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Abstract

The 196 parties attending the conference on climate changes (COP21) in Paris
highlighted the need of reducing greenhouse gas emissions [1]. In this regard, in
the last years, many countries are providing incentives to promote the deployment
of low-carbon and sustainable energy production technologies [2], generation such
as Photovoltaic (PV) Systems. The International Energy Agency reports that [3]
installation of Renewable Energy Sources (RES), Distributed Generation (DG) and
an optimization of consumption with a smart use of energy is required in our cities
in order to achieve the goal of reducing green house emissions. ICT technologies, in
particular the Internet of Things, enable the possibility of controlling and optimizing
consumption [4] hence increasing energy efficiency.

The transition from centralized production system to a distributed generation,
that can be based on renewable or on conventional sources, substantially modifies the
operation of electricity networks: the direction of power flows in the MV lines and
even in high voltage/medium voltage (HV/MV) transformers can be reversed, voltage
profiles are modified, fault management is affected [5, 6], etc. For all these reasons,
distribution networks need to become Smart and new control strategies, algorithms
and technologies need to be tested and validated before their implementation and
installation in real systems.

In this context, ICT play a crucial role in both planning expansion and monitoring
operation of distributed energy sources. The crucial roles of ICT and the emerging
Internet-of-Things (IoT) are highlighted by the spread diffusion of heterogeneous
and pervasive sensors in our houses, district and cities. IoT devices and sensors allow
to collect large amounts of energy related data capable of describing the consumption
behaviours of the citizens. Hence, the increasing presence of sensors calls for the
development of distributed software infrastructure for exploiting such IoT devices for
data management and collection. Furthermore, IoT devices enables the possibility of
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monitoring devices and system in order to develop models for the simulation and
optimization on energy process.

This Thesis presents a distributed infrastructure, called SMIRSE, for modelling
and simulating renewable energy sources and smart policies integration in urban
districts. SMIRSE is implemented as a modular infrastructure build with a micro-
services approach that exploits Internet of Things communication protocols. This
approach enabled interoperability between hardware and software components of the
SMIRSE platform and at the mean time its modularity, extendability and scalability.
Its modularity allowed the interfacing and integration between dedicated Real-time
Grid Simulator, software simulation modules and real-time data in order to model
the grid behavior. New modeling and simulation tools for i) Solar energy simulation,
with a focus on Photovoltaic systems; ii) Integration of RES and smart policies with
the distribution grid; iii) Characterization of thermal performance of Buildings and
power consumption prediction; and iv) Buildings indoor temperature simulation and
monitoring, have been designed, developed and integrated upon the backbone of the
microservices-based infrastructure.

The main advantage of the SMIRSE infrastructure is its capability in creating
different scenarios for Multi-Energy-System simulation with a minimum effort. Ex-
amples of scenarios were SMIRSE can be used are: i) Installation of Renewable
Energy Sources, ii) Grid reconfiguration, iii) Demand Response and iv) Demand
Side Management. In addition, the proposed infrastructure enables to study the inter-
operability among different use-cases in a plug-play fashion. Finally, the proposed
solution can integrate Smart Metering Architecture to exploit (near-) real-time data
collected from the field to co-simulate different smart energy strategies with real
information. The main contribution of this study is the design and development of
a distributed infrastructure for energy system simulation that exploits state of the
art ICT technology. Its worth-nothing to say that such ICT technology have been
customized for the purpose of developing energy system co-simulation infrastructure.
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Chapter 1

Introduction

During the international conference on climate changes (COP21) in 2015, the 196
parties attending the conference in Paris highlighted the need of reducing greenhouse
gas emissions [1]. Urbanizations are largely energy-intensive as reported by the UN
habitat division, cities consume about 75 % of the global primary energy supply
and are responsible for about 50-60 % of the world’s total greenhouse gases [12].
Moreover, the majority of the consumed energy is still supplied by fossil fuels (coal,
oil and gas). In 2016, more than half of the overall world’s population is living
in urban areas. Projections states that by 2030, urban areas will host around 60 %
of people globally and one third of the population will live in cities with at least
half a million inhabitants [13]. On this regard, in the last years, many countries
are providing incentives to promote the deployment of low-carbon and sustainable
energy production technologies [2], generation such as Photovoltaic (PV) Systems.
In order to achieve a reduction of greenhouse gas emission an increasing instal-
lation of Renewable Energy Sources (RES), Distributed Generation (DG) and an
optimization of consumption with a smart use of energy in our cities [3] are re-
quired. ICT technologies, in particular Internet of Things, enables the possibility
controlling and optimize consumption [4] hence increasing energy efficiency. These
renewable and sustainable generation technologies are often connected to electricity
distribution networks in the form of distributed generation (DG), at the low voltage
(LV) or medium voltage (MV) level. The introduction of DG, which can be based
on renewable or on conventional sources, substantially modifies the operation of
electricity networks: the direction of power flows in the MV lines and even in high
voltage/medium voltage (HV/MV) transformers can be reversed, voltage profiles
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are modified, fault management is affected [5, 6], etc. For all these reasons, distri-
bution networks need to become Smart and new control strategies, algorithms and
technologies need to be tested and validated before their implementation and instal-
lation in real systems. Moreover, DSOs (Distribution System Operators) are also
enhancing the ICT (Information Communication Technologies) layer used to monitor
and control distribution networks. As pointed out by [14], an in-depth simulation
and analysis of Multi-Energy-Systems (MES) is required to increase the flexibility
of energy systems by integrating different resources for both electric and thermal
energy. Furthermore, ICT and MES offer valid options to foster novel services for
smart energy management. For example they can foster events of Demand Response
(DR) and Demand Side Management (DSM) by integrating buildings equipped with
heat pumps, CHP (Combined Heat Power) or HVAC (Heating, Ventilation and Air
Conditioning) systems [15].

Thus, specific tools to evaluate resource availability, uncertainty of RES and
smart energy policies are required: i) to understand their impact on power grids; ii) to
perform load balancing; iii) to perform storage planning and management; iv) to
perform demand-side management at different scales, from single user up to district
or city; v) to provide generation profiles to electricity markets (e.g. day-ahead or
intra-day market). By analysing the generation loads in fine-grained spatio-temporal
domain (e.g. sub-hourly simulations of Photovoltaic systems at district scale), such
tools should be able to overcome the current techniques in estimating RES generation
and integration that do not perform fine grained spatio-temporal simulation and do
not integrate (near) real-time environmental data coming form the field.

In this context, ICT play a crucial role in both planning and monitoring of dis-
tributed energy sources. The crucial roles of ICT and the emerging Internet-of-Things
(IoT) are highlighted by the spread diffusion of heterogeneous and pervasive sensors
in our houses, district and cities. IoT devices and sensors allow to collect large
amounts of energy related data capable of describing the consumption behaviours of
the citizens. Hence, the increasing presence of sensors calls for the development of
distributed software infrastructure for exploiting such IoT devices for data manage-
ment and collection. Furthermore, IoT devices enables the possibility of monitoring
devices and system in order to develop models for the simulation and optimization on
energy process. For example, electricity consumption data can be used in simulation
processes for evaluating: i) energy management actions; ii) management of electricity
distribution networks; iii) integration of renewable sources in the city.
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This Thesis presents a distributed infrastructure, called SMIRSE, for modelling
and simulating renewable energy sources and smart policies integration in urban
districts. Strong effort has been done in developing a solution for simulating Photo-
voltaic systems with good accuracy and for accurate planning of new installations.
SMIRSE is able to model and simulate Multi-Energy-Systems in urban context
by exploiting a modular architecture, that increases flexibility and scalability. Its
modularity allowed the interfacing and integration between dedicated Real-time Grid
Simulator, software simulation modules and real-time data in order to model the
grid behavior.In order to achieve the challenges presented in Chapter 2 the study is
focused in the implementation of a modular infrastructure build with a micro-services
approach that exploits Internet of Things communication protocols (see Chapter 4).
This approach enabled interoperability between hardware and software components
of the SMIRSE platform and at the meantime its modularity, extendability and scal-
ability (see Chapter 5.1.2.2). New modeling and simulation tools for i) Solar energy
simulation, with a focus on Photovoltaic systems; ii) Integration of RES and smart
policies with the distribution grid; iii) Characterization of thermal performance of
Buildings and power consumption prediction; and iv) Buildings indoor temperature
simulation and monitoring, have been designed, developed and integrated upon the
backbone of the microservices-based infrastructure.

The main advantage of the SMIRSE infrastructure is its capability to simulate
new systems, which are different from previous tests in terms of input data or type
of model, with a minimum effort. Any changes in the input data of the modules
(i.e. new consumption profiles; new grid; or new generation scenario) as well as
changes in the type or conceptual model of a module (e.g. new prosumer behaviour
model; other types of generators, such as PV, wind, fuel cells; and new control
and management algorithms) require a minimum effort to be implemented without
creating the entire simulation model from scratch. In addition, the proposed infras-
tructure enables to study the interoperability among different use-cases in a plug-play
fashion. Finally, the proposed solution can integrate Smart Metering Architecture to
exploit (near-) real-time data collected from the field to co-simulate different smart
energy strategies with real information. For example, the SMIRSE has been used to
co-simulate the integration of Photovoltaic Systems and battery management within
the distribution grid. These are the strengths of the proposed solution: the platform
is flexible and open to include, replace, or enhance the modules for any new use
cases/scenarios.
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The methodology and results presented in the following chapters have been partly
published in the papers listed in Appendix A. The rest of the thesis is organized as
follows: Chapter 2 presents the motivation and challenges of the research, Chapter 3
presents a review of existing solution for modeling and simulation of RES and
smart energy policies, Chapter 4 presents a background on enabling technologies to
develop the infrastructure, Chapter 5 presents the SMIRSE platform implementation,
Chapter 6 presents the results achieved exploiting the platform and finally Chapter 7
presents the concluding remarks.



Chapter 2

Motivations and Challenges

This research aimed at developing a distributed infrastructure to model and co-
simulate renewable energy systems and smart energy policies integration in urban
context. SMIRSE combines together different technologies and heterogeneous
information to model the energy flows and to simulate the impact of novel control
strategies in cities and distribution networks. Exploiting information coming in
(near-) real-time from Internet connected devices installed across the city. On these
premises, SMIRSE is an infrastructure for simulations as a service that can be used
by different stakeholders to build and analyse new energy scenarios for short- and
long-term planning activities and for testing and managing the operational status
of Multi-Energy-Systems. Examples of scenarios that combine together thermal
and electricity trends (load and/or generation) to simulate the energetic behaviour
of buildings, districts and cities are: i) Installation of Renewable Energy Sources,
ii) Grid reconfiguration, iii) Demand Response and iv) Demand Side Management.

To achieve this purpose, SMIRSE needs to combine novel or already existing
modelling and simulation tools together with a real-time grid simulator. At the same
time, it needs to correlate heterogeneous information, such as: i) measurements
retrieved in (near-) real-time from IoT devices deployed across the city (e.g. in-
formation on multi-vector energy trends, weather, indoor temperature in buildings,
status of the distribution grids); ii) Building Information Models (BIM), grid models
and Geographical Information Systems (GIS); iii) topology of energy distribution
networks; and iv) urban cartographies. Integrated systems such as BIM and GIS
are need in order to represent the environment of the simulation. In particular BIM
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are a parametric representation of buildings where all the elements of the building
are represented with their physical features. GIS provides fundamental information
for the representation of a district such as: Digital Surface Model (DSM), that are
used to reconstruct shape of buildings in 3-D; Cadastral maps that contains geometry
objects representing the building plant.

Fig. 2.1 High Level Schema of SMIRSE Platform

To realize the SMIRSE infrastructure, we identified the following key challenges
from a literature review [14–18] that needs to be addressed:

i) Multi-Layer-System: Smart urban districts are complex systems where different
entities cooperate by exchanging heterogeneous information. In this view, Bompard
et al. [19] theoretically conceive a multi-layer system with: i) a Physical layer for
including hardware components to monitor and manage the grid; ii) a Cyber layer for
defining information flows and managing operations; iii) a Social layer for including
unpredictable performances due to actors that play in power system scenario (i.e.
users, prosumers and system operators); and iv) an Environment layer for integrating
natural phenomena that affects the previous layers.

ii) Simulation of Renewable Energy Production: SMIRSE has to provide modules to
simulate the energy production of RES with a fine grained spatio-temporal resolution.
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iii) Simulation of buildings dynamics: SMIRSE has to provide features for analysing
both thermal and electrical dynamics in buildings. For example, modelling and simu-
lating thermal dynamic includes also the analysis of indoor temperature variations
related to power consumption. In this view, information on thermal inertia and/or
heat storages can be given as input to control policies for shaving demand peaks in
district heating networks [20, 21] or for DR and DSM if heating and cooling systems
are supplied by electric generators or CHPs.

iv) Simulation of novel energy management policies: Novel control policies needs to
be evaluated in a realistic environment before being applied in a real-world context.
Thus, the effects in terms of energy efficiency, energy optimization, distribution
network reliability and economic value can be evaluated in-depth.

v) Simulation of distribution networks: SMIRSE must be able to simulate the energy
distribution network to provide energy management policies with information on the
status of the network itself. For example, from these simulations possible congestions,
failures and unbalances can be evaluated in a realistic scenario. For this purpose,
simulators like OPAL-RT and RTDS need to be integrated in the infrastructure
to perform real-time simulations of the distribution network with microseconds
time-steps.

vi) Simulations with different spatio-temporal resolutions: SMIRSE has to provide
features to simulate energy phenomena with different time and space resolutions.
Time resolution ranges from the microseconds, for analysing the operational status of
distribution systems, up to years, for planning and refurbishment activities. Whilst,
space resolution ranges from the single dwelling up to districts and cities.

vii) (Near-) real-time integration of real-world information: Real-world information
sent in (near-) real-time by heterogeneous Internet connected devices are needed to
develop more accurate event-based models for analysing the operational status of
the grid, for developing ad testing more efficient control policies and for planning
and refurbishment activities [22].

viii) Modularity and extendibility in integrating data, models and simulators: Modu-
larity and extendibility are two main features for Multi-Energy-Systems. In particular,
SMIRSE needs to be designed to integrate in a plug-and-play fashion heterogeneous
data-sources, models and simulators. This makes the overall infrastructure suitable
for simulating different energy scenarios, becoming a general purpose framework
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for energy simulations in cities. Modularity and extendibility are also two main
requirements to allow future extensions with low cost and small architectural impacts.

ix) Scalability of the infrastructure: Horizontal and vertical scalability of the in-
frastructure is another key requirement of SMIRSE. Indeed, it needs to scale up
quickly and easily because simulating a city or a district implies the interaction of
thousand of concurrent entities. This becomes critical if real-time simulations of
power distribution network must be performed.

Figure 2.1 show a high-level overview of the architectural style for building a
simulation infrastructure that accomplish to the identified challenges. On the left
side of the schema the main inputs of the infrastructure are represented. Thanks to
the development of Request-Response and Publish-Subscribe API’S the SMIRSE in-
tegrates third party data-sources (BIM, GIS, GRID topology,...) and Internet con-
nected devices (Indoor sensors, Smart meters, Weather Stations). In the core of the
infrastructure are placed the Environmental, Physical, Social and Cyber Modules rep-
resenting a Multi-Layer-Systems. Those modules are able to exchange data among
each other thanks to the development of Request-Response and Publish-Subscribe
API’S present in the Cyber layer. Such approach enables the composability and
modularity of the platform. On the bottom of the modelling and simulation module
a Real-time grid simulator is connected to the Simulation and Modelling modules
thanks to Request-Response and Publish-Subscribe API’s in order to simulate the
grid behavior. On the right side the Final Applications are reported. Thanks to
Request-Response API’S the user choses the simulation and modelling modules and
can see results in forms of Dashboards and Thematics Maps.

Furthermore, this solution is intended to satisfy the needs of different end-users
such as:

• Single citizen can evaluate the economic and environmental savings achiev-
able with the installation of RES; Hence he/she wants to be aware of the
avoided CO2 emission and virtuous actions he/she can perform.

• Energy aggregators and Energy Communities can use the simulations to
schedule consumption of their clients for maximizing self-consumption and
minimizing energy bills. In particular Energy Communities can exploit such
infrastructure to perform feasibility studies as proposed in our previous re-
search [23];
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• Distribution system operators (DSO) can take advantage of the proposed
solution for network balancing and for planning retrofits and/or extensions of
the existing distribution grid;

• RES engineers can simulate the behaviour of converters with the application
of realistic conditions. This simulation helps in dimensioning, validating and
optimizing each system before and after installation;

• Energy and City planners can exploit the infrastructure for evaluating the
impacts of Renewable Energy sources installations or for monitoring the
performance of existing ones.



Chapter 3

Related Work

In the last years, the study of Multi-Energy-Systems (MES) is becoming crucial
to de-carbonize energy production and also to foster a widespread deployment
of RES. Geographic Information System (GIS) is considered useful tool to plan
the deployment of renewable energy sources, such as solar, wind and biomass
systems [24]. Particular emphasis is given to such technology for modelling solar
potential in urban environments [25]. To achieve it, there is the need tools for an
in-depth analysis and simulation of MES for both electrical and thermal energy [14].

The following sections report first the state of the art solution for co-simulation
of MES with a particular focus on Photovoltaic energy simulation. The latter present
the innovation of the SMIRSE with respect to MES co-simulation and Photovoltaic
energy solutions.

3.1 MES co-simulation and Photovoltaic simulation
solutions

DER-CAM [26] is a useful tool for planning and operational analysis of power
distribution networks. It aims at providing guidelines for future investment. The
input can be given with a resolution up to 5 minutes.

HOMER [27] helps on studying different micro-grid configurations based on
hourly input data.
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EnergyPLAN [28] is another solution useful for both operational and planning
activities. It receive input data up to hourly values. However, none of these solutions
provides features for detailed power flow analysis or thermal simulations in buildings.
Moreover, they are not flexible in integrating new scenarios in the simulation process
and they do not exploit data coming in (near-) real-time from real devices installed
across the city.

GRIDSpice [29] is a distributed platform that co-simulate power flows and data
communication in smart-grid scenarios. It integrates third-party software like MAT-
POWER and GridLAB-D to simulate power generation, demand and distribution.
It exploit a cloud-based architecture to parallelize the computation of large scale
models. Also in this case, GRIDSpice neglects thermal simulations in buildings and
does not exploit (near-) real-time information from real devices.

SGsim [30] integrates two tools for simulating both power and communication
flows to co-simulate smart grid applications, such as Conservation Voltage Reduction.

DIMOSIM [31] is a platform to perform MES simulations in urban districts. It
enables thermal simulations in buildings but it lacks of electrical flows simulations
in power grids.

MOSAIK [32–34] is a flexible architecture consisting of four layers for managing
control strategies, scenario specifications and simulation models exploiting semantic
knowledge. In particular, to perform power-flow analysis in a smart grid scenario,
[34] integrates a co-simulation between the software PowerFactory with their model
(in MATLAB®) for both PV and Load generations.

IDEAS [35] is an open source platform based on Modelica modelling language. It
co-simulate Demand Side Management strategies where thermal request of buildings
affects power distribution networks.

MESCOS [15] is a co-simulation platform for district energy systems. It simu-
lates Demand Response and Demand Side Management policies by integrating both
electrical and thermal loads.

The main limitations of these solutions are summarized as follows: i) they do
not integrate (near-) real-time information from real devices; ii) they do not exploit
a real-time simulator (e.g. OPAL-RT and RTDS); iii) the integration with other
simulation tools is not easy. In addition to that, MOSAIK lacks in simulating thermal
behaviors in buildings.
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The three co-simulation tools MOSAIK, GRIDspice and SGsim offer a flexible
and scalable simulation framework but limited to SIL (Software in the Loop), without
the possibility of HIL (Hardware in the Loop). Furthermore, they do not provide
real-time features for short-transient phenomena.

HUES [36] platform aims at facilitating the integration of different models for
MES analysis. It implements a repository layer that includes all the platform modules
whose functionalities are described in a semantic wiki. However, HUES neglects
on an interconnection among the platform’s modules and lacks on integrating data
coming in (near-) real-time from devices installed across the city.

In [37], authors present INSPIRE, a co-simulation framework for evaluating
real-time power systems tougher with ICT. It is based on both the IEC 61850
standard and the IEC 61968/61970 common information model. Thus, INSPIRE
simulates the interactions between the Physical layer and Cyber layer.

In [38], authors present a distributed platform for real-time co-simulation of
Demand Response events in microgrids. The platform integrates the OPAL-RT
simulator and exploits information coming in real-time from real devices. However,
the platform does not simulate thermal behaviors in buildings.

Yang et al. [39] propose a co-simulation environment for HIL/SIL (Hardware-
in-the-loop/Software-in-the-loop) validations of distributed controls in Smart Grid.
They designed the controls by exploiting a model-driven approach using the IEC
61499 standard. Controllers are developed in MATLAB/Simulink® and communi-
cate with power plants models through UDP (User Datagram Protocol) and TCP
(Transmission Control Protocol) sockets to build closed-loop models. Authors high-
light that a co-simulation approach is extremely useful in the context of distributed
automation.

In [40], authors present a specific HIL/SIL co-simulation platform to verify the
performance of a volt-VAR optimization engine for smart distribution networks. In
its core, it integrates a real-time simulator for distribution networks with physical
devices for Measurement & Control. For message exchanges in the platform, they
implemented both IEC 61850 MMS and GOOSE protocols.

Another example of multi-layer co-simulation platform for complex-system
analysis is presented in previous works [41, 42]. This solution is devoted only to
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evaluate the impacts of PV distributed generation systems, especially in densely
populated urban areas. It implements Physical, Cyber and Environmental layers.

In [43] the authors presents a co-simulation testbed for microgrids. They integrate
a RTS with a communication emulator in order to test control algorithms for micro-
grid.

In the framework of smart grids real-time simulation, ENEL, the biggest Italian
utility, is running test and validation projects in some of its smart grids laboratories.
POI P3 Smart Grid project is an example of these activities [44], with the purpose
of testing new techniques for voltage regulation through SCADA and DMS. All
devices and systems in this project communicate only via IEC 61850 standard. Lack
of forecasted power-time profiles of the loads and generators was the other limitation
of its test set up implementation.

Finally in [45], authors presents a flexible co-simulation environment that ex-
ploits an IoT approach. Indeed, information from IoT devices (e.g. smart meters)
has feed into a real-time simulator through the publish/subscribe communication
paradigm [7].

With respect to Photovoltaic energy simulation the authors in [46] and [47]
exploit GIS tools to estimate the yearly Photovoltaic (PV) potential starting from
aerial and satellite images. Another approach consists in exploiting Digital Surface
Models (DSMs) or 3D city models obtained from LiDAR data. DSM represents the
earth’s surface and includes all objects and buildings on it. For example starting
from DSM, Hofierka et al. [48] estimated monthly and yearly solar potential in urban
areas using r.sun tool [49]. Following this approach, Jakubiec et al. [50] developed
a methodology to predict PV electricity gains using LiDAR data combined with
DAYSIM simulations. Lukač et al. [51] also used LiDAR data and developed a new
algorithm for evaluating solar radiation on rooftops. Finally, Camargo et al. [52] have
modelled PV integration into a urban grid by exploiting r.sun. Still exploiting LiDAR
data, Brito et al. [53] estimated yearly PV potential in Lisbon using ESRI Solar
Analyst tool. These solutions just perform a time-domain analysis to estimate yearly
solar potential. However, to provide more precise PV estimations, both space and
time domains must be taken into account [52, 50, 51]. In [25] and [24], authors
highlight that the integration of these two domains, with higher time and space
resolutions, is needed to better understand spatio-temporal dynamics in energy
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systems models. This is required to i) plan deployment activities; ii) evaluate
business plans; iii) monitor existing plants and iv) promote smart energy use.

