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Abstract 

The CO2 that comes from the use of fossil fuels accounts for about 65% of the 

global greenhouse gas emission, and it plays a critical role in global climate 

changes. Among the different strategies that have been used to address the storage 

and reutilization of CO2, the transformation of CO2 into chemicals or fuels with a 

high added-value has been considered a winning approach. This transformation is 

capable of reducing the carbon emission and induce a “fuel switching” that exploits 

renewable energy sources. This work aims to focus on electrocatalytic reduction of 

CO2 to produce syngas as a raw material for many other chemical industries. The 

chosen electrocatalyst for this purpose is Ag decorated Titania nanotubes.  

The presented work has been divided in 3 parts: Initially, a thorough analysis 

of state of the art about syngas production by electrocatalysis of CO2 has been 

presented which includes current status, the catalyst used so far and the parameter 

that effects the process and also how to improve them. Next chapter is about the 

synthesis of catalyst. As for this work, Ag decorated Titania nanotubes has been 

chosen as the electrocatalyst. The synthesis also divided in two sub sessions. First, 

how to synthesize the substrate which is Titania nanotubes and the next sub session 

is concerned with Ag deposition methods used in this work. After a brief description 

of existing methods for the growth of Titania nanotubes, anodization method has 

been described and used for the fast and well oriented vertically aligned nanotubes 

regarding the aforementioned sub session. In the next sub session, two different 

deposition methods have been described and used. One of the methods described in 

the current study is UV deposition in which Ag particles are being deposited on 

nanotubes by UV illumination of Silver nitrate solution. Furthermore, the next 
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method has been carried out using sputtering of Ag nanoparticles on nanotubes in 

which the deposition time and applied currents for sputtering has been changed to 

achieve the best dispersed Ag nanoparticles. 

In the third chapter, different Ag decorated Titania nanotubes has been 

evaluated and tested in order to analyze the performance of each electrocatalyst. 

Additionally, different electrochemical tests from chronoamperometry to cyclic 

voltammetry and electrochemical surface area measurement has been taken into 

account so as to evaluate the performance of the catalysts. All the mentioned 

analysis has been carried out in ambient conditions. In these tests the maximum 

current density of 60mA.cm-2 with H2/CO ratio of 3 to 1 has been achieved by 

Titania nanotube decorated with Ag nanoparticles by sputtering at 60mA for 90s. 

Furthermore, to investigate the effect of pressure, chronoamperometry analyzes has 

been done in 7 bar which showed to increase the production rate due to higher 

solubility of CO2 into electrolyte. Moreover, for stability analysis of electrocatalyst, 

Titania nanotube which decorated by Ag nanoparticles by sputtering method at 

60mA for 90s has been chosen for a 21-hour chronoamperometry test. Surface 

analysis by Transmission Electron Microscopy (TEM) and Electrochemically 

Active Surface Area (ECSA), before and after the reaction, confirmed that the 

decay in the activity of this electrocatalyst happened due to agglomeration and 

dissolution of some nanoparticles.  Also, in order to investigate the effect of Titania 

nanotubes as a co-catalyst for Ag nanoparticles in CO2 reduction, different 

substrates with the same amount of Ag loading have been tested and analyzed. 

Consequently, it is concluded that Titania can act as a facilitating medium for 

stabilizing rate determining step radicals. Also, using Titania in the form of 

nanotubes proved to be beneficial by increasing the active surface area of 

electrocatalyst and decreasing the resistance of mass transfer and electrical 

transportation in the electrodes’ surface.  
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Chapter 1 

State of the art 

1.1  The importance of the work 

   CO2 as a main greenhouse gas plays a key role in global warming along with other 

greenhouse gases (CFCs-24%, CH4-15%, and N2O-6%), and considered to be a 

global challenge in our era [20, 21]. In Figure 1 Global GHG emission produced by 

human activities are categorized on the basis of the economic sectors that lead to 

their production. Therefore, in the recent years many regulations and platforms have 

been put to control CO2 emission by human activities and control the level of CO2 

in the atmosphere. The major goal of Paris agreement in December 2015 during the 

21st Conference of Parties on Climate change (COP21) is to reduce this impact on 

global level. The objective is to maintain the mean increase of global temperature 

below 2 °C during this century to prevent the catastrophic effect of global warming. 

   Another prospective to the importance of this issue is restriction of fossil fuels 

and scarcity of them in some parts of the world and most importantly the depletion 

of these fuels [22]. So, finding a sustainable way for the deployment of alternative 

fuels is considered to be a possible solution to this challenge.  

The challenge is to reduce the carbon footprint, reuse CO2 and convert intermittent 

renewable energy into continuous energy that can be stored into chemicals and 

fuels. Current strategy of many research groups have put in place to address CO2 

storage [23] and reuse [24]. By this latter, the intention of this work is to change 

CO2 to value added products using sustainable processes. Among all the proposed 

methods, electrochemical reduction of CO2 is an attractive alternative from both 

economic and environmental point of view [2].Main products of electrochemical 

CO2 reduction are CO, formic acid or higher molecular weight hydrocarbons like 

methanol and ethanol. The main challenge for the implantation of this technology 

at industrial level is to find suitable electro-catalyst and optimized process condition 

for the selective production of the desired product with a high conversion and 

scalable production rate and efficiency.  
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1.2  Syngas from Carbon Dioxide: the opportunity 

   Due to the use of aqueous media for electrochemical reduction of CO2, Hydrogen 

Evolution reaction (HER) is an inevitable competitor for CO2 conversion. So since 

reduction of water or protons (H+) is a side product, the best way is to combine two 

reactions for production of Syngas. This way, the feedstock for many downstream 

processing in order to produce variety of chemical product from ammonia to 

alcohols and hydrocarbons would be provided.  

  The major advantage of producing syngas instead of directly producing other 

possible products of CO2 reduction is that further development of engineered 

products based on the ratio of CO/H2 is possible. Different possible products and 

intermediates for other bulk chemicals, solvents, plastics, pharmaceutical and other 

chemical intermediates, which can be produced from Syngas can be seen in Figure 

2. As mentioned above the ratio of CO/H2 plays a key role on its application so 

adjusting this ratio during the CO2 reduction would be a wise choice. This 

adjustment can be done either by catalyst and/or the configuration of the reactor.  

  A recent report on “Syngas & Derivatives: A Global Strategic Business Report” 

by Global industry Inc. [25] emphasizes the growing usage of syngas on developing 

Figure 1.Global GHG emission produced by human activities and categorized on the 

basis of the economic sectors that lead to their production.  
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countries which are now the leading market for that and also Middle eastern, 

African and Asian pacific countries consume two third of global consumption of 

Syngas. Also due to high rising demand of Chinese market on Syngas for 

production of methanol , Asia-Pacific had the fastest annual growth of 3.2% within 

2007-2013 period [25] which can create significant opportunities for production of 

Syngas from renewable energy sources. Moreover, because of widely application 

of Syngas as a fuel in internal combustion engines and an intermediate for the 

production synthetic natural gas, based on the forecasts the global consumption of 

Syngas will reach 146 thermal GW by 2020 [25]. 

   Highly increasing demand of Syngas is not only due to increase in the rate of 

electricity and transport energy consumption and the growth in exploitation of its 

derivatives but also to avoid emission of greenhouse gases, which  makes it a perfect 

value added product for the renewable energy sector to be exploited more and more. 

 

Figure 2. Syngas derivatives (* H2/CO ratio) reproduced with permission from [1] 
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1.3 State of the art of electrochemical reduction of 

Carbon dioxide to Carbon monoxide in 

heterogeneous catalyst 

1.3.1 Thermodynamics of CO2 reduction 

   Due to high stability of CO2 molecule (free Gibbs formation energy ΔG = −394 

kJ mol−1 ) high amount of energy required to change it into value added products. 

Below (Table 1) there is a list of the free Gibbs energies and the standard Nernst 

potentials (at 1 bar, 25 °C, pH = 7) for such products. Also, the effect of variation 

of temperature on the redox potential can be calculated by Gibbs-Helmholtz 

equation as follows: 

𝐸(𝑇) =
−∆𝐺

𝑛𝐹
= −

(∆𝐻(𝑇)−𝑇∆𝑆(𝑇))

𝑛𝐹
                               (1) 

Where G is the Gibbs free energy, H is the enthalpy and S in entropy. 

Due to low contribution of entropy in room temperature, the term (–TΔS) is 

negligible  and the effect of thermodynamic feasibility is being considered through 

the term ΔH [26]. As can be seen in the table (1) the standard potential of CO2 

reduction to the products is not so high except for the production of CO2
- radical 

which is considered to be the necessary intermediate for major products like CO, 

formic acid and methane, in another word the rate determining step for CO2 

reduction to these products. Apart from production of RDS radical in CO2 

reduction, the kinetic barriers of multi-electron transport plays a key role on high 

over potentials and restrictions on the reaction. This can push or in some cases 

replace the reduction of CO2 reduction in aqueous  electrolyte toward Hydrogen 

Evolution Reaction  (HER) which is kinetically more favourable [27]. 

Theoretically in aqueous electrolyte CO2 can be reduced to CO, formic acid and 

methanol, considering standard water oxidation in anode at E0 =1.23 V vs NHE , by 

applying minimum cell potential of 1.47 to 1.94 V but due to the reasons  mentioned 

earlier, higher potentials need to be applied to overcome the thermodynamic 

barriers which called overpotentials to initiate CO2 reduction [28]. To be more 

precise the definition of overpotential is the difference between the thermodynamic 

potential needs for a half reaction to occur and the applied potential, which needed 
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for the reaction to occur experimentally [29]. The major causes of this overpotential 

can be listed as 1) the activation energy needed for electron transport 2) ohmic loss 

due to conductivity of the means between electrodes 3) mass transport restrictions. 

Among the CO2 reduction products, CO is the most thermodynamically favored one 

since it requires only two electrons and presents a lower Nernst standard potential 

with respect to formic acid as the next rival. As has been demonstrated in Figure 3 

the overpotential of CO production can vary from few mV to 3V depending on 

experimental conditions in which CO2 reduction occurred, from using different 

catalysts to different setup configuration and different electrolytes. The details of 

these parameters in each experiment are being summed up in section 4. 

 

Table 1. The standard ∆G° (25°C; pH = 0) and standard Nernst potentials (Eo) at 25 
oC, 1 bar, pH=7[30] 

Reaction 
∆G0 (kJ/mol) E0 (V vs. SHE) 

𝐶𝑂2 + 2𝐻+ + 2𝑒− → 𝐶𝑂 +  𝐻2𝑂 19.9 -0.53 

𝐶𝑂2 + 2𝐻+ + 2𝑒− → 𝐻𝐶𝑂𝑂𝐻 38.4 -0.61 

𝐶𝑂2 + 4𝐻+ + 4𝑒− → 𝐻2𝐶𝑂 +  𝐻2𝑂 27.5 -0.48 

𝐶𝑂2 + 8𝐻+ + 8𝑒− → 𝐶𝐻4 +  2𝐻2𝑂 -130.8 -0.38 

𝐶𝑂2 + 6𝐻+ + 6𝑒− → 𝐶𝐻3𝑂𝐻 + 𝐻2𝑂 -17.3 -0.24 

𝐶𝑂2 + 𝑒− → 𝐶𝑂2°− 183.32 -1.9 
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1.3.2 Efficiency quantification of the electrodes 

   One of the most reported parameter to quantify the efficiency of an electrode is 

current density. It is defined as the electric current per unit of surface of electrode 

and it’s magnitude is the electric current per cross-sectional area at a given point in 

space and applied potential [31]. So more current density means more electron has 

passed through the surface of the electrode and being consumed for that specific 

reaction. In Figure 3 current density according to the applied potentials has been 

demonstrated. In this chart, higher the current density better is the performance of 

the electrode and on the other hand, lower the applied potentials means lower 

overpotentials and more efficient the system is. 

Figure 3.Maximum cathodic current densities vs. cathodic potential for CO2 

electrochemical reduction to CO (as main C-based product).The details of each experiment 

can be find in details in [1]. Reproduced with the permission from [1]. 
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   In addition, in most of the cases apart from the desired product in CO2 reduction 

, other product(e.g. CO, CH4 , etc) and side products( e.g H2) might be produced. 

In order to quantify the selectivity of the electrocatalyst toward the desired product 

and the yield of the reaction the term Faradaic Efficiency (FE) has been introduced. 

FE is defined as the ratio of coulombs required to form a certain amount of product 

to the total charge over a specific time interval[1]. FE calculation for CO as the 

desired product can be calculated as below: 

FE = 
2∙𝐹∙𝑚𝑜𝑙 𝐶𝑂 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑

𝑗∙𝐴∙𝑡
  (2) 

where F is the faraday constant (96485.33 s A/mol), j is the current density (A/m2), 

A is the area of the electrode (m2), and t is the reaction time (s). 

Theoretically the sum of FE of all products should be 100% to be able to close the 

mass balance cycle during the reaction but in many papers the sum of FEs of the 

products are more than 100% and many other works they only report the FEs for 

CO without giving details on the other products. 

Another important parameter which defines the practical applicability of a specific 

electrocatalyst is Production rate (PR). The CO production rate at a given applied 

potential can be calculated as follows [1]:   

PR = 
𝑗∙𝐹𝐸

2∙𝐹
  (3) 

In most of the research this parameter is not being reported due to loss of activity 

or selectivity of the electrocatalyst during the reaction but for practical 

implementation it is necessary to be calculated after long lasting experiments. 

1.3.3 Reaction mechanism 

   The major kinetical barrier for CO2 reduction is to find a catalyst which is able to 

break the symmetric bond of C-O and form C-H bond in another word be able to 

do proton-coupled transfer [32].  

   As can be seen in Figure 4 each metal electrodes used for electrocatalytic 

reduction of CO2 is selective toward a specific product. As mentioned before 

changing the symmetry molecule of CO2 to form a nonlinear radical of CO2
.- is an 

initial step toward electroreduction of CO2 which causes significant overpotentials 
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[30]. The importance of this rate determining step is that its coordination can 

determine the possibility of 2e- reduction toward CO or formate [4]. Due to high 

energy demand of interaction of CO2
-.  radical in aqueous (-2.21 vs. SCE), other 

subsequent reaction to form other derivatives for CO2 reduction considered to be 

instantaneous [2, 33]. That is why its stabilization considered to be crucial for 

efficiency and production rate of the desired product. 

   Recently J.P. Jones et al. [2] divided the electrocatalysts for CO2 reduction in 

three groups (Figure 4), based on their ability to: a) coordinate the CO2
•‾ 

intermediate; b) reduce CO. Group 1 consists of metals like Sn, Pb, Hg, In and Cd. 

These metals in this report considered to neither bind the CO2
-. Intermediate nor 

reduce CO thus formate (formic acid) is the main product of this group of metals. 

Next group which is constituted of metals like Au, Ag, Ga and Zn claimed to be 

able to bind CO2
-. and cannot reduce CO which results in CO formation as the main 

product [34]. 

 

Figure 4.Mechanism for electrochemical CO2 reduction on metal surfaces in 

presence of water. Reproduced with permission from [2] 
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   As an alternative to the above systems, application of ionic liquids (usually N-

containing salts) gains a lot of attention. The target is to manipulate the above-

mentioned mechanism to increase the stabilization of intermediates and also 

increasing the amount of available dissolved CO2 for electro reduction. The role of 

ionic liquid is to decrease the overpotential of the reaction by complexation among 

the weak bond of CO2 and the anion in the ionic liquid (e.g. BF4
- , PF6

- ) [35, 36]. 

In Figure 5 a simplified mechanism of interaction between a commonly used anion 

of a ionic liquid (BF4
-) and slightly bent molecule of CO2 which causes a decrease 

in radical formation for the subsequent reactions. In most of non-aqueous systems 

CO is the main product in comparison with other products which need C-H 

bonding. However, in some cases adding some aqueous electrolyte can decrease the 

viscosity and conductivity of electrolyte and also by suppressing HER the ratio of 

CO to H2 can be manipulated. 

 

1.4 Syngas production 

   Syngas consists of CO and H2 both of which considered to be major products in 

aqueous electrolyte due to very similar standard potential reaction (i.e. -0.41 V and 

-0.54 V vs NHE at pH 7.0 for H2 and CO production, respectively). Hence, in water 

based media the production of H2 is somehow inevitable but the catalysts and 

operational conditions can play a key role on adjusting the ratio between CO and 

H2.The focus of major  recent works in this era is the development of appropriate 

catalyst for selective CO production. The basic challenges to overcome are a) high 

selectivity toward CO in comparison with other possible products b) a sufficient 

rate of production and high current density c) the stability of the performance of the 

catalyst over the time. Different metal catalyst which has been used so far for this 

purpose is discussed in the following sub-sessions. 

