
09 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Assessing the Power Cost of Virtualization Through Real-world Workloads / Tadesse, SENAY SEMU; Malandrino,
Francesco; Chiasserini, Carla Fabiana; Casetti, CLAUDIO ETTORE. - STAMPA. - (2018), pp. 73-78. (Intervento
presentato al convegno IEEE International Symposium on Local and Metropolitan Area Networks (IEEE LANMAN 2018)
tenutosi a Washington, DC (USA) nel June 2018) [10.1109/LANMAN.2018.8475102].

Original

Assessing the Power Cost of Virtualization Through Real-world Workloads

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/LANMAN.2018.8475102

Terms of use:

Publisher copyright

©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2705909 since: 2019-03-07T14:27:14Z

IEEE

Assessing the Power Cost of Virtualization
Through Real-world Workloads

Senay Semu Tadesse
Politecnico di Torino

Email: d037964@polito.it

Francesco Malandrino
Politecnico di Torino

Email: francesco.malandrino@polito.it

Carla-Fabiana Chiasserini
Politecnico di Torino

Email: chiasserini@polito.it

Claudio Casetti
Politecnico di Torino

Email: casetti@polito.it

Abstract—Next-generation mobile networks will be heavily

based on virtualization and their pervasiveness raises many

questions regarding the energy efficiency of an architecture

that requires distributed computing resources at the network

edge. In this paper, we focus on the two main virtualization

approaches, i.e., virtual machines and containers, which play

a primary role in the provisioning of MEC-based services for

mobile users. Specifically, we compare the two approaches from

the viewpoint of the power consumption they are associated with

– a metric significantly affecting the network provider’s costs as

well as the ICT environment footprint. Through a set of real-

world experiments, using real-world video streaming and gaming

applications, we assess not only the magnitude of the power

consumption we incur, but also how it evolves as the workload

increases. Our results show that containers are both more power-

efficient and more scalable than virtual machines.

I. INTRODUCTION

One of the most notable differences between next-
generation (“5G”) mobile networks and present-day ones is
the former’s ability to serve user request within the network
itself. Instead of traveling all the way to an Internet-based
server, requests will be processed at computation-capable
nodes located at the network edge, i.e., as close as possible to
users. This paradigm is known as multi-access edge computing
(MEC).

Virtualization is a key enabling technology of MEC, as it
allows general-purpose network hardware to process requests
of any type. At the same time, it is associated with an overhead
in terms of CPU usage and memory occupation; such overhead
in turn translates into additional power consumption. Power
consumption is an increasingly important key performance
indicator (KPI) for all types of networks, as it affects their
profitability as well as their environmental sustainability. In
view of populating the network edge with computational
resources to realize cloud and fog computing scenarios, it is
important that virtualization techniques are chosen accounting
for the associated power consumption.

The traditional approach is virtual machine (VM)-based
virtualization: as summarized in Fig. 1, a hypervisor software
emulates a whole virtual machine, running the guest operating
system and applications. The main advantage of VM-based
virtualization is the high level of separation between guests
and host: guest machines can have different architecture (e.g.,
x86 and ARM) and different operating system (e.g., Windows
or Linux) from their host; furthermore, the same host can

Fig. 1. High-level architecture of virtual machine-based virtualization (left)
and container-based virtualization (right).

run multiple guests with different architectures and operating
systems at the same time. On the negative side, the tasks
of emulating guest hardware and running the guest operating
system translate into a significant CPU and memory overhead.

More recently, container-based virtualization has emerged
as a lighter-weight alternative to VMs. As shown in Fig. 1,
both the hardware and the operating system kernel are shared
between host and guest applications. Isolation is obtained
through operating system-level primitives such as namespaces
and cgroups, controlling the parts of the execution environ-
ment (running processes, daemons...) and system resources
visible to guest applications running within containers. The
main advantage of container-based virtualization is its lower
overhead compared to VMs. The main drawbacks include a
lower level of isolation between host and guests (which can
lead to security issues) and the impossibility of emulating a
guest operating system different from the host one.

