMPLS for the carrier networks. The
hierarchy in the control plane is based on PCE [65] and the data path nodes is



63

composed by Openflow-controlled ROADMs within the data-center and GMPLS-
controlled SSON (Spectrum Switched Optical Network) for the transport network.
The challenge they highlight stands in using SDN to simplify and better integrate
operational and business systems, by means of open and standard interfaces and
the use of existing functional entities. GMPLS already provided carrier-grade and
multi-domain support with flexibility and automation but it has no user-friendly,
high-level abstraction to be used for business and operation activities. A more
detailed paper on SDN for optical domain networks is [83]. A unified control
plane architecture based on OpenFlow for optical SDN tailored to cloud services
is introduced. First, they highlight the potential of having programmable networks
in a multi-technology and multi-domain environment, then they present a general
architecture based on Openflow capabilities for intra and inter data-centers network
infrastructures; to this regards, the goal of the paper is very close to the main goal of
this dissertation, however their focus is on the packet-switched and optical-circuits
integration rather than on the software platform design and implementation to address
the interoperability in the multi-technology, multi-domain environment they mention.
The ECORD platform described in Chapter 5 includes the integration of the optical
domain via the Openflow extensions for the transport domain, but we do also include
full control of the telco Central-Office data-center fabric and the customer equipment
premises via in-band Netconf control sessions.



Chapter 7

Conclusion

Contributions.
In this dissertation we have presented two frameworks based on ONOS for the
control plane of network infrastructures. The design and implementation aspects of
each of them leverage on the knowledge and the lessons learnt from the previous
work.

In Chapter 4 we presented a resource reservation scheme for end-to-end QoS
provisioning. We analysed all the essentials aspects of the framework application
running on top of a centralised network controller: the admission control, the inter-
domain communication required to achieve the end-to-end guarantee, the interaction
with the core controller components and the employment of software drivers to
decouple the functional intents from the device-specific traffic control rules. A lot
remains to explore though: the integration between the flow-based and class-based
QoS within the controller, the automation of a policy-driven mechanism to enable
dynamic SLA and an investigation focusing exclusively on the communication design
between domains.

In Chapter 5 we described the architecture of a hierarchical SDN platform
suitable for end-to-end network services provisioning. The platform incorporated in
E-CORD is a step ahead towards the adoption of open-source software for Service
Provider systems. It is used to connect multiple CORD sites together; in each site, a
small data-center made up of commodity hardware and white box switches replaces
legacy premises of the Telco’s Central Offices, thus building a highly distributed
cloud infrastructure spanning wide area networks. The platform is in continuous



65

development, improvements and integrated testing under the ONF sponsorship.
Thanks to the PhD activity we contributed to the project and we were able to reuse
knowledge and code from the ICONA project (Chapter 3) to prototype the SDN
platform of ECORD.

Our hope is that concepts and ideas herein presented could be a useful contribu-
tion for the concretisation of what is deeply investigated in the literature. We expect
to see a convergence among the current efforts coming from multiple IT organisa-
tions, academies and industries, to lay the foundations of a widely acknowledged
reference architecture for the Service Providers’ networks control plane, as much
as the Linux operating system has become for personal computers, general purpose
devices and embedded systems.

Considerations and open issues.
Some considerations are to be given about complexity, generality and reliability in
SDN for WANs.

ONOS, Opendaylight and the prototype work for distributed control plane men-
tioned in the related work chapter are designed to host network applications on top
of them; but what we have realised in these three years of activities is that the only
reasonable way to achieve progress in building SDN applications on top of such
platforms is to reason by use-cases and isolate them during the implementation,
thus avoiding the generality the platform is designed for. The coexistence of dif-
ferent use-cases within the single platform increases the overall system complexity
so much so that sometimes the feasibility itself is compromised. In CORD, for
example, there are two ONOS involved as SDN controllers: one dedicated solely to
the data-center fabric control and the other to the virtual tenant networks for service
chaining. All the use-cases provided in ONOS (SDN-IP, packet-optical, routing
protocols etc.) could hardly coexist. Stated in another way, it is fairly easy to abstract
device capabilities and behaviours via common set of APIs, it is much harder to
make network services coexisting within the same SDN platform via slicing and
virtual views; this is especially true if the platform runs as a single process entity
with complete resource sharing as in the case of ONOS and Opendaylight running
in the JVM as OSGi platforms, no matter if distributed. OSGi provides modularity
and dynamic service activation, but certainly it does not provide resource isolation
and data protection. The core functions of these controllers, such as topology and
flow management and related stores, live together in the same process and scope,



66 Conclusion

making the platform monolithic rather than micro modular. The model-driven ap-
proach adopted by Opendaylight expects applications to be model-aware making
the generality of the platform even less conceivable. A novel design of such SDN
platform is certainly a topic of investigation.