Figure 5. Schematic interaction between CO2 and BF4
- . Reproduced with 

permission from  [2] 
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1.4.1 CO production  

   The most famous metal electrocatalyst for reduction of CO2 to CO are Au and Ag 

due to their ability on bonding CO2
-. and inability to produce other side products.      

The cost of these noble metals is the main problem so using them in nanostructured 

way to reduce the metal loading and increase the conversion rate is one logical 

solution to this issue. Another solution is to use co-catalysts and support materials 

to increase the stability of the catalyst nano particles and to enhance conductivity 

and mass transport [37, 38]. Also, in some reports, co-catalysts have been used to 

decrease the overpotential of the reaction [3]. Other materials also have been used 

as electrocatalyst for CO production to substitute noble metals. In the following 

sections a thorough investigation on the major works in this era has been presented 

and categorized based on the type of catalyst. 

 

1.4.1.1 Ag based catalysts 

   Silver is considered to be a favourite catalyst due to its fairly high performance 

and lower cost in comparison with other noble metals like Gold or Platinum. The 

metallic surface of Ag showed to have a good selectivity toward reduction CO2 to 

CO [3, 39-41] with lower overpotential than many other metallic surfaces [42]. 

Table 2 summarizes the major works with their experimental details. It is 

noteworthy that the current density reported in this table is according to total current 

density and does not take in to account for a specific product. Therefore, to illustrate 

the result in a more comparable way in Figure 6 the FE and current density for CO 

production has been demonstrated.  

Major drawbacks of using Ag are its high cost compared to other abundant element 

(i.e. Mn, Ni, Co, Fe) and its high overpotential in bulk form (Ag foil). To tackle this 

issue, using Ag in its nanoparticle form and also application of co-catalyst to 

achieve high-performance electro-catalyst with efficiently used surface area are 

being introduced. Lu et. al.[42] developed a de-alloying process to synthesize a 

nano-porous Ag catalyst with a monolithic structure and highly curved inner 

surfaces. They achieved a current density of 18 mAcm-² at 500 mV of overpotential 

and 92 % of faradaic efficiency under atmospheric pressure conditions. In another 

interesting work Liu et. al. [43] used a pre-dominant shape dependent 

electrocatalytic reduction of CO2 to CO on triangular silver (Tri-Ag) nanoplates 
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which result in high FE (96.7%) and energy efficiency (61.7%) with low current 

density and as a result low production rate. 

 

 

Table 2. Detailed conditions and results achieved on experiments made with Ag-

based electrodes for the CO2 reduction to C (as main C-based product). Reproduced with 

permission from [1] 

EXP. 
NR 

Cathodic 
Potential (V  
vs. NHE) 

Electro-
catalyst 

Electrode 
size  

(cm²) 

Ag 
loading 
(wt %) 

FE 
(%) 

Current  
density ǂ              

(-mA/cm²) 

Catholyte Anolyte Test 
time (h) 

Ref. 

1 -1.5 Ag/C (GDE) N/A 60 7 5 1 M KOH 1 M KOH N/A [44] 

2 -1.56 Ag 1 - 30 50 0.5 M KHCO3 0.5 M 
KHCO3  

2 [4] 

3 -1.65 Ag/ g-C3N4 

 
6.25 40 33 20 0.1 M KH2PO4  / 

K2HPO4 
0.1 M 
KH2PO4  / 
K2HPO4 

20 [45] 

4 -3.5 Ag N/A - 33 80 0.2 M KHCO3 KOH 7 [5] 

5 -1.45 Ag/C 1 - 30 50 0.5 M KHCO3 0.1 M KOH 8  

6 -2.96 Ag (SPE/CEM) 0.2 - 52.7 100 0.2 M K2SO4 0.2 M 
K2SO4 

2 [40] 

7 -1.46 Ag N/A - 60 50 0.5 M KHCO3 KOH 7 [5] 

8 -1.46 Ag N/A - 64.6 50 0.2 M K2SO4 0.2 M 
K2SO4 

2 [40] 

9 -1.5 Ag/Pc (GDE) N/A 6.25 78 55 1 M KOH 1 M KOH N/A [44] 

10 -1.8 Ag N/A - 80 70 0.5 or 0.8M 
K2SO4 

2.5M KOH 1.5h [9] 

11 -1.1 Ag N/A - 84 35 1 M  KHCO3 1 M  KHCO3 1 [46] 

12 -1.02 Ag 1 - 86 300 0.5 M KHCO3 
(20 atm) 

0.5M 
KHCO3 

N/A [47] 

13 -1.5 Ag/Pz (GDE) N/A 2.51 88 65 1 M KOH 1 M KOH N/A [44] 

14 -1.5 Ag/DAT (GDE) N/A 8.62 89 73 1 M KOH 1 M KOH N/A [44] 

15 -1.6 Ag/TiO2 0.09 40 90 101 1M KOH 1M KOH N/A [3] 

16 -1.02 Ag Np N/A - 92 18 0.5 M KHCO3  N/A [42]
,[48
] 

17 -1.3 Ag (SPE/AEM) 0.2 - 92.3 20 0.2 M K2SO4 0.2 M 
K2SO4 

2 [40] 

18 -1.7 Ag/MWCNT - - 95 350 1M KOH 1M KOH N/A [49] 

19 -2 Ag 1.5 - 96 0.5 18 mol% EMIN-
BF4 in H2O  

100mM 
H2SO4 

0-7 [36] 

20 -0.7 Tri-Ag NPs 0.785 - 96 1.25 0.1 M KHCO3 0.1 M 
KHCO3 

168 [43] 

21 -1.5 Ag 1.6 - 99 2.4 BMImCl with 
20wt% H2O  

BMImCl 
with 20 
wt% H2O 

10 [39] 

22 -1.9 Ag NPs on 
GDE 

10 - 100 440 3M  KOH 3M  KOH N/A [6] 

ǂ Total current density not considering the selectivity toward any product. 
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   Using different substrates is also of a great interest in recent works. The most 

frequently used substrate is TiO2 because of its application to be used as a co-

catalyst for photo-electro reduction of CO2[50-52].In an interesting work, Ma et. al. 

[3] synthesized Ag nanoparticles on TiO2 support to investigate the role of TiO2 on 

electro catalytic reduction of CO2 to CO. Among different Ag loading which they 

used, the best results have been achieved by 40% Ag/TiO2 NPs with FE of 90% and 

fairly high current density (-101 mA/cm2 ). Recently they also have reported a 

significant enhancement in current density (350 mA/cm2  with 95% FE for CO 

production)in alkaline electrolyte (1M KOH) at cell potential of -3V by using  

multi-walled carbon nanotubes (MWCNTs) in the Ag catalyst layer of gas diffusion 

electrode [49]. To date this result is one of the most promising attempts for CO2 

reduction to CO. In another work Tornow et. al. [44] also investigated the 

application of carbon supported, nitrogen organometallic silver catalyst for CO2 

reduction through addition of an amine ligand to Ag/C. They found that among four 

different N-based organometallic support for Silver, 3,5-diamino-1,2,4-triazole 

supported on carbon (AgDAT/C) produced about −70 mA cm−2 of current density 

and almost 90% of Faradaic efficiency for CO production. This way they manage 

to use lower Ag loading. Sastre et. al. also reported the effect of graphitic carbon 

nitride as a co-catalyst to nano-structered Silver for syngas production [41]. The 

highest CO productivity ( 60 mmolcm-2h-1) was achieved by using 40 wt% Ag 

loading at -1.15 V vs RHE. 

Figure 6.Current densities and Faradaic efficiencies related to the CO production from 

the electrochemical reduction of CO2 for Ag based electrodes Reproduced with permission 

from [1] 
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   Moreover, different reactor configuration with Ag based catalyst is also gained 

attraction. Hori et. al. [40] used silver-coated ion-exchange membrane electrodes 

(solid polymer electrolyte, SPE) and they achieved  53 % of CO faradaic efficiency,  

with a high overpotential of 2.43 V. Using a pH buffer layer with the aim to adjust 

the CO/H2 ratio for a new electrochemical cell configuration has been proposed by 

Delacourt et. al. [5]. The result was current density of 80 mA/cm2 with CO/H2 ratio 

of 2/1 which can be adopted later on for the production of methanol. The only 

drawback is that they reported a loss of selectivity in long term tests.  

   It is noteworthy that one of the major challenges in most of the works so far is to 

maintain the performance and selectivity of the catalyst over the time. But in major 

part of the reported researches the tests last less than 7 hours. Also, the scale up of 

these catalysts and reactors are still a challenge. Most of the tests performed with 

electrodes smaller than 6.25 cm2. So as a sum up, the problem of scale up and 

stability of the catalyst remains the major challenge for technological research and 

development. 

1.4.1.2 Au based electrodes 

   Gold showed to be one of the best electrocatalyst with highest activity and 

selectivity toward CO production by CO2 reduction, among the polycrystalline 

metals [34]. Development of different technics of synthesis of Au nanoparticles 

helped a lot to increase the reaction rate by controlling active surface area and its 

morphology. In table 3 the details of the different experiments carried out with Au 

electrocatalyst in different forms has been presented. Also in Figure 7 the 

corresponding current densities and FE for CO production is being illustrated. 

Usually electrodeposition of metals from counter electrodes like Pt can poison the 

cathodic parts of electrocatalyst by influencing CO bonding energy on the surface 

of the cathodic electrode. One of the major advantages of Au nanoparticles (Nps) 

are their ability to resist the poisoning and maintaining the longevity of the catalyst 

compare to other noble metals. A significant improvement on the durability of an 

Au NP electrode compared to bulk gold was observed by Chen et. al. [53]. Also 

they achieved one of the lowest overpotentials (i.e. 140 mV, see Figure. 3) so far 

reported for CO production by using Au NPs in which they reached 78 % of FE but 

with a low current density of -1 mAcm-2. They reduced Au oxide into Au particles 

with metastable surfaces that accelerated the CO2 reduction catalysis by stabilizing 

intermediates in the process. The system stability was proved for a maximum of 8 

h [53]. A thorough study of different mono-dispersed Au NPs (of 4, 6, 8 and 10 nm) 
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has been done by Zhu and et. al.[28]. They showed that 8 nm Au NPs results in 

maximum CO faradaic efficiency (up to 90 % at -1.08 V vs. SHE) during the CO2 

electrolysis in 0.5 M KHCO3 at 25 °C. 

 
Table 3. Detailed conditions and results achieved on experiments made with Au-based 

electrodes for the CO2 reduction to C (as main C-based product). 

Exp. 

Nr. 

Cathodic 

Potential  

(V vs. NHE) 

Electro-

catalyst 

Electrode 

size (cm²) 

Au 

loading 

(%) 

FE (%) Current 

density ǂ          

( -mA/cm²) 

Electrolyte Test 

time 

(h) 

Ref. 

1 

-1.91 

Au N/A - 33 100 0.5 M 

KHCO3 

N/A [4] 

2 

-1.15 

Au N/A - 50 20 0.5 M 

KHCO3 

N/A [34] 

3 

-2.22 

Au/C N/A 40 64 200 0.5 M 

KHCO3 

N/A [4] 

4 

-0.96 

Au/CNT N/A - 70 10 0.5 M 

NaHCO3 

4 [54] 

4 

-0.67 

Au Np/ C 

cloth 

0.6 - 78 1 0.5 M 

KHCO3 

8 [53] 

5 -1.1 Au N/A - 80 7 0.1 M 

KHCO3 

0.5 [55, 

56] 

6 -1.08 Au Np/C N/A - 90 3 0.5 M 

KHCO3 

N/A [28] 

7 -0.82 Au Np/C-cloth 0.6 - 98 16 0.5 M 

KHCO3 

N/A [53] 

ǂ Total current density not considering the selectivity toward any product. 
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   In a different approach Delacourt et. al. [5] used a buffer layer BL-type cell for 

studying Au plates and Au NPs dispersed in C-based supports as cathodic 

electrodes. They demonstrated that by controlling the buffer layer thickness, the 

passing of the protons from proton exchange membrane (PEM) can be controlled 

and as a result different ratio of CO/H2 can be achieved. The best result in this 

experiment was 128 mAcm-² with a FE of 64 %, although the stability of such 

systems in long-term tests have not yet been demonstrated. 

 

1.4.1.3 Other systems    

   High price of noble metals which considered to be the most favorite 

electrocatalyst for CO2 reduction to CO, makes the efforts to find other abundant 

metals with comparable performance to Au and Ag, more significant. In table 4 a 

summary of different works on variety of more affordable non-noble metals such 

as Cu, In, Bi, Mn, Fe, Mo, Ni, and Zn, among others, as well as other precious 

metals like Pd and Rh has been demonstrated. Also an illustrative comparison of 

their performance can be found in Figure 3 and 8. Evidently high current density 

(i.e.  -172.5 and -99.4 mAcm-2 ) and faradaic efficiency has been achieved by using 

noble metals like Pd and Rh in high pressure reactors by Hara et. al. [47, 57]. In 

this work which has been made 20 years ago, they studied different electrocatalyts 

(Co, Rh, Ni, Pd, and Pt) supported in gas diffusion electrodes (GDE) under high 

Figure 7 Current densities and Faradaic efficiencies related to the 

CO production from the electrochemical reduction of CO2 for Au based 

electrodes. 
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pressure (20 bar) and the maximum of -300 mA/cm² and almost 60 % FE for CO 

production had been achieved.  

   Among non-noble electrocatalyst for CO2 reduction, the vast majority of 

researches on low cost and abundant electrocatalysts have been focused on Cu and 

Sn. They showed to be highly active for CO2 reduction but not very selective toward 

production of CO [58, 59]. In a recent work by Kas et. al.  using compact Cu hollow 

fibre as both gas diffuser and cathode leads to comparable results to those achieved 

by noble metals [60]. The good performance of these hollows can be contributed to 

a defect-rich porous structure and less mass transport resistance. Tin(Sn) as an 

electrochemical catalyst for CO2 reduction is mostly favourable for formate 

production but in a very recent work by Li et. al. thin layer of SnO2 is coated over 

Cu nanoparticles the reduction becomes Sn-thickness dependent: the thicker (1.8 

nm) shell shows Sn-like activity to generate Formate whereas the thinner (0.8 nm) 

shell is selective to the formation of CO but with low current densities [61]. 

Moreover, using Bismuth based electrocatalyst gained lot of attention as a potential 

substitute for noble metals. In a work by Median-Ramos et. al. a Bi-based carbon 

monoxide evolving catalyst (Bi-CMEC) has been synthesized by an 

electrodeposition method and it produced CO with 95 % of FE and current density 

of - 31 mA·cm-² [62].  

   It is worth mentioning that  with the current advances in homogenous catalysts 

for CO2 very good results has been achieved for a system with Ni(cyclam)2
+ 

(cyclam = 1,4,8,11-tetraazacyclotetradecane) [63] or enzymic catalyst of Ni-CODH 

in which microbial interconversions between CO and CO2 were catalyzed by carbon 

monoxide dehydrogenases (CODH) [64, 65]. These interesting works indeed 

opened up new ways for scale up purposes but still far away from industrialization 

and commercialization.  

 

Table 4.Detailed conditions and results achieved on experiments made with electrodes 

different than Ag and Au for the CO2 reduction to C (as main C-based product).Reproduced 

with permission from [1] 

Exp. 

Nr. 

Cathodic 

Potential  

(V vs. NHE) 

Electrocatalyst Electrode size 

(cm²) 

FE 

(%) 

Current 

density ǂ    (-

mA/cm²) 

Electrolyte Test 

time 

(h) 

Ref. 