On this premises, in order to provide simulation tools to wide range of users, GIS
solutions have been developed exploiting a Web Service approach. Li et al. [54] have
developed a service-oriented environment for sharing geoscience algorithms. They
exploited both SOAP (Simple Object Access Protocol) technologies and OGC (Open
Geospatial Consortium) standards to make available GRASS-GIS [55] features
trough Web Services. Gwass [56] is a distributed web-based GIS built on top of
the GeoBrain Web Services. This platform exploits a service-oriented architecture
to offer an alternative to commercial desktop solution. Literature provides also
web-based solutions [57–64] to give PV energy potential information and to foster
assessments of environmental and economic benefits as pointed out by Freitas et
al. [25]. PVWatts [59] is a web application developed by the National Renewable
Energy Laboratory that estimates yearly (Y), monthly (M) and hourly (H) PV
production using a Typical Meteorological Year (TMY) and a topographic model
of 40km2. PVGIS [57, 58] is a solar web map that offers information on yearly and
monthly PV production in Europe and Africa. It provides also sub-hourly radiation
information in clear-sky conditions. To perform this computations, it exploits r.sun
starting form a DSM with a resolution of 1 km. i-Guess [61] is a web based system
for urban energy planning in smart cities. It provides maps for yearly solar radiation
on rooftops and for yearly PV potential. Mapwell Solar System [60] computes
solar radiation and PV potential considering also a TMY. In its core, it exploits the
methodology described in [50] to perform simulations. It also provides information
on rooftops and Region Of Interest (ROI). I-SCOPE [62] is an integrated platform
to give 3-D smart-city services. In particular, it offers a solar map with Yearly and
Monthly PV potential. Finally, Brumen et al. [63] developed a web application
for PV potential assessments by exploiting r.sun starting from DSM. This platform
provides data about yearly and monthly PV Potential together with information
on rooftops and ROI. Such information on rooftops and ROI are also provided by
I-SCOPE and i-GUESS services.



3.2 Innovation of the SMIRSE platform 15

3.2 Innovation of the SMIRSE platform

The presented literature solutions are designed and implemented to address a single
use-case or scenario with specific requirements, while the SMIRSE co-simulation
platform is designed to be flexible in simulating different use cases and scenarios in
power grids. In addition, SMIRSE integrate Internet-of-Things (IoT) communication
paradigms and protocols to provide flexibility and scalability in performing HIL and
SIL co-simulations. Thus, SMIRSE is ready to enable the communication among
next generation devices (e.g. Smart Meters), that will be IoT devices. In a nutshell
SMIRSE exploits communication paradigms peculiar of IoT platforms, to implement
a modular framework where different power grid scenarios and simulations can be
executed. It includes Physical, Cyber and Environmental layers depicted in [19]
providing features to perform both HIL and SIL co-simulations. In addition, it
integrates Smart Metering Infrastructure (e.g. [65, 66]) to retrieve measurements
from real devices deployed along the distribution network.

To highlight the contribution, Table 3.1 reports a comparison of SMIRSE solution
with the reviewed smart-grid co-simulation environments. It highlights: i) what are
the simulation layers among Physical, Cyber and Environmental that each solution
integrates in the simulation environment; ii) what kind of co-simulation is performed;
iii) if a Real-time simulator is used; iv) if the solution simulates single or multiple
use-cases/scenarios; v) if HIL and/or SIL simulations can be performed; and vi) if
the simulation environment interacts with IoT devices.

With respect to Photovoltaic simulation the main limitation of presented solutions
consists on overlooking a fine-grained spatio-temporal domain in simulating and
modelling energy production and performance of PV systems. Indeed, they are
mainly focused on spatial domain by performing yearly or monthly simulations. On
the other hand, existing spatio-temporal solutions perform hourly simulations with a
low-resolution in spatial domain (e.g. resolution > 1m). To provide more accurate
estimations, hourly and sub-hourly simulations with fine-grained resolution (e.g.
DSM with resolution < 1 m) are instead needed. This hight-resolution DSM allows
to recognize and exclude encumbrance in rooftops, such as chimneys and dormers.
Moreover, such simulations have to take into account real-sky conditions. To do
so, they need real weather data (e.g. data from personal weather stations [24]) to
compute incident radiation on tilted surface of rooftops and estimate PV performance
and energy production.
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Table 3.1 Comparison among our co-simulation infrastructure and literature solutions.

Solutions Integrated
layers Co-Simulation RTS Use-case

Scenario HIL/SIL IoT

DER-CAM [26] Physical
Up to 5 minute resolution
of physical energy-systems. x Multiple x x

HOMER [27] Physical
Hourly simulation
of micro grid energy-systems. x Multiple x x

EnergyPLAN [28] Physical
Hourly simulation
of MES energy-systems. x Multiple x x

GRIDspice [67] Physical
Cyber

Co-simulation of power-
and communication-flows
in smart-grids.

x Multiple SIL x

SGsim [30] Physical
Cyber

Co-simulation of power-
and communication-flows
for smart-grids application
such as CVR.

x Multiple SIL x

DIMOSIM [31] Physical
Co-simulation of MES
no electrical power flows. x Multiple x x

MOSAIK [32–34] Physical
Cyber

Co-simulation of power
flow and load generation. x Multiple SIL x

IDEAS [35] Physical
Co-simulation of demand
side management with
thermal simulation of buildings.

x Single x x

MESCOS [15] Physical
Co-simulation of demand
side management with
thermal simulation of buildings.

x Single x x

HUES [36] Repository Repository of simulation models. x Multiple x x

INSPIRE [37] Physical
Cyber

Real-time co-simulation
of Cyber-physical
energy-systems.

x Multiple x x

Yang et al. [39] Physical
Cyber

Real-time co-simulation
between two simulation
environments (MATLAB
and Function Block).

x Single
HIL
SIL x

Manbachi et al. [40] Physical
Cyber

Real-time co-simulation
of grid status and
volt variation controllers.

✓ Single
HIL
SIL x

Bottaccioli et al. [41, 42]
Physical
Cyber
Environmental

Real-time co-simulation
of PV energy production
and grid status.

✓ Single
HIL
SIL x

Hahn et al. [43] Physical
Cyber

Real-time co-simulation
of power- and
communication-flows
to test control algorithms
in micro-grids.

✓ Multiple
HIL
SIL x

ENEL [44] Physical
Cyber

Real-time simulation
of protection and
automation strategies.

✓ Multiple
HIL
SIL x

SMIRSE solution
Physical
Cyber
Environmental

Real-time co-simulation
of smart grid control
algorithms and building
thermal loads.

✓ Multiple
HIL
SIL ✓
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Table 3.2 summarize the main features of the relevant literature solutions for
Photovoltaic energy simulation with respect to SMIRSE .

Table 3.2 Comparison between the proposed architecture and relevant literature solutions

Simulation
Step

Y M H

Sub-hourly
Clear-sky
simulation

Sub-hourly
Real-sky

simulation

Rooftop
and/or

ROI details

Weather
Station data
integration

Distributed
and modular
architecture

REST
API

SMIRSE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
PVWatts [59] ✓ ✓ ✓
PVGIS [58] ✓ ✓ ✓
i-GUESS [61] ✓
Mapdwell [60] ✓ ✓
I-SCOPE [62] ✓ ✓ ✓
Brumen [63] ✓ ✓ ✓

As such, the contribution (presented in Section 5.2.1) with respect to state-of-
the-art in solar energy simulation, detailed in Table 3.2, includes the followings
innovating aspects: i) analysing together spatial and temporal domain in fine-grained
resolution; ii) providing real-sky sub-hourly simulations, with 15-minutes time
intervals; iii) integrating real meteorological data gathered from (personal) weather
stations.

Summarizing the strength of SMIRSE infrastructure comes from its capability
to host new different use cases, input data, or models by means of its modules
in a plug-and-play fashion, with a minimum effort to change the overall setup.
As an example, several distributed generations (DGs) can be integrated as either
independent simulators or standalone physical generators thanks to our IoT-based
architecture which is a novel contribution to the co-simulations of electric energy
systems with respect to conventional setups.

With respect to literature solutions, SMIRSE is a distributed infrastructure for
modelling and simulating renewable energy sources and smart energy policies inte-
gration. It aims at overcoming the highlighted limitations and addressing the main
challenges identified in Section 2 to evaluate general purpose simulation scenarios.
In particular, SMIRSE performs simulations for both thermal and electrical energy
systems with different spatio-temporal resolutions. It exploits the OPAL-RT real-time
simulator that allows in-depth simulations with microseconds time-steps. It provides
features to perform detailed power flow analysis, thermal simulations in buildings
and evaluation of RES impacts on the grid. Furthermore, SMIRSE integrates data
coming in (near-) real-time from real devices installed across the city. Finally, it
eases the interconnection among SMIRSE components and third-party models and
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simulators in a plug-and-play fashion.



Chapter 4

Background on Enabling
Technologies for distributed
infrastructures

This Chapter introduces the adopted technologies to enable the development of
distributed infrastructure for simulation and modeling renewable energy source and
smart policies integration in urban district. The following Sections will present a
description of the:

• Microservice approach used in the development of the SMIRSE distributed
infrastructure;

• IoT communication protocols that have been used for enabling the integration
and the communication between the different modules of the SMIRSE solution

• Open Geospatial Consortium standards for the development of web service
for Geographic Information Systems (GIS) data and process

4.1 Microservices

In the last year many companies and researchers are starting to adopt a microservices
architectural style in developing their platforms and application. The microservices
approach consists on developing software as a suite of small services, each running



20 Background on Enabling Technologies for distributed infrastructures

in its own process and communicating with lightweight mechanisms [68]. This
increases flexibility and maintainability because services are small, highly decoupled
and focus on doing a small task [69].

Krylovskiy et al. [70] have reported the main characteristic of the microservices
approach for distributed infrastructures for smart-city and smart-grid scenarios,
which are described in the followings:

• Componentization via Services. Thanks to the approach is possible to have
system composed by single services that are independently, replaceable, up-
gradeable, and deployable. There are no function calls that use in-memory but
the components of the system interacts with web-serivce calls.

• Organization around Business Capabilities. As reported by [19] Organiza-
tion have an important impact on system design. Microservices architecture
stimulates organization on business capabilities with respect to a standard layer
approach. As reported by [68], microservices approaches are deployed with
cross-functional teams by preventing the ”logic everywhere” soiled architec-
tures.

• Smart endpoints and dump pipes. The use lightweight communication
protocols in the massage exchange process keeps their domain logic internal.
With respect to monolithic approach where the communication mechanism
provides sophisticated functionality for message transformation and choreog-
raphy, the business logic in microservices architecture always remains in the
endpoints the services.

• Decentralized Governance. Due to the fact that the services are indepen-
dently deployable in the microservices approach there is less need of a central-
ized governance in standards and technology platforms. The development of
the whole systems do not relay on a single technology for each service. This
provides the possibility of choosing the right technology for each job.

• Decentralized Data Management. Microservices approach provides the
possibility of using a decentralized data management system for each service.
Hence there is no need of a unique data management system but every service
has its own database that fulfills in the best way the job.
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• Evolutionary Design. In the microservices design the decomposition is used
to enable frequent and controlled changes in the systems. This can affects
in two aspects: i) the possibility of having independently deployable and
replaceable components allows to reimplemented services without affecting
the rest of the system and ii) the changes that might happen inside a services
are limited because the service provides as small task.

Newman [69] summarizes the benefits of microservices design in the following:

• Heterogeneity in the system technology: Decentralized governance and data
management allows coexistence of different technologies used by different
components in the system.

• Resilience: the components of the system have clear boundaries giving the pos-
sibility to easily isolate failures and gradually degrade the system functionality,
as well as update and deploy individual services independently.

• Scalability: The microservice design pattern allows to easy scale the single
components of an infrastructure without scaling up the whole system.

• Composability: due to the componentization in the microservice approach is
possible to create new system capabilities by composing and re-using existing
services.

Hence, microservices are not really a enabling technology but more an architec-
tural approach that eases the implementation of a flexible, scalable and distributed
infrastructure.

In Figure 4.1 Daya et al. [9] reports the main difference between microservices
and monolithic approaches.

4.2 IoT communication Protocols

The communication protocols used in the development of the SMIRSE distributed
infrastructure are based on common IoT communication protocols. Request/response
and Publish/subscribe communication paradigms have been adopted. In particular
REST (Representational State Transfer) architectural style, in the form of web
services, and the MQTT protocol are used.
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Table 4.1 Comparison between microservices and monolithic approach [9]

Category Monolithic architecture Microservices architecture

Code
A single code base for the en-
tire application.

Multiple code bases. Each mi-
croservice has its own code
base.

Understandability
Often confusing and hard to
maintain.

Much better readability and
much easier to maintain.

Deployment
Complex deployments with
maintenance windows and
scheduled downtimes.

Simple deployment as each
microservice can be deployed
individually, with minimal if
not zero downtime.

Language
Typically entirely developed
in one programming language

Each microservice can be de-
veloped in a different program-
ming language.

Scaling
Requires you to scale the en-
tire application even though
bottlenecks are localized.

Enables you to scale bottle-
necked services without scal-
ing the entire application.

4.2.1 Representational State Transfer architectural style

Representational State Transfer (REST) is a coordinated set of architectural con-
straints that attempts to minimize latency and network communication, while at
the same time maximizing the independence and scalability of component imple-
mentations [71]. Fielding in its PhD dissertation [72] starts describing the REST
architectural style by defying the constraints of the REST approach.

• Client-Server: The main constrain is the separation of concerns between
client and server. By separating user interface concerns from data storage
consolers the portability of the user interface is increased. Thus increases
scalability at the same time due to the simplification of the server components.

• Stateless: The second constrain is a stateless communication between Client-
Server interaction. Each request from client to server contains all the informa-
tion needed by the server to understand the request. This constrains increases
Visibility because there is no need to look beyond a single request datum.
Scalability is achieved because there is no need to store state between requests
and the server can easily and quickly free resources.
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• Cache: A cache constrain is added in order to reduce client-server interaction.
Thus increases scalability and performance.

• Layered system: Each component of the system cannot see beyond the im-
mediate layer with which they are interacting. Hence, a client cannot tell if he
is directly connected to the end server or to an intermediate. This increases
the scalability of the system by enabling load balancing of services across
multiple networks and processors.

• Uniform Interface: This constrain is the main characteristic of REST archi-
tecture. By providing a Uniform interface the system architecture is simplified
and the visibility of interaction is improved. Uniform interface is achieved
by defining the following interface constraints: i)identification of resources;
ii)manipulation of resources through representations; iii)self-descriptive mes-
sages; and iv)hypermedia as the engine of application state.

In REST architecture the components communicate by transferring a representa-
tion of the data in a format matching one of an evolving set of standard data types.
The format is then selected dynamically based on the capabilities or desires of the
recipient and the nature of the data.

In order to encapsulate the activities of accessing resources and transferring
resource representations REST takes advantage of connector types. Thus, connectors
provide an abstract interface for component communication. This increases the
simplicity thanks to a clean separation of concerns and by hiding the implementation
of resources and communication mechanisms. Thanks to the generality of the
interface new implementation can replace existing ones without impacting the other
components of the system.

4.2.2 Publish/Subscribe communication approach

Distributed infrastructure, as the own presented in this Thesis, involves a large
amount of simulation models, sensors end services calling for a dynamic commu-
nication schema. The publish/subscribe interaction paradigm provides subscribers
with the ability to express their interest in an event or a pattern of events, in order to
be notified subsequently of any event, generated by a publisher, that matches their
registered interest [7].
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Fig. 4.1 A simple object publish/subscribe [7]

Figure 4.1 shows a basic system model for publish/subscribe interaction. The
model relies on an event notification service providing storage and management for
subscriptions and efficient delivery of events. The Event Service acts as a neutral
mediator between publishers, that produces events, and subscribers, that consumes
events. A subscriber registers its interest in a topic of events by calling a subscribe()
operation to the Event Service, with no knowledge on the sources of these events. On
the other side the publisher has no information on how is consuming its informations.

Fig. 4.2 Space, time and synchronization decoupling with the publish/subscribe paradigm [7]
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This communication schema provides the possibility of decoupling in three
dimension increasing the scalability, as stated by [7] and shown in Figure 4.2:

• Time decoupling: Publisher and subscriber cannot participate to the interaction
at the same time. For example a publisher can send a message meanwhile the
subscriber is disconnected. The subscriber can get notified by the event after it
gets reconnected meanwhile the publisher went off line.

• Space decoupling: Publisher and subscriber do not need to know each other.

• Synchronization decoupling: messages and exchanges between publishers and
subscribers can be asynchronously.

4.3 Geographic Information Systems and Open Geospa-
tial Consortium Services

GIS are crucial in the development of simulation and modeling of smart and re-
newable urban energy system for a variety of reasons [24]. Firstly, GIS provides a
heterogeneous information for describing the environment of the analyzed district. In
particular, GIS offer information on population distribution, buildings presence and
characteristics, localization of sensors (such as Weather Data) and Digital Elevation
Models for reconstructing the area morphology. Furthermore, GIS allows to perform
accurate simulations in the territory for planning and evaluating the power production
from renewable and distributed energy sources. Finally, GIS allows to build thematic
maps that are crucial in presenting and visualizing results for planners and decision
makers.

The Open Geospatial Consortium (OGC) [73] specifies the interfaces for publish-
ing and performing geospatial processes over the web. In particular, it implements:

• Web Processing Service (WPS): It provides a standard for geospatial process-
ing services describing how inputs and outputs can be structured. Furthermore,
WPS defines standards for the execution of a process and for the process output
from and to a client request. With this standard any geospatial process can be
“wrapped” with a standard interface and integrated into existing workflows.
WPS supports short and fast computational tasks and long and time consuming
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process exploiting asynchronous processing. Moreover, the WPS standard
provides an interoperable description of processing functions by defining a
general process model that is designed to support process cataloging and
discovery in a distributed environment.

• Web Feature Service (WFS): specifies a standard for services that provides
access and operations to GIS features abstracting from the underlying data
store. Possible operations enabled by WFS are: i) Discovery operations
provide the capability of the services and its application schema that defines
the feature types of the service. ii) Query operations provides the possibility
of retrieving features and/or values from the underlying data store based upon
constraints, defined by the client, on feature properties. iii) Locking operations
provides the access to features for the purpose of modifying or deleting features.
iv) Transaction operations allow features to be created, changed, replaced
and deleted from the underlying data store. v) Stored query operations allow
clients to create, drop, list and described parameterized query expressions
that are stored by the server and can be repeatedly invoked using different
parameter values.

• Web mapping Service (WMS): standardizes a simple HTTP interface for
retrieving GIS maps from one or more distributed geospatial databases. With
a request WMS defines the geographic layer(s) and area of interest to be
processed. The response provides one or more GIS maps (returned as JPEG,
PNG, etc) that can be displayed in a browser application.



Chapter 5

The SMIRSE software infrastructure

In this chapter the SMIRSE distributed infrastructure for modeling and co-simulation
of Smart and Renewable Energy Systems in urban districts (see Figure 5.1) is
presented.

Fig. 5.1 Schema of SMIRSE Platform

This infrastructure exploits the microservice design pattern [68, 69], described is
Chapter 4, to increase both scalability and extendibility of the system, and to ease its
maintenance. Indeed, the microservice approach defines software architecture as a
set of loosely coupled and collaborating services. Thus, the solution is flexible in
modelling and co-simulating different energy flows in a single solution made of dif-
ferent interoperable components or modules that can be deployed in a plug-and-play
fashion. Moreover, the communication between the different components exploits
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both the request/response (e.g. REST web services [74]) and publish/subscribe [7]
(e.g. MQTT protocol [75]) communication paradigms.

The proposed infrastructure consists of four layers. From left to right in Fig-
ure 5.1, both Environmental and Physical Layers includes the heterogeneous data-
sources needed by the different components in the system. The Cyber Layer enables
the communication among the different modules in the four layers by exploiting
either the request/response or publish/subscribe [7] communication paradigms. The
Modelling and Simulation Layer consists of different components that simulate
energy phenomena.

5.1 SMIRSE Layers

5.1.1 Data sources

The proposed solution integrates heterogeneous data-sources needed by the simula-
tion components. In particular, they have been grouped in two layers, Environmental
Layer and Physical Layer (see Figure 5.1).

The Environmental layer integrates all the information needed to describe a
city. Among the others this layer includes:

i) Geographical Information Systems (GIS) integrate georeferenced information
about the different entities (e.g. devices, buildings and pipelines) in cities. It also
includes cartographies cadastral maps and Digital Elevation Models.

ii) Building Information Models (BIM) are parametric 3-Dimensional models, where
each model describes a building, both structurally and semantically.

iii) System Information Models (SIM) describe size and structure of energy distribu-
tion networks. SIM is built by exploiting parametric and topological data.

iv) Weather Data are retrieved by third party services, such as [76]. This information
is georeferenced and collected by personal weather stations deployed in cities.

On the other hand, the Physical layer integrates data coming from physical
systems and Internet connected devices in (near-) real-time. Among the others this
layer includes:

i) Measurements of energy production from Distributed Generation.
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ii) Status of Distribution Grid that are needed to simulate energy flows and evaluate
the integration of Renewable Energy Sources (RES). Thus, information sampled by
devices monitoring the energy distribution network.

iii) Information sent by IoT devices, such as Ambient sensors, multi-vector Smart
Meters (i.e. electricity, gas, heating and water) and Actuators.

Furthermore, the proposed infrastructure foresees the integration with real devices
exploiting two different approaches: i) Hardware in the Loop (HIL) and ii) "Smart
Metering Infrastructure in-the-Loop".

HIL refers to the simulations in which a real device (e.g. relay and PV panel) is
connected to a virtual environment instead of real system (e.g. simulated grid).

For example smart meters can be considered as IoT devices, the proposed archi-
tecture interconnects them with the real time simulator (as the grid virtual model)
based on an IoT approach, which is different from the conventional off-the-shelf
solutions used for HIL. Including "Smart Metering Infrastructure in-the-Loop", gives
the possibility to integrate in the simulation framework third-party smart metering
infrastructure, such as [65, 66]. As further explained in in Section 5.1.2.2, this
integration can be achieved thanks to the Communication adapter. In this view, each
Internet-connected smart meter sends measurements to its smart metering infrastruc-
ture that can forward them to the Real-Time Simulator exploiting either MQTT or
REST adapters.

5.1.2 Cyber layer

The Cyber layer is in charge of enabling data exchange among the different com-
ponents of the SMIRSE infrastructure. It exploits both the synchronous and asyn-
chronous communication paradigms presented in Section 4. SMIRSE adopts both re-
quest/response and publish/subscribe [7] approaches, respectively. Request/response
allows a fast bidirectional communication to send/access information to/from differ-
ent components of SMIRSE (either hardware or software), using, for instance, REST
Web Services [74]. Whilst, publish/subscribe is complementary to request/response
and allows (near-) real-time data transmission. Publish/subscribe removes the inter-
dependencies between producer and consumer of information. This allows devel-
opers in creating distributed software components that are independent from data-
sources and can react in (near-) real-time to certain events. Thus, publish/subscribe
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enables a data-driven and event-based communication that also increases the scal-
ability of the system as pointed out in [77]. The proposed solution adopt MQTT
protocol [75], which is an implementation of publish/subscribe.

As shown in Figure 5.1, the Cyber layer consists of three main modules the
Communication Adapter, the Data Integration Platform and Smart Metering Infras-
tructure. The Communication Adapter,further presented in Section 5.1.2.2 enables
the interoperability across the heterogeneous devices in the Physical Layer. Whilst,
the Data Integration Platform integrates third party software and platforms in the
Environmental Layer. Both act as a bridge between the components of infrastructure
and the underlying technologies, either hardware or software. In this view, each
technology needs a specific Communication Adapter or a Data Integration Plat-
form to provide common and unified interfaces to access low-level functionalities
through REST Web Services and/or MQTT. Thus, both Communication Adapter and
Data Integration Platform are key component to access each low-level technology
transparently. Finally, SMIRSE provides features to integrate also third party Smart
Metering Infrastructure, such as [78], that makes available historical data collected
from real distribution networks and post-processed information output of its services.