In this paper, we embark on the twofold task of (i)
measuring the power consumption associated with VM- and
container-based virtualization under a variety of workloads,
and (ii) modeling how such consumption depends on the work-
load at hand. By fulfilling the first task, we can check to which
extent the lower overhead touted by containers translates into
lower power consumption. Perhaps more importantly, studying
the link between workload, chosen virtualization technique
and power consumption allows us to estimate the power
consumption associated with a generic workload, beyond those
we directly test.

The rest of this paper is organized as follows. We begin by
describing our methodology in Sec. II, including our testbed

and the workloads we use. Then, in Sec. III we summarize
the results we obtain from our real-world experiments. Finally,
after summarizing related work in Sec. IV, we conclude the
paper in Sec. V.

II. METHODOLOGY

We measure the power consumption associated with virtual-
ization through a small-scale testbed. Whenever possible, we
use commodity hardware and open-source software, so as to
make our results as easy to reproduce as possible. This section
describes the hardware (Sec. II-A) and software (Sec. II-B) we
use in our testbed, as well as the real-world workloads we take
into account (Sec. II-C).

A. Hardware

The host machine we use for both containers and virtual
machines is an HP EliteBook 820 G3 laptop, equipped with a
Intel Core i5-6200U processor (two cores, 2.3 GHz, 3 MByte
cache) and 8 GByte of RAM. When testing client-server
applications, we run the servers (within containers or VMs)
on the laptop, and the clients on a separate computer, namely,
a ThinkCenter M93p desktop. By doing so, we prevent client
and server applications from interfering with one another,
e.g., triggering thread preemption. The laptop and desktop are
connected through a portable Gigabit Ethernet switch, and that
switch is not shared with other computers. This ensures that
the connection between clients and servers is consistently fast,
and never represents a bottleneck for the application running.

Finally, we measure the power consumed by the laptop
through an RCE PM600 power meter, displaying the total
power the laptop draws from the grid. By using a power meter
instead of estimates from the operating system, we obtain very
precise and reliable measurements. However, this also means
that special care is needed to tell the power consumption due
to the workload apart from other contributions, e.g., the power
consumed by the host operating system. To this end,

• before running any workload, we measure the idle power
consumption of the computer;

• we subtract such value from the power consumption
measured under each workload.

Additionally, we remove the battery from the laptop to ensure
that no power is drawn to charge it.

B. Software

There are two main decisions we need to make concerning
the software to use in our testbed: the operating system to use,
and which VM- and container-based virtualization solutions to
adopt.

The natural choice for the operating system is Linux,
due to its broad support for all virtualization technologies.
Among Linux distributions we chose Ubuntu, which offers
the best balance between up-to-date packages, documentation,
and overall system stability; specifically, we use the 16.10 LTS
version, with kernel version 4.8.0-46-generic. As both the i5
processor and this kernel support hyper-threading, four threads
can be run at the same time.

VM-based virtualization is a mature technology, with sev-
eral available options, both commercial and open-source. We
choose VirtualBox, on the grounds that it is the most popular
among open-source ones. Both commercial (most notably,
VMWare) and open-source (namely, QEMU) alternatives are
sometimes reported to be marginally faster than VirtualBox;
however, VirtualBox is more widely available than the other
two solutions (VMWare requires a license, and QEMU –
branded a “processor emulator” – is suited for narrower set
of scenarios).

Choosing the reference container-based solution is easier.
Docker is indeed the de facto standard, and arguably the
primary reason why container-based virtualization attained its
current level of popularity. It is an open-source application,
and Linux support is its primary (though not exclusive) focus.

C. Workloads

We measure the power consumption under a set of real-
world workloads, allowing us to get a glimpse of how pop-
ular, present-day applications would perform in a virtualized
environment, and the power consumption we can expect from
them. Specifically, we select two types of application that play
a crucial role in the traffic of next-generation networks: video
streaming and on-line gaming.
Video steaming. We employ the FFServer open-source
streaming server, and the VLC free client. A varying number
of servers, each running in its own VM or container, stream a
video to a varying number of clients, running on the desktop
computer as standalone applications. This setup, depicted in
Fig. 2, allows us to assess how both the number of servers and
the number of clients per server affect the power consumption.
On-line gaming. We select the popular on-line game
Minecraft, as it offers an open-source server. In selecting the
client, we need to ensure that (i) it can run on a headless
machine, i.e., without graphical interface, and (ii) we can
reproduce multiple times the same input, i.e., the same game.
To this end, we combine the Java-based Minecraft client with
the xdtool keystroke emulator, both running on the desktop
computer.