By using distributed controllers, either in a hierarchy or in a mesh, one can
reduce the algorithmic time complexity w.r.t. legacy distributed protocols for, e.g.,
routing and best path selection, but the system and software complexity remains high
and it can further increases w.r.t. a logically centralised controller. This is because
you are increasing the chance of having inconsistent states between controllers.
For the same reason reliability is still a general concern in SDN, because if it is
true that automation reduces the risk of manual faults, it also introduces new risks
on the virtual layer, exposure to bugs, malware and potential incompatibility with
drivers, protocols, firmware and other pieces of the data stack. SDN does not provide
reliability as a core asset, it does provide automation and flexibility, so it has to be
designed and programmed very carefully.



References

[1] Opencord website - https://opencord.org.

[2] Onos website - http://onosproject.org/.

[3] Opendaylight - http://www.opendaylight.org/.

[4] Opnfv website - https://www.opnfv.org/.

[5] Openroadm website - http://www.openroadm.org/home.html.

[6] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski,
Arjun Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, Jon
Zolla, Urs Hölzle, Stephen Stuart, and Amin Vahdat. B4: Experience with a
globally-deployed software defined wan. SIGCOMM Comput. Commun. Rev.,
43(4):3–14, August 2013.

[7] Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta Higuchi, Masayoshi
Kobayashi, Toshio Koide, Bob Lantz, Brian O’Connor, Pavlin Radoslavov,
William Snow, and Guru Parulkar. Onos: Towards an open, distributed sdn
os. In Proceedings of the Third Workshop on Hot Topics in Software Defined
Networking, HotSDN ’14, pages 1–6, New York, NY, USA, 2014. ACM.

[8] J. Medved, R. Varga, A. Tkacik, and K. Gray. Opendaylight: Towards a
model-driven sdn controller architecture. In Proceeding of IEEE International
Symposium on a World of Wireless, Mobile and Multimedia Networks 2014,
pages 1–6, June 2014.

[9] A. Tootoonchian and Y. Ganjali. Hyperflow: a distributed control plane for
openflow. In 2010 internet network management conference on Research on
enterprise networking, 2010.

[10] K. Phemius, M. Bouet, and J. Leguay. Disco: Distributed multi-domain sdn
controllers. In 2014 IEEE Network Operations and Management Symposium
(NOMS), pages 1–4, May 2014.

[11] Y. Fu, J. Bi, Z. Chen, K. Gao, B. Zhang, G. Chen, and J. Wu. A hybrid
hierarchical control plane for flow-based large-scale software-defined networks.
IEEE Transactions on Network and Service Management, 12(2):117–131, June
2015.



68 References

[12] A.A. Dixit, F. Hao, S. Mukherjee, T.V. Lakshman, and R. Kompella. Elasti-
con: an elastic distributed sdn controller. In Tenth ACM/IEEE symposium on
Architectures for networking and communications systems, 2014.

[13] H. Y. Soheil and Y.Ganjali. Kandoo: a framework for efficient and scalable
offloading of control applications. In First workshop on Hot topics in in
software defined networking, 2012.

[14] A Krishnamurthy, S. P. Chandrabose, and A. Gember-Jacobson. Pratyaastha:
an efficient elastic distributed sdn control plane. In Third workshop on Hot
topics in in software defined networking, 2014.

[15] S. Lange, S. Gebert, J. Spoerhase, P. Rygielski, T. Zinner, S. Kounev, and
P. Tran-Gia. Specialized heuristics for the controller placement problem in
large scale sdn networks. In 2015 27th International Teletraffic Congress, pages
210–218, Sept 2015.