1 -0.59 WSe2 N/A 24 18.95 EMIMBF4 27 [66] 
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2 -1.4 Cu 0.002 38.1 20 BmimPF6 N/A [67] 

3 -1.1 Zn Dendrite N/A 50 14 0.5 M NaHCO3 3 [68] 

4 -1.4 Cu N/A 50 20 Bmim-PF6 N/A [67] 

5 -1.13 Pd N/A 57.5 300 20 atm N/A [47] 

6 -1 [Ni(cyclam)]2/C N/A 60 4.5 0.1 M KNO3 pH 

4.1 

3.5 [63, 

69] 

7 -1.21 Rh N/A 61 163 30 atm N/A [57] 

8 -1.16 Ni-ACF(GDE) 0.49 67 63 0.5 M KHCO3, 20 

atm 

N/A [70] 

9 -1.4 Cu hf  75 10 0.3 M KHCO3 24 [60] 

10 -0.8 Nitrogen-CNT N/A 80 1.5 0.1 M KHCO3 10 [71] 

11 -1.7 Bi 0.3 81 4.1 MeCN containing 

100 

mM [BMIM]OTf 

8 [72] 

12 -1.75 Bi-CMEC/GCE 0.3 82 31 [BMIM]PF6(MeCN 

solvent) 

3 [62] 

13 -3.5 Cu 3 84 70 MeOH N/A [73] 

14 -2.2 In N/A 85.3 4.9 Propylene 

Carbonate 

N/A [74] 

15 -0.89 Pd NPs 1 90 8 0.1 M KHCO3 N/A [75] 

16 -1.3 Cu/SnO2  93 4.6 0.3 M KHCO3  [61] 

17 -1.16 FeTDHPP N/A 94 0.31 DMF 0.1 M n-

Bu4NPF6, H2O 

4 [76] 

18 -0.65 Au IO (inverse 

opal) 

N/A 95 0.4 0.1 M KHCO3 3.5 [77] 

19 -1.71 Bi-CMEC 0.3 95 5.8 Bmim-BF4 in 

MeCN 

12 [78] 

20 -1.12 Cu-In N/A 95 2 0.1 M KHCO3 7 [79] 

21 -2 Cu/Ag 1.6 98 5.8 EMIMBF4+ 

BMIMNO3 with 

CoCl2 

150 [80] 

22 -1.25 CN/MWCNT  98 90 KCl N/A [81] 

23 -0.764 MoS2 N/A 98 65 4 mol% EMIM-BF4 

in H2O 

10 [82] 

24 -1.95 Mn(bpy-

Bu)(CO)3Br 

N/A 100 9.5 1.4 M 

CF3CH2OH/MeCN 

0.5 [83] 
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25 -0.5 Ni-CODH N/A 100 5 0.1 M Phosphate N/A [64, 

84] 

ǂ Total current density not considering the selectivity toward any product. 

 

 

1.4.2 H2 production 

   Another content of Syngas is Hydrogen. Thus, considering the kinetics of 

Hydrogen Evolution Reaction (HER) by knowing the catalysts that improve the rate 

and efficiency of HER is of the essence for combining HER and CO2 reduction. 

Further, a brief description of catalyst for HER and different system has been 

discussed. 

 

1.4.2.1 Alloyed Catalyst 

   During the last decade investigation on several elements like Cu, Au, Pd, Rh, Fe 

[85-87], Ni [86, 88, 89], RuO2 [90, 91] has been done. These efforts emphasized 

that coated alloys show better performance and lower overpotentials. The increase 

of the surface area of cathode is the key parameter of the coating for decreasing 

overpotential [92]. Coatings are applied using one of the four following techniques 

i) plasma or thermal spraying, ii) thermal decomposition, iii) electroplating 

Figure 8. Faradaic efficiency and current density for the CO production in systems 

using electrodes different than Ag or Au. Reproduced by permission form [1] 
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including electrodes deposition, and iv) in-situ activation. Electrodeposition may 

be performed either in one- or in multistep deposition [93]. 

1.4.2.2 Fe based 

   A considerable surface area of Fe-Mo alloys will cause a high rate hydrogen 

evolution [94]. The experiments on electrodeposited Fe-Mo alloys showed an 

overpotential drop of 0.15-0.3 V for HER as compared to mild steel in a simulated 

commercial electrolyte for chlorate production[95]. Rosalbino et. al. [96] followed 

the studies of the HER on crystalline alloys with the composition Fe90R10 where R 

= Ce, Sm, Y and Mm (mischmetal) in 1 M NaOH solution at 25 C. The evaluation 

of electrocatalytic efficiency was obtained to be better for Fe90Ce10 and Fe90Mm10 

than for Fe90Y10 and Fe90Sm10, essentially because of the synergetic composition 

effects of these alloys [92]. Rosalbino et. al. published the results of the other 

researches on electrocatalytic activity efficiency for some other crystalline alloys 

containing Fe-Zn-R [R =rare earth metals; La, Y, Gd and mischmetal] in the 

presence of 1M NaOH solution at 25 C [97]. They also concluded that the 

multiphase microstructure of alloys promotes the hydrogen adsorption leading to 

the increase of kinetics of hydrogen evolution on electrode surface. 

1.4.2.3 Co and Ni based 

   Interesting properties of Co-Mo alloys such as high melting point, good corrosion 

resistance and high efficiency hydrogen evolution make it a center of attention for 

recent researches in this area [98-103]. A Co-Mo coating on titanium and steel 

substrate has been done by Spasojevic et. al. [103]. They reported a highly catalytic 

activity of this alloy for HER. Subramania et. al. on the hand studied the influence of 

variation of current density, pH and temperature on molybdenum content in Co-Mo 

alloy and they succeeded to reach 40 mA/cm² of current density with 50% of Mo 

content [104]. Ni and its alloys or its composites are the most investigated materials for 

HER electrode applications [92]. The most interesting property of Ni is its resistance 

toward alkaline solutions [105]. Low catalytic activity of Ni make the researchers to 

alter its structure by active carbon fiber [70] or alloyed with different metals or metal 

oxide like MoO2, MoO3 [106-108] , W [109, 110] , Fe [111, 112], Mo, Cr, Pd  [113]. 

   Arul Raj et. al. [114] obtained the HER with  over-potential (0.187 V) for their 

best ternary cathode; Ni-Fe-Mo similar to the best binary cathode of Ni-Mo, over 

1500 h of continuous electrolysis in typical industrial conditions. Moreover, 

Shervedani et. al. [93] studied the electrocatalytic activities in an alkaline solution 

of nickel-phosphorous- graphite (Ni-P-Cg) and found good electrochemical 
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stabilities and a high electrocatalytic activity for this alloy as compared with Ni-P 

and Ni electrodes. In a recent study, McCrory et al.[11] benchmarked 18 HER 

electro-catalysts for evaluating their activity under acid (1M H2SO4) or basic 

conditions (1M NaOH). As can be seen in Figure 9, several non-noble metals based 

HER catalysts has been tested that were able to operate at -10 mAcm-2 with 

overpotentials < 0.1 V in acidic and/or alkaline solutions. 

 

 

1.4.2.4 Au based 

   Gold (Au) is the most favorable noble metal for HER due to its properties of being 

catalytically active and quite stable in acid medium [115-120]. Xu [121] 

investigated hydrogen evolution in single crystal gold electrode. This  electrode was 

used as a substrate to investigate the influence of some organics on hydrogen 

evolution process. The kinetics of hydrogen evolution on gold electrode has been 

described by Khanova et. al. [122] as a barrierless discharge. In this study, they 

have obtained the polarization curves consisting of two linear segments with Tafel 

slopes 0.06 V at lower overpotentials and 0.12 V at the higher ones. In another 

report, Smiljanic et. al. [123] used bimetallic surfaces of Au/Pd in alkaline solution. 

In this study Pd/Au(1 1 1) electrodes have shown a significant catalytic activity 

toward hydrogen evolution reaction in 0.1 M NaOH solution with respect to the 

pure Au(1 1 1) surface, where HER occurs at very high overpotential. 

Electrocatalysis of the HER in acid and alkaline media by Cu, Ag, Au, Pt, Ru, Ir 

and Ti electrodes has been described by Danilevoc et. al. [124].This study proposed 

that due to coverage by spectator species, even in the HER potential region, it is 

Figure 9. Benchmarking of Hydrogen Evolving Reaction and Oxygen 

Evolving Reaction Electro-catalysts. Reprinted with permission from [11] 
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still questionable if it would be possible to establish experimentally a true 

relationships between M–Had (M = Cu, Ag, Au, Pt, Ru, Ir and Ti) energetics and 

catalytic activity , therefore, with the exception of Pt, Ir and Au, the experimentally 

established positions of the other metal catalysts in the observed volcano relations 

are uncertain over the entire pH range [124]. Hydrogen has been proposed as the 

green fuel of the future in the wake of depleting fossil fuels. Recently, carbon paste 

electrodes (CPE) modified with nanomaterials as electrocatalysts have drawn wide 

attention for hydrogen evolution reaction (HER) in acid medium [125]. Siddhardha 

et. al. [126] modified  CPE with novel gold composites as electro-catalysts for HER 

in acid medium. The nanocomposites have shown ~100 fold increased current 

density than unmodified CPE at -0.3 V. 

 

1.5 Factors influencing the process of Carbon Dioxide 

reduction to Carbon Monoxide 

   Different parameters can affect the performance of CO2 reduction to CO. The 

logic for many research works is that to adjust different parameters (i.e. reactor 

configuration, electrode material, electrolyte, pressure, temperature, etc.) to 

enhance the performance toward the desired products. Although many thorough 

studies has been done so far, yet the  trend of  combination of the above mentioned 

parameters is not clear. In the following sub-sessions, the effect of each parameter 

on electrocatalytic reduction of CO2 to CO is being discussed. 

 

1.5.1 Electrochemical reactor configuration 

   The electrochemical reactor configuration is a determining factor and strongly 

affects the results, especially the global current density. Therefore, the variety of 

different designs makes the results obtained in different setups, not completely 

comparable. However, in this session the most promising concepts in reactor design 

are being discussed. A summary of different reactor configurations is illustrated in 

Figure 10. 
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   The most common configuration of reactor is a two compartment cell reactor in 

which two parts are separated by a PEM membrane, very similar to a PEM fuel cell 

configuration (Figure 10a). In this configuration the electrodes are either deposited 

on PEM membrane [40] or the catalyst can be coated on a Gas Diffusion layer 

(GDL) which is conductive and permeable [127]. The major constraints in this type 

of configurations are the product crossovers in both compartments and also 

Figure 10. Schemes of some interesting reactor configurations used to reduce CO2 

to CO: (a) use of gas diffusion layers (GDL) and a PEM with liquid streams; (b) use 

of conductive non-porous substrates and a PEM between liquid catholyte and anolyte 

with liquid streams; (c) use of gas diffusion electrodes (GDE) separated by a liquid 

electrolyte, gas feeds; (d) use of both a PEM and a liquid electrolyte between GDE, 

liquid anodic feed and gaseous cathodic feed. Reproduced with permission from [1] 
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selective ion transportation considering the possible difference of pH on each side. 

[12]. A common choice for membranes in this configuration is Cation Exchange 

Membrane (CEM) which allows the H+ ions which are produced in anode as a 

product of oxidation of water and also other protons like K+ from the anolyte to 

transfer from anodic compartment to cathodic one. It is worth mentioning that in 

this configuration in anodic part which  Oxygen Evolution Reaction (OER) is taking 

place the acidic ambient is more favored and to achieve high efficiency of OER 

noble electrodes are needed [11] (Figure 9). 

   Another option is to use Anodic Exchange Membrane (AEM)  in order to allow 

the diffusion of OH-, HCO3
- and CO3

2- ions, typically when basic electrolytes (e.g. 

bicarbonate) are used in the cathodic chamber [40]. The major consequence of 

application of AEM is lower anodic efficiency and higher crossover of anionic 

products like Methanol and Formate [12]. In a quasi-neutral solution (e.g. K2SO4), 

using CEM or AEM can have some restrictions due to formation of OH- ions in 

aqueous media during the electrocatalytic reduction as follows: 

𝐶𝑂2 + 𝐻2𝑂 + 2𝑒− → 𝐶𝑂 + 2𝑂𝐻−    (5) 

 OH- will interact with dissolved CO2 and results in formation of HCO3
- or CO3

-2 

and with presence of metallic cations like K+, KHCO3 or K2CO3 is formed at the 

metal-membrane interface. This accumulation of these ions can peel of the metals 

form the membrane and deactivate the surface of the catalyst. Also, CEM 

membranes are better to be used in acidic ambient which then as a result of H+ ions 

HER is more favourable and CO2 reduction will be supressed but instead on an 

AEM both OH- and CO3
2- can be easily eliminated from the metal-membrane 

interface due to their mobility within the membrane and, thus, the CO2 reduction 

reaction is favoured [1]. Another proposed configuration is again a two-

compartment cell but with electrodes immersed into electrolyte (Figure 10b) in 

which electroactive surfaces of catalysts supported on not porous nor water 

permeable materials. As an example Kuhl and co-workers were able to to optimize 

the efficiency of the reactor by minimizing ohmic losses with characterizing it by a 

geometry that maximize the cathode exposed area vs. the catholyte volume, i.e. 4.5 

cm2 vs 8 ml (Figure 11a) [13]. In another work Hatsukade et. al. reduced CO2 to 

CO as a major product along with Formic acid, Methanol , Ethanol and Methane on 

metallic Silver in a similar configuration of reactor (Figure 11b) [46]. They also 

reported the reaction rate of CO2 vs. potential by which they concluded that at 

potentials more negative than - 1.1 V vs RHE the reaction is limited by mass 
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transport rather than that by kinetics control.  A novel configuration of reactor to 

overcome the problems which occurs by using CEM and AEM membrane is being 

proposed by Kenis et. al. which its scheme can be seen in Figure 10c [16, 71]. In 

Figure 11. a) A schematic view of the electrochemical cell reported by 

Jaramillo and co-workers, b) Tafel plot of the partial current density 

corresponding to each product of the CO2 reduction on Ag surface and c) 

Total rate of CO2 reduction as a function of potential. Reproduced and 

adapted from [13]. 
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this configuration gas diffusion electrode (GDE) has been used to directly introduce 

gaseous CO2 as reactant to the cathode surface, with the advantage of increase the 

selectivity toward the CO2 conversion. This reactor consists of different layers and 

active sides of both anode and cathode are in a continuous contact with the 

electrolyte which are passing through the layers (see Figure.12). The main 

advantage of such system is that different parameters like CO2 concentration of the 

feed and feed flow rates, porosity of GDEs, channel length and also electrolyte 

contact time can be modified and studied to find out the effect of each parameter 

on CO2 reduction to syngas. The illustrated configuration of Figure.10d has been 

proposed by Delacourt et. al. [4, 5] and Dufek et. al. [17] in which an electrolyte is 

being used as a medium between cathodic side and the PEM.  By this configuration 

the passage of H+ ions can be controlled by a buffer layer. As a result, by controlling 

HER, CO/H2 ratio can be adjusted (Figure 13).   

Figure 12. A schematic view of the microfluidic cell reported by Wu et al. for the 

CO2 reduction to CO with details of: a) various functional layers and b) a simplified 

schematic used in modelling. Reproduced from [16]. 
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   One of the most recent technologies in reactor configuration is adoption of bipolar 

membrane combined with GDLs or GDEs. These kinds of membranes are 

consisting of two laminated layers of cation and anion exchange membrane often 

with a catalyst in between to promote water dissociation at the interface. The goal 

is to made the protons and hydroxides to move  toward the respective electrode 

[12]. In a report by Li et. al. [12] a CO2 electrolyzer system, based on a commercial 

BPM with an alkaline NiFeOx OER catalyst, was studied with both Ag/aqueous 

bicarbonate and BiOx/ionic liquid/gasphase CO2 catalyst/catholyte 

compositions[1] ( Figure 13b). The onset potential for CO2 reduction by Ag catalyst 

was -1.05 V vs. Ag/AgCl with -30 mA cm-2 of current density at -1.5 V in an 

electrolyte of KHCO3. The result of the comparison of BPM membrane with two 

other commercially membranes of CEM and AEM showed a shift of -0.6V when 

using BPM because of  the additional thermodynamic driving force required by the 

cell by acid−base neutralization and a loss of ∼300 mV occurs in the BPM cell 

because of the reaction of protons with HCO3
- ions [12]. The drawback for CEM 

and AEM membranes are still their instability toward alkaline or acidic ambient 

which can be occurred during the reduction of CO2 by migration of H+ or OH- ions 

and pH change in cathode and anode side are inevitable. On the other hand, BPM 

membranes showed to be more stable due to dissociation of water which drove the 

H+ and OH- ions toward cathode and anode, respectively. 