III. RESULTS AND MODELS

We now present the power and resource consumption asso-
ciated with the real-word workloads described in Sec. ??, i.e.,
the FFServer streaming application and the Minecraft game.
As summarized in Fig. 2, we run the servers on our laptop,
each in its own VM or container, and the clients on a separate
desktop computer.

A. Video streaming: FFServer

In our first test, we deploy one FFServer server on our laptop
(running within a VM or container) and use it to stream the
same video to a varying number of VLC clients. It is important
to highlight that we are modeling on demand streaming (à la
YouTube) as opposed to real-time streaming (à la AceStream):
each client plays an independent stream, and all traffic is
unicast.

Fig. 2. Testbed setup for real-world workloads.

None the less, as we can see from Fig. 3, the number of
clients only has a small impact on the resources consumed
by the server; indeed, neither the CPU usage (Fig. 3(b)) nor
the memory consumption (Fig. 3(c)) substantially increases
with the number of clients. As a consequence, the power
consumption (Fig. 3(a)) is essentially always the same. This
effect is due in large part to FFServer’s own scalability.
Additionally, the native coding of the video (namely, H.264)
was also supported by the client, and therefore no transcoding
– a CPU-intensive operation – was necessary in our case.

We now study the effect of having multiple servers running
in parallel on the laptop, each in its VM or container, and
each serving one client. This is relevant, for example, in MEC
scenarios, where virtual (network) functions belonging to
different services are often run separately, even if they perform
the same task. The corresponding resource consumption is
shown in Fig. 4.

Once more, we observe differences between Docker and
VirtualBox that are not only quantitative, but qualitative. With
Docker, five servers serving five clients consume approx-

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 2 3 4 5

P
o

w
e

r
co

n
su

m
p

tio
n

 [
W

]

Number of clients

Docker
VirtualBox

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 2 3 4 5

C
P

U
 u

sa
g

e
 [

%
]

Number of clients

Docker
VirtualBox

(b)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4 5

M
e

m
o

ry
 u

sa
g

e
 [

G
B

yt
e

]

Number of clients

Docker
virtualBox

(c)

Fig. 3. FFServer, single-server setup: power consumption (a), CPU usage (b) and memory usage (c) as a function of the number of clients, for VirtualBox
(red lines) and Docker (black lines).

 0

 1

 2

 3

 4

 1 2 3 4 5

P
o

w
e

r
co

n
su

m
p

tio
n

 [
W

]

Number of servers

Docker
VirtualBox

(a)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 1 2 3 4 5

C
P

U
 u

sa
g

e
 [

%
]

Number of servers

Docker
VirtualBox

(b)

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1 2 3 4 5

M
e

m
o

ry
 u

sa
g

e
 [

G
B

yt
e

]

Number of servers

Docker
VirtualBox

(c)

Fig. 4. FFServer, multiple-server setup: power consumption (a), CPU usage (b) and memory usage (c) as a function of the number of clients, for VirtualBox
(red lines) and Docker (black lines).

 0

 2

 4

 6

 8

 10

 1 2 3

P
o

w
e

r
co

n
su

m
p

tio
n

 [
W

]

Number of clients

Docker
VirtualBox

(a)

 0

 30

 60

 90

 120

 150

 180

 210

 240

 270

 300

 1 2 3

C
P

U
 u

sa
g

e
 [

%
]

Number of clients

Docker
VirtualBox

(b)

 1

 3

 5

 1 2 3

M
e

m
o

ry
 u

sa
g

e
 [

G
B

yt
e

]

Number of clients

Docker
VirtualBox

(c)

Fig. 5. Minecraft, single-server setup: power consumption (a), CPU usage (b) and memory usage (c) as a function of the number of clients, for VirtualBox
(red lines) and Docker (black lines).