[16] B. Heller, R. Sherwood, and N. McKeown. The controller placement problem.
In First workshop on Hot topics in in software defined networking, 2012.

[17] Stefan Schmid and Jukka Suomela. Exploiting locality in distributed sdn
control. In Proceedings of the Second ACM SIGCOMM Workshop on Hot
Topics in Software Defined Networking, HotSDN ’13, pages 121–126, New
York, NY, USA, 2013. ACM.

[18] M. Canini, P. Kutnetsov, D. Levin, and S. Schmid. A distributed and robust
sdn control plane for transactional network updates. In The 34th Annual IEEE
International Conference on Computer Communications, 2015.

[19] Bob Braden, Lixia Zhang, Steve Berson, Shai Herzog, and Sugih Jamin. Re-
source reservation protocol (rsvp) – version 1 functional specification. RFC
2205, RFC Editor, September 1997. http://www.rfc-editor.org/rfc/rfc2205.txt.

[20] Ecord codebase - https://gerrit.opencord.org/admin/projects/carrierethernet.

[21] Onf website - https://www.opennetworking.org.

[22] Raft consensus algorithm - https://raftconsensus.github.io/.

[23] Apache karaf - http://karaf.apache.org/.

[24] Openflow switch specification version 1.5.0 -
https://www.opennetworking.org/images/stories/ downloads/sdn-resources/onf-
specifications/openflow/openflow-switch-v1.5.0.noipr.pdf.

[25] David Erickson. The Beacon OpenFlow Controller. In HotSDN. ACM, 2013.

[26] Floodlight - http://www.projectfloodlight.org/floodlight/.

[27] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Martín Casado, Nick
McKeown, and Scott Shenker. Nox: Towards an operating system for networks.
SIGCOMM Comput. Commun. Rev., 38(3):105–110, July 2008.

http://www.rfc-editor.org/rfc/rfc2205.txt


References 69

[28] Pox - https://github.com/noxrepo/pox.

[29] Ryu - http://osrg.github.io/ryu/.

[30] Stefan Wallin and Claes Wikström. Automating network and service con-
figuration using netconf and yang. In Proceedings of the 25th International
Conference on Large Installation System Administration, LISA’11, pages 22–
22, Berkeley, CA, USA, 2011. USENIX Association.

[31] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou, Jarno
Rajahalme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar, Keith Amidon,
and Martin Casado. The design and implementation of open vswitch. In 12th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
15), pages 117–130, Oakland, CA, May 2015. USENIX Association.

[32] M. Gerola, F. Lucrezia, M. Santuari, E. Salvadori, P. L. Ventre, S. Salsano, and
M. Campanella. Icona: A peer-to-peer approach for software defined wide area
networks using onos. In 2016 Fifth European Workshop on Software-Defined
Networks (EWSDN), pages 37–42, Oct 2016.

[33] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu, R. Ra-
manathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker. Onix: A distributed
control platform for large-scale production networks. In 9th USENIX Confer-
ence on Operating Systems Design and Implementation, 2010.

[34] M. Caesar and J. Rexford. Bgp routing policies in isp networks. IEEE Network,
19(6):5–11, Nov 2005.

[35] B. Lantz, B. Heller, and N. McKeown. A network in a laptop: Rapid proto-
typing for software-defined networks. In 9th ACM Workshop on Hot Topics in
Networks, 2010.

[36] Netem - http://www.linuxfoundation.org/collaborate/ workgroups/network-
ing/netem.

[37] Geant - the core national research and education networks (nrens) european
backbone - http://www.geant.net/pages/default.aspx.

[38] F. Lucrezia, G. Marchetto, M. Gerola F. Risso, and M. Santuari. A proposal
for end-to-end qos provisioning in software-defined networks. International
Journal of Electrical and Computer Engineering, 7(4), 2017.

[39] G. P. Fettweis. The tactile internet: Applications and challenges. IEEE
Vehicular Technology Magazine, 9(1):64–70, March 2014.

[40] Xipeng Xiao and L. M. Ni. Internet qos: A big picture. Netwrk. Mag. of Global
Internetwkg., 13(2):8–18, March 1999.