5.1.2.1 Data integration platform

The Cyber Layer integrates a Data integration platform that provides components
specifically designed for accessing and managing information, coming from hetero-
geneous data sources. The data integration plaform exploits a JSON-based RESTful
APIs and in this way creates a virtual District Information Model correlating data
from different data-sources.

The platform trough a Resource Catalog provides a constantly updated registry
of endpoints for the available resources. The Resource Catalog provides flexibility
to the whole infrastructure because new ICT systems can be transparently added,
removed or replaced in the system. Furthermore, the platform trough the use of
an Historical Datastore API, that is implemented for each integrated ICT system,
provides historical data to the simulation and modeling exposing API to access it.

In order to provide Semantic interoperability the platform takes advantage of
of Semantic Web technologies to annotate and interlink integrated data sources
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and query them using the semantic attributes. This feature is implemented by
the Semantic Metastore service, which builds on the off-the-shelf Semantic Web
technologies such as Apache Jena [27] to provide higher-level, developer-friendly
APIs for populating and querying the semantic knowledge base through REST Web
Services.

The District Information Model (DIM) created by the Data integration platform
is composed by different entities from the Environmental and Physical layer shown
in Figure 5.1.

In particular, the following specific data sources, presented in Section 5.1.1 are
integrated to get a comprehensive view of a district:

• Building Information Models;

• Geographical Information Systems;

• System Information Models (SIMs [12])

• Weather data

• Grid Status

The Data integration platform is heavily based on RESTful Web Services and
distributed deployment. The use of RESTful Web Services provides a uniform
interface to each component of the system. In particular, the same response format is
returned, independently from the actual queried data source. This also means that, if
a component technology (e.g. a DBMS) changes, the client application receives the
same response as a result of the same query.

The platform provides a RESTful Web Service interface to the underlying
databases. It interacts with the Data layer by using SQL queries and preparing
JSON results.

5.1.2.2 Communication Adapter

In the Cyber layer are integrated two type of Communication adapters: one is in
charge of connecting and enabling the communication of heterogeneous devices. The
second is in charge of enabling the communication between the different modules of
the modeling and simulation layer.
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Hence, the first Communication adapter is related to the Smart Metering Infras-
tructure, that is in charge of retrieving measurements from heterogeneous devices,
either wired and wireless, that exploit different communication protocols (e.g., IEEE
802.11, ZigBee, PLC or 6LowPan). The interoperability among these technolo-
gies is achieved trough through Communication adapters called Device Integration
Adapters (DIA). Hence, this layer integrates several IoT devices with traditional
and industrial communication technologies by abstracting every communication
language in a unique data format. They have been developed following a method-
ology described in [79]. Then measurements are sent to the cloud infrastructure
exploiting MQTT. The other Communication adapter (see Figure 5.2) is in charge
of enabling data exchange among the Real-time simulator (RTS) and other infrastruc-
ture modules. It implements two communication paradigms presented in Section 4:
i) publish/subscribe [7] based on MQTT (Message Queuing Telemetry Transport)
protocol [75] and ii) request/response based on REST (Representational State Trans-
fer) [71]. In particular, the publish/subscribe communication model allows the
development of loosely-coupled event-based systems. As explicit dependencies be-
tween data-producer and data-consumer are removed, each module in the proposed
infrastructure can publish data, which can be independently received by a number of
subscribers. This also increase the scalability of the whole infrastructure [65].
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Fig. 5.2 Schema of the communication adapter

In its core, the Communication adapter exploits the TCP/UDP module to allow a
bidirectional communication with the RTS. It exploits either TCP or UDP protocols
to give a full communication compatibility with the real-time simulators in the market
(e.g. Opal-RT) that provide software libraries and tools to exploit these two protocols.
Thus, depending on the communication requirements needed by the simulation, the
Communication adapter can be configured to use either TCP or UDP. Such real-time
simulators are in charge of performing hard real-time simulations respecting the
predefined time-steps. However, the interaction among different modules of the
overall co-simulation for most of the use-cases requires rates of exchanging data
in the range of seconds to minutes, which are much higher than the latency of the
communication infrastructure. This guarantees that messages are delivered in time.
This module implements both server and client functionalities, in that it receives and
sends data to the real-time simulation engine. Such data includes either electrical
measurement from virtual meters in the grid model (e.g. voltage, current, active and
reactive power) or control signals from some control and management algorithms
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(e.g. voltage or current signals, time-variant load or generation values and switch
activation signals).

The Communication adapter provides the MQTT publisher module that parses
data from RTS into sequence of events before publishing to an MQTT Message
broker. The Message broker keeps track of all publications and subscriptions and
takes care of sending new data to subscribers. Hence, any client application (e.g.
Control and managements algorithms) subscribes to the Message broker for receiving
an information flow according to its needs. The Communication adapter works also
as subscriber. Therefore, it is able to receive commands from remote applications
(e.g. Control and managements algorithms and Load Simulator modules) and pushes
them to the real-time simulation engine. Finally, the REST adapter is in charge of
retrieving information from REST web service, even third party services, and passes
the results to RTS, again through the TCP/UDP module.

The Communication adapter also translates the information from the data-format
used by the software components in Figure 5.2 to the data-format suitable for the
RTS and vice-versa. These software components exploit JSON that is an open-
standard format that uses human-readable text to transmit data objects consisting
of key-value pairs. It is the most common data-format used for data exchange in
web environments. Whilst, the data-format for RTS must be a vector of numbers.
We organized this vector also as a series of key-value pairs. The odd positions in
the vector are the numeric keys while the even positions are the associated numeric
values. Thus, the Communication adapter translates each key-value pair in the JSON
into the equivalent numeric key-value pair in the vector and vice-versa.

In this platform, real-time simulation is performed by the digital real time simu-
lator in which the virtual model of the grid is simulated. The overall co-simulation is
in near- real-time mode as the data exchange is seldom in real-time due to communi-
cation delay of the infrastructure. To ensure synchronization, the real-time simulator
is running with a shifted time stamp with respect to the real world wall-clock time.

It is worth noting that the Communication adapter allows the integration of the
Real-time simulator with other smart metering infrastructure (e.g. [65, 66]), where
each smart meter is an Internet-of-Things (IoT) device. Hence, data coming from
such devices can be used to simulate and test innovative control strategies with
(near-) real-time data from the grid. Vice-versa, each simulated grid component is
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also seen by other modules as an IoT device able to send information and to receive
commands.

5.1.2.3 Smart Metering Infrastructure

The SMIRSE platform integrates in its Cyber layer existing Smart Metering Infras-
tructure in order to collect and retrieve measurement coming from heterogeneous
IoT devices. In particular the Flexmeter [80] infrastructure has been integrated inside
the SMIRSE platform. This section will present briefly the Flexmeter solution for
smart metering.

The Flexmeter Smart Metering Infrastructure is build of different software
modules that perform: (i) allow bidirectional communication with DIAs, thus with
devices; (ii) receive, control and store measurements; (iii) provide REST web services
to access data, devices, assets and maintenance operations; (iv) send commands to
devices.

The infrastructure exploits a Message Broker in order to enable an asynchronous
bidirectional communication with devices, through MQTT [7], to send data in (near-)
real-time. The use of this paradigm avoids interdependencies between information
producer and consumer. The role of the Message Broker is to direct all events
coming from and to the Communication Engine module. The Communication
engine manages a bidirectional interaction with DIAs (See Section 5.1.2.2) by
storing measurements into the Data Storage and sending commands to devices. The
Communication Engine consists of two sub-components: (i) Event Sources and (ii)
Command Destinations. The Event Sources are MQTT subscribers that sign up
to input topics used by DIAs to publish measurements. Event Sources check the
integrity of the incoming message payload and push it into the Inbound Pipeline.
Inbound Pipeline is an intelligent buffer that manages network traffic spikes to relieve
the database interface from congestion and to ensure the measurements storage.
Flexmeter also allows receiving command requests to target devices. Command
requests are managed by the Command Destinations. They are MQTT publishers
that route command requests to the right devices. Outbound Pipeline, designed as the
Inbound Pipeline, prevent spikes in command requests and send the payload content
to Command Destinations and then to the target device. The Data Storage module
permits to manage the connection with different time-series databases and non-
relational databases which are specifically developed for Big Data management. The
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Assets Manager is a software module that manages different information regarding
people, places and things that are called assets in the Flexmeter platform. Finally,
the Device Manager handles the communication be- tween the Asset Manager, the
Communication Engine and applications that interact with the Flexmeter platform
through the REST API Interface Manager. The REST API Interface Manager defines
and provides REST web services that are designed to permit the access to information
regarding devices, assets and measurements, and manages these entities in the
infrastructure. An authentication is required to request REST web services. Hence,
only allowed applications and services can operate with the Flexmeter platform.
Through these software components, the abstraction from device communication,
data and information storage management and from different low-level hardware
functionalities is achieved.

5.1.3 Modelling and Simulation Layer

The Modelling and Simulation Layer, in Figure 5.1, consists of different software
components to simulate environmental conditions (green boxes), electrical energy
(light blue boxes) and thermal energy (yellow boxes).

The Solar Radiation Decomposition is a software module that decomposes Global
Horizontal radiation (GHI) into Direct Normal Incident radiation (DNI) and Diffuse
Horizontal Incident radiation (DHI) by applying mathematical models such as [81].
The inputs are meteorological information retrieved by Weather Data module in the
Environmental Layer. Often, weather stations sample only GHI. Thus, this module
is crucial because DNI and DHI are needed to evaluate the solar heating gains and to
simulate incident solar radiation on tilted surfaces (e.g. buildings’ rooftops).

Device Integration Adapters

The Rooftop Solar Radiation integrates three modules of the infrastructure pre-
sented in [82]. It exploits GIS cartographies, real Weather Data and results from
Solar Radiation Decomposition module to simulate incident solar radiation on
rooftops. Simulations are done in real-sky conditions with a resolution of 15 minutes.
Furthermore, can be used to identify suitable surface for solar energy installations
on rooftops. It is able to detect roof encumbrance (e.g. chimneys and dormers) and
to estimate their shadowing effects. This module is then used by the Photovoltaic
(PV) Modeling Services.
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The Photovoltaic Photovoltaic (PV) Modeling Services module exploits the
methodology described in [82–84]. It exploits both Rooftop Solar Radiation and
Weather Data modules to estimate the incident solar radiation and the effects of the
air temperature on the efficiency of PV arrays. By exploiting GIS cartographies, it
also identifies the best configuration (Foolrplanning) for PV deployment on rooftops
and simulates the energy production with a resolution of 15 minutes. Furthermore,
the module integrates algorithm for accurate modelling of tension current (I-V)
curves of the PV system.

Further details on the implementation of this three services are presented in
Section 5.2.1.

The Real-time Grid Simulator module integrates a Real-Time Simulators (e.g.
Opal-RT or RTDS) as depicted in [85]. It simulates power distribution networks
with different time resolutions ranging from microseconds to hours. Exploiting the
Communication adapters in the Cyber layer, it is able: i) to access information from
IoT devices deployed across the real distribution network in (near-) real-time and
ii) to exchange data with the Photovoltaic Energy. The Real-time Grid Simulator
module enables a more accurate analysis of distribution network when different
control strategies are applied. In future, this module can be used to simulate conges-
tions and unbalances, and to evaluate the electrical implication of Demand Response
events on distribution networks. Further details on the implementation of this module
are presented in Section 5.2.2

The Indoor Temperature Simulator follows the methodology described in [22].
It provides tools to simulate and analyse the thermal behaviour of buildings. It
combines information about BIM and GIS together with real Weather data and envi-
ronmental information coming from IoT Devices deployed in the corresponding real
buildings. This module allows: i) (near-) real-time visualization of energy consump-
tions in buildings; ii) simulation of indoor temperature trends and iii) evaluations of
building performances through energy models. Further details on the implementation
of this module are presented in Section 5.2.4

The Power Prediction and thermal building characterization provides tools to
analyze and predict the power demand of thermal systems in buildings connected
to HDN. Furthermore, exploiting the KPIs and the methodology described in [86]
the module provides thermal characterization of the buildings. Further details on the
implementation of this module are presented in Section 5.2.3.
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5.2 Multi Energy System Simulations

5.2.1 Solar energy simulation

This Section presents a distributed and modular software infrastructure that ex-
pose REST Web Services [72] to perform solar energy simulations (see Figure 5.3
and Figure 5.4). Figure 5.3 shows the involved modules and data source of the
SMIRSE platform for enabling solar energy simulation. Its modularity takes advan-
tage of the microservices approach described in Section 4.1.

Fig. 5.3 Schema of SMIRSE Platform with focus on Solar Energy

The solution needs as main inputs the Digital Surface Models (DSMs) and the
Cadastral maps. DSM is a raster image representing terrain elevation with buildings.
A DSM with a high-resolution (in the order of sub-meters) permits i) to better
recognize encumbrance in rooftops, such as chimneys and dormers, that would not
allow deployment of PV panels and ii) to have a better simulation of shadows that
will affect the PV energy production. Thus, higher is the DSM resolution, higher is
the accuracy of the energy production estimation. Cadastral map is a vector image
reporting the square footage of buildings in the area of interest. It also exploits
meteorological data coming from third-party services to perform sub-hourly real-sky
simulations of solar radiation and PV systems production. The main outputs are
information on the size of deployable PV system(s) and the related generation profiles
for each building that can be used as input to third-party solutions (e.g. [87–90]).

In addition, the solution exploits standard services defined by the Open Geo-
spatial Consortium (OGC) [73], presented in Section 4.3. WPS are used for upload-
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Fig. 5.4 Schema for the proposed software infrastructure to estimate PV energy production

ing both the DSM and the Cadastral map and for executing simulation processes.
Indeed, they define rules for standardizing inputs and outputs of a process. For
developing WPS services the PyWPS implementation of OGC standard has been
used [91]. WFS are used for querying and retrieving features about the elements
of a polygon-map. WMS helps in visualizing the produced maps through the Web-
Map interface. As shown in Figure 5.4, the solution is a three-layered distributed
infrastructure consisting of: i) Data-source Integration Layer, ii) Services Layer and
iii) Application Layer. The rest of this section describes each layer in more detail.

5.2.1.1 Data-source Integration Layer

The Data-source Integration Layer (the lowest layer in Figure 5.4) is in charge of
integrating in the infrastructure the following heterogeneous information: i) Digital
Surface Model (DSM); ii) Cadastral map; iii) Linke Turbidity coefficients [92] and
iv) Weather data. The Linke Turbidity coefficients express the attenuation of solar
radiation related to air pollution. This information can be automatically retrieved
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by third-party services, such as [58, 93], or can be specified by end-users before
executing the simulation. Finally, Weather data are also retrieved by third party
services, such as [76], and collected by personal weather stations deployed in cities.
In particular, the needed inputs are solar radiation, ambient temperature and wind
speed.

5.2.1.2 Services Layer for real-sky simulations

The Services Layer (the middle layer in Figure 5.4) is in charge of i) simulating solar
radiation in real-sky condition; ii) identifying rooftops areas suitable for deploying
PV systems and iii) evaluating their energy production. It consists of different
software modules. It is worth highlighting that each of them exposes REST Web
Services. Hence, each module can be invoked by third-party software to retrieve
information and simulation results.

5.2.1.2.1 Solar radiation decomposition service Nowadays in our cities, weather
stations are pervasively deployed and their information are also provided by third-
party services, such as [76]. Normally such stations are equipped with global
horizontal solar radiation sensors and do not provide information on direct normal
and diffuse horizontal radiation. However, to simulate real-sky solar radiation on
a pitched surface, information on direct and diffuse radiation is needed [49]. To
overcome this limitation, the Solar radiation decomposition services integrates six
different solar radiation decomposition techniques in literature [94–96, 11, 97, 98]
to compute both direct normal and diffuse horizontal radiation starting from mea-
surements of global horizontal radiation.

These models can be categorized by the number of predictors. In the following
we briefly introduce them. Erbs et al. [94], Reindl et al. [97] and Karatasou et al. [11]
use only the clearness index kt as predictor. kt is the ratio between global radiation
and extraterrestrial radiation both on a horizontal plane. Skartveit et al. [98] use kt ,
solar altitude and solar zenith angles as predictors. Ruiz-Arias et al. [96] use kt and
the air mass as predictors. In their work, Engerer et al. [95] provide three different
models. Our solution implements the second model with the following predictors:
kt , the zenith angle, the time of the day, the clear-sky global radiation on horizontal
plane and a variability index, which represents the deviation of the observed kt

value from the clear sky value of the clearness index. The end-user can specify the
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Table 5.1 Monthly average days identified by [10]

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Date 17th 16th 16th 15th 15th 11st 17th 16th 15th 15th 14th 10th

DOY 17 47 75 105 135 162 198 228 258 288 318 344

model suitable for the area of interest. Indeed, as reported by [99–101], the accuracy
of decomposition models is strongly affected by different latitude, longitude and
environmental conditions. Hence, the integration of these decomposition models and
third-party meteorological services makes our infrastructure flexible in performing
simulation in different geographic locations. The input of this module is a time series
of the global horizontal radiation provided by third-party meteorological services in
Data-source Integration Layer. The output of this process is a JSON with the values
of Direct Normal Incident radiation (DNI) and Diffuse Horizontal Incident radiation
(DHI) for the requested time interval.

5.2.1.2.2 Rooftop solar radiation services The following three services: i) Clear-
sky condition Service, ii) Suitable surface identification service and iii) Real-sky
calculation service have been integrated as unique service in the SMIRSE as reported
in Section 5.1.3 and in Figure 5.3.

5.2.1.2.3 Clear-sky condition Service In order to compute clear-sky solar radi-
ation, the infrastructure, exploit GRASS-GIS open-source software, which embeds in
its core r.sun [49]. The r.sun tool provides an accurate simulation of solar radiation
in urban contexts [102, 25, 48]. The resulting outputs of this module are set of direct
and diffuse solar radiation maps in clear-sky condition with 15 minutes time interval.
Such maps are stored in the Maps Data-store ready to be used by the Real-sky
calculation service.

It performs such computation considering the monthly average days identified
by [10] and reported in Table 5.1 with the related Day of the Year (DOY). DOY is a
1 to 365 non-dimensional sequential index starting from January 1st . For instance:
January 17th is day 17, February 16th is day 47, December 31st is day 365.

The module requires as inputs: i) the DSM, ii) monthly Linke turbidity coeffi-
cients, iii) Slope and Aspect maps, that are produced with GRASS-GIS r.slope.aspect
tool. Monthly Linke turbidity coefficients are retrieved by using third party web ser-
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vices such as [93, 58] or can be specified by end-users as parameters in the execution
request. The Slope and Aspect maps represent respectively the inclination and the
orientation (expressed in degrees) of each pixel of the DSM. After their calculation,
they are stored in the Maps Data-store.

5.2.1.2.4 Suitable surface identification service Thanks to the high-resolution
DSM given as input to the overall simulation process, this module identifies available
surface for deploying solar systems on pitched rooftops excluding, for instance,
dormers and chimneys. The Suitable surface identification service uses as inputs
both Slope and Aspect maps for identifying the suitable area. These maps are
retrieved from the Maps Data-store. By default, it identifies areas representing tilted
rooftops oriented between South-Est and South-west. Commonly, a tilted rooftop
has a slope (θ ) in-between 10° ≤ θ ≤ 45°. This range is also suitable to install a PV
system. Furthermore, facades with an orientation (γ) in-between 220° ≤ γ ≤ 320°
(considering South facing roofs having γ = 270°) are more exposed to solar radiation.
For these reasons, we chose these ranges for θ and γ as the default values for the
Suitable surface identification service. However, the end-user can give as input new
ranges for θ and γ to select the desired suitable surfaces.

The output of this selection is a binary map where pixels with 1 as value represent
the available areas. Such map is then filtered with GRASS-GIS r.neighbors tool to
smooth noise and to remove small areas that are too small for installing a PV system
(e.g. areas where deployable PV system are smaller than 1 kW ). This resulting map
is vectorized and clipped with the cadastral map stored in Maps Data-store. The
information on the size of area of the resulting polygons is a 2D projection of the real
roof surface. To estimate the real surface of polygons, the Formula (5.1) is applied
to correct the value of the area with inclination angle of rooftops.

S =
S2D

cos(θ)
(5.1)

where S2D is the 2D area of the polygon and θ is the roof inclination obtained from
the slope map, again retrieved from the Maps Data-store.

The output of this module is a GeoJSON reporting a number of polygons that
represent deployable areas.
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5.2.1.2.5 Real-sky calculation service This module produces maps of incident
global radiation on pitched rooftops in real-sky conditions. The inputs of this service
are values of DNI, DHI, direct and diffuse solar radiation maps retrieved from
the Maps Data-store. Through the Data-source Integration layer, the Real-sky
calculation service retrieves information on solar radiation from third-party services.
Both values of DNI and DHI radiation are required to calculate solar radiation on
tilted surface [49]. If meteorological services provide only global horizontal radiation
and not its direct and diffuse components, the Real-sky calculation service invokes
the Solar radiation decomposition services to compute such information. Thus,
Real-sky calculation service uses the values of DNI and DHI for each time interval
to calculate the clear-sky indexes kb

c (5.2) and kd
c (5.3).

kb
c =

DNIovercast

DNIclear−sky
(5.2)

kd
c =

DHIovercast

DHIclear−sky
(5.3)

kb
c (5.2) represents the ratio between DNI in overcast conditions and DNI in

clear-sky conditions. While, kd
c (5.3) is the ratio between DHI in overcast conditions

and DHI in clear-sky conditions. Finally for each time interval, diffuse and direct
radiation maps, produced by the Clear-sky condition Service, are multiplied by
clear-sky indexes kb

c and kd
c . Then, both maps are summed together to obtain a global

incident radiation map in real-sky condition. The resulting output of this process is a
set of GeoTIFF images representing the maps with incident global solar radiation in
real-sky condition.

5.2.1.2.6 Photovoltaic Modeling service The Photovoltaic Modeling services,
of the SMIRSE platform presented in Section 5.1.3, offers the possibility of exploit-
ing two different methods for estimating energy production: i) Calculation of power
production exploiting or NOCT formula [103] or Mattei et al. [104] formula and ii) an
accurate modeling of I-V curves of the PV modules presented in [84]. Furthermore,
the Photovoltaic Modeling services integrates and algorithm for foolrplanning [83]
to find optimal configuration of PV systems.
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Tsol−air = Ta + kGt = Ta +
αroo f

hc
Gt (5.4)

Tc =
Tsol−air +(Tc,NOCT −Ta,NOTC)(

Gt
Gt,NOCT

)(1− ηmp,STC(1−αpTc,STC)

τα
)

1+(Tc,NOCT −Ta,NOTC)(
Gt

Gt,NOCT
)(

αpηmp,STC
τα

)
(5.5)

Tc =
UPV (v)Tsol−air +Gt [τα −ηmp,STC(1−αpTc,STC)]

UPV (v)+αpηmp,STCGt
(5.6)

UPV (v) = 26.6+2.3v (5.7)

Pout = ηmp,STC(1+αp(Tc −Tc,STC))GtA (5.8)

Ta ambient temperature αp
temperature coefficient of maximal power
of the solar cells [%/°C] Tc,STC

operating cell temperature at standard condition
(usually Ta = 25°C, Gt = 800 W/m2)

αroo f [%] convective factor of the roof ηmp,STC
maximum power point efficiency under
standard test conditions (%) Gt,NOCT

solar radiation on a tilted surface at NOCT
condition (1000W/m2)

hc [W/m2K] radiative loss factor of the roof τ
solar transmittance of any cover over the
PV array (%) UPV heat exchange coefficient for the total surface

Gt solar radiation on a tilted surface α solar absorptance of the PV array (%) A available surface [m2]
Tc operating cell temperature v wind speed [m/s]

Tc,NOCT nominal operating cell temperature Pout power output [W ]

Power production with NOCT or Mattei et al. Formula This module is in
charge of estimating PV production for each area identified by Suitable surface
identification service. The required inputs are i) the maps provided by the Real-sky
calculation service and ii) the GeoJSON given by the Suitable surface identification
service where polygons representing deployable areas are reported. The Photovoltaic
energy estimation service also uses weather data coming from the Data source
integration layer in order to estimate the operating cell temperature (Tc), thus the
efficiency of the PV system. This module estimates from ambient temperature Ta the
sol-air temperature Tsol−air which is defined as the ambient Temperature Ta plus the
loss factor k, as reported in Formula (5.4).