 0

 3

 6

 9

 12

 15

 1 2 3

P
o

w
e

r
co

n
su

m
p

tio
n

 [
W

]

Number of servers

Docker
VirtualBox

(a)

 0

 40

 80

 120

 160

 200

 240

 280

 320

 360

 400

 1 2 3

C
P

U
 u

sa
g

e
 [

%
]

Number of servers

Docker
VirtualBox

(b)

 0

 2

 4

 6

 8

 10

 1 2 3
M

e
m

o
ry

 u
sa

g
e

 [
G

B
yt

e
]

Number of servers

Docker
VirtualBox

(c)

Fig. 6. Minecraft, multiple-server setup: power consumption (a), CPU usage (b) and memory usage (c) as a function of the number of clients, for VirtualBox
(red lines) and Docker (black lines).

imately the same amount of CPU (Fig. 4(b)) and power
(Fig. 4(a)) of one server serving five clients; only the memory
usage shown in Fig. 4(c) grows with the number of servers.
Using VirtualBox, on the other hand, means that CPU usage
and power consumption grow linearly with the number of
servers: this behavior stems from the need to emulate separate
virtual hardware and run separate operating systems for each
server instance.

We can conclude that the overhead incurred by container-
based solutions like Docker is not only lower than that of
VMs, but also grows more slowly with the number of con-
tainers being run. Such a scalability justifies the interest that
container-based virtualization has attracted as a key technology
of MEC, and indeed, one of its enablers.

B. Gaming: Minecraft

We now move to the Minecraft game. Fig. 5 refers to
the setup with one server and a varying number of clients,
similar to Fig. 3. We can observe a steep increase in the
utilization of resources as the number of clients increases, for
both Docker and VirtualBox; this is due to the different nature
of the application being run. Indeed, unlike video servers like
FFServer, game servers like Minecraft have to:

• keep a detailed description of the world users are set in,
and update it according to the user’s actions;

• compute view of the world to serve to the user as it
moves;

• transfer the updated view to the user’s client.

The two tasks above imply a higher consumption of (respec-
tively) memory and CPU compared to the FFServer case, and
therefore a higher power consumption.

As far as the difference between VirtualBox and Docker is
concerned, Docker still exhibits a substantially lower power
consumption, (Fig. 5(a)), CPU usage (Fig. 5(b)), and memory
usage (Fig. 5(c)). It is also interesting to notice, from Fig. 5(b),
how the CPU overhead due to virtualization is higher than the
load from the game server itself, intensive as it is.

Fig. 6 summarizes the resource consumption in the multi-
server setup, when each user is served by its own server.
Similar to Fig. 4, we can see a higher resource consumption
than in the single-server setup; furthermore, the qualitative
behavior is now the same for both VirtualBox and Docker. The
latter has, however, a much lower overhead than the former,
suggesting that the scalability advantage of container-based
virtualization is present under all types of workloads.

IV. RELATED WORK

Measuring the power consumption of virtualization envi-
ronments and applications running on them is the subject
of several existing works. Kansal et al. [1] have developed
Joulemeter, a tool to measure the energy consumption of
a virtual machine and break it down as the sum of the
individual power consumption of CPU, memory and disk.
Krishnan et al. [2] have modeled the power consumption
of virtual machines as a linear function of the number of
CPU instructions and the number of Last Level Cache (LLC)
memory misses.

Another VM power modeling technique is VMeter by
Ata et al. [3], which is based on online monitoring of CPU,
cache, disk and RAM. The model predicts instantaneous power
consumption of an individual VM hosted on a physical node
in addition to the full system power consumption. Yet another
tool to measure power consumption of virtualized applications
is presented by Comant et al. [4]. This paper [4] introduces
a fine-grained monitoring middleware, which automatically
learns an application-agnostic power model, which can be
used to estimate the power consumption of applications. BIT-
WATTS instances use high-throughput communication chan-
nels to spread the power consumption across the VM levels
and between machines.