[41] D. H. Lorenz and A. Orda. Qos routing in networks with uncertain parameters.
IEEE/ACM Transactions on Networking, 6(6):768–778, Dec 1998.



70 References

[42] R. Guerin and A. Orda. Qos based routing in networks with inaccurate in-
formation: theory and algorithms. In INFOCOM ’97. Sixteenth Annual Joint
Conference of the IEEE Computer and Communications Societies. Driving the
Information Revolution., Proceedings IEEE, volume 1, pages 75–83 vol.1, Apr
1997.

[43] Pawan Goyal, Simon S. Lam, and Harrick M. Vin. Determining end-to-end
delay bounds in heterogeneous networks. In Proceedings of the 5th Inter-
national Workshop on Network and Operating System Support for Digital
Audio and Video, NOSSDAV ’95, pages 273–284, London, UK, UK, 1995.
Springer-Verlag.

[44] D. C. Verma, H. Zhang, and D. Ferrari. Delay jitter control for real-time
communication in a packet switching network. In Proceedings of TRICOMM

‘91: IEEE Conference on Communications Software: Communications for
Distributed Applications and Systems, pages 35–43, Apr 1991.

[45] Hu Jia and Zhou Jinhe. The design of finegrained network qos controller
and performance research with network calculus. TELKOMNIKA Indonesian
Journal of Electrical Engineering, 12(6):4468–4474, 2014.

[46] A. R. Bashandy, E. K. P. Chong, and A. Ghafoor. Generalized quality-of-
service routing with resource allocation. IEEE Journal on Selected Areas in
Communications, 23(2):450–463, Feb 2005.

[47] Xin Yuan and Xingming Liu. Heuristic algorithms for multi-constrained quality
of service routing. In Proceedings IEEE INFOCOM 2001. Conference on
Computer Communications. Twentieth Annual Joint Conference of the IEEE
Computer and Communications Society (Cat. No.01CH37213), volume 2, pages
844–853 vol.2, 2001.

[48] Rosario G. Garroppo, Stefano Giordano, and Luca Tavanti. A survey on multi-
constrained optimal path computation: Exact and approximate algorithms.
Comput. Netw., 54(17):3081–3107, December 2010.

[49] F. Kuipers, P. Van Mieghem, T. Korkmaz, and M. Krunz. An overview of
constraint-based path selection algorithms for qos routing. IEEE Communica-
tions Magazine, 40(12):50–55, Dec 2002.

[50] A. Juttner, B. Szviatovski, I. Mecs, and Z. Rajko. Lagrange relaxation based
method for the qos routing problem. In Proceedings IEEE INFOCOM 2001.
Conference on Computer Communications. Twentieth Annual Joint Conference
of the IEEE Computer and Communications Society (Cat. No.01CH37213),
volume 2, pages 859–868 vol.2, 2001.

[51] Hui Zang, Jason P Jue, Biswanath Mukherjee, et al. A review of routing
and wavelength assignment approaches for wavelength-routed optical wdm
networks. Optical Networks Magazine, 1(1):47–60, 2000.



References 71

[52] Liu Hui. A novel qos routing algorithm in wireless mesh networks. TELKOM-
NIKA Indonesian Journal of Electrical Engineering, 11(3):1652–1664, 2013.

[53] John Wroclawski. The use of rsvp with ietf integrated services. RFC 2210,
RFC Editor, September 1997. http://www.rfc-editor.org/rfc/rfc2210.txt.

[54] Steven Blake, David L. Black, Mark A. Carlson, Elwyn Davies, Zheng Wang,
and Walter Weiss. An architecture for differentiated services. RFC 2475, RFC
Editor, December 1998. http://www.rfc-editor.org/rfc/rfc2475.txt.

[55] Technical report.

[56] E. Rosen and Y. Rekhter. Bgp/mpls ip virtual private networks (vpns). RFC
4364, RFC Editor, February 2006.

[57] L. Berger, D. Gan, G. Swallow, P. Pan, F. Tommasi, and S. Molendini. Rsvp
refresh overhead reduction extensions. RFC 2961, RFC Editor, April 2001.

[58] Scott Shenker and Lee Breslau. Two issues in reservation establishment.
SIGCOMM Comput. Commun. Rev., 25(4):14–26, October 1995.