The use of sol-air temperature to obtain more reliable results in estimating the
operating cell temperature is reported by [50, 52]. This module can use two models
for estimating the cell temperature. The first [103], denoted as NOCT, can be used
if wind speed is not provided by the nearest weather station. It is expressed by the
Formula (5.5).

The second model [104], denoted as Mattei, uses wind speed in order to estimate
the operating cell temperature, as reported in the Formula (5.6). Mattei model is one
of the most reliable with in-situ wind data, as reported by [105].

In Formula (5.5), [10] assumes τα = 0.9. While in Formula (5.6), [104] assumes
τα = 0.81. Finally, the instant power Pout is computed by Formula 5.8.
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In its core, the Photovoltaic estimation service uses the characteristics of some
commercial PV modules as default values (i.e. αp, ηmp,STC, Tc,NOCT , Tc,STC, Gt,NOCT ,
αroo f and hc). However before performing the simulation, the end-user can change
this parameters depending on the characteristics of the interested PV system. The
output of this module is a GeoJSON that provides for each building information on
the size of deployable PV system and the related generation profiles for the requested
time interval.

Modelling I-V curve This module derives a power model for an individual
PV module, so that total power extracted by a panel can be adapted to different
series/parallel topology. Total power is in fact generally different from the simple
sum of the power values of the individual modules, since it is rather voltage (in
series) and current (in parallel) that need to be summed up. Therefore, rather than a
model of the power of a module, models for the extracted current and voltage of a
panel are needed.

Moreover, the model should be also sensitive to the granularity of the maximum
power point tracking (MPPT). Generally speaking two options are available (Figure
5.5): module-level MPPT (micro-inverters) or string-level MPPT (string inverters).
The model depends on this feature because in the former case each module extracts
at the MPP (a), and therefore only individual maximum power voltages and currents
can be tracked. Conversely, when using string inverters (b), the MPP is tracked on
the resulting I-V curve of the series of modules, which has to be computed from the
individual curves.

One last architectural parameter that needs to be considered is the distribution of
the bypass diodes in the installation. This is essential because it determines how to
compute the aggregate I-V curves of the series string. The most intuitive strategy in
which bypass diodes are used around each module [106], as shown in Figure 5.5, is
assumed.

Panel Model Using a String-Level Inverter For the description of the method-
ology, a PV-MF165EB3 module by Mitsubishi as a working example has been used,
as this is also the module used for our validation in Section 6.2.6. The methodology
has however general validity, since it relies on basic information available in any
datasheet.
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STRING INVERTER
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MICRO INVERTERS

AC

AC

a.

b.

Fig. 5.5 String-level and module-level MPPT architectures.

For the example PV-MF165EB3 module, the datasheet provides the three curves
shown in Figure 5.9: from left to right, (1) the I-V curve for different irradiances
G, (2) the temperature sensitivity coefficients (∂Voc/∂T and ∂ Isc/∂T ), and (3) the
dependence of Voc and Isc of irradiance G. These are very basic information available
for almost any PV module.

Fig. 5.6 Datasheet information for Mitsubishi’s PV-MF165EB3.

The derivation of the model proceeds in two phases, as described hereafter.
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Model for an Individual PV Module A model for the output voltage Vmodule

and current Imodule of a single module, as a function of irradiance G and temperature
T has been derived.

This phase consists of three main steps:
1. Derivation of the dependence of Voc, Isc on G and T .

Firstly the dependence of Voc and Isc on T and G is derived, by using the center
and right plot of Figure 5.9. This simply achieved by digitizing the curves and
empirically fitting them using minimization of least-square errors. For the specific
case:

ISC(G,T ) = α · ISC,nom(−0.00055T +0.9885) · (0.000992G−0.000344) (5.9)

VOC(G,T ) =VOC,nom(−0.00338T +1.088) · (−3.069G−0.02289 +3.62) (5.10)

In Equation 5.9, the nominal value of Isc, derived from the datasheet, is weighted
by an aging factor α . PV panels are indeed subject to an average 0.4%/year degrada-
tion rate, that mainly affects current production, while voltage distribution does not
change substantially over panel lifetime [107].

It is worth emphasizing that Equations 5.9 and 5.10 do an approximation in
considering the effects of G and T as two independent factors.

2. Derivation of the dependence of T on G.

An important aspect to be considered is that T and G are obviously correlated:
when irradiance is high, temperature will also be high. Therefore the ambient
temperature Tamb (available from weather stations) is corrected with a term depending
on G, according to the model of [103].

The module temperature T (G) is modeled as:

Tamb + k ·G (5.11)

where k = α

hc
= 0.05 W

K·m2 is the ratio of the absorptance of the roof divided by
the radiative loss factor of the roof [103]. In Equations 5.9 and 5.10, T will thus
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be replaced by T (G) (as in Equation 5.11). Notice that relating T and G allows
smoothing the approximation contained in Equations 5.9 and 5.10.

3. Derivation of the module I-V curves.

The last step is to derive a function describing the I-V curve for different G’s. An
equation template that matches the underlying diode equation regulating a PV cell
behavior is used:

I = ISC −a · (eb·V −1)

The approximation consists in assuming a zero series resistance in the depen-
dence. By imposing then that I(Voc) = 0, parameter b can be expressed in terms of a
as:

b =
1

VOC
· ln(1+ ISC

a
)

leaving therefore a as the only parameter. Then empirically fit the curves in Matlab
and obtain a value of a = +4.428 · 10−5. The overall model for the I-V curve is
therefore given by the equation:{

I(G,T ) = ISC(G,T )+4.428 ·10−5 · (eb·V −1)
b = 1

VOC(G,T ) · ln(|1+22,583.56 · ISC(G,T )|)
(5.12)

Figure 5.7 shows the comparison w.r.t. the datasheet curves using the model of
Equation 5.12. The curves are relative to 25oC. The average error of the interpolation
is 2.79%.

Fig. 5.7 Comparison of the proposed equation-based model (dashed lines) w.r.t. datasheet
specifications (solid lines).
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Building the Panel Model An expression of the extracted power of a generic
series-parallel interconnection of modules must consider (1) the overall series-
parallel topology, and (2) the operations of the bypass diodes.

For the sake of simplicity, the procedure by considering a string of two modules
will be described. The generalization to the general case of n series modules is
straightforward.

Due to the presence of bypass diodes, the weakest of the two modules (i.e., the
one with lowest irradiance) does not constrain the current of the strongest one; rather,
when the current gets larger than the value that can be produced by the weakest
module, the latter gets bypassed and only the strongest module produces power [106].
The total curve is therefore obtained by summing the I-V curves as follows: for each
current value in the range [0, ISC,H ] the resulting voltage is:{

Vstring =VL +VH if I < ISC,L

Vstring =VH −Vd if ISC,L < I < ISC,H
(5.13)

where subscript L and H apply to the low and high irradiance modules, respectively,
and Vd = 0.6V is the voltage drop across a forward-biased diode. This yields to the
classical I-V curve with multiple “steps”, as shown in Figure 5.8.a.

Once this curve has been built, the MPP is extracted as the maximum of the cor-
responding P-V curve, thus emulating the operation of a string inverter implementing
the MPPT.

a. b.

Fig. 5.8 I-V curves of the series (a.) and parallel (.b) connection of two modules with
different irradiance with bypass diodes.
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Given the I-V curves (and the corresponding MPPs) for the various series strings,
are combined by summing the currents. The process in this case is simpler that the
series case because there is no diode involved.

Again, the simple case of two strings in parallel for the sake of illustration (Figure
5.8.b) is considered. The resulting parallel curve is obtained, by summing the current
of the two modules for each voltage value in the range [0,VOC,H ] as follows:{

Ipanel = IL + IH if V <VOC,L

Ipanel = IH if VOC,L <V <VOC,H
(5.14)

5.2.1.2.7 Photovoltaic System Floor-planning The objective is to place N PV
modules on a given area (not necessarily rectangular). The latter is aligned to a
virtual grid whose elements are squares of side s. The sides of the area are integer
multiples of s so that it consists of an integer number Ng of grid elements.

The value of s is chosen so that the panel sizes are also an integer multiple of s.
Assuming that each panel is identical and has sizes w×h, it have that w = k1 · s,h =

k2 · s. The size of the specific panel used in the analysis is 160×80cm, and it use
s = 20cm. Notice that since grid points represent possible placement candidates, a
smaller s yields more solutions, at the expense of longer computation times.

Are then given a set of measures over time of irradiance Gi(t) and temperature
Ti(t), i = 1, ...,Ng. The spatial resolution of the irradiance measures determined by
the solar data acquisition tool is forced to coincide with the grid granularity, so each
grid point has a specific value of G and T . The process of deriving solar data with
the desired granularity is provided exploiting the Real-sky calculation service.

The problem solved in with this module can be formulated as follows:
Given an available surface, a set of NT irradiance and temperature measures
for each point of a grid, and N PV modules to be placed according to a specific
series-parallel topology, find the optimal placement of the panels on the surface
that maximizes the energy extracted in the interval [0,NT ].

PV Panel Power Model The analysis needs a power model of an individual
single PV module, because the total power extracted by the panel Ppanel depends
on its actual series/parallel topology and is in general different from the sum of the
power of the individual modules.
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Fig. 5.9 Power characteristics of Mitsubishi’s PV-MF165EB3.
Given a m×n series-parallel interconnection (i.e., n parallel strings each of m

modules in series), the total power is obtained as Ppanel =Vpanel · Ipanel , where:{
Vpanel = min j=1,...,n(∑i=1,...,mVmodule,i j)

Ipanel = ∑ j=1,...,n(mini=1,...,m Imodule,i j)

and Vmodule,i j and Imodule,i j are the voltage and current extracted from the i-th module
in the j-th string.

The setup, considers a PV-MF165EB3 module by Mitsubishi, for which an
empirical model of Vmodule and Imodule as a function of irradiance G and temperature
T from information available in the datasheet (Figure 5.9) is derived. It is assumed
that each module extracts the maximum power, i.e., Vmodule and Imodule are the
maximum power voltage and current, and Pmodule ≡ Pmax.

The model derivation is done as follows:

1. Using the rightmost plot of Figure 5.9 the equations expressing the dependence
of Voc, Isc and Pmax are derived with respect to irradiance G. These plots
are normalized with respect to reference values (at 25oC temperature and
G = 1000W/cm2) of Voc,re f = 30.4V, Isc,re f = 7.36A, and Pmax,re f = 165W , as
reported in the datasheet.

2. Using the middle plot, we replace Voc,re f , Isc,re f , and Pmax,re f with functions
the express their dependence on temperature, yielding equations for Voc, Isc,
and Pmax that include the dependence on G and T .
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3. The above analysis does not consider the important fact that T and G are
obviously correlated: when irradiance is high, temperature will also be high.
Therefore ambient temperature T is corrected with a term depending on G,
according to the model of [103]. The actual module temperature Tact is
modeled as T + k ·G, where k = α

hc
is the ratio of the absorptivity of the roof

divided by a convective and radiative (15 WK
m2 ) [50].

4. The last step is to derive Vmodule and Imodule from Voc and Isc. To this purpose,
the fact that (leftmost plot of Figure 5.9), the maximum power voltage of the
module is roughly independent of the irradiance and is ≈ 80% (24V) of Voc is
exploited. This allows to express Vmodule as a function of G and T . Since the
relation betwen Imodule and Isc is more complex to extract, simply derive it as
the ratio of Pmax and Vmodule.

These processes result into the following equations:

Tact = T + k ·G
Pmodule(G,T ) = 165 · (1.12−0.048Tact) ·10−3G
Vmodule(G,T ) = 24 · (1.08−0.34Tact) · (0.875+0.000125G)

Imodule(G,T ) = Pmodule(G,T )/Vmodule(G,T )

Wiring Overhead Characterization The use of a loose placement of the PV
modules incurs in an obvious wiring overhead, causing power loss and cost increase.

- + - + - +

- +

dh,12

dv,12

dh,12

dv,12

1 2

2

1

(a) (b)

L

L

Fig. 5.10 Wiring overhead characterization.

Figure 5.10 exemplifies the problem for the series connection of two modules
(1 and 2). Even in a compact placement (Figure 5.10-(a)), some wiring is needed
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(the thick red connection) between the corresponding terminals. The modules are
are distanced vertically by d1,2

v and horizontally by d1,2
h (Figure 5.10-(b)), the extra

wiring is simply given by the sum of the two displacements (the dotted orange lines),
since we have to subtract the length L of the default connector. Notice that in a real
scenario we actually have shorter connections, since we are not forced to route wires
along the (x,y) directions.

For the generic serial interconnection of Ns modules, the overhead will simply by
given by: Lovh = ∑

Ns−1
i=1 (di,i+1

v +di,i+1
h ). Knowing the current and the unit resistance

of the wire used for the connection, we can compute the power drop incurred by the
extra cable (RI2).

For the parallel connection of the strings, conversely, the overhead can be ne-
glected. In fact, typical PV installations with two or more strings do not wire the
serial strings “manually”, but do it through a combiner box [108], which would be
used anyway even for the traditional floorplanning.

Floorplanning Algorithm The calculation of the optimal placement requires
an exhaustive enumeration of all possible candidate grid points, which becomes
quickly unfeasible even for small areas. The solution space has a worst case size of
O(NN

g ); assuming to place N = 20 modules on a 100 m2 surface, a grid of 20 cm
implies Ng = 2500 candidates points, yielding a space of O(1067) solutions. Notice
that it is not possible to introduce bounds on the enumeration because the total
extracted power can be computed only when all the modules are placed, because it is
not possible to sum the power of the individual modules.

For this reason, we devised a simple and efficient greedy approximation to the
solution based on a ranking of a “suitability” metric for all the grid points. Given
this metric, the algorithm simply allocates modules greedily, by selecting candidate
points in decreasing order of suitability.

The suitability metric should distill the temporal traces into a compact signature
that synthesizes the distribution of G and T values. The obvious choice of using
the average is not a good choice because the typical distributions of irradiance and
temperature are strongly skewed towards smaller values, and the average is not a
representative value.
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As a more aggregate indicator, the k-th percentile of the distribution as a compact
metric is used, which represents the value below which k% of the samples fall.
Specifically, the 75-th percentile is chosen. Larger values of the percentile identify
distributions that are more skewed towards the upper range of the values; therefore,
the suitability metric should combine the percentiles of G (favoring larger values
since larger G values are beneficial) and T (favoring smaller values, since smaller T
values are beneficial).

However, mixing two percentiles should be done carefully and with the appro-
priate weight. From Figure 5.9, is shown that the G affects the output power way
more than temperature: over a range of [200− 1000]W/cm2, the power changes
by 5x, whereas typical T ranges only change power by ±20% at most. Therefore,
the suitability metric uses only the 75-percentile of G, and temperature is used as
a corrective factor f (T ) that tracks the dPmax/dT of the middle plot of Figure 5.9.
The suitability si j in each grid point (i, j) is thus obtained as si j = pGi j

75 · f (T ), where
pGi j

75 is the 75-th percentile of G in the position (i, j).

Figure 5.11 shows a pseudo-code of the algorithm.

As in any greedy algorithm, the steps are relatively straightforward. First (Line
1) the suitability matrix S is computed as described above. In Line 2, an array L of
grid coordinates is calculated, sorted in decreasing order of their value of S. In case
of identical values of suitability, the distance from the already placed modules is
used as a tie-breaker (closer grid points have higher rank). Then iterates (Line 4)
over the N modules, in series-first order, i.e., modules belonging to a series string
are enumerated before moving to another string.

In Line 5 introduces an important filter on the solutions. Although the wiring
overhead is already counted in the sorting, it is just a tie-breaker. It might occasionally
be the case that a given L[ j] has a high suitability but is quite far apart from the
already placed modules. To this purpose only coordinates L[ j] that do not exceed a
given distance threshold are considered; the latter is empirically determined as twice
the average distance of the already placed modules.

The i-th module is then placed in the j-th position according to the previously
computed ranking (Line 6) . An important point is that, since a module occupies
more k1 · k2 grid points (see Section III.A), all these “covered” points are clearly
unusable and must therefore be removed from L (Line 7).
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Inputs:  

• W�H: width and height of the panel placement area

• Ng: number of valid grid elements (≤ W�H)

• N: # of identical PV modules to be placed 

• m,n: series (m) /parallel (n) topology of the panel (m�n = N)

• G[i,j,t], Ti[i,j,t]: Irradiance and temperature matrices for each grid 

point i,=1,…,W, j=1,…,H,  and for each time instant t ∈ [1,NT]point i,=1,…,W, j=1,…,H,  and for each time instant t ∈ [1,NT]

• Vmodule(G,T), Imodule(G,T): model of PV module voltage and current 

as a function of G and T   (section III.C)

Output: 

• P: array of N grid coordinates representing the placement of the i-th module

Algorithm:

1. Calculate the suitability matrix S[i,j] for each  grid position (i,j) 

from  G and T (75-th percentile of G with T correction factor)

2. L = array of grid positions (x,y) sorted grid in non-increasing 

order of suitability  (wiring overhead is used as a tie-breaker)

3. j=1

4. for each module i=1,…, N4. for each module i=1,…, N

5. if L[j]  <  distance threshold 

6. P[i] ← L[j]

7. remove from L grid points covered by  current assignment

8. endif

9. j ← j+1

10. endfor

11. return P

Fig. 5.11 Algorithms inputs and pseudo-code.

Then (Line 9) the next coordinate from L after the removal of covered points
piked. The loop terminates when the N panels have been placed.

5.2.1.3 Application Layer

The Application Layer represents the highest layer of the proposed infrastructure
(see Figure 5.4). It is dedicated to end-user applications, such as Web-Map displayers
and Dashboards, that can provide information about performed simulation across
the city with different level of details. In addition at this layer, third-party solutions
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can retrieve simulation results and estimations on PV energy production to perform
further analysis and evaluations.

5.2.2 Real-Time grid simulation

The Real-Time Simulator (RTS) is in charge of reproducing the behaviour of a real
electric distribution system, which is modelled as a test bed for testing and validation
of new technologies, management algorithms or control strategies, through perform-
ing software in-the-loop (SIL) or hardware in-the-loop (HIL). Figure 5.12 shows the
involved modules of the SMIRSE infrastructure in Real-time grid simulation. Real-
time simulation can be used for fast simulations, closed-loop testing of measurement,
protection and control equipment, and generally all what-if analyses.

Fig. 5.12 Schema of SMIRSE Platform with focus on Real-time Grid Simulation

The main added value of real-time simulation is the possibility of replacing
physical devices or systems with virtual models, which eventually reduces costs
and enables more complete and continuous testing of the entire system, safely and
without interruptions. In SIL, an algorithm or a control strategy can be tested on
a real-time model of the system. In this way, validation is carried out safely, and
under a variety of different scenarios which may not be all feasible or available in
real world (e.g. faulty conditions). In HIL similar tests can be performed, connecting
physical devices directly to the simulated environment.

In the proposed architecture, the real-time simulation module is mainly in charge
of reproducing the distribution grid behavior from physical infrastructure perspective.
In other words, physical components of the grid including generators, transformers,
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lines, breakers, loads, etc. are modeled in RTS, while the models which generate
time-variant inputs for loads, generators, or controllable devices are made and hosted
outside. The grid model can be implemented either in RSCAD, in case of using
RTDS real-time simulator, or in MATLAB/Simulink, in case of using OPAL-RT
real-time simulator with eMEGAsim configuration for EMT analysis.

Real-time simulation is actually simulating a system, which realistically responds
to the external stimuli, as the inputs/outputs of the simulation are synchronous with
the real world. Section 5.1.2.2 presents the Communication Adapter, which is our
software solution to enable a bidirectional communication between the real-time
simulator and other services and/or devices.

For instance, the requested measurements from the real-time model can be sent
out through the Communication Adapter to be used by the control and management
algorithm development nodes (SIL). In addition, the real-time digital simulator can
communicate with real physical devices and system components (e.g. a micro-grid
controller, protection automation systems, PV panels and wind turbines) through
analog and digital I/O signals (HIL).

In the proposed distributed infrastructure, the RTS models the distribution system,
receives inputs from external modules for single components modelling and provides
the required measurements or signals to external applications. It actually provides
simulation as a service.

In this implementation, an Opal RT OP5600 real-time simulator with 12 cores
operating at 3.46 GHz and eMEGAsim configuration aimed for electromagnetic
transient (EMT) analysis is used. Electricity grid is modelled in MatLab Simulink
using SimPowerSystem (SPS) under SimScape library. An additional library called
ARTEMiS provided by Opal-RT is also used to provide fixed-step solver dedicated
to complex power systems. The model is compiled using RT-LAB software and
executed on the simulator. As introduced before, any application algorithm or
control/management strategy is kept outside of the real-time model and interfaced
through communication channels.

As the external modules are not necessarily synchronized with the real-time
model and they run independently of the real-time system, either at their own time-
step or launched by external triggers, Asynchronous Process Application is used. In
this case, a low speed serial data acquisition (e.g. with some milliseconds or seconds
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Fig. 5.13 Real time simulator receiving data links to the Distributed Generation over the grid

time step) can be performed in a separate process from the real-time model, where a
high speed data exchange is required (e.g. 250 µs time-step).

The asynchronous process requires a C or C++ source code implemented by the
user to handle some sort of communication blocks inside the real-time model. The
code consists of some predefined functions which are compiled once during the
initialization process. The data signals to be sent or received and the communication
protocols (i.e. TCP or UDP) to use for communicating with the Communication
Adapter should be also selected inside the real-time model prior to model execution.

Considering the integrated simulation tool as a realized Software In-the-Loop
(SIL), the environment which is the smart grid in this case, is executed on the real
time simulator. Grid real time simulation module is responsible to emulate real grid
behaviour facing different load or generation profile values, and provides the status
of the electrical system in terms of power flows, voltage profile, etc. The signals
coming from outside of the real time simulator are controlling or defining modelled
prosumers behaviour by updating generation output. During the simulation the grid
model requests the necessary values (active and reactive powers) to update modelled
generation output, and receives the required data from the PV simulator through
appropriate UDP blocks inside the real time model (Fig. 5.13). The grid model can
be run for an electromagnetic transient simulation with 50 µs to 250 µs (or phasor
simulation with a few milliseconds) time steps, while the new values of generation
can be updated every 15 min.

The model is built with the SimPowerSystem (SPS) toolbox of MatLab/Simulink®.
The ARTEMiS software from OPAL-RT is used to provide fixed-step solver ded-
icated to complex power systems. It is an add-in toolbox to SPS enabling hard
real-time simulation of power systems. The main modelled components of the
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distribution grid are a three-phase voltage source in series with an RL branch as an
equivalent model for the upstream high voltage (HV) grid connected to a slack bus,
three-phase two-winding transformers, three-phase π section lines to model medium
voltage (MV) lines and three-phase three-wire dynamic load models with external
control of active and reactive powers to model the prosumers.