   A major challenge in this era is the scale up process of the above-mentioned 

configurations. So far, the major researches dealt with laboratory scales and few 

works reported the scale up procedure for these processes. For instance, Oloman et. 

al. [128] achieved the current density of 0.6 and 3.1 kA m-2 with applied cell 

potential of -2.7 to -4.45 V for Formate production with FE of 63 to 91 % for a scale 

up from 45 to 320 cm2 respectively. 
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1.5.2 Adjusting H2/CO ratio 

   The significance of controlling the products ratio of CO2 reduction is due to the 

fact that these products can directly be used in another reactor for the production of 

other value-added products, avoiding the separation equipment to decrease the 

capital cost of the production line. 

    As can be seen in Figure 2, due to the ratio of H2/CO in syngas, different 

pathways can result in different products. This ratio depends on different 

parameters such as current density, applied potentials, reactor configuration, pH, 

electrolyte and also electrocatalyst. Hence, production of a steadily stable products 

composition and a facile and doable way to implement these systems on the existing 

infrastructures are very important, regarding the complexity of electroreduction of 

Figure 13. CO2 reduction cells for syngas production based on GDE: a) schematic of 

buffer layer-type electrolysis cell by Delacourt et. al. [4, 5]; b) schematic drawing of the 

gas-fed CO2 electrolyzer by Li et. al. [12]; c) illustration of the predominant ion transport 

processes during electrolyzer operation with AEM, Nafion, and bipolar membranes; d) j−V 

curves for a BiOx/BMIM+OTf−-catalyzed GDE-based cell comparing BPM, AEM, and 

CEM membranes. Adapted with permission from [4, 5, 12]. 
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CO2 [5]. There have been only few reports on this issue so far. For instance, Hori 

et. al.[40] developed a PEM-based electrode by the deposition of silver directly 

onto ion exchange membranes (Figure 10a without GDL).This PEM electrodes 

were able to reduce CO2 to CO with partial current density of -5 to -60 mA cm2 for 

about 2h and CO/H2 ratio of 30 to 1.33, respectively. Since the PEM electrodes 

made with an AEM its high anionic conductivity enhances the electron and CO2 

adsorption on the surface of the porous metal layer. As a result, OH- and CO3
2- can 

be easily removed from the metal membrane interface by passing through the AEM 

membrane allowing detoxication of the electrocatalyst surface for CO2 reduction 

and being sustained for 2 h. This way a fixed composition of products can be 

maintained.  

   Another proposition is using an aqueous buffer layer of potassium bicarbonate 

between a CEM and a gas diffusion cathode which has been reported by Delacourt 

et. al. [5] (see Figure 10d and 13). In this configuration the electrochemical 

reactions of H2 and CO evolution is going forward with a proton donor, i.e. H2O or 

HCO3
- rather than H+ due to non-acidic nature of cathodic part. This buffer layer 

prevents the excessive protons to intervene the process of CO2 reduction and as a 

result by manipulating the thickness of buffer layer, mass transfer barrier is likely 

to change and as a result the amount of transferred protons can be controlled. 

Adjusting the number of transferred protons will result in adjusted H2 production 

during the process of CO2 reduction. The drawbacks of such system are that, while 

this arrangement enabled the stable operation of the cell, a Pt−Ir OER catalyst was 

used to ensure anode stability and low overpotential in the acidic anolyte, and it 

also entailed a free-energy loss associated with the acid−base neutralization 

reaction of H+ and HCO3
− at the interface between the CEM and the buffer layer 

[12].   

   In another work, the size dependency of the catalytic activity of Au nanoparticles 

and its effect on manipulation of CO/H2 ratio has been reported by Mistery et. al. 

[129]. An increase on current density with a decrease on CO faradaic efficiency by 

decreasing the particle size and based on DFT calculations, made them concluded 

that the trends were related to the increase in the number of low-coordinated sites 

on small NPs, which favored the evolution of H2 over the reduction of CO2 to CO 

[129].  
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1.5.3 Electrolytes 

   In most of liquid electrolytes has been adopted at least in one part of the cathodic 

part in most of the works which adds more complexity to the system. The 

heterogeneous electrochemical reduction of CO2 employs aqueous electrolytes 

commonly composed of alkali cations (e.g. Na+, K+), various anions such as halide 

anions, bicarbonate (HCO3
-), or hydroxide (OH-), due to their high conductivity in 

water[17, 130]. So, the adoption of electrolyte can have a profound effect on 

product selectivity. 

   Hori et. al [131] investigated the effect of different electrolyte in the selectivity 

of the products of CO2 reduction. They found a remarkable dependency on the 

presence of H+ protons and as a result the pH of the surface of electrode on 

production selectivity over Cu electrodes. 

   The importance of the effect of pH arises because depending on the reaction of 

CO2 reduction (see Table 1) production of OH- ions or the consumption of H+, could 

increase the pH. Moreover, CO2 can act as both reactant and a buffer which makes 

the effect of pH more complicated. In a bicarbonate CO2 solution the major 

equilibria reactions are as follows [132] : 

 

CO2 + H2O ↔ H2CO3 ↔ H+ + HCO3
-      pKa=6.4                                                 (5) 

HCO3
- ↔ H+ + CO3

2-      pKa=10.3                                                                          (6) 

CO2(aq) + OH- ↔ HCO3
-                                                                                         (7) 

  

Based on the concentration bicarbonate, reaction 6 can result in pH value of 6 to 8. 

So, because of reactions 5 and 6 and from direct reaction of CO2 with hydroxide 

ions (reaction 7) the buffer capacity near the electrodes can be justified. 

   Gupta et. al. [19] analysed the local pH changes for Cu electrodes. As can be seen 

in Figure 14 by increasing the pH to 10 current density is increased, too. It seems 

that in higher overpotentials by increasing the pH, HER suppresses and by 

decreasing the local concentration of CO2, CO production decreased and the 

reaction moved toward production of Methane and Ethane [19]. 
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    Another important aspect is the effect of cations in the electrolytes [133]. Wu et. 

al. [134] investigated the effect of a wide range of electrolyte (i.e. KHCO3, K2SO4, 

KCl, Na2SO4, Cs2SO4, NaHCO3, and CsHCO3) on the selectivity of Sn electrode.          

In another work Kenis et. al. [133] reported the size dependency of cations on 

selectivity of Ag electrode for CO2 reduction. They concluded that larger cations 

(salts used in the electrolyte) favor CO production and suppress H2 evolution. 

 

    

 

    In a more recent work Verma et.al. [6] have reported the effect of electrolyte on 

the electroreduction of CO2 to CO on Ag based gas diffusion electrodes. In this 

report the effect of different concentration of electrolytes (KOH, KCl, KHCO3) in 

Figure 14. Partial current data from Hori et al.[10] (Conditions: 0.1M KHCO3, 

19 C, CO2 bubbled, bulk [H+] = 1.55 · 10 -7 M, bulk [CO2] = 3.41 · 10-2 M. 

Estimated local [H+] and [CO2] values for polarization measurements from [19] 
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CO2 production to CO has been discussed. As a result, in this study, using highly 

alkaline electrolyte of KOH (3M) have showed to be the best electrolyte by reaching 

a very high current density in comparison with other electrolytes. This effect can 

be attributed to an improved stabilization of the rate limiting CO2
.- radical 

intermediate by a higher concentration of K+ ions in the outer Helmholtz plane 

(OHP) of the electrical double layer. Higher concentrations of K+ and OH- will lead 

to a more compact double layer at the electrode-electrolyte interface leading to a 

smaller Debye length or an OHP closer to the electrode surface [29]. The conclusion 

indicated that by using KOH as the electrolyte, considering the O2 evolution 

reaction takes place at the anode, the OH- generated at the cathode has a greater 

chance to get consumed at the anode. Such a continuous removal of the OH- species 

from the cathode can enhance CO2 reduction [6] (see Figure 15). 

 

Figure 15.  The effect of using a)KOH or b)KCl in the processes  of  double 

layer and their role in CO2 reduction to CO.  Reprinted and adapted from [6]. 
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   Other less common electrolytes are ionic liquids. They have been reported by 

different groups, but their major drawback is that they mostly are expensive and 

sensitive to moisture. Salehi Khojin et.al. [135] used dried EMIM-BF4 as catholyte 

and 0.5 M sulfuric acid as anolyte with Silver nanoparticles as cathodic 

electrocatalyst. They also modified the catholyte by using 18 mol% WMIN-BF4 in 

water in the cathodic compartment and 100 mM aqueous sulfuric acid in the anode 

compartment to achieve a more selective with low overpotential CO2 reduction 

[36]. In addition, Asadi et. al. [82] have used 4 mol% EMIN-BF4 in water (pH=4) 

for both compartments for selective production of CO by molybdenum bisulphate 

as cathode. FE of 98% and current density of -65 mA cm-2 were achieved. In another 

work Dung et. al. [136] used an aqueous solution of 1-butyl-3 

methylimidazoliumchloride (BMImCl) with 20 wt.% H2O with Ag metal as 

cathode. In a more recent work Verma et. al. [6] investigated the effect of ionic salts 

on the performance of famous carbon capture ionic liquids like EMIM Cl, choline 

Cl and their deep eutectic solvents. They concluded that adding ionic salts like KCl 

can enhance the performance of these ionic liquids for CO2 reduction and helps the 

integration of two parallel process of CO2 capture and CO2 reduction.    

1.5.4 Temperature 

   Most of the reported works have been held in ambient temperature and pressure. 

However, due to exothermic nature of the reaction in most of commercial 

electrolysers the operation takes place in 80-150°C. Hence the temperature can play 

a significant role in thermodynamic of the reaction. In a recently reported work 

Dufek et. al. [9]  have investigated the effect of operating conditions like 

temperature, CO2 flow and current densities on the production of syngas on a GDE 

containing an Ag catalyst. In this work a monotonic drop of overpotential has been 

reported at -70 mA cm-2 by increasing the temperature from 18 to 70°C with overall 

cell potential drop of 1.57V. This can be attributed to both kinetic and 

thermodynamic for H2 and CO evolution reaction. From thermodynamic data, it 

was calculated that the thermodynamic change in the reduction potential for both 

CO2 and H2O reduction, as the temperature is increased from 25 to 125 oC, is less 

than 0.1 V[9]. This can approve that temperature can have a more significant effect 

on kinetics at the surface of catalyst than that of thermodynamics. Also the ohmic 

drop on the resistance of the cell and the membrane by increasing the temperature 

can also contribute to this effect [9] (Figure 16).  
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   Moreover, Solubility of CO2 in the electrolyte directly depends on the temperature 

in a way that by increasing the temperature the dissolved amount of CO2 will 

decrease which then leads to mass-transport limitation for CO2 reduction and 

favours the HER reaction. 

 

1.5.5 Pressure 

   Pressure is another influential aspect in CO2 reduction. As discussed above higher 

amount of dissolved CO2 results in higher feedstock for electrochemical reduction 

and higher production rate. The major challenge is the configuration of reactor in 

which electrocatalytic process should happen in high pressures. Figure 17 

summarizes the results of few research groups who report this process in high 

pressure. One of the first reports in high pressure CO2 reduction has been done by 

Hara et. al. in which they used a two-compartment electrochemical cell at 20 and 

Figure 16. a) FE for CO and H2 at 18, 35, and 70 oC at a CO2 flow of 

20 mL min-1. b) Syngas (H2/CO) ratio as a function of CO2 flow rate at 70 
oC. Catholyte: 0.8 M K2SO4. Taken with permission from [9] 
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30 bar and they achieved current density as high as 300 mA/cm² by using Ag and 

Pd cathodes, and reached over 50 % of faradaic efficiency for the CO production at 

20 atm [47]. In a more recent work Dufek et. al. reported a CO2 reduction to CO 

with current densities up to -225 mA cm-2 with 80% faradaic efficiency for CO 

production by using a pressurized cell at 20 bar (see Figure 18) [17]. This amount 

is 5 times higher than that of the ambient operating conditions which confirms that 

pressure can plays an important role in increasing the production rate and efficiency 

of CO2 reduction. 

 

 

Figure 17. CO current densities and respective cathodic potentials for the CO2 reduction 

to CO production in high pressure systems. Reproduced with permission from [1] 
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Chapter 2 

Electrocatalyst synthesis 

2.1 Suitable electrocatalyst 

    As it has been described in the previous chapter different catalyst can result in 

different selectivity and different efficiency toward the desired product. The goal is 

to find an electrocatalyst which can produce syngas with the desired CO/H2 ratio 

with low overpotentials and high current density. Also, by analyzing different steps 

in the mechanism of CO2 reduction, finding the best co-catalyst could help to 

improve kinetical and thermodynamic barriers for a better and more efficient CO2 

reduction to syngas. As it has been mentioned before Silver and Gold are considered 

to be among the most favorite electrocatalyst for CO production. The major 

drawbacks of these materials are their high cost and high overpotentials. Hence, one 

of the resolutions toward lowering the overpotentials is the application of 

nanostructured Au and Ag particles [41, 43, 48]. Also using co-catalyst is another 

modification that gains lots of attentions recently [3, 44, 53]. The goal in this work 

is to find a suitable electrocatalyst which performs CO2 reduction to Syngas and a 

proper support as co-catalyst which facilitate the process in a more efficient way by 

using low noble metal loadings. For this purpose, in this chapter after a brief state 

of the art review on the methods used for both TiO2 nanotubes synthesize and Ag 

deposition, the selected recipe for electrocatalyst synthesis will be discussed and 

the prepared catalysts will be analyzed from the morphological point of view. 

2.1.1 Why Ag-TiO2 nanotube 

    Ag is the most favorite electrocatalyst for CO2 reduction to CO, but the challenge 

is its high overpotential and low stability. To overcome this issue, many support 

has been used to lower Ag loading as a noble metal and to stabilize the rate 

determining steps in CO2 reduction to CO. In an interesting work Ma et. al. [3] used 

Ag supported on TiO2 nanoparticles. As can be seen in Figure 3, they achieved a 

fairly high current density of 100 mA cm-2 with Ag loading of 40%. Moreover, they 
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concluded in this report that TiO2 improves CO2 reduction kinetics, probably 

through the adsorption and stabilization of the CO2
-. intermediate, which then can 

react to form CO on adjacent Ag particles [3]. The schematic of proposed 

mechanism can be seen in Figure 19.  

   On other hand since Iijima discovered Titania nanotubes [137], these 1D 

nanostructures provide unique and exceptional properties like high electron 

transport and very high surface area. As a result, among all transition metal oxide, 

TiO2 is one of the most investigated compounds in materials science [7]. TiO2 is 

semiconductor (bandgap ≈ 3 eV) mainly available in three crystalline forms: 

anatase, rutile and brookite; as mentioned before, it is the most investigated 

transition-metal oxide due to remarkable proprieties like [7]:  

 photoactivity (photovoltaic cells and water splitting);  

 biocompatibility (used for medical tools) ;  

 non-toxic for the environment;  

 good resistance to corrosion;  

 low-cost.  

 

   Since 1972, when Fujishima and Honda discovered TiO2 photoactivity [138] , 

great efforts have been made to deepen the knowledge about this phenomenon and 

the number of TiO2 applications has grown. In brief, semiconductors are excited by 

the light, with higher or equal energy respect to the semiconductor bandgap, 

forming photo-holes in the valence band and photo-electrons in the conduction 

band; such charge carriers can rapidly recombine, but they can also migrate to the 

surface and oxidize or reduce adsorbed species [138]. 

   Nanostructured forms of Titania, like nanoparticles, nanorods and nanotubes, 

have been studied to increase the superficial area. In particular, one-dimensional 

nanostructures like nanotubes and nanorods should present a faster electron 

transport and lower charge recombination, with respect to nanoparticles [18], since 

the grain boundaries can act as recombination centers [139] (Figure 20). 
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   Hence because of the aforementioned properties, herein vertically oriented TiO2 

nanotubes (NTs) were chosen and due to  quasi one-dimensional arrangement, TiO2 

NTs are able to provide high surface area for Ag loading and superior electron 

transport properties [140]. The goal is to enhance the stability of CO2
- intermediate 

formed because of Titania oxidation as well as to improve CO production in 

presence of silver nanoparticles. Particular attention has been devoted to reduce the 

noble metal loading in the electrode and to increase the catalyst`s active surface 

area with the attempt to decrease the required overpotential. 