[59] Scott Shenker, Craig Partridge, and Roch Guerin. Specification of guaranteed
quality of service. RFC 2212, RFC Editor, September 1997. http://www.
rfc-editor.org/rfc/rfc2212.txt.

[60] Debasis Mitra. Stochastic theory of a fluid model of producers and consumers
coupled by a buffer. Advances in Applied Probability, 20(3):646–676, 1988.

[61] Soohan Ahn and V. Ramaswami. Fluid flow models and queues—a connection
by stochastic coupling. Stochastic Models, 19(3):325–348, 2003.

[62] M. Alasti, B. Neekzad, J. Hui, and R. Vannithamby. Quality of service in wimax
and lte networks [topics in wireless communications]. IEEE Communications
Magazine, 48(5):104–111, May 2010.

[63] J. Costa-Requena. Sdn integration in lte mobile backhaul networks. In The
International Conference on Information Networking 2014 (ICOIN2014), pages
264–269, Feb 2014.

[64] A. Farrel, J.-P. Vasseur, and J. Ash. A path computation element (pce)-based
architecture. RFC 4655, RFC Editor, August 2006. http://www.rfc-editor.org/
rfc/rfc4655.txt.

[65] JP. Vasseur and JL. Le Roux. Path computation element (pce) communication
protocol (pcep). RFC 5440, RFC Editor, March 2009. http://www.rfc-editor.
org/rfc/rfc5440.txt.

[66] Kiyohito Yoshihara, Manabu Isomura, and Hiroki Horiuchi. Distributed policy-
based management enabling policy adaptation on monitoring using active
network technology. 2001.

http://www.rfc-editor.org/rfc/rfc2210.txt
http://www.rfc-editor.org/rfc/rfc2475.txt
http://www.rfc-editor.org/rfc/rfc2212.txt
http://www.rfc-editor.org/rfc/rfc2212.txt
http://www.rfc-editor.org/rfc/rfc4655.txt
http://www.rfc-editor.org/rfc/rfc4655.txt
http://www.rfc-editor.org/rfc/rfc5440.txt
http://www.rfc-editor.org/rfc/rfc5440.txt


72 References

[67] Leonidas Lymberopoulos, Emil Lupu, and Morris Sloman. An adaptive policy-
based framework for network services management. J. Netw. Syst. Manage.,
11(3):277–303, September 2003.

[68] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba. Policycop: An
autonomic qos policy enforcement framework for software defined networks.
In 2013 IEEE SDN for Future Networks and Services (SDN4FNS), pages 1–7,
Nov 2013.

[69] Ecord guide - https://guide.opencord.org/profiles/ecord/.

[70] Mef - https://www.mef.net/resources/technical-specifications.

[71] Cord white paper - http://opencord.org/wp-content/uploads/2016/03/cord-
whitepaper.pdf.

[72] Larry Peterson, Scott Baker, Marc De Leenheer, Andy Bavier, Sapan Bhatia,
Mike Wawrzoniak, Jude Nelson, and John Hartman. Xos: An extensible
cloud operating system. In Proceedings of the 2Nd International Workshop on
Software-Defined Ecosystems, BigSystem ’15, pages 23–30, New York, NY,
USA, 2015. ACM.

[73] F. Esposito, I. Matta, and Y. Wang. Vinea: An architecture for virtual net-
work embedding policy programmability. IEEE Transactions on Parallel and
Distributed Systems, 27(11):3381–3396, Nov 2016.

[74] Fady Samuel, Mosharaf Chowdhury, and Raouf Boutaba. Polyvine: policy-
based virtual network embedding across multiple domains. Journal of Internet
Services and Applications, 4(1):6, Mar 2013.

[75] F. Esposito, D. Di Paola, and I. Matta. On distributed virtual network embedding
with guarantees. IEEE/ACM Transactions on Networking, 24(1):569–582, Feb
2016.

[76] S. H. Yeganeh, A. Tootoonchian, and Y. Ganjali. On scalability of software-
defined networking. In IEEE Communications Magazine 51 (2), pp. 136-141,
2013.

[77] Flavio Esposito. Catena: A distributed architecture for robust service func-
tion chain instantiation with guarantees. 2017 IEEE Conference on Network
Softwarization (NetSoft), pages 1–9, 2017.