5.2.3 Power prediction and building efficiency characterization

The power prediction and building efficiency characterizations (PPBEC) platform is
a distributed engine providing a variety of software services for energy management
systems. Figure 5.14 presents the involved modules of the SMIRSE infrastructure
involved in PPBEC simulation.

Fig. 5.14 Schema of SMIRSE Platform with focus on power prediction and building efficiency
characterizations

Figure 5.15 shows the overall architecture of the PPBEC system. Since PPBEC
has been designed for the collection, integration, modelling, storage, and analysis of
energy-related data, it consists of a four-layered architecture with: (i) a Data-source
Layer; (ii) a Middleware Layer; (iii) a Storage and Data Analysis Layer and (iv) a
Application Layer, briefly described below and detailed in the following sections.

The Data-source Layer includes all the source data, such as smart meters and
web services, that continuously provide data of interest to the PPBEC system. These
heterogeneous data sources provides fine grain data (e.g., roughly every 5 minutes).
The Middleware Layer enables the interoperability across these heterogeneous data
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Fig. 5.15 Schema of the PPBEC Platform

sources, by creating a peer-to-peer network in which the communication between
peers is trusted and encrypted. Collected data are managed by the Storage and
Analytics Layer which aims at integrating data and storing them into a non-relational
database to effectively support different complex analytics services. A variety of
algorithms have been designed, developed, and integrated in PPBEC to support
the data analysis task. At the end, the Application Layer exploits the knowledge
items discovered through the data analysis process to provides useful feedbacks to
the different interested users and to suggest ready-to-implement energy efficient
strategies.



5.2 Multi Energy System Simulations 61

Fig. 5.16 Schema of the Cyber-Physical-System for the Building Heat-Exchanger.

5.2.3.1 The cyber physical system

A Heating Distribution Network (HDN) usually covers a city or a portion of it.
The heating energy provider produces the hot water to heat up the buildings with
heating power plants in the city. The hot water is sent to the buildings through
pipelines of the HDN deployed across the city. Then, each building is equipped with
a building heat-exchanger (see Figure 5.16), which connects the Building Heating
Network (BHN) to HDN. In particular, the heat-exchanger transfers heat, that can
be expressed in power, from HDN to BHN. To monitor the performance and control
the heat-exchanger several devices are installed and connected to the Internet. This
upgrades the heat-exchanger, a Physical-System, into a Cyber-Physical-System that
can be remotely monitored and controlled by exploiting the IoT paradigm. As show
in Figure 5.16, the heat-exchanger is equipped with five sensors: i) m to provide
the water mass flow rate incoming from HDN; ii) T1 to measure the temperature
of the incoming hot water flow from HDN to the heat-exchanger; iii) T2 to provide
the temperature of the cold water flow that returns to HDN from heat-exchanger;
iv) T3 to measure the temperature of the hot water flow from the heat-exchanger to
the BHN; and v) T4 to provide the temperature of the cold water flow that returns to
the heat-exchanger from BHN. These data are collected by a Control Unit, deployed
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as well, and sent to the proposed platform through the Device Connector (see
Section 5.2.3.2.1). The Device Connector is a software component that enhances
the Control Unit to provide the heat-exchanger (now a Cyber-Physical-System)
with Internet connection. It also integrates the CPS with the rest of the proposed
platform described in Section 5.2.3.2 and Section 5.2.3.3. Furthermore, the Control
Unit exploits m, T1 and T2 to compute the power exchanged by the heat-exchanger.
Finally, the Control Unit manages the valve v increasing or decreasing the mass flow
rate, thus the exchanged power. This is needed to remotely control and adjust the
power request of the building fulfilling the strategies of the heating energy provider
(e.g. changing the schedule of the operating phases to avoid large peak request in the
overall network).

5.2.3.2 Data Collection

In a Smart City scenario, one of the main issues concerns the coexistence of sev-
eral heterogeneous technologies. Moreover, future Smart City systems will deal
with Internet-of-Things [109] (IoT) environments, where multiple actors need to
access transparently IoT resources and services. Hence, the lack of interoperability
among heterogeneous technologies must be addressed. To cope with these issues,
a distributed software infrastructure that exploits a middleware approach to inte-
grate different IoT devices and technologies is developed. The aim is providing
many services for collecting and managing energy-related data. PPBEC adopts
the open-source LinkSmart middleware [110] and extends its features to fulfill the
requirements for a Smart City context. Indeed, an IoT middleware for Smart City
needs (i) to be highly available, (ii) to scale up rapidly, and (iii) to provide a uniform
interface to all deployed technologies.

5.2.3.2.1 Data-source Layer The Data-source Layer is the lower layer in PP-
BEC (see Figure 5.15). It can include different kinds of hardware and software
entities that continuously provide various data types of interest to PPBEC. Hardware
entities correspond to IoT devices measuring physical quantities. Instead, software
entities are software services exposing to external clients physical measures collected
from third-parties. They allow acquiring data values complementary to those col-
lected through hardware entities, that contribute in the overall characterization of
the context under analysis. Web services are an example of software entities that
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expose interfaces over the Internet allowing clients to send requests and get data
using HTTP as transport protocol.

Nevertheless any data source can be integrated in the Data-source Layer, this
study is focused on a layer composed as follows. (i) A network of smart meters as IoT
devices (hardware entities) located in buildings within a HDN to measure building
thermal energy values. A single smart meter is located in each building. (ii) Web
services (software entities) to monitor surrounding conditions when measurements
of thermal energy take place. Different web services can be considered to enrich
measurements collected through the smart meters. In the solution are selected those
exposing meteorological data due to the well-assessed strong correlation between
climate conditions and thermal energy consumption.

Each data source in the layer provides the following two types of data: (a) dy-
namic data as monitored measures usually collected roughly every few minutes
and potentially exhibiting highly variable values; and (b) static data as features
describing some time invariant properties of the data source (as the location of the
monitoring nodes).

In the PPBEC instance considered in this study, dynamic data include measures
on building thermal energy and climate conditions collected roughly every 5 minutes,
even if different and variable resolutions can be considered. Thus, a large volume
of energy-related data is continuously acquired for each building. Smart meters
installed in buildings provide fine-grained data related to building thermal energy (as
instantaneous power, cumulative energy consumption, water flow and corresponding
temperatures). Meteorological web services (e.g., Weather Underground [111] con-
sidered in this study) provide different kinds of meteorological data as temperature,
relative humidity, precipitation, wind direction, UV index, solar radiation and atmo-
spheric pressure. Such data are collected through several weather sensors deployed
throughout the city.

For each monitoring node (building smart meter or weather sensor), static data
report features characterizing the data source as its geographical location (longitude
and latitude). Static data also include information characterizing buildings as the
volume of each building where smart meters are located. This value is used to
normalize energy and power values to allow comparison between buildings in terms
of consumption per volume unit. When a new data source registers for inclusion
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in the Data-Source layer, all related static data are acquired, and then stored in the
PPBEC data repository.

Measurements collected from the hardware and software entities are also enriched
in PPBEC with additional spatio-temporal information useful to describe the spatial
and temporal distribution of the acquired values (e.g, the spatio-temporal distribution
of thermal energy consumption). To this aim, the Data-source layer also includes
additional contextual data sources such as web services exposing topological data
(e.g., Municipality open data portals [112]) or calendar data. More specifically, the
geo-coordinates (longitude and latitude) of each monitoring node are mapped to the
corresponding neighborhood and city district including that neighborhood. While
the geo-referenced location of nodes is given in the hardware/software entities, both
the neighborhood and district names corresponding to the geo-referenced location
have been added as additional contextual features. They have been retrieved from
contextual data sources. Moreover, each measurement time is associated with
different blends of time spans as daily time slot (e.g., morning, afternoon, evening,
or night), week day, holiday or working day, month, 2-months, or 6-months time
periods.

To effectively support the interoperability across heterogeneous IoT devices
possibly included in the data-source layer, PPBEC exploits the concept of Device
Connector (see Figure 5.15). It is a middleware-based component that abstracts a
given technology and translates its functionalities into Web Services. The Device
Connector enables the communication among heterogeneous devices by allowing
developers in exploiting each low-level technology transparently. Thus, it works as a
bridge between the Middleware Layer and the underlying technologies or devices in
the Data-Source layer.

5.2.3.2.2 Middleware Layer The Middleware Layer (see Figure 5.15) is in
charge of providing features to discover available resources and services in the
Data-source Layer. It creates a network among different entities that can exchange
information exploiting two communication paradigms: (i) request/response based
on REST [71] and (ii) publish/subscribe [7] based on MQTT protocol [75]. Such
features are key characteristics of a software infrastructure dealing with IoT devices.
The Middleware Layer includes four software components described below.
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The Message Broker allows the communication among different entities (both
hardware and software) through the publish/subscribe paradigm. This approach
supports the development of loosely-coupled event-based systems. Indeed, it removes
explicit dependencies between interacting entities (i.e., producer and consumer of
the information), thus each entity in the middleware network can publish data and
other subscribers can receive it independently. This increases the scalability of the
whole system [113]. PPBEC adopts the MQTT communication protocol [75] and
delivers data to subscribers as soon as they are measured and published (the delay is
negligible).

The Resource Catalog registers and provides a list of IoT devices and resources
available into the middleware network. It expose JSON-based REST API to auto-
matically access and manage such information. For instance, Device Connectors
register their devices and resources, while other middleware-based entities discover
such devices and their access protocols.

The Service Catalog provides information about available services in the middle-
ware network exposing a JSON-based REST API. It is used by middleware-based
entities to discover available services in the network. For instance, it provides the
end-points of services such as Resource Catalog and Message Broker.

The Security Manager provides features to enable a secure communication among
entities in the middleware network. Indeed, it is in charge of authenticating and
granting accesses to applications and other middleware-based components. Hence,
malicious actors cannot call services in the middleware network and cannot receive
any kind of data.

5.2.3.3 Data Management and Analytics

This section presents the Data Storage and Analysis Layer of PPBEC that provides
different services to address data management and storage as well as analytic tasks.

5.2.3.3.1 Data integration Layer Various data sources can be included in the
Data-source layer to allow gathering a rich and heterogeneous data collection, used
for feeding the subsequent data analysis phase. To do so, each source can either
proactively send its data to the message broker using MQTT communications, that
are automatically forwarded to the Message Subscriber; or expose REST API to
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allow the Contextual Enrichment Agent collect the required information. For each
data source, monitoring nodes may be deployed in different city areas and they may
adopt a different timeline in sampling values. Thus, a proper strategy should be
devised for the spatio-temporal integration of the acquired measurements.

Currently, in PPBEC power measures collected through the smart meters are en-
riched with weather data as additional information acquired from external third-party
services. The Synchronizer module manages the alignment of weather data have with
the timestamps of power data, before storing them together in the PPBEC data repos-
itory. Specifically, each power measure collected for a building is associated with a
set of weather measures (e.g., temperature, humidity, and pressure) that describe the
climate condition when the power measure was collected. Each weather measure
(e.g, temperature) is calculated as the weighted mean value of the corresponding
measures acquired from N weather stations located near the building. A weight
is associated with each weather station based on its proximity to the building. It
expresses the relevance of the measure provided by the weather station. The weight
is higher for stations closer to the building since they provide a more accurate value
on the climate condition at the building proximity. For each weather station, only the
closest weather measures in time are considered.

5.2.3.3.2 Data Storage Layer Due to the different kinds of collected data and
to easily manage more data types in the future, PPBEC exploits a document-oriented
distributed data repository providing rich queries, full indexing, data replication,
horizontal scalability and a flexible aggregation framework. Integrated and enriched
data are formatted as JSON documents and stored in a NoSQL repository (i.e.,
MongoDB [114]), which is used as Historical Datastore. This collection of historical
data is then exploited to create models of the energy consumption for the buildings
and for the near real-time data analysis, including building power prediction.

According to the objectives of the data analysis tasks described in Section 5.2.3.3.3,
the adoption of the data processing framework Apache Spark [115] upon MongoDB
data repository has been evaluated as optimal choice . MongoDB stores data across
different nodes (called shards), thus supporting parallel processing by Spark. This
distributed architecture provides higher levels of redundancy and availability, which
are fundamental when operating in (near-)real-time, and to scale and satisfy the
demand of a higher number of read and write operations. Since both Spark and Mon-



5.2 Multi Energy System Simulations 67

goDB adopt a document-oriented data model, they exchange data in a seamless way
by making use of the JSON serialization format. This way, Spark jobs are executed
directly against the Resilient Distributed Datasets (RDD) created automatically from
the MongoDB data repository, without any intermediate data transformation pro-
cess. Moreover, due to the real time nature of the data analysis, input data sets vary
rapidly in time. To improve the performance of the several queries to be executed,
MongoDB rich indexing functionalities is exploited in Spark, like secondary indexes
and geospatial indexes, that allow to efficiently filter data according to the geospatial
coordinates of buildings and nearby weather stations.

5.2.3.3.3 Data Analysis Layer In this study, the PPBEC engine is used to predict
the fine grained power level values during the heating cycle of buildings. The data
prediction process is structured into three main blocks: (i) data stream processing to
support (near-)real-time data analysis, (ii) prediction analysis, and (iii) prediction val-
idation. The main functionalities of the three blocks are briefly presented below and
detailed in Sections 5.2.3.3.5,5.2.3.3.6,5.2.3.3.7. Data stream processing. Since
thermal energy consumption is monitored roughly every 5 minutes in the HDN, a
large volume of energy-related data is continuously collected for each building. To
efficiently and effectively analyze such large data collection, the PPBEC engine
performs the power level prediction task through the data stream analysis over a
sliding time window, separately for each building. Every time a new measure of
power level is collected, one single time window, sliding forward over the data
stream of energy-related data, is considered for the prediction task. This window
content contains the recent past energy-related data for the building heating system,
corresponding to thermal power levels, along with data about weather conditions
when those power measures were collected. Consequently, it allows predicting the
upcoming value for the building in the near future.

Prediction analysis. This block entails to predict the average future power
levels for each building. A prediction model is built for each building separately by
considering the energy-related data in the current sliding time window. The building
model is then exploited for forecasting the average power level at a given time instant
in the near future.

In a HDN, the heating cycle of a building includes two main operational phases:
the OFF-line phase, when the power exchange is turned off, and the ON-line phase,
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when the power exchange is on. The ON-line phase is then further structured in the
alternation of two sub-phases, named the transient state and the steady state. More
in detail, a large exchange of power between building and HDN (transient state)
interleaves a quasi-constant power exchange between building and HDN (steady
state).

To deal with this mixed trend and achieve an accurate predicted value, a predic-
tion model composed of three contributions applied in cascade is devised. First, the
proposed approach allows the automatic identification of the operational phases de-
scribed above. Then, it allows forecasting the power level locally at each phase. More
specifically, (i) first the Status and Outlier Detection (SOD) algorithm automatically
identifies the operational phases of the heating cycle of a building (Section 5.2.3.3.5).
Given a power measurement in a time instant, the SOD algorithm labels the current
operation phase as OFF-phase or ON-phase, and this latter case is further categorized
as transient or steady state. (ii) Then, the Peak Detection (PD) algorithm predicts
the peak power value in the transient state (Section 5.2.3.3.6), while (iii) the Power
Prediction (PP) algorithm predicts the average power profile in the transient state
and in the steady state (Section 5.2.3.3.7).

Prediction validation. This block measures the ability of the PPBEC engine
to correctly predict the energy consumption values achievable by a building in an
upcoming time instant. To this aim PPBEC integrates two metrics named Mean
absolute percentage error (MAPE) and Symmetric mean absolute percentage error
(SMAPE) (See Section 6.1 for further details). Every time a real power level value is
received, their values are updated to include the prediction error for the new measure.

5.2.3.3.4 Data flow to support the prediction task This section describes the
data flow for power levels prediction by exploiting data coming from both IoT
devices and third-party systems such as web services. IoT devices (i.e., smart
meters) are deployed in buildings to monitor the status of the heat-exchangers. As
shown in Figure 5.17, they exploit the MQTT protocol [75] to publish energy-related
measures as messages with an associated topic. A message includes the power value
measured on the heating system of a building, the identifier of the same building
and the timestamp of the measurement. Messages are asynchronously collected by
the Message Broker, using the publish/subscribe mechanism, and distributed to all
interested subscribers. Therefore, subscriber nodes are responsible for gathering data
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notifications about new power measures published by IoT devices to the Message
Broker.

In the scenario, among the subscribers there are the (near-)real-time algorithms,
i.e., Power Prediction (PP) and Status and Outlier Detection (SOD). Each algorithm
independently receives energy-related data, sent by IoT devices, from the Message
Broker and retrieves meteorological information from third-party web services
through REST interfaces [71]. Furthermore, the algorithms gather data from the
Building Model, included results from the Peak Detection (PD) algorithm, which
works with already collected historical data. Finally, the results of (near-)real-time
algorithms are stored into the MongoDB Historical Datastore.

Fig. 5.17 Software infrastructure dataflow.

The PP algorithm uses the energy-related measures received from the Message
Broker to develop the building model for the prediction of future power values.
Whenever a new power measure is available for a building, the PP algorithm up-
dates the corresponding model, to use it for predicting the next power values. PP
contextually exploits the received measures to calculate the errors of the predictions
previously performed for that values, in order to validate the model.

It computes the prediction error based on the expected power values according to
the prediction model and the actual power value just received. After data have been
processed, they are stored in the Historical Datastore together with the produced
outcomes.

5.2.3.3.5 Status and Outliers Detection The Status and Outlier Detection (SOD)
algorithm aims at automatically identifying the current operational phase for the
building heating system. SOD also allows to detect abnormal values of the instant
power measurements potentially occurred in the steady state.
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The operational phases of the heating cycle are the OFF-line and ON-line phases,
with the latter characterized by the alternation of a transient and a steady state. The
transient state is characterized by a rapid increase of exchanged power. It usually
occurs in the early morning when the heating is turned on. The steady state occurs
after a transient state. It is a relatively constant exchange of power. Each of the
above operational phases is characterized by a different amount of power exchange
between the building and the HDN. Specifically, the power exchange occurs only
during the ON-line phase, while it is absent otherwise.

The SOD algorithm relies on these expected trends in the power exchange to
detect the operational phase based on the measured instant power values. Specifi-
cally, SOD adopts the Exponentially Weighted Moving Average (EWMA), proposed
by [116] to filter noise and the effects of dynamic transient for the identification of
faulty sensors. In this case EWMA is applied to detect the dynamic transient of the
heating cycle and those variations in the steady state that can be filtered similarly to
noise in a signal.

First, SOD computes the exponential mean (pµ ) and the corresponding standard
deviation (pδ ) values of the instant power over a sliding window with one-day size.
The day preceding the current day is used for positioning the sliding window. This
time period allows computing pµ and pδ over a significant number of power values,
but sampled in time instants not too distant from the current time. Power values in
the pµ ± pδ range represent the expected power exchange during the steady state for
the considered building. This range of power values is used as a reference for the
identification of the operational phases. When a new instant power measurement pti

is acquired at time ti, SOD assigns a class label describing the current operational
phase of the building heating system. The phase categorization process works as
follows. The ON-line phase is detected when the instant power pti is different than
zero (pti ̸= 0); otherwise the phase is identified as OFF-line. The steady state label
is assigned when the instant power pti is within the reference range of power values
(i.e., (pµ − pδ ) ≤ pti ≤ (pµ + pδ )) for at least a minimum amount of time (transition
threshold). Instead, the transient state is labeled when the instant power pti is out the
reference range of power values (pti < (pµ − pδ )∧ pti > (pµ + pδ )) for more than
the transition threshold.

For example, Figure 5.18 plots the instant power measures monitored in one
day for a building. The figure also reports the range pµ ± pδ computed considering
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power values collected in the preceding day. Instead, Figure 5.19 shows the status
labels assigned by SOD when two consecutive days of power measurements are
considered. The assigned labels are equal to 1 for the transient state, to 0.5 for the
steady state, and to 0 for the OFF-line phase. To increase readability, the power value
reported in the figure has been normalized to the maximum power value. In both
days the SOD algorithm identifies one transient phase (around 07:00), followed by
one steady state.

Fig. 5.18 Daily instant power profile against the expected power range during the steady
state (pµ ± pδ )

The SOD algorithm also allows to detect and remove abnormal values in the
instant power measurements occurred during the steady state. An abnormal value
is an observation that lies outside the expected range of values. It may occur either
when a measure does not fit the model under study or when an error in measurement
occurs (e.g., caused by faulty sensors). SOD categorizes this abnormal value as
an outlier. When the operational phase is the steady state, a single isolated power
measure pti is categorized as outlier if its value is out of the range characterizing the
steady state, i.e., pti < (pµ − pδ )∧ pti > (pµ + pδ ). For example, Figure 5.19 shows
an outlier detected during the steady state at around 3:00 p.m. in the second day of
monitoring.

5.2.3.3.6 Peak Detection The Peak Detection (PD) algorithm aims at (i) fore-
casting the peak power value in the transient state and (ii) identifying the peak power
time instant, separately for each building.
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Fig. 5.19 Status detection with outlier value identification

The building heating cycle can have a single daily occurrence or it can be repeated
more times per day. Thus, the PD algorithm can be employed only once or more
times to forecast the peak power value in each transient state. Through the evaluation
of the heating cycle for a large collection of buildings (about 300 buildings), three
main building categories based on the number of interleaved heating cycles per day
are identified . These categories represent buildings that are daily characterized by a
Single, Double or Triple Heating Cycle.

Figure 5.20c reports an example of the daily power profile for the three categories.
Note that consecutive heating cycles can show different peak power values in case of
variation in the external temperature. The building internal temperature is affected
by the values of the external temperature. When the external temperature decreases,
the heating system reacts with a higher power exchange to keep the building internal
temperature at the desired value of comfort. Thus, when the heating system turns
on after an OFF-line phase with a lower external temperature, the heating cycle is
characterized by an higher peak power value in the transient state.

To predict the peak power value in the transient state, the PD algorithm hypothe-
sizes a relation between two quantities, named ψ and τ . ψ is the ratio between the
peak power value in the transient state and the mean power value in the previous
steady state. τ is the mean external temperature value in the previous steady state
and OFF-line phase.

To properly model the relationship between the ψ and τ values for any of the
three classes of buildings, the PD algorithm relies on the Multivariate Adaptive
Regression Spline (MARS) [117] approach. MARS is a step-wise linear regression
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(a) Single Heating Cycle

(b) Double Heating Cycle

(c) Triple Heating Cycle

Fig. 5.20 Heating Cycles in a day

for fitting variables in distinct intervals by connecting different splines with knots,
thus it is suited to model a wide class of non-linear relations between variables. PD
exploits the modified version of the MARS model proposed in [118] to predict the
energy performance of buildings. PD learns a regression model for each building
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and for each peak using as training set the data collected in the past days. ψ and
τ represent respectively the dependent and independent variables of the regression.
Since all the other quantities of ψ and τ are known (from past data), the peak power
value of the transient state appearing in ψ is the final target of the prediction.

For predicting the peak power value in the transient state of the first, second, and
third heating cycles (named first, second and third peak value, respectively) in the
target day, PD calculates the ψ and τ values as described below. PD predicts the
first peak value for all three building categories (Single, Double, and Triple Heating
Cycle), while the second peak value for two categories (Double and Triple Heating
Cycle) and the third peak value for a single category (Triple Heating Cycle).

To forecast the first peak value, τ and ψ are computed as follows: τ is calculated
as the mean external temperature value during the last steady state and OFF-line
phase in the day preceding the target day; ψ is the ratio between the first peak power
value (to be forecast) and the mean power in the last steady state of the day preceding
the target day.

To forecast the second peak value, τ is the mean external temperature value
during the first steady state and OFF-line phase in the target day; ψ is the ratio
between the second peak value (to be forecast) and the mean power of the first steady
state of the target day.

To forecast the third peak value, τ is the mean external temperature value during
the second steady state and OFF-line phase in the target day; ψ is the ratio between
the third peak power value (to be forecast) and the mean power in the second steady
state of the target day.