 

 

 

Figure 19. A scheme of the proposed pathway for CO2 reduction to CO on 

the Ag/TiO2 catalyst. Reproduced with permission from [3] 

 Figure 20. Schemes of the electron pathways through (a) nanoparticles, 

(b) randomized and (c) oriented TiO2 nanotubes. Reproduced from [18] 
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2.2 Titania nanotube synthesis techniques 

   Self-organized oxide tube arrays or pore arrays can be obtained by different 

methods. Table 5 shows a comparison between the three most diffused methods for 

the synthesis of Titania nanotubes: template-assisted, electrochemical anodization 

and hydrothermal. Other techniques include sol-gel methods, solvothermal 

techniques and atomic layer deposition (ALD) [141]. The pioneer work by Hoyer 

et. al. is an example of template assisted method which is based on the use of 

polymeric mould in which the semi-conductor is electrochemically  deposited and 

then the polymeric template is being dissolved [142].The other synthesis technique 

is electrochemical anodization. In this method by applying high potentials to a Ti 

foil which is used as a substrate, nanotubes can be synthesized. The 

hydro/solvothermal method, in the other hand, is based on a thermal treatment in a 

NaOH solution and subsequent treatment in an HCl solution [143]. By taken in to 

account all the advantages and drawbacks of these different methods, anodization 

has been chosen for the synthesis of TiO2 nanotubes in this work due to its 

controllability of synthesis and the growth of well-ordered nanotubes. Hence, 

before jumping to experimental part, in the following sub session a more detailed 

description of the method has been presented. 

 

Table 5. Comparison between synthesis methods of TiO2 nanotubes. Reproduce from 

[18] 

Synthesis method Order Advantages Drawbacks 

Template-assisted Ordered arrays 

(a) Dimension control through 

the template 

(b) Uniformity 

(a) Possible damage during 

template removal 

(b) Template dissolution may 

contaminate nanotubes 

Electrochemical 

anodization 
Oriented arrays 

(a) Dimension control through 

conditions applied 

(b) Well attached and ordered 

arrays 

(a) Not separated nanotubes 

(b) Length distribution not 

uniform 

Hydrothermal Random alignment  
(a) Easy method 

(b) large amounts of nanotubes 

(a) Uneven size distribution 

(b) Less ordered arrays 
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2.2.1 Electrochemical Anodization 

   The electrochemical oxidation of certain metals can lead to five different 

situations, depending on the conditions and on the electrolyte (Figure 21) [18]. 

I. the oxidized metal ions simply dissolve in the electrolyte and the result is 

the electropolishing;  

II. in presence of O2- ions, the metal cations can form a compact oxide layer; 

III. a competition between metal ions dissolution and the creation of an oxide 

layer can induce a self-organization in nanopores or nanotubes;  

IV. a rapid process can lead to disorganized nanotube bundles; 

V. other conditions form a mesoporous nanotube layer. 

 

   Zwilling et. al. [144] first reported the formation of self-organized oxides from 

the electrochemical anodization of titanium and realized that self-organization was 

due to low concentrations of fluoride ions in the electrolyte. The pH is also 

important, since a neutral pH leads to longer nanotubes and consequently to a 

thicker layer [145]. A further improvement was the elimination of sidewall 

inhomogeneity and the improved order by using non-aqueous electrolytes[146]; an 

organic electrolyte like ethylene glycol, in fact, allows the growth of high-ordered 

hexagonal arrays of long nanotubes (hundreds of µm) [147], though the presence 

of water in low concentration helps in the oxidation of titanium [148]. Moreover, if 

the nanotubes are removed, an array of ordered dimples is left on the titanium 

surface and such dimples can act as  guide in a second anodization step, resulting 

in an even higher ordered hexagonal array [149]. Finally, after the electrochemical 

anodization process the nanotubes formed are amorphous; nevertheless, a thermal 

treatment in air can form the desired crystalline phase (350-500 °C for anatase and 

above 550 °C for rutile) [14]. Annealing also increases the conductivity of TiO2 

nanotubes [150], at the same time the concentration of F and C impurities, left by 

the synthesis method, decrease [151].   
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   The anodization process can be performed by applying a constant potential (1-60 

V for aqueous and 5-150V for non-aqueous electrolytes) and, without fluoride ions,  

a compact TiO2 layer forms (Figure 22-a); the growth of the oxide layer is allowed 

by the migration of ions (Ti4+, O2-) through the oxide itself, due to the high applied 

potential, and normally occurs at the metal-oxide interface ( Figure 22 – b); instead, 

in presence of F‾ ions (0.1-1 wt%) the Ti4+ ions can be complexed, when they 

emerge from the oxide layer, and the already formed TiO2 is partially dissolved 

[14]:   

𝑇𝑖4+ + 6 𝐹− → [𝑇𝑖𝐹6]2−                                                                            (8) 

𝑇𝑖𝑂2 + 6 𝐹− + 4 𝐻+ → [𝑇𝑖𝐹6]2− + 𝐻2𝑂                                                         (9)          

 

 

 

 

Figure 21. Electrochemical anodization and possible anodic 

morphologies: (a) I) metal electropolishing, II) compact anodic oxide, III) 

self-ordered oxides (nanotubes or nanopores), IV) rapid (disorganized) oxide 

nanotube formation, V) ordered nanoporous layers. (b) Subtle difference 

between nanopores and nanotubes. Reproduced from [7] 
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   The competition between growth and dissolution leads to a self-ordered structure 

and, in specific conditions, to the formation of nanotubes; the growth proceeds until 

the rates of formation at the bottom and dissolution at the top are equal and a steady 

state is reached [152]. Nanotubes obtained in presence of fluoride ions, present a 

V-shaped profile [151] and a fluoride-rich layer at the metal-oxide interface, since 

F‾ ions mobility in the oxide layer is higher than that of  O2- ions [153]. Due to the 

growth, this fluoride-rich layer is also present at the boundaries between nanotubes 

(Figure 23 – a) and, since water can dissolve the species composing this layer, its 

Figure 22. a) Current-time (j-t) characteristics at constant potential in the 

absence (- - -) and presence (̶̶̶̶̶̶̶̶̶̶̶̶̶̶̶̶̶̶̶̶̶̶̶̶̶  ̶̶̶̶̶ ̶̶̶̶̶ ̶̶̶̶̶ ) of F‾. Three morphological stages (I-III) 

correspond to different parts of the curve. High-field migration of ions 

through the oxide in absence (b) and presence (c) of F‾. The high mobility of 

fluoride ions creates a F‾-rich layer at the interface with the metal. 

Reproduced  from [14] 
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presence is fundamental for the formation of ribs at the boundaries between 

nanotubes (Figure 23 – b) [154]. 

 

2.3 Experimental Synthesis results of Titania nanotube  

   The chosen recipe for the synthesis of nanotubes is a modified version of the 

method proposed by Lamberti et. al. [155]. Initially a titanium foil (Alfa Aesar, 

Titanium foil 0.25 mm thick, annealed, 99.5 % pure) is pre-treated: first it is 

sandblasted and then etched in a 40% HCl solution at 60°C for 15 minutes. After 

that, the real anodization step comes: in the electrochemical configuration used, the 

cathode is also a Ti foil and the electrolyte is 0.5 wt.% NH4F and 2.5 vol.% H2O in 

ethylene glycol; the anodization is carried out by applying 60 V for 10 min and by 

using a Teflon electrochemical cell. Due to application of harsh etching, as can be 

seen in the Field Emission Scanning Electron Microscopy (FESEM) images, the 

substrate is not smooth enough for the growth of nanotubes which resulted in 

compact and non-regular nanotubes (see Figure 24). To overcome this issue and 

also to increase the stability of well-oriented vertical Titania nanotubes, the 

synthesize method has been modified. This new method includes a titanium foil 

(Alfa Aesar, Titanium foil 0.25 mm thick, annealed, 99.5 % pure) sandblasted and 

then etched in a 40% HF solution for 1 minute then anodization process was done 

as mentioned above. Then the grown nanotubes were removed by sonication of 10 

minute in a solution of H2O2 to make the substrate ready for the second anodization 

to take place in the foot print of the removed nanotubes (This process called Aging). 

Second anodization was done similar to the first anodization. Finally, since the 

Figure 23. a) Scheme of the flow mechanism that push oxide and fluoride 

layer up the cell walls [8] c) Scheme of the transition from a porous structure to 

nanotubes, thanks to the water dissolving the fluoride-rich layer. Reproduced 

with permission and adapted from Ref. [14] 
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nanotubes are amorphous, they are converted to anatase form by an annealing step, 

at 450 °C for 1 h, in the oven. The results showed that the effort to use the less harsh 

etching solution and also resynthesizing the nanotubes in their footprint has been 

paid off. Indeed, the synthesized nanotubes are well oriented compact Titania 

nanotubes with the diameter of around 80 nm and the length of less than µm (Figure 

25).  All the used reactants where purchased from Sigma-Aldrich.  

 

 

Figure 24. A top view FESEM image of synthesized nanotubes being etched with HCl 

solution. 
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2.4 Ag deposition 

   Ag nanoparticles are acting as the major electrocatalyst for CO2 reduction to CO. 

Thus, the morphology and the dispersion of these nanoparticles on the substrate can 

be crucial to the performance of electrocatalyst. Among all the deposition methods, 

in this work, UV deposition and sputtering has been chosen due to their feasibility 

and reproducibility. 

2.4.1 UV deposition 

   In this procedure Silver Nitrate (AgNO3) in different concentrations used as Ag 

precursor. Under the UV illumination the photogenerated electrons reduce the 

surface-adsorbed metal ions forming metal clusters and being deposited on the 

substrate as follows; 

𝐴𝑔+(𝑎𝑞) +  𝑒− → 𝐴𝑔(𝑠)                                               (10 )                                  

Also depending on the time frame of irradiation, bigger clusters can be formed. In 

the first step to find out the optimal irradiation time for well dispersed Ag 

 
Figure 25. FESEM images of well oriented vertical Titania nanotubes synthesized by Aging process 
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nanoparticles, UV deposition has been done in a 0.1M solution of AgNO3 in 1, 5 

and 10 minutes. As can be seen in Figure 26, higher irradiation timing will result in 

higher absorption of electrons by metal ions which then creates bigger clusters with 

lower active areas for catalytic activity and higher irregularity in the dispersion.  

   Another parameter which can affect the dispersion of particles is the 

concentration of precursor. Thus, different concentrations of 0.01M, 0.001M, 

0.0001M and 0.00001M of AgNO3 have been used in a constant deposition time of 

5 minutes (see Figure 27). Using low concentration of precursor resulted in small 

Ag particle deposition in a scattered way (Figure 27.c, d). Moreover, higher 

concentration also can cause bigger agglomeration of Ag particles with less regular 

dispersion over nanotubes (Figure 27a). The best quasi uniformly dispersed small 

Ag particles happened in fairly low concentration of 0.001M AgNO3 in 5 minutes 

of irradiation (Figure 27 b). 

 

Figure 26. FESEM images of prepared catalyst by UV deposition in 0.1M 

solution of AgNO3 for a)1 minute b) 5 minutes c)10 minutes of irradiation. d) 

Magnified image of Ag clusters after irradiation of 10 minutes 
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2.4.2 Sputtering 

   The physical sputtering technique is based on the fact that particles colliding on 

a surface with an energy higher than a threshold value can sputter atoms from the 

surface in to another substrate. Usually, 200-1000 V are applied between a cathode 

(target) and an anode (substrate) in a vacuum chamber, containing a heavy inert gas 

(usually argon); the high potential creates a plasma by ionizing the gas atoms which 

impact on the cathode and, as a consequence, atoms are ejected from the target 

surface and deposited onto the substrate (Figure 28) [156]. 

   The use of a metal target allows the deposition of a thin metallic film on a 

substrate and, in this case, the sputtering technique has been chosen to easily deposit 

small silver nanoparticles on the TiO2 substrate.  

Figure 27. FESEM images of prepared catalyst by UV deposition in 5 minutes 

of irradiation in a) 0.01M b) 0.001M c) 0.0001M d) 0.00001M solution of 

AgNO3 
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Figure 28.The Scheme of sputtering deposition 

 However, a sputter coater (Quorum Q150T ES, Figure 29) holding a silver target 

(Testbourne Ltd, S5-9000-D35 Silver Target 99,99 % pure) have been used to 

prepare a set of catalysts with different silver loadings, which depends on the 

sputtering conditions: current and time. It is noteworthy that higher current results 

in bigger quantities of Silver being ejected from the target and as a result higher 

amount of Silver will be deposited on the substrate. Also, a higher deposition time 

can result in higher coating of the substrate and again higher Silver loading. In this 

work Titania nanotubes were used as the substrate, so different sputtering 

conditions were used to find a suitable current and time for this deposition method 

of Ag nanoparticles. The optimum parameters of sputtering are defined as the ones 

in which Ag nanoparticles are being dispersed uniformly, with a high surface area 

being exposed to the electrolyte, to increase its electrocatalytic activity. For 

instance, Figure 30 shows FESEM cross-view images of a sputtered sample by 

applying the current of 40mA for 90s of deposition (left) and its enlargement (right); 

from the image on the left one can observe the nanotubes’ structure and some 

aggregates of Ag nanoparticles on the tops of the nanotubes. Furthermore, in the 

image on the right, small nanoparticles on the internal surface of the nanotubes are 

notable, which present various sizes: from very few nanometres to 20-30 nm. The 

images also confirm that the diameter of the nanotubes is about 100 nm. 
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   In the present work the sputtering conditions have been used to identify and name 

the various catalyst samples and, starting from here and for the rest of the 

discussion, they will be addressed with the structure; 

(𝑐𝑢𝑟𝑟𝑒𝑛𝑡)𝑚𝐴 − (𝑡𝑖𝑚𝑒)𝑠 

Figure 29.Sputter coater used for the silver deposition 

Figure 30.FESEM images of the same piece of Ag sputtered Titania nanotube at 40mA for 

90s, at two different scales. 
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in which the values are being substituted, respectively (e.g. 20mA-90s). Based on 

this scheme, the list of the prepared catalysts is as indicated in table 6. 

Table 6. List of prepared catalysts 

Catalyst name Catalyst nature Sputtering current 

and time 

Ag loading (%)1 

20mA-90s Ag / TiO2 nanotubes 20 mA, 90 s 4 

40mA-90s Ag / TiO2 nanotubes 40 mA, 90 s 9 

60mA-90s  or   

Ag / TNT 

Ag / TiO2 nanotubes 60 mA, 90 s 16 

60mA-120s Ag / TiO2 nanotubes 60 mA, 120 s 29 

80mA-90s Ag / TiO2 nanotubes 80 mA, 90 s 27 

Ag / Ti foil Ag / Ti foil 60 mA, 90 s N/A 

Ag / TNP Ag / TiO2 nanoparticles 60 mA, 90 s N/A 

TNT TiO2 nanotubes No silver 0 

Ti foil Ti foil No silver 0 

   Figure 31 reports FESEM image comparison between the top views of the 

catalysts with increasing sputtering current and, consequently, with increasing 

amounts of silver. As showed before, the nanoparticles form aggregates on the top 

of the nanotubes and, depending on the amount of silver, the degree of coverage is 

different. Indeed, this is especially observed when comparing the 40mA-90s 

sample, where the tops of the nanotubes are not completely covered, with respect 

to the 80mA-90s sample, which presents a complete coverage of the tops at the 

point that most of the entrances of the nanotubes internal cavities are totally or 

partially occluded. Instead, the 60mA-90s sample presents a favourable 

intermediate situation between the last two cases: the coverage of the nanotubes 

tops is complete and, at the same time, most of the nanotubes entrances are free. In 

that case, small nanoparticles which are sputtered inside the nanotubes could be 

exposed to electrolyte for participation in the reaction and the amount of silver on 

the tops is maximized. Not only the degree of coverage of the nanotubes changes 

with the sputtering current, but also the organization and dimension of the 

nanoparticles/agglomerates on the top. As an example, the 20mA-90s sample shows 

some big silver clusters (of about 200 nm) that leave the tops of the nanotubes 

                                                 
1 EDS method has been used to measure Ag loading as explained in detail in the next chapter 
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mostly uncovered. This tendency is reduced by increasing the sputtering current to 

40 mA and is no more visible at 60 mA.  

 

 

Figure 31.FESEM images of Ag/TNT with different sputtering currents and equal 

sputtering times. 