[78] I. Bueno, J. I. Aznar, E. Escalona, J. Ferrer, and J. A. Garcia-Espin. An
opennaas based sdn framework for dynamic qos control. In 2013 IEEE SDN
for Future Networks and Services (SDN4FNS), pages 1–7, Nov 2013.

[79] A. V. Akella and K. Xiong. Quality of service (qos)-guaranteed network
resource allocation via software defined networking (sdn). In 2014 IEEE 12th
International Conference on Dependable, Autonomic and Secure Computing,
pages 7–13, Aug 2014.



References 73

[80] S. Tomovic, N. Prasad, and I. Radusinovic. Sdn control framework for qos
provisioning. In 2014 22nd Telecommunications Forum Telfor (TELFOR),
pages 111–114, Nov 2014.

[81] R. Vilalta, A. Mayoral, R. Munoz, R. Casellas, and R. Martinez. Hierarchical
sdn orchestration for multi-technology multi-domain networks with hierarchical
abno. In Optical Communication (ECOC), 2015 European Conference on,
pages 1–3, Sept 2015.

[82] R. Casellas, R. Munoz, R. Martinez, R. Vilalta, L. Liu, T. Tsuritani, I. Morita,
V. Lopez, O. Gonzalez de Dios, and J. P. Fernandez-Palacios. Sdn based
provisioning orchestration of openflow/gmpls flexi-grid networks with a stateful
hierarchical pce. In OFC 2014, pages 1–3, March 2014.

[83] Mayur Channegowda, Reza Nejabati, and Dimitra Simeonidou. Software-
defined optical networks technology and infrastructure: Enabling software-
defined optical network operations

invited

. J. Opt. Commun. Netw., 5(10):A274–A282, Oct 2013.

[84] F Botelho, A Bessani, F Ramos, and P Ferreira. SMaRtLight: A Practical
Fault-Tolerant SDN Controller. ArXiv e-prints, 2014.

[85] James Kempf, Martin Korling, Stephan Baucke, Samy Touati, Victa McClel-
land, Ignacio Mas, and Olof Backman. Fostering rapid, cross-domain service
innovation in operator networks through service provider SDN. In IEEE Inter-
national Conference on Communications, ICC 2014, Sydney, Australia, June
10-14, 2014, pages 3064–3069, 2014.

[86] A. Mayer and S. Mansfield. The third network: Lifecycle service orchestration
vision. Technical report, MEF, 02 2015.

[87] Akka framework - http://akka.io/.

[88] R. Ahmed and R. Boutaba. Design considerations for managing wide area
software defined networks. IEEE Communications Magazine, 52(7):116–123,
July 2014.



Appendix A

ONOS Driver based on YANG Data
Model compiled with BUCK

This appendix explains the steps required to develop a driver in ONOS based on
YANG models via auto-generation of Java classes from such models. This procedure
enables auto-generated code to be used in the driver after the yang files have been
compiled via the YANG Compiler module. The procedure is based on ONOS version
1.12.0. The build tool is BUCK.

The required steps are the following:

1. Create a new directory that has the name of the subject driver under onos/-
models, e.g. create onos/models/mydriver. Under this directory create the
following path: /src/main/yang. In the leaf directory, yang, put your model
files plus any other model file that is imported by the original model files.

2. In onos/models/mydriver insert a BUCK file with the following content:

yang_model (
app_name = ’ org . o n o s p r o j e c t . models . mydr iver ’ ,
t i t l e = ’ m y d r i v e r YANG Model ’ ,
)

3. Create a new directory that has the name of the subject driver under onos/-
drivers, e.g. onos/drivers/mydriver. Within this directory, put your driver



75

implementation code under src/main/java/path/to/package’ together with a
package-info.java file.