The PD algorithm also infers the instant at which the peak power will occur.
To this aim, PD computes the mean time where the past peaks have occurred, by
considering a sliding window of fixed size preceding the current instant of time.

5.2.3.3.7 Power Prediction with Multiple Regression On the basis of the out-
comes of the SOD and PD algorithms, the Power Prediction (PP) algorithm exploits
the multiple version of the Linear Regression with Stochastic Gradient Descent (LR-
SGD) [119] to predict the average power levels based on data from the Historical
Datastore.
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PP defines a building model based on a linear dependency between weather data
and power level. PP relies on the assumption that the average power exchange for
a building heating system at a given time instant is likely to be correlated with the
surrounding weather conditions. Moreover, the average power levels are also likely
to be temporally correlated with each other [120].

PP traines a multiple linear regression model for each building using historical
data on weather conditions and power level. The training set is built using a fixed
width sliding window mechanism, so the samples not older than a certain amount of
time before the current time instant are included. For collecting samples, is assumed
to split the window timeline in slots of the same duration (slot duration). Within
a time slot, a single sample for each variable (power and weather parameters) is
considered, computed as the mean value of the measures taken during the slot. Data
sampling is performed for both training and test (i.e., future time slots) datasets.

The LR-SGD algorithm is characterized by a set of input features expressed
through a n-dimensional vector x = [x1, . . . ,xn] ∈ IRn and a target variable y ∈ IR
representing the objective of the prediction. The LR-SGD algorithm builds a hy-
pothesis function h : IRn → IR | y = h(x) so that, given an input vector x, function
h(x) provides a good estimation of the value of y. In the study, features in x corre-
spond to the weather variables (air temperature, humidity, precipitations, wind speed,
pressure), while y is the power level. Since power consumption and meteorological
values differ in scale and measurement unit, data have been normalized. To preserve
the original data distribution without affecting the prediction accuracy, the Z-Score
standardization technique has been adopted.

The PP algorithm is structured into two phases: (i) building model learning,
considering a collection of historical values for variables x and y; (ii) prediction of
the future values of y, using the model generated in the first phase. The two phases
are described below.

Model learning. This phase takes as input a training set where each training
sample includes both the input vector x of meteorological data values and the
corresponding known target variable y. The training set is built using a fixed width
sliding window mechanism. Given a time instant ti, the training window includes an
ordered sequence of m data samples collected in ti and in the previous m−1 instants
t j (t j < ti). If the width of the sliding window (training window size) is very short,
then almost instantaneous evaluation of the building’s consumption is performed.
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Instead, a too large time window allows analyzing many data on past building energy
performance, but it may introduce noisy information in the prediction analysis. Since
the data of training window are sampled in slots, the time interval between two
consecutive training samples is fixed (slot duration). Given time ti, is define as
prediction time tp the subsequent instant at which PP predicts the average power
consumption. The time gap ∥tp − ti∥ defines the prediction horizon.

In a training set of m samples defined over a time window, each sample s( j) is
expressed by the pair (x( j), y( j)). For the LR-SGD algorithm, the hypothesis function
h(x) is expressed as follows:

h(x) = w0 +w1 · x1 + . . .+wn · xn (5.15)

where w1, . . .,wn are the weights characterizing the relationship between the average
power consumption y and meteorological data values in x (i.e., x1, . . . ,xn), while w0

is the intercept value. Without lack of generality, by defining x0=1 Equation 5.15
can be expressed using the following concise expression:

h(x) =
n

∑
i=0

wi · xi = WxT ,

W = [w0, . . . ,wn], x = [x0, . . . ,xn].

(5.16)

In the training phase, the LR-SGD algorithm learns the values of weights in
vector W. The least-squares cost function J( j) in Equation 5.17 is used to measure
the distance between the actual value of y and the computed value h(x) for each
training sample (J( j) = y( j)−h(x( j))). The overall least-squares cost function on the
whole training set is computed as

J(W) =
1
2

m

∑
j=1

(J( j))2 =
1
2

m

∑
j=1

(y( j)−h(x( j)))2. (5.17)

Algorithm 1 reports the process for weight computation in LR-SGD. The algo-
rithm iteratively considers the samples in the training set. It progressively updates
the values of weights wi in W by following the direction of steepest decrease of J( j).
The algorithms is driven by two user-specified parameters: the learning rate α and
the number of iterations on the whole training dataset.
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ALGORITHM 1: Weights update in Stochastic Gradient Descent
for j = 1, ..., m do

for i = 0, ..., n do
wi := wi +α · ((y( j))−h(x( j))) · x( j)

i
end

end

Unlike Batch Gradient Descent (BGD), which updates weights after the whole
training set is processed, with the Stochastic Gradient Descent (SGD) approach the
overall cost function J(W) quickly converges to a value close to the minimum.

Prediction. Once the learning model has been created, it is used to predict
the future power level y using the corresponding vectors of known input features x
representing meteorological data values x( j), j = m+1, . . .,+∞.

Hence, given the prediction of the weather variables for a future target time (x̂( j))
and the hypothesis function for the model h(x), the estimation of the corresponding
power value is calculated as:

ŷ( j) = h(x̂( j)) =
n

∑
i=0

wi · x̂( j)
i . (5.18)

The PP algorithm also relies on the outcome of the SOD and PD algorithms.
Through SOD, PP can identify when the power prediction is performed for the
transient or the steady state. Moreover, since during transient state the power values
might not have a clear linear dependence from weather data, PP uses the outcome
of PD algorithm to better approximate the transient power profile, through a linear
interpolation.

5.2.3.3.8 Building efficiency characterization The energy signature is a world
wide recognized method for the analysis of building energy consumption. This
method was developed in the 80’s by American government after the oil crisis, it
has been introduced in the European regulatory framework (EN 156036:2008) and
was recognized at Italian level in UNI (11300:2008). The energy signature method
has been used in many studies to extract the total heat loss coefficient of a building
[121–123]. The latter is recognised as an interesting key energy indicator [121, 124]
of a building.
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Specifically, the total heat gain in a building (denoted as Qtot) is expressed as
Qtot = Qloss +Qdyn where Qloss represents the ventilation and thermal losses and
Qdyn is the heat dynamically stored or released by the building. The term Qloss is
expressed as Qloss = Ktot · (Tin −Tex) where Tin is the internal temperature of the
building and Tex is the external temperature of the ambient, while Ktot is the total heat
loss coefficient of the building. The term Qdyn takes into account the dynamic of the
building. Since Qdyn is related to the thermal inertia of the building, the estimation
of its value may be a complex task. Qdyn is expressed as Qdyn =C · δT

δ t where C is
the thermal mass of the building, representing the building capability to release or
store heat. When the Qdyn value is approximated to zero, the steady-state analysis
of the building efficiency can be performed [121, 122]. Specifically, the dynamic
contribution Qdyn decreases when energy data are analyzed at coarse granularity (as
monthly, weekly) [124]. Instead, these effects are emphasized when finely-grained
data are analyzed (as every 15 minutes)[121].

The total heat gain Qtot in a building can also be expressed based on the contribu-
tion of four terms as in Qtot = Qh +Qel +Qp +Qsun where Qh is the power supplied
by the heating system, while Qel , Qp, and Qsun represent the heat gains due to
electricity usage (Qel), people presence (Qp) and solar radiation (Qsun), respectively.
The influence of random variables (as occupancy, wind, solar gains) and the heat
gains due to the electricity usage can be neglected when coarsely-grained data are
analyzed [122]. In this case, terms Qel , Qp, and Qsun can be approximated to zero.

This study focuses on the steady-state analysis of the building efficiency. Conse-
quently, energy data are analyzed at different coarse granularities to neglect both the
dynamic contribution Qdyn of and the influence of random variables. Furthermore,
Ktot estimation is normalized to a single unit of volume, i.e., W/m3. It follows
that the total heat gain Qtot in the building is equal to the power supplied by the
heating system per unit of volume and to the ventilation and thermal losses (i.e.,
Qtot = Qh = Qloss = Ktot · (Tin −Tex)). The linearity of the model has been evaluated
as done in [123].

To address the former objective, two indicators have been designed: (i) an intra-
building indicator, which addresses the question of abnormal power consumptions
given the current conditions with respect to past energy demand in the same con-
ditions; to this aim, the most recent power consumption data for each building is
compared to its own historical energy signature, thus identifying changes with respect
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to previously modeled energy behaviors of the same building; (ii) an inter-building
indicator, comparing the building efficiency, given by its energy signature, with
respect to nearby and similarly characterized buildings, where similarity takes into
account spatial co-location, building size, and usage patterns, e.g., residential or
office or public building.

The key intuition behind the designed indicators is based on exploiting the
energy signature defined by Ktot to compute the expected power consumption for
given contextual conditions in a specific time period. Contextual conditions can
include any relevant attribute for the specific problem under investigation. In the
current implementation, the difference between the outdoor Tex and the indoor Tin

temperatures, and the specific building characteristics (e.g., position, size, etc.) are
considered as the key attributes defining a context. If the given temperatures and time
periods are the current ones (e.g., current outdoor temperature, now), and is consider
the same building, then the intra-indicator is obtained, whereas using the energy
signature of a group of similar buildings, with respect to the one under examination,
leads to the inter-building indicator.

Finally, to reach the goal of forecasting the power demand, the same approach
can be used, by exploiting the energy signature with a predicted value of outdoor
temperature Tex and a fixed value of target indoor temperature Tin, with the former
obtained by weather forecasts, and repeating the computation for each future time
period and each building of interest. Such estimation of future power demand helps
district heating providers to better predict the energy demand.

To evaluate and rank building efficiency, its energy signature, defined by its total
heat loss coefficient Ktot , is exploited. To this aim, the instantaneous power supplied
by the heating system per unit of volume (Qh) is correlated with the difference be-
tween the indoor temperature Tin and the outdoor temperature Tex. The correlation is
based on a linear regression of average power samples per unit of volume, aggregated
at different time granularity levels. This process has been designed and developed as
a cloud-based service on top of a MongoDB distributed cluster, and it is detailed in
the following.

The analysis can be focused by filtering heating power consumption in a given
date range tperiod (e.g., a winter period, a month) and also in specific day time slots of
interest tslot (e.g., [5:00p.m-7:00p.m.], [10:00a.m.-7:00p.m.], [10:00a.m.-9:00p.m.]).
Hence the time-specific energy signature will be relevant only for those subsets
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of time periods, both in the characterization and in the prediction applications.
Focusing the energy signature by restricting the day and time periods helps in
modeling different behaviors such as those in the steady state, in specific seasons,
during office hours, etc.

The instantaneous power samples of interest are aggregated by computing the
mean value in a given time window, twindow (e.g., hourly, daily, weekly). The
resulting value indicates the mean power consumption over an hour, a day, or a
week. While longer periods are more error-prone due to the large variance of the
outdoor temperature Tex, too short periods take into account the thermal inertia of
the building, as discussed in Section 5.2.3.3.8.

The application service can estimate Ktot by considering any combination of
tperiod , tslot , and twindow, which are user-defined parameters. It will be up to the
end-user presentation interface to choose the best indicators in any given context.

For each building, the instantaneous power values per unit of volume, and the
difference between the indoor Tin and the outdoor Tex temperatures are extracted
from the MongoDB datawarehouse and aggregated over twindow. The result includes
all the mean power values per unit of volume and the average difference Tex-Tin for
each twindow.

Given the mean power values (denoted as y) and the mean temperature difference
values (denoted as x) it first compute ∑

n
i=1 xi, ∑

n
i=1 yi, ∑

n
i=1 xiyi. Then the a and b

terms of the linear equation y = a+bx is computed as follows.

a =
(∑n

i=1 yi)(∑
n
i=1 x2

i )−(∑n
i=1 xi)(∑

n
i=1 xiyi)

n(∑n
i=1 x2

i )−(∑n
i=1 xi)2

b =
n(∑n

i=1 xiyi)−(∑n
i=1 yi)(∑

n
i=1 xi)

n(∑n
i=1 x2

i )−(∑n
i=1 xi)2

The b value corresponds to the total heat loss coefficient of a building, i.e., Ktot .

The MapReduce jobs of the estimation of Ktot were developed through custom
JavaScript functions, and executed using the MongoDB MapReduce framework.
For each document, the map function emits an object containing the values needed
to compute the energy signature equation parameters for the related building. The
reduce function is in a simple sum over all the records of the same building. Finally,
a finalize function uses the aggregated results to compute the energy signature
equation and returns the Ktot estimation for each building. Energy signatures can be
aggregated over similar buildings by computing the average Ktot among them.
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5.2.4 Internal Temperature Simulation

Figure 5.12 shows the involved modules of the SMIRSE infrastructure for Internal
Temperature simulation. From the data sources BIM, GIS, Weather and ambient
indoor sensors are involved in the simulation process.

Fig. 5.21 Schema of SMIRSE Platform with focus on Indoor Temperature Simulation

Figure 5.22 shows the principal components that are deployed on-site. Buildings
are equipped with a: i) Wireless Sensor Network (WSN) with low power micro
controllers that monitor indoor temperature and air humidity in rooms; ii) with
a smart-meter that monitors electricity consumption data by communicating with
classic Low-Voltage meter exploiting Power-line communication. Both WSN and
smart meters are connected to a gateway that sends data to the Cloud, in particular to
the Store Manager. The interoperation between collected data in the cloud, weather
information, BIM and GIS models is given by the data source integration platform
(see Section 5.1.2.2) that provides users with: i) simulation and modelling of building
energy performance; ii) building status monitoring and visualization of collected
data; iii) user awareness.
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Fig. 5.22 Schema of on-site deployment for the proposed solution.

In this section, the followed methodology to perform energy simulations starting
from BIM and correlating IoT data within an integrated process is described. The
building energy modelling and monitoring approach is one of the most challenging
topic in Smart City scenario. In this context: i) BIM establishes a proper knowledge
of the buildings; ii) technical investigations aimed at energy efficiency are required
by EU Energy Performance of Buildings Directive [125]; iii) IoT links different
domains and provides real data from the field. These factors constitute the key issues
for this research development.

To achieve it, BIM models have been developed with Autodesk Revit 2016 [126]
starting from on-site surveys. They include: i) accurate building envelope characteri-
zations in terms of correct stratigraphy, thermal and physical properties; ii) facility
management information (e.g. room type and occupants); iii) materials nomenclature
standards. Thus, they become a significant repository of graphical and alphanumeric
information useful for energy analysis. To properly set the model to perform energy
simulations, the BIM needs simplifications by removing excessive details in the
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Fig. 5.23 BIM model.

architectural model, such as decorations and staircases (see Figure 5.23). These
details are unnecessary and get slow the simulation or can even include inaccuracies
in final results. Figure 5.24 shows the Energy Analysis Model (EAM) that consists of
rooms and analytical surfaces generated from the BIM model and exported by Revit
in gbXML data-format. Figure 5.25 reports the proposed energy modelling optimiza-
tion process. The EAM Simulation Engine block performs building simulations
using EnergyPlus [127]. It needs the following inputs:

• Geometry and materials of building components (e.g. stratigraphy and shades)
and their thermal and physical properties. These come from BIM models;

• Real weather data such as i) air dry-bulb temperature, ii) solar radiation and
iii) average air temperature;

• Data retrieved from Heating Ventilation and Air Conditioning systems such as
i) nominal power and flow rate of radiators, ii) nominal power and efficiency
of boiler, iii) climate control unit, iv) on/off profile of the heating system;

• Occupancy of rooms, including number of users and time-shifts.
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Fig. 5.24 Energy Analysis Model (EAM).

The outputs of the EAM Simulation Engine block are radiant, operating and
indoor temperature. It also provides the energy consumption profiles of the build-
ing. Traditionally energy simulations with EnergyPlus are performed using Typical
meteorological year (TMY). TMY is obtained by averaging hourly meteorologi-
cal measurements collected for 10 years. Thus, it does not represent real weather
conditions. As a strong point of the simulations, in the software platform (see
Section 5.1.2.2) third-party weather data-source from the nearest weather station
are integrated. Hence, real weather information (i.e. solar radiation, outdoor air
temperature and humidity) are considered in the simulation process replacing the
default TMY.

Indoor air temperature and humidity are sent every 15 minutes by IoT devices
and collected in the Store Manager of the proposed platform (see Section 5.1.2.2).
Such data are needed by the EAM Validation block in Figure 5.25 to validate the
performed simulations. This validation is done by comparing the results of the EAM
Simulation Engine with the real measured values coming from the deployed IoT
devices. Analysing temperature and consumption trends, factors that may affect the
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Fig. 5.25 Proposed energy modeling optimization process.

energy model can be identified, such as user behaviors, malfunctions and anomalies
in the system. For instance, user-awareness applications can help in minimizing not
energy efficient behaviors. Whilst maintenance activities can be planned to monitor
and solve identified anomalies (e.g. by comparing measured and simulated data, it
is possible to discover irregular trends of real indoor temperatures due to faults in
on/off schedules of the heating system or efficiency losses of the building-system).

In addition, BIM models can be used to evaluate different design and/or refur-
bishment scenarios (e.g. external/internal coat application, fixtures replacement and
power peaks regulation). Thus, this updated BIM model is a new input for the energy
modelling optimization process. This process is iterative and can help building- and
energy-managers in evaluating the best solution for both energy performances and
Return of Investment.



Chapter 6

Case studies and Results

The modules of the SMIRSE modelling and simulation infrastructure have been
tested mainly in the city of Turin as case study. Turin is a city located in Piedmont,
north-west of Italy. It has a total area of 130.01 km2 and a population of 890′133
inhabitants with a density of 6′846.65 inh./km2.

6.1 Metrics for evaluating simulation performance

In this Section we present the metrics used for evaluating the performances of our
simulations.

In particular, the following indicators of dispersion are considered. i) The Mean
Bias Difference (MBD) measures the average squares of errors between predicted
and measured values. ii) The Root Mean Square Difference (RMSD) represents the
standard deviation of differences between predicted and observed values. iii) The
Mean Absolute Difference (MAD) is defined as the average of the absolute difference
of two variables X and Y. iv) The Coefficient of determination (r2) indicates the
proportion between the variance and the predicted variable. v) The Standard Error
of Regression (S) expresses how wrong the regression model is on average using
the units of the response variable. Small values of S identify a high accuracy of
prediction because 95% of predicted values will fall in the range of ±2S. vi) The
Mean absolute percentage error (MAPE) represents the average difference between
the actual and the forecast expressed as a percentage of the actual (or the forecast).
vii) The Symmetric mean absolute percentage error (SMAPE) is a variation on the
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MAPE that is calculated using the average of the absolute value of the actual and the
absolute value of the forecast in the denominator. These indicators of dispersion, with
exception of r2, are expressed in percentage of mean measured values rather than
in absolute units as suggested in [128]. Furthermore, the two following indicators
for the overall performance are used for the evaluation. i) The Willmott’s Index of
Agreement (WIA) is the standardized measure of the degree of model prediction
error. It varies between 0 and 1. ii) The Legates’s Coefficient of Efficiency (LCE)
is the ratio between the mean square error and the variance in the observed data,
subtracted from unity. LCE can vary between −∞ and 1, where 1 represents the
perfect model.

6.2 Solar energy simulation

In this section, the experimental results performed exploiting the infrastructure
presented in Section 5.2.1 are presented. The solution has been tested in a district of
Turin and the case study area described is described in the followings.

The district under analysis is La Crocetta, where there is our University campus.
La Crocetta is located in the city center with an area of about 3.7 km2 and around
2200 residential buildings. It has been selected because of its buildings, which
are heterogeneous in terms of construction type and period. DSM and Cadastral
maps for this area have been provided by the city council. DSM has a resolution
of 0.25 m2, which gives the possibility to describe with high accuracy rooftops,
highlighting encumbrance like chimneys and dormers. Trough third-party web
services, meteorological data (i.e. solar radiation and air temperature) are retrieved
by the weather station in our University campus that is located in the middle of the
case study district. The weather station collects global horizontal radiation by a first
class pyranometer that samples every minute. Then, these samples are averaged
and provided every 15 minutes. As proposed by [129], we exclude samples of solar
radiation with: i) the altitude lower than 7° and ii) the clearness index lower than
0 and higher than 1. Furthermore, we excluded the measured samples of global
horizontal radiation with higher values than in clear-sky condition, again as suggested
by [129].
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Fig. 6.1 PV systems and Weather station

The performance of simulation are evaluated exploiting the indicators presented
in Section 6.1 and reported by Gueymard [128] for evaluating solar radiation models.
To validate the solar radiation simulator, we considered three different PV systems
and a tilted solar radiometer located in the case study district. Thus, we compared
results on PV energy simulation with real energy production data. The first PV
system under analysis has been installed in our University campus (Campus) in 2008
with an inclination of 26° and an orientation of 23° (considering south 270°). It is
a building integrated mono-crystalline system with an efficiency ηpv of 20.2% and
a nominal power of 15.28 kW . The other two PV systems have been installed in
2004 in two public high schools: i) Istituto Galileo Ferraris (GalFer) and ii) Istituto
Sommelier (Sommelier). Both PV systems are poly-crystalline with a nominal power
of 13.20 kW and 19.80 kW respectively and an efficiency of 13.1%. The GalFer
PV system is free-standing with an inclination of 35° and an orientation of 240°.
The Sommelier PV system is building integrated with an inclination of 20° and an
orientation of 240°. Both GalFer and Sommelier have been monitored during the
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European project PERSIL [8] with whom we partially share the same case study.
PERSIL aims at analysing the energetic performance of PV systems and solar thermal
plants. Table 6.1 summarizes the characteristic of these three PV systems. Moreover,
to validate the simulations of the Real-sky calculation service, we compared our
results with measured data collected by a second solar radiometer, different from
the one in the weather station. It is a mono-crystalline digital pyranometer and it is
installed very closed to the PV system in our University campus. Figure 6.1 shows
the case study area reporting the locations for the weather station and the three PV
systems.

Table 6.1 PV system characteristics

Campus GalFer Sommelier

Nominal Power [kW] 15.28 13.20 19.80
Module Power [W] 283 165 165

Number of PV modules 54 80 120
Module Efficiency [%] 20.2 13.1 13.1

Module Temp. Coef. [%/°C] 0.38 0.48 0.48
Slope [°] 26 35 20

Aspect [°] (South 270°) 23 240 240
Installation year 2008 2004 2004

First, the results achieved by the integration of the Solar Radiation Decompo-
sition and Real-sky calculation service are compared with the real data collected
by the digital pyranometer in our University campus in order to select the best
decomposition model. This test has been performed for all the solar radiation de-
composition methods integrated in the proposed infrastructure. After the selection of
the best decomposition model the Photovoltaic energy estimation service is tested
by simulating the generation profiles of the Campus, Sommellier and GalFer PV
systems. Finally to highlight the advantages of our solution the comparison of our
simulation results with the results obtained in PERSIL [8] is performed with one day
time-interval for Sommellier and GalFer.

6.2.1 Selection of best decomposition model for case study area

In order to select the best decomposition model for the case study area, all the models
implemented in the infrastructure have been tested. This because the accuracy of
each model is strongly affected by the geographic location (see Section 5.2.1.2.1).
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The best model has been selected by comparing solar radiation simulations with
measurements sampled by the solar radiometer in our University campus. The tests
are performed by simulating solar radiation from the 1St of January 2014 to 31St of
December 2015. Figure 6.2 shows the simulations of GHI in a spring week for each
decomposition model.

Fig. 6.2 GHI simulation for each decomposition model in a spring week

Table 6.2 reports some of the performance indicators presented in Section 6.1 for
each decomposition model simulation using time-intervals of 1 hour and 15 minutes
respectively.