Dhiman et al. [5] have presented a system for online power
prediction in virtualized environments based on Gaussian
mixture models that use architectural metrics of the physical
and virtual machines collected dynamically by our system to
predict both the physical machine and per-VM level power
consumption. Bertran [6] has proposed a system based on
CPU and memory power models, relying on Performance
Monitoring Counters (PMCs), to perform energy accounting in
virtualized systems. Morabito [7] has presented an empirical
investigation of different virtualization technologies (including
containers) from the viewpoint of power consumption.

Kritwara et al. [8] have investigated power consumption
and performance issues concerning memory and disk I/O in
Xen and KVM virtualization environments. Avino et al. [9]
have addressed the suitability of Docker in MEC scenarios
by quantifying the CPU consumed by Docker when running
two different containerized services: multiplayer gaming and
video streaming. The have done tests by varying the number
of clients and servers for both services. For the gaming
service, the overhead logged by Docker increased only with
the number of servers; conversely, for the video streaming
case, the overhead is not affected by the number of either
clients or servers. Fan et al. [10] have proposed the Energy
driven AvataR migration (EARN) scheme to reduce the total
on-grid energy consumption of GCN by considering the energy
consumption of Avatar migrations.

V. CONCLUSION

We aimed to assess the power consumption due to VM- and
container-based virtualization. To this end, we performed an
extensive set of real-world measurements, using VirtualBox

and Docker as reference technologies and a set of real-world
workloads.

Through our measurements, we found that CPU usage is
the main driver of the global power consumption, and the
extra power consumption of container-based virtualization is
not only lower than that of VM-based virtualization, but also
grows more slowly as the workload increases. Additionally, we
observed that that there is a penalty in energy consumption as-
sociated with creating a VM and then leaving it unused, while
containers only consume system resources if the application
they host is active. These findings suggest that container-based
virtualization is an attractive technology for MEC scenarios,
when large numbers of virtualized applications run on the
same physical hardware and some of them may be inactive
for some time periods, e.g., during user handover.

REFERENCES

[1] A. Kansal, F. Zhao, J. Liu, N. Kothari, and A. A. Bhattacharya, “Virtual
machine power metering and provisioning,” in ACM symposium on

Cloud computing, 2010.
[2] B. Krishnan, H. Amur, A. Gavrilovska, and K. Schwan, “VM power

metering: feasibility and challenges,” ACM SIGMETRICS Performance

Evaluation Review, 2011.
[3] E. Ata, H. Bohra, and V. Chaudhary, “Vmeter: Power modelling for

virtualized clouds,” in IEEE/ACM GRID, 2010.
[4] M. Colmant, M. Kurpicz, P. Felber, L. Huertas, R. Rouvoy, and A. Sobe,

“Process-level power estimation in vm-based systems,” in IEEE/ACM

GRID, 2015.
[5] G. Dhiman, K. Mihic, and T. Rosing, “A system for online power

prediction in virtualized environments using gaussian mixture models,”
in IEEE/ACM GRID, 2010.

[6] R. Bertran, Y. Becerra, D. Carrera, V. Beltran, M. Gonzalez, X. Mar-
torell, J. Torres, and E. Ayguade, “Accurate energy accounting for shared
virtualized environments using pmc-based power modeling techniques,”
in IEEE/ACM GRID, 2010.

[7] R. Morabito, “Power consumption of virtualization technologies: an
empirical investigation,” in IEEE/ACM UCC, 2015.

[8] R. Kritwara and P. Tandayya, “Comparison of disk i/o power con-
sumption in modern virtualization,” in Computer, Communications, and

Control Technology (I4CT), IEEE, 2015.
[9] G. Avino, M. Malinverno, F. Malandrino, C. Casetti, and C.-F. Chi-

asserini, “Characterizing docker overhead in mobile edge computing
scenarios,” in IEEE/ACM GRID, 2016.

[10] Q. Fan, N. Ansari, and X. Sun, “Energy driven avatar migration in green
cloudlet networks,” in IEEE/ACM GRID, 2016.

ACKNOWLEDGEMENT

This work is supported by the European Commission
through the H2020 5G-TRANSFORMER project (Project ID
761536).