4. Create a BUCK file in onos/drivers/mydriver with your dependencies in com-
pilation, test and run time. A base BUCK file has the following content:

COMPILE_DEPS = [
’ / / l i b : CORE_DEPS’ ,
’ / / l i b :ONOS_YANG’ ,
’ / / d r i v e r s / u t i l i t i e s : onos−d r i v e r s−u t i l i t i e s ’ ,
’ / / models / n o m e d r i v e r : onos−models−nomedr iver ’ ,
] + YANG_TOOLS

TEST_DEPS = [
’ / / l i b : TEST_ADAPTERS’ ,
’ / / u t i l s / o s g i : on lab−osg i− t e s t s ’
]

APPS = [
’ o rg . o n o s p r o j e c t . yang ’ ,
# ’ o rg . o n o s p r o j e c t . yang−gui ’ ,
’ o rg . o n o s p r o j e c t . models . nomedr iver ’
]

o s g i _ j a r _ w i t h _ t e s t s (
deps = COMPILE_DEPS ,
t e s t _ d e p s = TEST_DEPS
)

onos_app (
app_name = ’ org . o n o s p r o j e c t . d r i v e r s . nomedr ive r ’ ,
t i t l e = ’ n o m e d r i v e r sample d e v i c e d r i v e r ’ ,
c a t e g o r y = ’ D r i v e r s ’ ,
u r l = ’ h t t p : / / o n o s p r o j e c t . org ’ ,
d e s c r i p t i o n = ’ONOS n o m e d r i v e r d e v i c e d r i v e r . ’ ,



76 ONOS Driver based on YANG Data Model compiled with BUCK

r e q u i r e d _ a p p s = APPS ,
)

Libraries dependencies shall be added in “COMPILE_DEPS” and “TEST_DEPS"
if required. Dependencies on ONOS applications stay under “APPS".

5. Adds the entries of the driver and of the model to onos/modules.def file. To
write the entry it is necessary to replace the backslash "/" with a dash "-"
and to add "-oar" as suffix, e.g. onos/drivers/mydriver becomes onos-drivers-
mydriver-oar. In our example we are required to add in onos/modules.def the
following:

ONOS_DRIVERS = [
. . .

’ / / d r i v e r s / n o m e d r i v e r : onos−d r i v e r s−mydr iver−oar ’

. . .
]

MODELS = [
. . .

’ / / models / n o m e d r i v e r : onos−models−nomedr ive r−oar ’

. . .
]

6. Run BUCK to execute the build of ONOS from the root directory of the ONOS
codebase:

$ t o o l s / b u i l d / onos−buck b u i l d onos −−show−o u t p u t

If the build is successful, the generated Java files are located in onos/buck-out/gen/models/mydriver/
onos-models-mydriver-yang#srcs__yang-gen so that you can import them into your
driver.


	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 ONOS: Open Network Operating System
	2.1 ONOS Overview
	2.2 Control vs Configuration

	3 ICONA: A Peer-to-Peer Approach for Software Defined Wide Area Networks Using ONOS
	3.1 Motivation
	3.2 ICONA Architecture
	3.2.1 ICONA Provider
	3.2.2 ICONA Southbound Mechanisms

	3.3 Evaluation
	3.3.1 Reaction to Network Events
	3.3.2 Startup Convergence Interval


	4 A Proposal for End-to-End QoS Provisioning in Software-Defined Networks
	4.1 Motivation
	4.2 System Workflow
	4.3 QoS Provisioning
	4.3.1 General Discussion
	4.3.2 Comparison with RSVP
	4.3.3 End-to-End Behaviour

	4.4 East-West Resource Exchange
	4.4.1 Pre-Shared Network Parameters and Bandwidth Resource
	4.4.2 On-demand Network Parameters and Bandwidth Resource
	4.4.3 Inter-Domain Resource Scope

	4.5 Policy Enforcement
	4.6 Architecture
	4.6.1 High-level System Components
	4.6.2 The Manager Application
	4.6.3 Routing and Scalability

	4.7 Algorithm Computation Time Evaluation

	5 Hierarchical End-to-End Network Control with ONOS
	5.1 Overview
	5.2 Architecture
	5.2.1 Topology Abstraction
	5.2.2 Service Orchestration
	5.2.3 The Communication Channel
	5.2.4 Domain-specific Network Provisioning

	5.3 Enterprise CORD
	5.3.1 CORD: Central-Office-Rearchitected-as-a-Datacenter
	5.3.2 CORD for Enterprise


	6 Related Work
	7 Conclusion
	References
	Appendix A ONOS Driver based on YANG Data Model compiled with BUCK