The performance indicators for hourly simulations show that the best model for
the case study area (Turin, Italy) is Karatasou [11]. Indeed, among its performance
indicators, this model has the best values with exception of MBD, which is −1.88%.
Indeed for MBD only, Karatasou is worst than the Ruiz-Aris model [96] with the
MBD = −0.68%. Considering 15 minutes simulation, Karatasou again has the
best performance indicators with exception of MBD and MAD. Indeed, Ruiz-Aris
achieves the best MBD, which is −0.5%; while Reindl [97] has the best MAD equal
to 16.21%.

Table 6.2 highlights that all these decomposition models have better performance
in simulation with 1 hour time-interval. This is also confirmed by Gueymard et
al. [99], where authors proves that solar decomposition models developed to have the
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Table 6.2 Performance indicators for simulations of solar radiation

Model
Time

resolution LCE MAD [%] MBD [%] r2 RMSD [%] WIA

Reindl [97] 0.80 15.38 -6.22 0.95 20.93 0.98
Engerer [95] 0.77 17.48 -5.96 0.93 24.16 0.98
Skartveit [98] 0.77 17.46 -8.62 0.93 24.10 0.98
Karatasou [11] 0.80 15.44 -1.88 0.95 20.73 0.98
Ruiz-Arias [96] 0.80 15.31 -0.68 0.94 20.75 0.98
Erbs [94]

1 hour

0.80 15.47 -6.54 0.94 21.42 0.98

Reindl [97] 0.78 16.21 -6.08 0.93 23.52 0.98
Engerer [95] 0.75 19.09 -5.82 0.90 27.83 0.97
Skartveit [98] 0.75 18.75 -8.55 0.91 26.84 0.97
Karatasou [11] 0.78 16.57 -1.40 0.93 23.42 0.98
Ruiz-Arias [96] 0.78 16.65 -0.5 093 23.62 0.98
Erbs [94]

15 minutes

0.78 16.95 -6.36 0.93 24.35 0.98

best performance with slow variations of kt (e.g. hourly resolution) cannot provide
same performance with faster variations of kt (e.g. 15 minutes resolution).

Table 6.3 Performance indicators for simulations of solar radiation applying Karatasou
model [11]

Period Weather LCE MAD [%] MBD [%] r2 RMSD [%] WIA

Sunny 0.75 14.29 -2.26 0.93 17.94 0.98
Cloudy 0.75 17.17 -2.31 0.9 26.01 0.97Winter
Rainy 0.73 25.93 5.25 0.91 37.99 0.97

Sunny 0.8 13.14 -3.95 0.95 16.99 0.98
Cloudy 0.79 15.01 -1.13 0.93 21.18 0.98Spring
Rainy 0.77 18.57 -0.38 0.93 30.72 0.97

Sunny 0.81 9.5 -4.39 0.96 11.91 0.98
Cloudy 0.75 16.31 -3.01 0.91 21.79 0.97Summer
Rainy 0.71 22.6 -3.56 0.87 33.54 0.96

Sunny 0.8 9.15 -0.13 0.95 12.06 0.98
Cloudy 0.72 16.26 -1.66 0.9 21.01 0.96Autumn
Rainy 0.71 24.63 6.73 0.91 32.81 0.99

Table 6.3 reports the performance indicators of solar radiation simulation for
season and weather conditions (Sunny, Cloudy and Rainy) using the Karatasou
model [11]. Table 6.3 show that best results are achieved in sunny days of summer



92 Case studies and Results

and autumn. Indeed for all seasons, MAD, MBD and RMSD have lower values in
sunny days. The r2 is higher or equal to 0.9 for all seasons except for of rainy
days in summer. On the other hand, simulations in winter season provide the worst
results with respect to the other seasons, in particular during rainy days. More in
general, rainy days for the fours seasons do not have the same good performance
than in sunny days, with RMSD higher than 30%. This is due to the accuracy of
the integrated decomposition models in evaluating direct and diffuse components of
solar radiation in rainy days. However, the results of 15-minutes simulations in rainy
day (worst case) are still acceptable. In further studies the exploitation of sensors to
sample direct and diffuse radiation will improve the performance of the simulations.

6.2.2 Evaluation of PV system simulation against measured data

In order to validate the accuracy of the Photovoltaic energy estimation in generating
power load profiles, simulations for the three PV systems introduced in the case
study at the beginning of this Section are performed. Those simulation are compared
with the measurements of power generation for the i) Campus, ii) Sommellier and
iii) GalFer PV systems. In the simulations an yearly degradation factor of 1% for
the efficiency coefficient η has been taken into account for each PV system. In
the calculation of the Tsol−air temperature , the loss factor k has been set to 0.05 as
reported by [52].

Figure 6.3 shows the comparisons among our simulations and measured genera-
tion profiles for the Campus PV system in three generic days of autumn: i) sunny,
ii) cloudy and iii) rainy. It is worth noting that the trends of our results follow the
real behaviour of the PV system with a good accuracy.

Table 6.4 reports the results in terms of performance indicators of instant power
for the Campus PV system. The best results are achieved in sunny days of autumn.
Indeed, r2 is higher than 0.9; RMSD and MAD are respectively lower than 13% and
10%.

Simulations performed in summer provide the worst results with respect to the
other seasons. This is related to the fact that PV system in summer period are more
affected by the temperature effect on the efficiency η of the module.

Considering the whole time period (18 months), the accuracy of simulation
performance for daily energy production increases with respect of 15 minutes time
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Fig. 6.3 Campus PV system simulation vs measurements

Table 6.4 Campus performance indicators for our solution

Period Weather LCE MAD [%] MBD [%] r2 RMSD [%] WIA

Sunny 0.8 10.72 4.28 0.95 13.67 0.98
Cloudy 0.77 15.7 6.59 0.93 20 0.98Winter
Rainy 0.66 33.13 17.5 0.89 41.87 0.96

Sunny 0.78 12.57 5.82 0.94 16.17 0.98
Cloudy 0.74 18.27 2.13 0.9 25.29 0.97Spring
Rainy 0.73 21.69 2.07 0.9 30.72 0.97

Sunny 0.7 14.3 -0.94 0.89 18.04 0.97
Cloudy 0.68 19.86 -1.86 0.86 26.02 0.96Summer
Rainy 0.66 26.2 -1.89 0.82 37.27 0.95

Sunny 0.78 9.24 3.93 0.94 12.6 0.98
Cloudy 0.7 16.91 3.82 0.89 22.09 0.97Autumn
Rainy 0.67 28.85 13.35 0.89 36.94 0.97

18 months period
for 15-min simulation — 0.72 18.85 1.8 0.9 25.21 0.97

18 months period
for daily simulation — 0.82 9.64 7.93 0.96 11.68 0.99

resolution. Daily simulations are computed as the integral of 15-minute simulations;
thus, errors tend to be attenuated. The indicator results are as follows: LCE = 0.82;
MAD = 9.64%; MBD = 7.93%; r2 = 0.96; RMSD = 11.68% and WIA = 0.99.
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Considering the overall energy production for the analysed time period, we achieve
MAD = 0.2%; MAD = 0.2% and RMSD = 1.27%.

The other PV systems under analysis, both Sommelier and GalFer, have been
monitored from the 1St of March 2010 to the 22Nd of February 2011 and the data
sampling has been done by the PERSIL project consortium [8]. For the Somelier
system data regarding the 28th of March 2010 where excluded in the simulation
due to a wrong collection of samples of instant power. For both system the 15th of
December 2010 has been excluded due to a a lack of data of external temperature in
the weather data. In Table 6.5 and 6.6 the performance indicators of our simulation
compared with measured data for Sommellier and GalFer respectively are presented.
The simulations are performed with different time-scales: i) 15 minutes, ii) 1 day and
iii) 1 year. For both Sommelier and Galfer, the accuracy of performance indicators
of daily and yearly simulation increase with respect to 15 minutes simulations. LCE,
WIA and r2 are not calculated for yearly values because they can be applied to series
and not to a single value. With respect to 15 minutes simulations, the accuracy of
performance indicators for Sommelier simulations is in line with the one of Campus.
Apparently, GalFer presents the worst accuracy. However, if the analysis is restricted
to the period between 1St of March 2010 and 15Th of May 2010 the results are in line
with the other PV systems. This is due to a malfunction of the PV system. Further
details one this particular behavior are discussed in next Section 6.2.4.

Table 6.5 Sommellier system performance indicators for our solution

Time-frame LCE MAD [%] MBD [%] r2 RMSD [%] WIA

15 minutes 0.7 21.42 14.38 0.87 28.29 0.97
Daily 0.76 11.64 9.81 0.94 14.63 0.98
Yearly - 1.6 1.6 - 4.79 -

6.2.3 Comparison with PERSIL simulation methodology

The results obtained for the simulation of Sommellier and GalFer PV systems are
compared with the one obtained in the PERSIL project [8], with whom we partially
share the same case study. Figure 6.5 and Figure 6.4 show the real measured daily
energy production compared with results of our solution and with results of PERSIL
methodology for July 2010. Both Figures point out that PERSIL overestimates daily



6.2 Solar energy simulation 95

Table 6.6 GalFer System performance indicators for our solution

Time-frame Interval LCE MAD [%] MBD [%] r2 RMSD [%] WIA

15 minutes All days 0.55 30.86 24.25 0.76 39.07 0.95
Daily All days 0.5 14.97 54.25 0.78 28.05 0.95
Yearly All days - 2.69 2.69 - 8.08 -

15 minutes Before 15/05/2010 0.78 15.99 7.94 0.92 23.09 0.981
15 minutes After 15/05/2010 0.47 36.1 30 0.68 43.93 0.93

Daily Before 15/05/2010 0.8 9.09 7.94 0.94 11.92 0.98
Daily After 15/05/2010 0.4 30.55 29.99 0.71 32.71 0.94

energy production with respect to our solution. In particular for the Sommellier
system PERSIL methodology has a RMSD = 22.92% and MAD = 21.77% with
respect to the proposed solution. For the GalFer system both methodology tend
to overestimate daily energy production. The overestimation is related to a mal-
function in the GalFer system occurred after the 15th of May 2010 as described in
Section 6.2.4. By the way for the GalFer system our solution performs better as
show in Figure 6.4. The PERSIL methodology in this case has a a RMSD = 23.31%
and MAD = 22.15% with respect to our solution for the moth of July 2010.

This is also highlighted and quantified by comparing the accuracy of performance
indicators obtained by PERSIL (Table 6.7) with the one obtained with the proposed
solution ( Table 6.5 and 6.6). This analysis underlines how the proposed software
infrastructure better describes the energy production with respect to PERSIL. Regard-
ing the estimation of daily energy production for Sommelier, the solution reduces
RMSD of 32%, MBD of 28.88% and MAD of 24.34%. Considering the yearly en-
ergy production for the same PV system, the solution decreases RMSD of 35.66%,
both MAD and MBD of 35.79%. About the estimation of daily energy production
for GalFer before the malfunction, the solution reduces RMSD of 34.30%, MAD of
29.44% and MBD of 25.72%. Considering the yearly energy production for GalFer,
the solution increases the accuracy by reducing the RMSD of 42.79%, both MAD
and MBD of 42.76%. With the proposed solution, the accuracy increases because the
simulation process takes as inputs an high resolution DSM that allows the possibility
of simulating possible shadow. In addition, the proposed infrastructure consider
Tsol−air to better estimate the temperature for the PV cells. Finally, the daily energy
production is computed as the sum of 15 minutes energy simulations. Thus, the
effects of temperature on the PV efficiency is evaluated with real and actual values;
while PERSIL exploits daily mean value.
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Table 6.7 PERSIL Performance Indicator for Sommellier and GalFer PV systems

LCE MAD [%] MBD [%] r2 RMSD [%] WIA

Daily -0.16 58.22 56.66 -0.22 66.26 0.8
Daily (before 15/05/2010) 0.31 30.87 30.87 0.54 34.75 0.91
Daily (after 15/05/2010) -32 67.85 65.74 -0.55 76.01 0.78

GalFer

Yearly - 6.29 6.29 - 18.88 -

Daily 0.183 40.3 40.3 0.386 45.6 0.88
Sommellier

Yearly - 4.47 4.47 - 13.43 -

Fig. 6.4 Comparison of daily energy production of our simulation with measured data and
PERSIL [8] (Ferraris PV system)

6.2.4 PV system operation assessment

The proposed distributed software infrastructure can help Energy managers and PV
system engineers in monitoring the performance of already deployed PV systems.
This can help in planning maintenance activities by identifying systems that are
not working properly. During the tests on GalFer and after a deep analysis of its
generation loads, it was possible to identify a malfunction of the system that affects
its performance after the 15Th of May 2010.

Indeed, this anomaly decreases the efficiency of the modules reducing the maxi-
mum peak power. This is pointed out by analysing the peak power in a sunny day
before and after 15Th of May 2010. Until 15Th of May 2010, the simulation trends
follow the real behaviour of the PV system. In particular, the peak power in 17Th
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Fig. 6.5 Comparison of daily energy production of our simulation with measured data and
PERSIL [8] (Sommelier PV system)

of May 2010 is 6354.77 [W ], with a global horizontal radiation of 844.10 [W/m2]
in sunny day. Instead, in 20Th of April 2010, still a sunny day, the peak power
is 7545.36 [W ] with a global horizontal radiation of 810.5 [W/m2]. This anomaly
is also highlighted in Figure 6.6, where simulation results are compared with real
measured values in sunny, cloudy and rainy days before and after 15Th of May
2010. It is worth highlighting that this anomaly is not verified for Sommellier, which
has almost the same system characteristics and geographic location of GalFer as
presented in the case study. Indeed, for the Sommellier the peak power of the two
days are 10027.05 [W ] and 9937.60 [W ] respectively.

6.2.5 Floor Planning

6.2.5.1 Experimental Setup

The algorithm for PV system Floor Planning has been applied on roofs of three
industrial buildings, shown in Figure 6.7-(a). They are lean-to roofs of approximately
49m x 12m, facing S/S-W with inclination of 26◦. The colored areas of Figure 6.7-(a)
highlight the identified suitable areas. The figure highlights that some parts of the
roofs are discarded, due to the presence of encumbrances - this is especially evident
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Fig. 6.6 Comparison of GalFer generation loads for Sunny, Cloud and Rain day before and
after 15Th of May 2010

for roof 1, where pipes occupy a large space. The suitable area is then aligned to the
20cm grid. The key feature of the roofs are reported in Table 6.8.

②
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③

②

③

(a) (b)
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Fig. 6.7 Roofs used for the experimental analysis (a), and corresponding irradiance distribu-
tions (b).

The solar radiation data coming from the Real-sky calculation service has then
been used to derive the evolution of irradiance and temperature over time for the
roofs. Despite of the geographical proximity, the roofs have quite different irradiance
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Table 6.8 Characteristics of each roof, and power production of the proposed PV floorplanning
algorithm with respect to traditional placements.

Roof WxL Ng N
Traditional Proposed

MWh MWh %

Roof 1 287x51 9,416
16 3.430 4.094 +19.37
32 6.729 7.499 +11.44

Roof 2 298x51 11,892
16 2.971 3.619 +21.85
32 5.941 7.404 +23.63

Roof 3 298x52 11,672
16 2.957 3.642 +23.16
32 5.746 7.405 +28.86

(a) (b) (c)

(d) (e) (f)

ROOF 1 ROOF 2 ROOF 3

SERIES 1

SERIES 2

SERIES 3

SERIES 4

Fig. 6.8 Traditional PV panel placements (a-c) and placements resulting from the PV floor-
planning algorithm (d-f). Colored rectangles represent panel positions, and panels of the
same color are connected in series.

distributions. Figure 6.7-(b) shows the 75th percentile of irradiance distribution
(brighter colors represent a larger irradiation). All roofs tend to have the least
irradiated grid elements on their right-hand side, as an effect of roof orientation. In
general, irradiance is quite non-uniform, and the variance is quite heterogeneous
over the different roofs; this is especially evident for Roof 1, as the pipes tend to
lower irradiance over a wide area of the roof.Notice that this map does not include
the effect of temperature.

6.2.5.2 Simulation Results

The PV floorplanning algorithm is run twice on the three roofs to place N = 16 and
N = 32 panels. The panels are always organized with series of 8 panels (m = 8).
The execution time of the placement algorithm is proportional to the number of valid
grid elements and to the number of panels to be placed, and required less than 120 s
under all configurations on an Intel 8-core i7 server with 15.4GB of RAM. Due to
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the large number of grid elements (almost 12,000 for roofs 2 and 3), it is not possible
to compare our results against an exhaustive algorithm.

Figure 6.8 compares the loose placements generated by our algorithm against
traditional “compact” placements. Colored rectangles represent panels, with panels
of the same color belonging to the same series string. Due to space constraints, the
figure reports only the experiments run for N = 32.

The compact placements (a-c) are placed in the most irradiated area of the
roof; notice that these placements are determined using accurate spatio-temporal
irradiance information that are not normally available to installators. Therefore, we
are comparing our solution to a particularly “good” reference.

The placements resulting from our floorplanning algorithm are shown in Figure
6.8-(d-f). They clearly tend to be placed nearby the traditional placements (e.g., com-
pare (a) and (d)), yet the are sparser, since they try to exploit fine-grain differences
in the distribution of irradiance and temperature. This is clearly visible for example
in the triangular shape of the placement in (e), that matches the irradiance variation
in that region of Roof 2 (Figure 6.7-(b)).

Table 6.8 clearly shows that our PV floorplanning can significantly improve the
energy production on a yearly basis, with improvements that range from 11% to
28%. Obviously, the magnitude of the benefit is proportional to the available space;
this explains the smaller improvements for Roof 1, which has fewer valid grid points
than the other roofs.

It is possible also to notice how more irradiated roofs improve the benefit of a
customized placement; Roof 1 has a sensibly smaller benefit from the placement
than the other two, as a result of a clearly visible lower average irradiance (Figure
6.7-(b)).

The sensible improvements obtained by the placement, however, are not just due
to a positioning of modules that matches irradiance and temperature. The placement
is also topology-aware; by enumerating modules in series-first fashion, it guarantees
that he bottleneck effect in a series string due to a “weak” module (which determines
the current of the entire string) cannot occur. This effect is visible in Roof 1: the
traditional and modified placements occupy more or less the same portion of the roof,
and therefore they are subject to similar G and T conditions; however, the energy
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extracted in two placements differ by 11.4%, as mostly due by avoiding the “weak”
module issue.

6.2.5.3 Overhead Assessment

For the calculation of the wiring overhead, an AWG 10 cable with resistive loss of
≈ 7mΩ/m, and a approximate cost of 1$/m is assumed to be used. As a conservative
calculation of the overhead, assume a 4A current in a series string (corresponding to
an irradiance of 600W/cm2); the power would be RI2 ≈ 0.11W/m for each meter of
extra cable in the string, i.e., ≈ 0.5kW/m of energy in one year (assuming 50% of
the time at zero current for dark periods). If is multiply this number for 8 strings,
and comparing it to the figures of Table 6.8, the overhead is approximately only
0.05%/m. The wiring overhead is in the order of 20 meters for the worst-case
solutions, so both power and cost overhead are not an issue.

The placement algorithm does not directly include power overhead, if not indi-
rectly by restricting the greedy choices.

6.2.6 I-V Modelling

The model has been tested against real data obtained from an installed PV array on
the roof of Sommelier and Galfer, described in the case study at the beginin of the
Section 6.2. The array consists of the parallel connection of 4 strings in parallel, each
consisting of 10 modules in series, with bypass diodes around each module. The
MPPT with the inverter is placed after the parallel connection of the 4 strings, and
therefore the MPP is extracted on the global curve of the entire array. The analysis
covers one year, from March 2010 to February 2011, for which both environmental
data and power production traces were available.

The resulting traces have been compared to the actual power extracted before
the inverter, as returned by the measurements on the actual PV installation. Figure
6.9 provides a graphical comparison of the traces (from top to bottom, total power,
voltage and current of the panel). For space constraints, the analysis is restricted
to 12 days (from August 8th to August 21st). The plot highlights that the proposed
model (solid lines) follows quite well the experimental measurements (dashed lines).
The model slightly overestimates the current and the total power; this is likely due
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to a conservative assumption on the aging of the modules, which derived from the
literature [107] as this information was not available for the PV installation.

In order to assess accuracy, the proposed model is compared with the results ob-
tained with the NOCT method presented in Section 5.2.1 and with the one proposed
in [8]. Table 6.9 reports four indicators for each model: (i) the Root Mean Square Dif-
ference (RMSD), (ii) the coefficient of determination R2 (i.e., the proportion between
the variance and the predicted variable), (iii) the Willmott’s index of agreement (WIA,
measure of prediction errors), and (iv) the Legate’s coefficient of efficiency (LCE,
ratio between the mean square error and the variance of observed data) [130]. The
former two are percentages that measure dispersion, and thus the lowest the better.
The latter two are indicators of performance, for which a higher value indicates a
better model. Table 6.9 highlights that the proposed model outperforms both the
NOCT forumla and the one proposed by [8] on all indicators.

The high level of accuracy is additionally confirmed by the analysis of the yearly
power production. The estimated power production is 6.695MWh, very close to the
measured production of the actual PV system (6.708MWh). The very low error rate
(<0.2%) highlights that, despite of local fluctuations, the proposed model adheres to
the actual PV system behavior. This is even more meaningful when considering that
the proposed model requires as inputs only the datasheet of the adopted PV panels
and the system topology. This high level of accuracy, together with the computation
speed (26.6s for model construction and 259.7s for one year long simulation) prove
the effectiveness of the proposed model in the context of autonomous building
design.

Table 6.9 Statistical performance indicators of the proposed model w.r.t. NOCT Formula and
[8].

MODEL RMSD R2 WIA LCE

Proposed 22.20% 0.906 0.975 0.751
NOCT Formula 28.29% 0.870 0.970 0.700

[8] 45.60% 0.386 0.880 0.183
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Fig. 6.9 Comparison of the proposed model (solid lines) w.r.t. the experimental traces (dashed
lines).

6.3 Renewable energy and Smart policies grid inte-
gration

In this section the results obtained with the integration of the PV simulator with
the real-time simulator presented in Section 5.2.2 are reported. In particular the
integrated solution is used to assess and discuss the impacts of rooftop PV penetration
and distributed storage on grid operation status from different perspectives. The
advantages of this integration can be seen both in planning and operation phase.
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In phase of planning and network reinforcement, the tool can be used to assess the
impacts of different levels of PV penetration on the existing grid. The test conducted
in the case study area will show that problems can involve transformers capacity in
case of high penetration of PV in low voltage grids. As another example of planning,
homogeneous distribution of PV generation with respect to the level of demand
should be taken into account in order to evaluate the levels of self-consumption
and self-sufficiency. In the planning phase neglecting the analysis of homogeneous
distribution of PV generation with respect to the level of demand can introduce
challenges in the network voltage control. Based on these studies, existing network
can be refurbished through investment, or new regulation can be adjusted to meet
the requirement of the system (e.g. when new regulations are being made to provide
incentives to install PV arrays on the rooftop, different areas may get different
incentives).

In the operation phase, the co-simulation tool proves how the PV simulator
can provide in time and quite sufficient information about generation to support
low voltage system state estimation [131]. Since there are too many low voltage
connected PV panels in the grid, there are a lot of challenges in the estimation of
generation data due to the need to install new suitable smart meters, acquiring a
huge number of measurements, retrieving so much data so frequently (e.g. every 15
minutes), and fast data processing. The performed simulation will show how system
operator can forecast and monitor substation power flow by using the data generated
by the PV simulator.