 

   In addition, Figure 32 shows different views of the electrocatalysts prepared with 

the same sputtering current (60mA) and different deposition time. The cross-view 

of the 60mA-90s sample confirms the previous considerations. Instead, the 60mA-

120s sample was prepared with a longer sputtering time, which leads to higher 

amount of silver with respect to 60mA-90s and, similarly to the 80mA-90s sample, 

the nanotubes entrances are mostly covered.  
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   Moreover to investigate the effect of the substrate on CO2 reduction to CO, 

Titania nanoparticles were being synthesized to be used as the substrate for Ag 

nanoparticles to have comparison versus Titania nanotubes as follows; A titanium 

foil (Alfa Aesar, Titanium foil 0,25 mm thick, annealed, 99,5 % pure) is sandblasted 

and rinsed by ethanol and a layer of 30 µm  of TiO2 paste( Dyesole, 18NR-T Titania 

paste) prepared by doctor blading  on the foil. Then dried at 100°C for 30 minutes 

and calcined at 525°C for one hour. 

 

2.4.2.1 X-ray diffraction (XRD) 

   To investigate the crystalline form of prepared electrocatalysts X-ray diffraction 

analysis has been carried out. Figure 33 shows a comparison between the XRD 

spectra of the Ti foil used to prepare the nanotubes, the TiO2 nanotubes and the 

Ag/TNT catalysts sputtered at 60mA with different times or methods. Primarily by 

the comparison of Ti foil spectra and Titania nanotubes spectra, one can easily 

distinguish the existence of TiO2 in its anatase form. Moreover, the small size of 

the silver peaks is in agreement with the low silver loading, since the minimum 

quantity for the XRD detection is 1 wt.%. It is also evident that the silver peaks 

have a low intensity and are rather broad, the latter feature could indicate that the 

crystallites are small, according to the Scherrer equation 11: 

𝐷 =
𝐾 ∙ 𝜆

𝛽 ∙ cos 𝜃
          (11) 

Figure 32. FESEM images of Ag sputtering at 60 mA with 90s and 120s 

 



Errore. Per applicare Heading 1 al testo da visualizzare in 

questo punto, utilizzare la scheda Home. 

52 

 

 

Where: 

𝐷: crystallites size; 

𝐾: shape factor; 

𝜆: X-ray wavelength; 

𝛽:  peak width (line broadening at half the maximum intensity); 

𝜃: Bragg angle. 

   Furthermore as can be seen in the XRD result (Figure 33), from crystallographic 

point of view, the dominant facets of Ag are Ag(111), Ag(100) and Ag(200) . Then 

by increasing the amount of sputtered Ag (from 20mA to 80mA of applied current 

for sputtering), the majority of Ag(111) facet is more visible. This analysis can 

confirm the existence of Ag in its metallic form.   
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Figure 33. XRD spectra of (from top to bottom): Ti foil, TiO2 nanotubes, different Ag/TNT samples. 

The Ag facets are being highlighted in red. 
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Chapter 3 
 

Electrocatalytic activity test 

3.1 Setup and methodology 

   Performance analysis of the electrocatalysts has been done by thorough 

quantitative and qualitive analysis as follows: 

 Cyclic voltammetry (CV): For reaction kinetic measurement and assess 

its behavior in different applied potentials 

 Chrono amperometry (CA): For quantitative measurement of the 

products during the reaction at a constant applied potential 

 Linear sweep voltammetry (LSV): For reaction kinetic measurement 

and assess its behavior at different applied potentials  

 Electrochemical Impedance Spectroscopy (EIS): For having the 

responses of the system as a function of the perturbation frequency 

which can reveal internal dynamics and metal/electrolyte capacitance. 

 Electrochemical Surface Area (ECSA): To measure the active surface 

area of the electrocatalyst to be able to compare and justify the results 

based on their electrochemical active surface area. 

   Two different setups have been used for above mentioned tests. One is an 

electrochemical cell made of poly(methylmethacrylate) (PMMA). This cell consists 

of two compartments (anodic and cathodic), which are pressed against one another 

by a four-screw system and sealed by two O-rings; the total internal volume of the 

reactor is 284 cm3. The two compartments are separated by a sulfonic membrane 

(Nafion N117, 178 µm thick), which prevents the mixing of their contents 

(solutions and gases in the head spaces) and, at the same time, allows the transfer 

of H+ ions. Each compartment presents: a) a gas inlet for CO2 bubbling; b) a gas 

outlet; c) a magnetic stirrer; d) an inlet, provided with a valve, to fill-in the 
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compartment with the solution and to take liquid samples; e) a pressure indicator; 

f) a sealed connection for the electric contacts. Moreover, the reactor is equipped 

with a temperature sensor connected to a cooling system, which maintains the 

temperature at the desired value, and with a dissolved CO2 indicator (Mettler 

Toledo, InPro 5000); this reactor is also designed to perform tests at high pressure, 

adding two backpressure valves on the reactor outlets, and endures a maximum of 

10 atm. It is worth mentioning experiments with this setup carried out in chemical 

engineering laboratory of TU Delft. 

 

   As for the rest of the setup, a CO2 cylinder is connected to the mass flow 

controllers (Bronkhorst EL-FLOW model F-201CV), which regulate the flow rate 

Figure 34. The two-compartment electrochemical cell (left) and the rest of the 

equipment and fittings being connected to the reactor (right) 
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of CO2 fed to the two reactor compartments. Consequently, CO2 is bubbled directly 

into the solution (KHCO3, Sigma-Aldrich, purity above 99,95 %) and both 

compartments are magnetically stirred. A potentiostat (Autolab, PGSTAT302N) 

applies the desired potential between the working electrode (catalyst) and the 

reference electrode (Radiometer Analytical, XR300 Ag/AgCl), the counter 

electrode is a platinum gauze (Mateck, 0,06 mm wire diameter, 5x5 cm2). The gas 

flows, that leave the reactor, go to a gas chromatograph (Global Analyser Solutions, 

Compact GC) which measures the product concentrations. A refrigerating 

circulator chiller (Lauda, RC 6) is connected to the temperature sensor and keeps 

the temperature of the solution in the reactor at a constant value. Figure 35 shows a 

simplified scheme of the setup. 

 

 

   The other setup is a one compartment cell made of Teflon, by Hysytech (Figure 

36). The CO2 inlet is immersed in the liquid, to bubble the gas directly into the 

solution (KHCO3, Sigma-Aldrich, purity above 99,95 %). The electrolyte is 

magnetically stirred and connected to a potentiostat (Biologic, VS.P-300), which 

Figure 35. The scheme of the electrochemical cell and its equipment for CO2 reduction 

measurements in TU Delft. 
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applies the desired potential between the working electrode (catalyst) and the 

reference electrode (Radiometer Analytical, REF421 saturated calomel electrode). 

It is noteworthy that the counter electrode is a platinum plate. Because of the inlet 

flow, a flow rate approximately equal to the feed leaves the reactor from an outlet 

in the reactor cap and reaches the GC (Inficon, Micro GC Fusion Gas Analyzer), 

which measures the product concentrations. Moreover, a pressure indicator is 

connected on the line from the reactor to the GC (Figure 37). It is worth mentioning 

that all the experiments with this setup carried out in Solarfuel laboratory of PoliTo. 

 

 

 

 

 

  

Figure 36. The one compartment electrochemical reactor (left) and all the fittings and 

equipment and sensors (right) for CO2 reduction 
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   In addition, the data elaboration during the present work and the equations used 

for calculations have been described as follows; The current can be converted into 

current density values by dividing it by the electrode geometric area (equation 12): 

𝑗 =
𝐼

𝐴
                                                                                                                               (12) 

Also, from the gas flow rate and the concentrations, it is possible to calculate the 

production rates and the CO/H2 ratio as follows (Equations 13-15). 

𝑛̇𝐶𝑂 =
𝑦𝐶𝑂 ∙ 𝑉̇ ∙ 𝑃

𝑅 ∙ 𝑇 ∙ 𝐴
                                                                                                         (13) 

𝑛̇𝐻2 =
𝑦𝐻2 ∙ 𝑉̇ ∙ 𝑃

𝑅 ∙ 𝑇 ∙ 𝐴
                                                                                                         (14) 

𝐶𝑂

𝐻2
=  

𝑛̇𝐶𝑂

𝑛̇𝐻2
                                                                                                                     (15) 

Where:  

𝑛̇𝐶𝑂 , 𝑛̇𝐻2  (
𝑚𝑜𝑙

𝑠 ∙ 𝑚2): production rates (molar flow rates per unit area) respectively 

of CO and H2;  

Figure 37. Simplified scheme of one compartment electrochemical reactor and its equipment 

in PoliTo. 
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𝑉̇  (
𝑚3

𝑠
): gas total volumetric flow rate; 

𝑃 (𝑃𝑎): pressure; 

𝑅 (
𝑚3 ∙𝑃𝑎

𝑚𝑜𝑙 ∙ 𝐾
): gas constant; 

𝑇 (𝐾): temperature; 

𝐴 (𝑚2): electrode geometric area. 

Finally, by using the production rates and the current density, the faradaic 

efficiency can be calculated (Equations 16, 17). 

𝐹𝐸𝐶𝑂 =
𝑛̇𝐶𝑂 ∙ 𝑧𝐶𝑂 ∙ 𝐹

𝑗
∙ 100                                                                                 (16) 

𝐹𝐸𝐻2 =
𝑛̇𝐻2 ∙ 𝑧𝐻2 ∙ 𝐹

𝑗
∙ 100                                                                                        (17) 

Where: 

𝑛̇𝐶𝑂 , 𝑛̇𝐻2  (
𝑚𝑜𝑙

𝑠 ∙ 𝑚2): production rates respectively of CO and H2; 

𝑧𝐶𝑂 , 𝑧𝐻2  (
𝑚𝑜𝑙𝑒−

𝑚𝑜𝑙
): moles of electrons needed to form a mole respectively of CO 

and H2; 

𝐹 (
𝐶

𝑚𝑜𝑙𝑒−
): Faraday constant; 

𝑗 (
𝐴

𝑚2): current density. 

To know the z values, it is sufficient to consider the two half-cell reactions. The 

value is indeed 2 for both cases (Equations 18, 19). 

𝐶𝑂2 + 2 𝑒− → 𝐶𝑂 +
1

2
𝑂2                                                                                       (18) 

 2𝐻+ + 2 𝑒− → 𝐻2                                                                                                    (19) 
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3.2 Performance analysis 

   In the following sub sessions different performance analysis as mentioned above 

have been done and the results are being compared and discussed among different 

catalysis with different Ag loading and deposition methods. 

3.2.1 Ag-UV deposited Titania nanotubes 

   As discussed in previous chapter one of the method which has been chosen for 

deposition of Ag nanoparticles on Titania nanotube is by irradiation of AgNO3 

solution. Based on the FESEM images and morphological analysis of them, 5 

minutes was chosen to be the optimum deposition time in order to avoid the 

agglomeration of Ag particles and for a uniform dispersion. Among different 

concentrations of AgNO3 as precursor, 0.001 M showed to have the best dispersion 

with the most uniform nano-sized particles over the nanotubes (Figure 27-b). For 

the performance analysis of this electrocatlyst a chrono amperometry test has been 

done in the conditions mentioned in table 7 in the two-compartment cell reactor 

(Figure 34). 

The results of an 80 minutes test on each potential showed a very unstable 

behavior of the selected electrocatalyst of Ag-UV deposited TNT. As can be seen 

in Figure 38 within the first 45 minutes the production of CO increased in all three 

applied cathodic potentials but after that a drastically decrease of CO production 

happened which indicated a deactivation of this electrocatalyst. This behavior 

seems to be as a result of loss of Ag nanoparticles during the reaction. XPS and 

EDS analysis before and after the reaction also confirm the loss of a significant 

portion of Ag nanoparticles (Figure A-1 & A-2 in the appendix). This could be due 

to low nuclei adhesive forces during the deposition and agglomeration of Ag 

particles.  
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Table 7. Experiment conditions for CA test in the two-compartment cell 

Parameter Value 

Temperature 20 °C 

Pressure 1 atm (except for one test) 

Electrolyte (aqueous solution) KHCO3  0,1M (85 ml) 

Potentials -1,4 / -1,5 / -1,6 V vs. SHE 

CO2 flow rate 600 Nml/h 

Stirring 600 rpm 

Electrode geometric area 2,4 cm2 
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Figure 38. CO production in 3 different potentials during reduction of CO2 in the two-

compartment cell 
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3.2.2 Ag sputtered Titania nanotube 

To investigate the performance of the prepared Ag-based electrocatalyst, 

chrono amperometry test has been done in the conditions mentioned in table 7. 

Figures 39-42 are presenting the results of complete analysis of Titania nanotubes 

being sputtered with Ag for different applied currents with different deposition 

time. Furthermore, the effect of pressure and a thorough electrochemical analysis 

have been discussed in the following sub sessions.  

3.2.2.1 Different sputtering conditions 

   As can be seen in Figure 39 the results of chrono amperometry test of Titania 

nanotubes being sputtered in different applied currents with the same deposition 

time of 90s are illustrated. It is noteworthy to mention that these tests have been 

carried out in three different applied potentials as stated in table 7. The more 

detailed analysis of these tests has been presented in the appendix (Figure A-3).  

   Evidently, as mentioned before Ag is the main responsible electrocatalyst for CO2 

reduction to CO. Thus, the most general trend in the results can be defined as 

follows; by increasing the amount of Ag, which in fact is due to increase in 

sputtering applied current, more CO will be produced. In another word, higher Ag 

results in higher CO production. Also increasing the applied potential pushes the 

reactions’ tendency toward HER instead of CO2 reduction. Furthermore, regardless 

of the amount of Ag nanoparticles, current density is almost the same for all the 

electrocatalyst at each potential. The only deviation from the above-mentioned 

trend happened at -1.6 V in which the best performance does not belong to the 

electrocatalyst with higher Ag loading. In fact, the 60mA90s sample, presents a 

maximum of both CO production and selectivity and, at the same time, a minimum 

of the H2 production and current density. In particular, at -1,6 V it is also evident 

that the trend of H2 production rate, H2 faradaic efficiency and current density are 

similar. This suggests that a higher current can be correlated to an increase in 

hydrogen evolution and to a decrease in CO selectivity, which is confirmed by the 

CO/H2 ratio graph. This result suggests that although higher amount of Ag should 

result in higher CO but there are other morphological parameters other than just the 

amount of Ag which effect the performance of Ag-TNT electrocatalyst. Based on 

these results 60mA 90s seems to be the optimum conditions for Ag sputtering on 

TNT for this purpose.  
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   It is notable that the sum of the faradaic efficiencies of the gas products was in 

average 97-99 %, depending on the silver loading. In fact, such value slightly 

increased with the amount of silver, nonetheless it presents fluctuations (± 1 %) due 

to the combination of experimental errors and various variables involved in the 

calculation. The average difference between the gas products FE and the overall 

FE, which is about 1-3 %, can be attributed to the production of small amounts of 

liquid products. This justification is confirmed by the HPLC analysis of the solution 
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of the following longer tests, which revealed the presence of formic acid (Figure 

40).  

Figure 39. Comparison between the results (vs. potential) of catalysts with the same 

sputtering time and different sputtering current (90 minutes of test at each potential): a,b) CO 

and H2 production rates, c,d) CO and H2 faradaic efficiencies, e) CO/H2 ratio, f) absolute 

current density. 
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  To investigate whether a longer sputtering treatment leads to a better performance, 

the results obtained with a 60mA120s sputtered sample has been compared to those 

of the 60mA90s electrode. The comparison of the final results at each potential is 

shown in the Figure 41, while the complete curves vs. time are reported in the 

appendix (Figure A-4). 

The sample sputtered for longer time (120 s) behaved better at the lowest potential 

and worse at the higher potentials, than the 60mA-90s catalyst. That is more explicit 

from CO faradaic efficiency graph, where the selectivity increased for the 60mA-

90s and decreases for 60mA-120s electrode by increasing the potential. The H2 

faradaic efficiency slightly presented a reversal trend, so that in CO/H2 ratio the 

trend of the CO faradaic efficiency is accentuated. The H2 production and current 

density graphs are rather regular, with 60mA-120s, always presenting a higher 

value and with values that increased at higher applied potentials. As a matter of fact, 

the best result obtained in these first tests was still that of the 60mA-90s electrode 

at -1,6 V vs. SHE. Therefore, this catalyst and the related sputtering conditions has 

been chosen as the best/reference electrocatalyst in the following experimental 

activities. 

 

 

 

 

     

Figure 40. HPLC chromatogram of the solution after a test (sample: 60mA-90s) The peaks 

for electrolyte correlate with water and bicarbonate.  

 



Errore. Per applicare Heading 1 al testo da visualizzare in 

questo punto, utilizzare la scheda Home. 

66 

 

  

 Furthermore, to measure the maximum current density which can be achieved by 

the electrocatalyst, one should remove all the barriers which prevents the electrons 

to pass through from the surface of the catalyst to electrolyte and finally reduce the 

dissolved CO2. The major barrier to this phenomenon is mass transfer diffusion 

resistance in electrolyte. One way to minimize this effect is to use rotating disk as 

working electrode. As the disk turns, some of the solution described as the 

hydrodynamic boundary layer is dragged by the spinning disk and the resulting 

centrifugal force flings the solution away from the center of the electrode. Hence, 

Figure 41. Comparison between the results (vs. potential) of catalysts with 

the same sputtering current and different sputtering time (90 minutes of test at 

each potential): a,b) CO and H2 production rates, c,d) CO and H2 faradaic 

efficiencies, e) CO/H2 ratio, f) absolute current density. 
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solution flows up, perpendicular to the electrode, from the bulk to replace the 

boundary layer. The sum result is a laminar flow of solution towards and across the 

electrode. The rate of the solution flow can be controlled by the electrode's angular 

velocity and modeled mathematically. This flow can quickly achieve conditions in 

which the steady-state current is controlled by the solution flow rather than 

diffusion [160]. This is a contrast to still and unstirred experiments where the 

steady-state current is limited by the diffusion of species in solution. For this reason, 

an LSV (linear sweep voltammetry) has been done in a RDE with 1600 rpm using 

TNT/Ag 60mA90s in the same electrolyte of KHCO3 0.1M. Initially, LSV test has 

been done with N2 bubbling and then the electrolyte has been saturated by CO2 and 

the same test has been repeated. As can be seen in Figure 42, a higher onset potential 

can be noticed when CO2 reduction is happening which can be as a result of 

formation of CO2
-. radical, which has its own kinetical barrier compared to the 

process with the tests under the N2 flow for which only HER (blue line) should 

happen. But when the applied potential increases the current density increases 

drastically with respect to the test with N2 bubbling. This difference in current can 

be attributed to CO2 reduction reaction (CO2-RR). It is noteworthy that the highest 

current density for CO2 reduction achieved at -1.6V vs SHE was of -65 mA/cm2. 

Thus, due to the abovementioned advantages of RDE’s, the obtained current density 

with RDE were higher than those obtained with static electrodes. 

Figure 42. LSV test in RDE for Ag/TNT 60mA-90s with N2 

bubbling (blue) and CO2 bubbling (red) 
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3.2.2.2 Pressure effect 

   Another parameter which can affect the performance of electrocatalyst in CO2 

reduction is pressure. Due to low solubility of CO2 in aqueous media, lowering the 

temperature and increasing the pressure can increase its solubility and as a result 

higher feedstock for production rate of products. For this purpose, decreasing the 

temperature is not an option because it effects the kinetics of the reaction by 

reducing the reaction rate for CO2 reduction. In another hand, although increasing 

the pressure can increase the solubility and production rate of the products but 

maintaining the reaction to take place in a high pressure has its own challenges 

naming; proper fitting and proper reactor which can handle high pressures. Hence, 

the high capital cost is the major drawback for this process.  

  To investigate this effect a test at higher pressure has been performed with the 

60mA90s electrocatalyst and the results are compared with the test performed at 

atmospheric pressure under similar conditions (Figure 43). Also, complete curves 

vs. time are reported in the appendix (Figure A-5). 

   It is evident from the results that CO production drastically increased at 7 atm. 

Indeed, at -1,4 V vs SHE this value was more than doubled if compared to the one 

obtained at atmospheric pressure. Nevertheless, this effect is far more evident at the 

lowest potential and the difference between two CO productions decreased by 

increasing the potential. An explanation can be find in the dissolved CO2 values, 

since the saturation value (2280 mg/l) was increased by more than 40 % at 7 atm 

with respect to the corresponding value at atmospheric pressure. In other words, the 

maximum difference of dissolved CO2 (which is an indication of CO2 participating 

in the electrochemical reduction) registered during the test, with respect to the initial 

value, is higher at 7 atm (13 % at 1,6 V vs. SHE and 7 atm; with respect to 8 % at 

1 atm). Moreover, the decrease in selectivity, by increasing the potential, can be 

attributed to the fact that at higher applied potentials HER reaction becomes the 

dominant one instead of CO2 reduction and as a result, it makes the effect of higher 

reactant concentration, less important. Also, the H2 production was higher at 7 atm 

and, instead, in this case the difference becomes larger by increasing the potential. 

As a matter of fact, considering CO faradaic efficiency, it can be noticed that at 1 

atm the CO selectivity increased with the potential, while at 7 atm it decreased to a 

lower value than the one at 1 atm. Probably the reason behind the latter is that, as 
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mentioned before, the percentage decrease of CO2 dissolved is higher at 7 atm; thus, 

at the highest applied voltage, the reactant concentration is proportionally lower 

(with respect to the saturation value) at high pressure. The H2 follows exactly the 

reversal trend and, as a result, in the CO/H2 ratio the trend is accentuated. The 

current density was always higher at 7 atm and, obviously, it increased with the 

applied potential. 

 

 

 

 

 
Figure 43. Comparison between the results (vs. potential) of 60mA90s tested at two 

different pressure values (90 minutes of test at each potential): a,b) CO and H2 production 

rates, c,d) CO and H2 faradaic efficiencies, e) CO/H2 ratio, f) absolute current density. 
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3.2.2.3 Stability analysis 

  One of the most important parameter in performance analysis of a catalyst is 

stability test to find out the durability of its performance and in many cases to find 

out the reasons for a decay in the activity performance of such catalyst to be able to 

eventually improve it. To do so, a CA test for 21 hours has been carried out for the 

best electrocatalyst among the above-mentioned ones (60mA90s). The results 

showed a decay for CO production and increase in H2 production after a peak of 

production within the first 3 hours which clearly signals a deactivation of 

electrocatalyst over the time which pushes the reaction toward HER instead of CO2-

RR. The details of these experiment can be found in the appendix (Figure A-6). The 

analysis for this deactivation has been discussed in the following by surface 

qualitative and quantitative analysis.   

   The Primary analysis to investigate this issue would be the surface analysis. Thus, 

to study the effect of coverage of Ag nanoparticles on electrochemical active 

surface area of the catalyst, a measurement based on double-layer capacity has been 

carried out. The goal for this analysis is to compare electrochemical active surface 

area of each electrocatalyst before and after reaction. The context of this method is 

based on the storage of electrical energy by means of electrical double layer effect. 

This effect can be distinguished on a conductive electrode and adjacent liquid 

electrolyte. In fact this is the zone in which the two layers of ions are separated by 

a single layer of solvent molecules that adheres to the surface of the electrode and 

acts like a dielectric in a conventional capacitor [157].    

  Usually to measure electrochemically active surface area (ECSA), voltammetric 

curves are needed to be recorded in the mere double layer region at various scan 

rates and then a plot of the current in the middle of the potential window vs. scan 

rate should be constructed and the slope of this linear line is an indicative ratio of 

ECSA of the catalyst as follows [158]: 

i = dQ/dt = (dQ/dE) · (dE/dt) = C · V                                          (20) 

ECSA can be calculated by referring the obtained capacity to the reference value of 

capacity per the unit area (Cref );  

              ECSA= C / Cref                                                              (21) 
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   Hence, with this method by comparing the slope of the current vs. scan rate in the 

double layer capacity zone, the ratio of ECSA for different catalysts can be 

distinguished. As can be seen in Figure 44, ECSA trend among the fresh catalysts 

considered to be that, higher Ag resulted in higher active surface for electrocatalytic 

activity of Ag nanoparticles and indeed these differences among higher Ag loading 

(60mA-90s and 80mA-90s) are less significant. On the other hand, after 4 hours of 

reaction, the trend is not the same anymore. The 60mA90s sample has shown to 

have higher ECSA than all the other samples even the 80mA90s sample. These 

results also can justify the higher productivity of 60mA90s at higher potentials (-

1.6V) and its durability during the reaction which started at -1.4 V vs. SHE and 

continuously the potential increased up to -1.6V (Figure 41). 

 A possible reason for the reduction on the ECSA of most samples could be the loss 

of Ag nanoparticles from the surface of catalyst. To investigate this hypothesis Ag 

loading of the surface of TNT has been measured before and after the reaction 

(Figure 46). It is worth mentioning that this measurement has been done by EDS. 

Using EDS for this analysis is a bit tricky cause Titania nanotubes are synthesized 

on Ti foils and Ti foil do not act as a co-catalyst in the reaction. So, to be able to 

achieve measuring the right Ag loading on only Titania nanotubes, initially we 

should find out the right intensity of beam in which the depth of measurement would 

be equal to Ag layer plus Titania nanotubes and avoiding the dispersion of cone in 

to Ti substrate. To achieve this goal different measurement have been taken in 

different beam intensity in such a way that molar composition of Ti to O remained 

1 to 2. Increasing the beam means formation of bigger cone and by increasing 

continuously the intensity, at a certain point the molar ratio of Ti to O is not 1 to 2 

anymore because the cone passed Titania nanotubes and measuring Ti in both 

nanotubes and substrate. That point can indicate us up to which beam intensity we 

can cover the measurement for electrocatalyst composition and not the substrate 

(Figure 45). 
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Figure 45. Schematic of cone formation of EDS beam based on applied beam intensity 

   

 Evidently, it is clear form Figure 46 that some Ag particles were being spread 

through the electrolyte during the reaction. The existence of Ag particles has been 

confirmed by ICP analysis. It is evident that the percentage loss of Ag nanoparticles 

from the surface of catalyst is higher in lower Ag loading (20mA90s and 40mA90s) 

which also can describe the decrease in the activity and ECSA of electrocatalyst. 

Figure 44. Cyclic voltammetry in different scan rates at double capacity layer b) ECSA ratio for 

different catalyst before and after the reaction 
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But this trend is not clear for higher Ag loading (60mA90s and 80mA90s). Another 

reason to the loss of activity and ECSA of the catalyst seems to be the 

agglomeration of Ag nanoparticles which then causes lower active surface area of 

nanoparticles. The possible proposed reasons for this agglomeration seems to 

happen due to the difference in charge of Ag particles with different sizes. In 

another word, the larger particle has a partial negative charge and the smaller 

particle a partial positive charge at electrical equilibrium, due to the greater work 

function of the larger particle. At the surface of electrocatalyst the larger 

nanoparticle accepts an electron from a neighboring smaller particle through the 

conducting substrate. In this moment smaller nanoparticle becomes  more positively 

charged and reestablishes equilibrium by dissolving an Ag+ ion into solution [15] 

(Figure 47). This phenomenon results in agglomeration of bigger Ag particles and 

dissolution of smaller Ag nanoparticles.  

These agglomerations seem to be more significant for higher Ag loading as a result 

of higher amount of Ag nanoparticles in the vicinity of each other and resulted in 

lowering the activity and durability of the 80mA90s sample. 

 

 

 

Figure 46.Ag loading for different catalyst before and after the reaction 
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  In FESEM images which were taken after the reaction of the above mentioned 

electrocatalyst, the reshaping and agglomeration of Ag particles are evident. As can 

be seen in Figure 48, some of Ag nanoparticles are attached to each other and 

agglomerated in a huge cubic form. Others simply just detached and scattered in 

different part of the surface. For further analysis of this phenomenon TEM analysis 

has been done before and after the reaction for 60mA90s. These analyses also 

confirmed the destruction and reshaping of Ag nanoparticles. Scattering and 

reshaping of these particles, apart from disorientation of surface, also caused some 

Ag particles to fall from the surface of nanotubes in to the inner part of the tubes 

(Figure 49 & 50). This seems to happen to Ag particles which didn’t agglomerated 

during the repositioning and reshaping due to a non-completely uniform charge 

transfer.        

 

Figure 47. The schematic of agglomeration and dissolution mechanism 

of smaller Ag nanoparticles to bigger ones. With permission from [15] 
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Figure 48. FESEM top view images of different catalysts after 4 hours of reaction 
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Figure 49. TEM side view image of 60mA90s before the reaction 

 

Figure 50. TEM side view image of 60mA90s after the reaction 
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3.2.3 The role of Titania nanotubes 

  To investigate the effect of Titania nanotube which has been used as the substrate 

for Ag nanoparticles in CO2 reduction, different quantitative and qualitive tests 

have been done. To have a comparable result, in these experiments the best 

sputtering conditions which previously showed to be 60mA 90s, has been used for 

all the catalyst to maintain the Ag nanoparticle loading in different electrocatalyst 

and only changing the substrate. Electrocatalysts which has been used in this 

session for comparison are as follows; 

1) Ag / TiO2 nanotubes; 

2) Ag / Ti foil; 

3) Ag / TiO2 nanoparticles; 

4) TiO2 nanotubes; 

5) Ti foil. 

 

  To do a thorough analysis on the role of Titania nanotubes, initially CA test has 

been done for the above mentioned electrocatalysts. Then, for further analysis and 

to justify the results of CA tests, ECSA and CV tests have been carried out. In table 

8 the experiment conditions of CA for these electrocatalysts has been presented.  

  As for the CA tests, these experiments were performed at three different increasing 

potentials, for 90 minutes at each potential (conditions mentioned below in table 8). 

The final results vs. potential are reported in Figure 51; while the complete curves 

vs. time are in the appendix (Figures from A-7 to A-10). 

  Before analysing the performance of these electrocatalyst it is evident from Figure 

51 that Titania and Titanium foil solely cannot act as an electrocatalyst for CO2 

reduction and that’s why the graph of solely Titania nanotube and Titanium foil are 

overlapping at zero for the production of CO. Moreover, it is clear from CO 

production graph (Figure.51-a) that Ag/TNT behaves better than the other samples; 

indeed, its CO production rate was the highest at every potential value and increased 

by rising the potential. On the other hand, the other Ag-containing samples, using 

Ti foil or TNP as a support, showed a decreasing CO production rate when the 

potential was increased. This difference suggests that the change in morphology, 

supposedly induced on Ag nanoparticles due to the applied potential, could be more 

critical in the case of electrodes having Ti foil or TiO2 nanoparticles as the support. 

It is possible that the change in the Ag morphology, reduces the catalyst specific 

surface due to the formations of bigger silver clusters as described in the previous 
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sub-session. However, the performance of the Ag/TNP sample was initially higher 

than that of Ag/Ti foil, though it decayed faster with the potential. A possible reason 

is that the adherence force of Ag nanoparticles to Titania nanoparticle layer is less 

resistant to high potentials than in the case of the TiO2 nanotubes or Titanium foil, 

thus, it undergoes through some kind of deterioration.  

  In addition, evidently from H2 production rate and current density graphs, the 

sample Ag/TNT produced less Hydrogen than the others, although the hydrogen 

production also increased with the potential, as expected. A similar behaviour was 

presented by Ag/Ti foil sample, but the H2 produced was higher and the difference 

with respect to the Ag/TNT sample increased with the applied potential. The current 

density obtained with the Ag/Ti foil, instead, was lower than that of Ag/TNT, 

probably because of the small superficial area due to the lack of nanostructured 

arrangements. On the other hand, for Ag/TNP the situation is completely different: 

both H2 production and current density rapidly increased with the potential. This 

could be due to the fact that the nanoparticles’ layer was about 30 times thicker than 

the nanotubes layer (only 4 µm), and, therefore, with respect to the layer thickness, 

the percentage of Ag coverage in Ag/TNP is less than the one in Ag/TNT. 

Moreover, lower current density of Ag/TNP compared to Ag/TNT sample at -1,4 

V vs. SHE could be explained by the inter-crystalline contacts of  nanoparticles that 

increase the electrical resistance [159]. Instead, at higher potentials, the effect of 

higher available surface area could be dominant in accordance with the faradaic 

efficiency values for the H2 production which are close to 100 %.  

  The selectivity for CO decreased with the applied potential for all samples, but 

with different rates. Among the tested electrodes, Ag/TNT is assuredly the best, 

nevertheless the trend for hydrogen production is not exactly in accordance with 

respect to that observed in previous experiments. This is possible because of the 

difference on the range of applied potential. In another words, because of resistance 

compensation in these tests the real applied potential is higher and can push the 

reaction toward HER. Moreover, the H2 faradaic efficiency graph confirmed the 

fact that the TiO2 nanotubes are able to form traces of liquid products, since there 

is a difference of 1-2 % between the faradaic efficiencies of TNT and Ti foil (the 

latter approximately correspond to 100 %).  A further observation should be 

dedicated to the Ag/Ti foil, which shows a good CO production and selectivity and 

suggests that the sputtering method is a valuable deposition method, since it can 

activate the flat surface of a metal foil with Ag nanoparticles, by using a small 

amount of silver.  
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Table 8. Experimental scenario of the chronoamperometry tests2 

Parameter Value 

Temperature 24 °C (average) 

Pressure 1 atm 

Electrolyte (aqueous solution) KHCO3  0,1M (67 ml) 

Potentials (with IR compensation) -1,4 / -1,5 / -1,6 V vs. SHE 

CO2 flow rate 38 ml/min 

Stirring 400 rpm 

Electrode geometric area 2,4 cm2 

                                                 
2 It is noteworthy that although the nominal values of applied potential were the same as used 

before, but  by using the IR compensation (software compensation, 85 %) the real potentials applied 

in these experiments were higher. The measured electrical resistance between reference electrode 

and cathode was 27 Ω, while the total cell resistance was of 41 Ω. Besides, the cell used in these 

tests is smaller and does not contain a membrane for the separation of anodic and cathodic chambers, 

thus presenting a lower electrical resistance; This, together with the higher applied potentials, 

implies that higher current densities and production rates were obtained with respect to the tests 

performed in previous session and suggests that a direct comparison between results, obtained in the 

two different cells at the same nominal potential, shall not be made. 
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  To investigate more the effect of Titania nanotube as a substrate, an 

Electrochemical Impedance Spectroscopy (EIS) test has been done. In this method 

Figure 51. Comparison between the results (vs. potential) of silver on titania nanotubes 

and blank samples (sputtering conditions: 60 mA and 90 seconds): a,b) CO and H2 

production rates, c,d) CO and H2 faradaic efficiencies, e) CO/H2 ratio, f) absolute current 

density. All the potentials were applied with IR compensation 



Errore. Per applicare Heading 1 al testo da visualizzare in 

questo punto, utilizzare la scheda Home. 

81 

 

a perturbative characterization of the dynamics of an electrochemical process has 

been carried out. Evidently this method consists of analyzing the response of an 

electrochemical system (cell) to an applied potential. The frequency dependence of 

this impedance can reveal underlying chemical processes [160]. These measured 

values contain information about electrical resistances, any contact resistance 

between the electrolyte and electrode, and any mass transport losses, so lower the 

resistance, lower is the contact resistance and mass transport losses through the 

electrochemical reaction. At first glance, it appears that the impedance related to 

Ag/Ti foil sample is quite larger with respect to the other two samples, in agreement 

with the results discussed above. In addition, also the shape of the spectrum in the 

low frequency region is quite different. In fact, usually the typical spectrum of an 

electrode immersed in an electrolytic solution during an electroreduction process is 

characterized by a high frequency feature (i.e. a leftmost arc). So, the process at 

high frequencies is related to the faster process, i.e. charge transport in the electrode 

bulk. Then, the lower frequency arc is related to the slower process, i.e. charge 

transfer at the electrode-electrolyte interface, which could account for the Warburg 

diffusion [161]. The high frequency process, which is related to the extent of the 

electroreduction can be modeled through a parallel between the charge transport 

resistance R1 and the double layer capacitance C1, while the low frequency one, 

which accounts for the mass transport limitations, can be modeled through a 

Warburg impedance, characterized by the resistance R2; the series resistance Rs  

models the ohmic losses (Figure 52a) [162]. It is noteworthy that for the mass 

transport limitation a Warburg Short element has been used. This element is the 

extension of Warburg element to represent the finite length diffusion, i.e. where no 

bulk electrolyte condition is present in the analyzed system [163]. The equivalent 

circuit composed by these elements was used to fit the experimental impedance 

data: the fitting procedure was proved to be good for the electrode based on titanium 

oxide (see the solid curves in Figure 53), while gave origin to not reliable results 

when used for Ti foil-based electrode. 
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The reason for the observed discrepancy can be attributed to the supposed capability 

of TiO2 to stabilize the reaction intermediates which favors the CO2 

electroreduction: this characteristic is not evidenced in Ti foil, thus causing a double 

layer formation at the Ti/Ag interface, which limits the overall reaction. This 

hypothesis is supported by the fact that a good fitting can be obtained by substituting 

the Warburg impedance with a low frequency double layer process, characterized 

by a resistance R2 and a capacitance C2 (see Figure 52b): the curve calculated using 

this model is reported in Figure 53 (blue curve). The values of the resistances 

obtained through the fitting procedure are reported in the inset of Figure 53; as it 

demonstrates, Ag/Ti sample is characterized by larger resistances, and the low 

frequency process becomes the limiting step of the reaction. On the contrary, 

Ag/TNT electrode exhibits the lowest impedance, thanks to the fast electron path 

provided by mono-dimensional structuration.  

The obtained results were successfully confirmed by the electrochemical active 

surface area measurements reported in Figure 54. It is supposed that the higher 

surface area exposed by the TiO2 nanotubes, as well as the expected stabilization of 

the CO2 reduction intermediates, resulted in a higher active surface area of the 

deposited Ag nanoparticles, which induced a lower electrons transfer resistance (see 

Figure 53-inset). 

Figure 52. The schematic of applied circuit for EIS fittings: Circuit used for a) 

Ag/TNT and Ag/TNP b) Ag/Ti foil. Zws represents the Warburg Short diffusion  

a) b) 
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Furthermore, as described before, ECSA ratio has been measured for the above-

mentioned electrocatalysts by comparing the slope of the current vs. scan rate in the 

double layer capacity zone. It is evident that the slope for ECSA ratio for Ag 

nanoparticles being deposited on Titania nanotubes is by far bigger than the others. 

Thus, it can be concluded that Ag nanoparticles being deposited on Titania 

nanotubes have higher electrochemical active surface area than Ti foil and Titania 

nanoparticles. These analyses again confirm the role of Titania nanotubes as the 

substrate for Ag nanoparticles to improve the performance of electrocatalyst. This 

is due to the increase in the active surface area and stabilizing the rate determining 

radicals by facilitating the electron transfer route.  

Figure 53. EIS analysis for 3 different substrates with the same Ag loading 

0 50 100 150 200

0

50

100

150

200

  Ag/Ti foil

  Ag/TNP

  Ag/TNT

-Z
" 

(
)

Z' ()

Ag/Ti foil Ag/TNP Ag/TNT
0

20

40

60

80

100
 R

1

 R
2

re
s
is

ta
n

c
e

 (


)

sample



Errore. Per applicare Heading 1 al testo da visualizzare in 

questo punto, utilizzare la scheda Home. 

84 

 

 

 

Figure 54.ECSA ratio measurement for different Ti substrate 

 

  Moreover, in order to understand the role of Titania nanotubes in the process of 

CO2 reduction to CO by Ag nanoparticles, it is noteworthy to present the 

mechanism of CO2 on Ag electrode; according to Kortlever et. al.[164] the reaction 

pathway for electroreduction of CO2 to form CO on Ag electrodes consists of these 

steps: 

 

𝐶𝑂2(𝑔) + ∗  3 +  𝐻+(𝑎𝑞) +  𝑒− ↔  𝐶𝑂𝑂𝐻∗                                                    (22) 

 

𝐶𝑂2(𝑔) + ∗  + 𝑒− ↔  𝐶𝑂𝑂−∗                                                                          (23) 

                          

𝐶𝑂𝑂−∗ + 𝐻+(𝑎𝑞) ↔  𝐶𝑂𝑂𝐻∗                                                                         (24) 

                                                 
3 The * sign represents the adsorption status on the surface of electrode 
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𝐶𝑂𝑂𝐻∗ + 𝐻+(𝑎𝑞) +  𝑒− ↔  𝐶𝑂∗ + 𝐻2𝑂 (𝑙)                                                (25) 

 

𝐶𝑂∗ ↔  𝐶𝑂 (𝑔) + ∗                                                                                            (26) 

   The first initial steps can occur either as a one-step Proton Coupled Electron 

Transfer (equation 22) or two step mechanism (equations 23, 24). In an interesting 

recent work Firet et. al. [165] confirmed these mechanism by monitoring the thin 

film Ag electrode by operando infrared spectroscopy. Based on this proposition by 

applying higher potentials the mechanism moves from one step PCET to two step 

reaction. In both high and low overpotential the formation of COO-* (CO2
-
ads) for 

CO production is very significant. 

In addition, DFT calculations by Yangt et. al. [166] showed that the presence 

of Ag nanoparticles can substantially modify CO2 adsorption on anatase TiO2 (101).  

This calculation suggested that Ag particles affect the CO2 adsorption on TiO2 sites 

where there is no binding between CO2 and the particle itself which can be 

described as a form of modification of properties of TiO2 as it donates electron 

density to the surface [166]. In order to compare the above proposed mechanism 

with electrochemical behavior of Ag-decorated Titania nanotubes, a comparison of 

cyclic voltammetry of TNT/Ag and Ti/Ag with CO2 bubbling has been done so one 

can differentiate the mechanism of CO2 reduction. As has been shown in Figure 55, 

the major difference in CV between using Ti and TNT are the existence of the 

reduction peak of 1 and 3 which can be described as attributed to the reactions for 

TiIV in theTiO2 and TiIII species, thus can act as a redox electron carrier to facilitate 

some reactions, which include CO2 reduction [167]. Also, the onset potential of 

CO2 based on the comparison of CV’s with Ar bubbling and CO2 bubbling (Figure 

42) can describe the point 2 as the onset potential for CO2 reduction which in case 

of TNT happened in lower overpotentials compared to Ti co-catalyst. This 

description confirms the redox behavior of TiIV/TiIII for CO2 ads. reduction to CO2
-

ads as a necessary rate determining step for CO2 reduction to CO. This analysis of 

redox behavior of Titania and its role in the process of CO2 reduction with the 

presences of Ag nanoparticle has been illustrated as described above in Figure 56.  
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Figure 56. Cyclic voltammetry of Ti foil with deposited Silver (black line) and 

Titania nanotube deposited with Silver (redline) 

 

Figure 55. The schematic of the mechanism of CO2 reduction over Ag-decorated 

Titania nanotube in aqueous electrolyte. 
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Conclusion 

In this work electrocatalytic reduction of CO2 to syngas by Ag decorated 

Titania nanotubes has been discussed. Among different possible noble metals which 

are being used recently as the electrocatalyst, Ag has been chosen in its nanoparticle 

structure. Also, Titania nanotubes have been selected as the Co-catalyst for this 

process. For the substrate synthesis, a modified anodization method has been used 

to grow well oriented compact Titania nanotubes on Titania foil. In addition, two 

approaches for the deposition of Ag nanoparticles have been carried out; Ag 

deposition by UV illumination and Sputtering. As for the UV deposition, different 

Ag loading achieved by changing time of illumination and concentration of Ag 

solution. These deposited electrocatalyst showed a very unstable behavior during 

the reaction due to dissolution of Ag particles into electrolyte and also 

agglomeration of Ag nanoparticles on the surface of electrolyte. On the other hand, 

sputtering method showed to be more adjustable for different Ag loading. The 

adjustments carried out by different applied currents and deposition times. Among 

different configuration of sputtered Ag on Titania nanotubes, the one sputtered at 

60 mA with the deposition time of 90 seconds showed to have the best performance 

among the tested electrodes in which the maximum current density of 60 mA /cm2 

at cathodic potential of -1.6 vs SHE with the CO/H2 ratio of 1 to 3 has been 

achieved. Furthermore, long duration tests showed a decay in the activity of the 

aforementioned electrocatalysts. Evidently, from morphological analysis of these 

electrodes before and after the reaction (TEM &FESEM) due to charge transfer 

during the process, a change on the structural shape of Ag in the form of 

agglomeration has been noticed. ECSA analysis of the tested electrocatalysts, also 

showed a decay on electrochemical active surface area ratio after the reaction due 

to the abovementioned phenomenon. Surprisingly, these analyses confirmed that 

high amount of Ag as the electrocatalyst not necessarily can result in better 

performance. In fact, morphological and structural parameters can also play an 

important role for the performance of these electrocatalysts. 

Moreover, to investigate the role of Titania nanotubes, different samples with 

the same Ag loading and different substrates have been prepared and tested. The 

results showed the electrode with Titania nanotube as the substrate performed 

significantly better than the ones with Titania nanoparticles and Titanium. 



Errore. Per applicare Heading 1 al testo da visualizzare in 

questo punto, utilizzare la scheda Home. 

88 

 

Interestingly, further electrochemical analysis showed that Titania can act as a 

redox couple and help facilitate the transfer of electrons to Ag electrocatalyst and 

stabilize the rate determining radicals on the surface. Also, Titania in its nanotube 

form, showed to have the advantage of higher active sites and less resistance against 

mass transfer and electrical transportation in the double layer zone which again 

increased the overall performance of the electrode toward electrocatalytic reduction 

of CO2. Although the novel application of Titania nanotube in this work showed to 

increase the performance of electrocatalyst and Ag as a noble metal used in low 

quantities respect to other reported experiments, but it cannot be considered as a 

persistent electrocatalyst for long lasting industrial processes. Also, the production 

rate of syngas is still far from the commercializing and industrial scales but being 

able to modify and increase the performance of the electrocatalysts, can open up 

new paths toward industrializing syngas production by electrocatalytic reduction of 

CO2. 
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Appendix 

 

Figure A-1. EDS analysis before (spectrum 2) and after (spectrum 1) the reaction for Ag UV 

deposited electrocatalyst 

Figure A-2. XPS analysis a) before b) after the reaction for Ag/TNT 20mA90s 
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Figure A-3. Comparison between the results (vs. time) of catalysts with the same 

sputtering time and different sputtering current (90 minutes of test at each potential): a,b) 

CO and H2 production rates, c,d) CO and H2 faradaic efficiencies, e) CO/H2 ratio, f) 

absolute current density. All the potential values are in V vs. SHE. 
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Figure A-4. Comparison between the results (vs. time) of catalysts with the same 

sputtering current and different sputtering time (90 minutes of test at each potential) : a,b) 

CO and H2 production rates, c,d) CO and H2 faradaic efficiencies, e) CO/H2 ratio, f) 

absolute current density. All the potential values are in V vs. SHE 
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Figure A-5. Comparison between the results (vs. time) of 60mA90s tested at two 

different pressure values (90 minutes of test at each potential): a,b) CO and H2 production 

rates, c,d) CO and H2 faradaic efficiencies, e) CO/H2 ratio, f) absolute current density. All 

the potential values are in V vs. SHE. 

 

 

 

 

 



Errore. Per applicare Heading 1 al testo da visualizzare in 

questo punto, utilizzare la scheda Home. 

107 

 

 

FigureA-6. Long duration test for 60mA90s at -1.4V vs. SHE. a) CO production b) H2 

production c) CO faradaic efficiency d) H2 faradaic efficiency e) CO/H2 ratio f) absolute 

current density vs hours of reaction  
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Figure A-7. Results (vs. potential) of Ag/TNT 60mA-90s: a,b) CO and H2 production 

rates, c,d) CO and H2 faradaic efficiencies, e) CO/H2 ratio, f) absolute current density. All 

the potentials were applied with IR compensation. 
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Figure A-8. Results (vs. potential) of Ag/Ti foil 60mA-90s sputtered: a,b) CO and H2 

production rates, c,d) CO and H2 faradaic efficiencies, e) CO/H2 ratio, f) absolute current 

density. All the potentials were applied with IR compensation. 
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Figure A-9. Results (vs. potential) of Ag/TNP 60mA-90s sputtered: a,b) CO and H2 

production rates, c,d) CO and H2 faradaic efficiencies, e) CO/H2 ratio, f) absolute current 

density. All the potentials were applied with IR compensation. 
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Figure A-10. Results (vs. potential) of TNT and Ti foil: a,b) CO and H2 production 

rates, c,d) CO and H2 faradaic efficiencies, e) CO/H2 ratio, f) absolute current density. All 

the potentials were applied with IR compensation. 

 

 

 

 