The district of La Crocetta in Turin has been chose as case study for testing the
co-simulation environment.
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Fig. 6.10 Buildings in substations

This area counts 2198 residential buildings connected to 43 MV/LV substations.
Each substation serves an area whose extension depends on the number of connected
households, as reported in Fig. 6.10. To evaluate the integration of PV systems in
the district, a summer sunny and a summer cloudy day have been simulated. During
summer days, in Italy, the energy consumption of residential users is lower than in
winter days [132] because residential households do not usually have air conditioning
systems. On the other hand, during winter season, heating systems circulation pumps
run almost all day long. In addition, sunny days in summer produce more electricity
from PV systems and this can be a critical situation for distribution grids. Fig. 6.11
shows the daily energy consumption for each substation (consumption data were
obtained through measurements in MV/LV substations). Energy consumption is
not proportional to the area served by the sub-station, but rather to the number of
households. Unfortunately, information about DNI and DHI are not available. Hence,
the Solar radiation decomposition module (see Fig. 5.1) is used and the values of
GHI radiation are retrieved, via web-services, from a weather station located in the
center of the district. Finally, high quality mono-crystalline Si PV modules with
efficiency ηpv = 20.4% in standard test conditions (STC) and thermal coefficient of
maximum power γpv =−0.38%/°C have been considered.
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Fig. 6.11 Substations Electricity consumption

The electricity grid is a medium voltage (MV) network with five feeders derived
from three 22kV busbars of a 220/22 kV primary substation. Each of the busbars
is energized by a 220/22 kV transformer. The total length of MV lines, mostly
constituted by underground cables, is around 39 km (Fig. 6.12). There are 49 MV/LV
substations out of which 43 are supplying loads (mainly 2200 residential buildings).
The MV/LV transformers are characterized by voltage ratio of 22 kV/400 V and a
nominal power of 400 kVA, 250 kVA or 160 kVA.
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Fig. 6.12 Grid topology
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To evaluate the integration of PV systems and distributed storage in the district,
a summer day scenario (in July) with a quite high PV production has been simulated.
During summer days, in Italy, the energy consumption of residential users is lower
than in winter days because residential households do not usually have air condition-
ing systems [132]. In addition, sunny days in summer produce more electricity from
PV systems and this can be a critical situation for distribution grids.

The simulation process identified 944 areas in the building rooftops, equivalent
to 71595.53 m2, suitable for deploying PV systems with a maximum nominal power
potential equal to 14.21 MW . During the sunny day, the peak power production
is around 3.77 MW and the energy production is equal to 28.41 MWh. On the
other hand, during the cloudy day, it is around 3.94 MW with an energy production
of 16.95 MWh. The peak power production does not reach the nominal peak power
in either of the two cases as shown in Figure 6.13. The higher peak power reached
in the cloudy day can be explained through the phenomenon of irradiance spikes
caused by broken clouds (ISBC) [133] or by a lower temperature of the PV arrays.

Fig. 6.13 Grid Total generation in a Cloudy and Sunny day

We discuss in the next paragrphs the results in the two above-mentioned phases
(i.e. planning and operation) for Self-consumption and Self-sufficiency evaluation,
voltage control, transformers capacity and substation power flow.
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6.3.1 Self-consumption and Self-sufficiency evaluation

The distribution of power and energy production for each MV substation area
during a sunny day in summer is shown in Fig. 6.14 and Fig. 6.15 respectively.
As the simulation process considers also the shadows of surrounding buildings
and vegetations, rooftops areas with high power production potential can have an
energy production impact lower than areas with low power production potential
(see Fig. 6.14 and Fig. 6.15). In 6.17 and 6.16 the levels of self-sufficiency and
self-consumption are reported. 6.17 shows that the sub-station with less production
has less than 10% of self sufficiency. However, sub-stations 17,18,23,24 and 25
have a level of self-sufficiency over 39%. Figure 6.16 revels that almost every
sub-station absorbs all the produced energy from PV system. Only sub-stations
17,18,23,24 and 25 feed the MV distribution grid and are the one with the highest
level of self-sufficiency.

Fig. 6.14 PV potential for each substation
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Fig. 6.15 PV production in a sunny day for each substation

Fig. 6.16 Level of self consumption for each substation



6.3 Renewable energy and Smart policies grid integration 111

Fig. 6.17 Level of self-sufficiency for each substation

6.3.2 Voltage Profile

In distribution systems, tap changers of the HV/MV transformers at the primary
substations would try to keep the voltage at the MV bus-bars at a certain level, by
measuring and monitoring transformer current. When a transformer feeds several
feeders, characterized by different PV penetrations with respect to peak loads, the
voltage profiles at the secondary substations on the different feeders follow different
profiles. This means that monitoring and regulating the voltage at the beginning of
feeders is not necessarily sufficient for keeping voltages of all the substations of all
the lines in the desired range. For example, in feeders where generation is higher, in
some substations voltages may be above the admissible limit. In this case, the first
feeder from the left is characterized by low demand, while its PV generated power is
more or less the same as the others. In the second feeder, MV/LV transformers have
greater sizes (400 kVA and 250 kVA), and consumption is higher than in the left one
in which smaller transformers (160 kVA) are installed. We run the co-simulation
for a summer scenario of a sunny day. Fig. 6.18 and Fig. 6.19 shows aggregated
generation and consumption at substaions 7, 9, 21, and 24, and Fig. 6.20 shows the
net active power injected into the downstream LV grids connected to these subsations.
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Substations 21 and 24 with high self-sufficiency are connected to one feeder, and
substations 7 and 9 with lower self-sufficiency are connected to the other feeder.
According to the voltage profiles of these sub-stations (Fig. 6.21), any changes in the
level of transformer voltage to correct over/under voltage in one feeder would result
in more deviation in the other feeder.

Fig. 6.18 PV Generation Profiles for substation 7,9,21,34
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Fig. 6.19 Load Profile for substation 7,9,21,34

Fig. 6.20 Net consumption for substation 7,9,21,34
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Fig. 6.21 Voltage profiles for substation 7,9,21,34

6.3.3 Transformers capacity

The MV/LV transformers at the secondary substations are modelled based on the
existing transformers in the real network, which were installed without considering
the new PV generation capacity. Maximum aggregated generated power of each
substation on the study day is shown in Fig. 6.22.

Fig. 6.22 Maximum PV generation of each MV/LV substation in a Sunny day
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Transformer capacity is based on maximum apparent power in [kVA] and can be
considered for both power absorption and injection (the red continuous lines in Fig.
6.23). All values of power generation and consumption are calculated for every 15
min of the study day, therefore there would be 96 snapshots of the systems status. To
reach the worst scenario, the maximum net consumption (subtracting local generation
from local consumption) of each substation during the study day are considered,
indicated with large green bars in Fig. 6.23. As shown with narrow dark bars, the
maximum load consumption of all substations is within the transformer capacity
range, while integrating PV generation would cause violations in 2 substations (24
and 30 in Fig. 6.23). The maximum net consumption in these 2 substations exceeds
the transformers capacity due to high amount of PV generation and low consumption.
This highlights the fact that in cases where local generation is much more than local
demand, either the installation of PV arrays should be reduced or grid infrastructures
in terms of transformers (and also cables/lines) should be enhanced to tolerate reverse
power injection from substations to the grid.

Fig. 6.23 Network results

6.3.4 Power Flow

In this case study, a scenario in which almost all residential buildings install PV
arrays on their rooftops is analyzed, which reach their peak power on a sunny day of
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July. The PV generation module does not consider grid constraints and introduces PV
generation with the highest possible penetration, considering the available surface
areas on the rooftops. In this case, penetration level is 51%, where PV penetration
level is defined as total peak PV generation divided by total peak load apparent
power. Total PV generation profile in this area in a cloudy day during July is shown
in Fig. 6.24 with a green solid curve. An effect of high PV penetration on such a
cloudy day can be observed when generation profiles change dramatically within
a few seconds. If a huge generation drop occurs exactly in the ascending period of
consumption profile, in high PV penetration scenarios, a large power deficit will be
experienced. The blue dashed curve shows the result of power flow at the primary
substation in terms of total active power injected to the distribution system; the steep
descents means a rapid demand reduction in the distribution system (1.7 MW), and
the steep rises imply a fast demand increase in the distribution system. Thanks to the
PV simulator, Distribution Management System (DMS) can perform some analysis
in advance (e.g. 15 minutes earlier) to prevent these steeps, for example by demand
side management through flexible loads, or PV curtailment.

Fig. 6.24 Total load, generation, and net real power

The added-value of this integrated framework is the possibility of concurrently
taking into accounts both real-like PV generation behavior from one side, and grid
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behavior and constraints on the other side, highlighting the fact that it can support
DMS during operation mode.

6.3.5 Distributed Battery Management

In this paragraph the usefulness and functionality of the proposed distributed infras-
tructure for developing and testing distributed battery management when PV panels
are installed on rooftops in the whole district area is shown. In this case, choosing
storage batteries with the right capacity, location, and charge/discharge strategy
in not only beneficial but also a need. The added storage is constituted, at each
substation, by lead-acid batteries with a total capacity of 3000 Ah. The maximum
power that each storage can exchange with the grid is 50 kW, working between the
limits of 10% and 100% SOC.

In 9 substations, the combination of daily load and generation profiles provides
the possibility of that the net consumption in some hours become negative. Batteries
are added on the LV side of the transformers in these 9 substations (positions are
shown in Figure 6.12 with aggregated batteries) and a control strategy to manage
their charge/discharge profiles as been tested.

The local controller reads the total amount of active power exchange in MV/LV
transformers and calculates the required amount of active power to be injected
or absorbed by batteries connected on the LV side of the secondary substation.
The transformer power measurement is periodically (every 15 minutes) sent to the
battery controller module through MQTT protocol in the co-simulation infrastructure,
and the battery power absorption or injection amount (i.e. charge or discharge
respectively) is periodically pushed into the battery model inside the grid again
through MQTT. In the grid simulator, batteries are modelled as dynamic loads with
either positive (consumption mode) or negative (generation mode) power.

The modelled batteries are distributed stationary bulk storages connected to the
LV side of the secondary substations, however the same platform can be used to
simulate V2G by only changing battery models and battery control strategies.

The control strategy is to compensate the power difference between the substation
net consumption and zero as the reference value of an ideal micro-grid. Nominal
power of the batteries, nominal capacity, efficiency and minimum-maximum state-
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of-charge (SOC) of the batteries are taken into account to calculate the right amount
of charge/discharge power.

In order to create a soft transition between the battery on/off states, when the
batteries reach the minimum and maximum SOC limits, the controller creates a ramp
to proportionally decrease rate of charge or discharge. In this way the occurrence of
a high step on the total net consumption of the substation is prevented.

Fig. 6.25 Aggregated load and generation profiles in substation 204171 before battery
installation

Based on the control strategy explained the battery behaviour in terms of power
exchange with the grid can be captured as a time-variant profile. For the same sub-
station presented in Figure 6.25, in Figure 6.26 and Figure 6.27 the net consumption
with and without storage and the storage SOC respectively are presented. In the
simulation the storage initial SOC is 50%. It initially discharges, as the net consump-
tion in the substation is positive. When generation becomes bigger then load, the
storage system charges trying to follow exactly the net consumption. At a certain
point the residual power becomes negative as the maximum power of the storage is
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exceeded and because the SOC reaches 100%. The smooth charging/discharging
profile produced by the strategy under test can be observed in Figure 6.27. The
areas between the two curves in Figure 6.26 represent the energy exchanged between
storage and grid during the charge/discharge cycles: as batteries efficiency is kept
into account in the model, discharge areas are smaller.

Fig. 6.26 Net consumption power with and without storage in substation 204171
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Fig. 6.27 State Of Charge profile of storage in substation 204171

Similarly to what is presented in Figure 6.25, Figure 6.26 and Figure 6.27, in all
the substations where storage is integrated, the net consumption curves are smoothed:
during the night, when the substation net consumption is positive, batteries discharge
until their SOC reaches the minimum level. The storages start charging again when
there is energy surplus in the substation or, in other words, the net consumption
becomes negative.

Thanks to the network model running in the real-time simulator, it is possible
to analyse the impact of the storage control strategy not only on the single MV/LV
substations, but also on the overall distribution grid. The profile of the net demand
of the primary substation is shown in Figure 6.28.



6.4 Power Prediction and building efficiency characterization 121

Fig. 6.28 Net demand profile of primary substation with and without storage

6.4 Power Prediction and building efficiency charac-
terization

As a case study, energy-related data collected in a real world system in Turin are
analyzed, where more than 50% of buildings are served by the heating distribution
network. To monitor thermal energy consumption, gateway boxes have been in-
stalled in the monitored buildings. Each gateway includes a GPRS modem with
an embedded programmable ARM CPU. An ad-hoc software has been developed
to execute different activities: sensor management, GPRS communication, remote
software update, data collection scheduling and collected data sending to a remote
server.

Each gateway is responsible for the management of all the sensors deployed in its
building. Thermal energy consumption is measured under different aspects, such as
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instantaneous power, cumulative energy consumption, water flow and corresponding
temperatures. Furthermore, gateways also collect indoor and outdoor temperatures
and the status of the heating system.

A cloud architecture is used for storing and processing all the monitored data.
There are about 4,000 monitored buildings, each generating about 2,000 data frames
per day. Thus, a growing base of at least 8 million data frames per day needs to be
managed and analyzed. The gateways send the data frame to the cloud architecture,
where a firewall first authenticates the data sender and then assigns each data frame to
one of four dispatchers to guarantee the system reliability. Each dispatcher delivers
the frame to a cluster of computers including different processing servers where data
are stored in an HDFS distributed file system. The dispatcher is able to recognize if
the process server has stored the frame correctly and in that case it sends the ACK to
the gateway which can send the next data frame.

The meteorological data are collected from the Weather Underground web ser-
vice [111]. Data from three different weather stations are collected to estimate the
weather conditions nearby each building.

In our study we thoroughly evaluated PPBEC by considering a small cluster of
12 buildings with different Heating Cycle, (see Section 5.2.3.3.6): (i) 5 buildings
with a Single Heating Cycle, (ii) 2 buildings with a Double Heating Cycle and (iii) 5
buildings with a Triple Heating Cycle.

6.4.1 Energy signature analysis and classification

To evaluate the quality of the linear regression that estimates Ktot , the R-squared
value presented in Section 6.1 is exploited.

Figures 6.29 and 6.30 show the energy signature of a random building in the
Turin area. The chosen twindow values are 24 hours and 7 days, hence the analysis
considers the daily mean power values per unit of volume with respect to the daily
mean outdoor temperature1. The analysis has been performed by considering as
tperiod the latest full Italian heating season (at the time of writing), from October 15th,

1 In most residential buildings, the indoor temperature is not monitored through a sensor network,
hence in the analysis a fixed value of 20◦C is considered, since it is the typical value set by local
regulations. Being fixed Tin, the charts report Tex only.
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2013 to April 14th, 2014. To focus the analysis on the steady state, tslot has been set
to the time range from 5 to 9 pm.

Fig. 6.29 Residential building, scatter plot of daily power consumption per unit of volume
(W/m3) with respect to Tex (◦C).

Figure 6.29 focuses on the daily twindow scatter plot and its resulting regression
(red line) to estimate Ktot . A low S value of 0.78 is obtained, whereas the estimated
value of Ktot is 0.67, which is a good result in terms of energy performance, as shown
see later in the experiments.

Figure 6.30 shows the linear regression by aggregating mean power values over
daily twindow for the considered building (dotted line). Figure 6.30 also shows the
energy efficiency of the considered building (dotted line) with respect to the energy
signature of (i) the most efficient building (dashed line) and (ii) the average power
profile (solid line), considering all buildings in the corresponding district. Such
comparative information allows to rank the buildings within districts, immediately
putting in perspective the initial value of Ktot=0.67: even if it is a generally good
value in terms of energy efficiency, as shown later, being better than its district
average, the best performing building in the same district is far better. In such a
situation, an end-user can consider to adopt energy-aware structural improvements
to reach and improve over the best performing building.
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Fig. 6.30 Residential building, linear regression of daily power consumption per unit of
volume (W/m3) with respect to Tex (◦C).

Figure 6.31 shows the daily power consumption per unit of volume of a Turin
school building, where a sensor network has been deployed for real-time monitoring
of indoor temperature. The analysis has been performed by considering tperiod from
the beginning of the heating season 2013-2014 in Turin, on October 15th, 2013, to
the latest data available at the time of writing, February 28th, 2015. Since many
indoor temperature sensors are deployed in different rooms of the school building,
the instantaneous indoor temperature Tin has been computed as the mean temperature
value for each timestamp. The analysis has been performed by considering values in
tslot=[5 : 00p.m.−9 : 00p.m] and data are aggregated over daily twindow. Similarly
to the regression of a residential building presented in Figure 6.29, also the school
building Ktot estimation (red line) from the linear regression has a low S value (1.39).
The estimated Ktot value is 1.42, indicating a poor energy performance, at least when
compared with residential buildings.
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Fig. 6.31 School building, scatter plot of daily power consumption per unit of volume (W/m3)
with respect to Tin-Tex difference (◦C).

6.4.2 Characterization of the peak detection

The Peak Detection ( PD ) algorithm (Section 5.2.3.3.6) predicts the peak powers
and the corresponding time instants for each heating cycle separately for each
building. To evaluate the quality of the regression two indexes, all ready presented
in Section 6.1 are exploited: (i) The R-squared and (ii) The Standard Error of
Regression (denoted as S).

To evaluate the effectiveness of PD in correctly identifying the peak powers
a given building (building ID no. 8) with a triple heating cycle is discussed as a
representative example. The analysis has been performed considering the period from
1 November 2014 to 31 March 2015, which is almost a full Italian heating season.
For each heating cycle Figure 6.32 reports the ratio of the peak power of the transient
state and the mean power of previous (e.g., preceding day for the first peak) steady
state (y axis) with respect to the mean external temperature in the previous steady
state and OFF-line phase (x axis), together with the corresponding multivariate
adaptive regression spline (continuous line in Figure 6.32 representing the peak
power estimation). For each heating cycle, the (first/second/third) building peak
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power estimation has a very high r2 value, as high as 0.92, or higher, representing a
good approximation of the phenomenon under analysis.

(a) First Peak

(b) Second Peak

(c) Third Peak

Fig. 6.32 Triple heating cycle peaks
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Table 6.10 shows the peak power estimation computed through PD and both r2

and S values indicating how the regression is able to correctly model the studied
phenomenon. Furthermore, the values of r2 and S for all 12 buildings under analysis
are computed separately for each heating cycle. Focusing on r2, the first piece
of evidence is that, for each peak, r2 values are similar among different buildings.
Furthermore r2 values for the first peaks are slightly higher than the rest (second and
third peaks), but always greater than 0.8 (except for one case with 0.62). Although
the variability among S values is higher than r2 among the considered buildings, the
general trend is similar. Specifically, S values for the first peaks among different
buildings are much higher than the rest, however all values are less than 1.7. In
buildings with two or more heating cycles the prediction of the second and/or third
peak become slightly weaker than the first one. The worst result is obtained on
building number 7 where the first peak is modeled correctly, but the correlation of
the second peak is the worst of the analyzed buildings. These results demonstrate
the effectiveness of the proposed approach to predict the peak powers during the
transient status with a limited error.

Table 6.10 Peak detection r2 and S

Building
ID

First Peak Second Peak Third Peak
r2 S r2 S r2 S

1 0.92 1.05 - - - -
2 0.90 1.44 - - - -
3 0.95 1.71 - - - -
4 0.96 1.26 - - - -
5 0.96 0.92 - - - -
6 0.96 1.06 0.85 0.52 - -
7 0.89 1.01 0.62 0.75 - -
8 0.97 0.51 0.92 0.32 0.89 0.38
9 0.96 0.47 0.93 0.52 0.89 0.42

10 0.94 1.15 0.94 0.54 0.89 0.76
11 0.92 1.01 0.86 0.63 0.80 0.79
12 0.92 0.66 0.89 0.48 0.81 0.58
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6.4.3 Power prediction error

The values reported in Table 6.11 represent the average prediction errors for the 12
analyzed buildings. In particular, the MAPE and SMAPE values, all ready introduced
in Section 6.1, refer to the power prediction performed using the Power Prediction
( PP ) algorithm described in Section 5.2.3.3.7. The average prediction errors are
reported for each building and for each heating cycle of the day. Moreover, for
each building, the overall MAPE and SMAPE values are reported, which include all
predictions for both the transient and the steady state phases.

The reported values suggest an overall higher precision for predictions made on
buildings with a single-cycle, since both overall MAPE and SMAPE increase with
the number of heating cycles (even though some double-cycle buildings have lower
error values than single-cycle buildings and some others have higher error values
than triple-cycle buildings). This overall trend can be motivated by two mutually
dependent reasons: (i) more heating cycles mean more (even if shorter) transient
states, with higher prediction errors influencing the average values; (ii) more heating
cycles mean also more separated steady states (rather than a continuous one) with
different behaviors of the same heating system, also with similar weather conditions,
depending on the period of the day.

Table 6.11 MAPE and SMAPE values for each test building

Heating
cycles

Building
ID

Overall First cycle Second cycle Third cycle
MAPE SMAPE MAPE SMAPE MAPE SMAPE MAPE SMAPE

Single

1 15.56 6.78 15.56 6.78 - - - -
2 18.58 7.95 18.58 7.95 - - - -
3 20.48 8.35 20.48 8.35 - - - -
4 22.38 9.32 22.38 9.32 - - - -
5 20.42 8.46 20.42 8.46 - - - -

Double
6 23.24 9.62 28.81 10.95 20.58 8.06 - -
7 22.02 9.56 36.98 13.35 15.52 7.10 - -

Triple

8 23.11 9.72 35.35 13.90 17.38 7.67 18.33 7.63
9 27.96 10.62 28.46 10.90 24.73 10.14 25.87 10.85
10 33.75 11.64 39.70 14.40 38.44 14.49 26.53 10.21
11 29.05 11.83 31.89 11.98 37.53 13.99 23.23 9.58
12 27.26 11.56 32.62 13.26 28.39 11.42 23.01 9.27
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The plots in Figures 6.33-6.34 show the comparison between the real and pre-
dicted power values of single buildings, during a single day, plotted as the average
values over intervals of 15 minutes. The plot in Figure 6.33 refers to a single-cycle
building and the power values are forecast with a prediction horizon of 1 hour. Even
though the peak is predicted with a 15-minute delay, its value is very near to the real
one, while the prediction of the overall trend of the transient phase is similar to the
real one, even though some points are sensibly different. The error in the steady
phase is constantly low and close to zero in some points. This high level of precision
is favored by the regular trend of the single steady phase in single-cycle buildings,
both in a single day and from one day to another. The plot in Figure 6.34 refers to a
triple-cycle building and the power values are forecast with a prediction horizon of
1 hour. In this case, except for the first cycle, the trends of the predicted transient
phases are very similar to the real ones and in the third cycle the predicted peak value
is very near to the real one. The error in the steady phase is higher than in Figure
6.33, but still acceptable.

Fig. 6.33 Daily 15 minutes average power prediction for a single-cycle building with 1 hour
advance (5% maximum error on weather forecast)
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Fig. 6.34 Daily 15 minutes average power prediction for a triple-cycles building with 1 hour
advance (5% maximum error on weather forecast)

The plots in Figure 6.35 represent the cumulative frequency of Absolute Percent-
age Error (APE) and of Symmetric Absolute Percentage Error (SAPE) of predictions
for a single-cycle building during steady and transient states. These two metrics are
the terms of the sums in the MAPE and SMAPE formulas respectively (see Section
6.1) and represent two measures of percentage error for single predictions. Over 90%
of the predictions have a APE lower than 17% in the steady state and lower than 30%
in the transient state. For the same percentile, SAPE is less than 8.6% in the steady
state but about 33.7% in the transient state. However, in the same state a SAPE of
just 15% is the 70th percentile. Therefore, roughly 90% of samples are predicted
with a limited error, especially in the steady state. The steep initial growth of the two
graphs in Figure 6.35 shows that only a very small number of predictions have high
error values. Indeed, over 98% of the predictions have APE and SAPE lower than
50%, in both steady and transient states, while, among the remaining 2%, APE can
have very high values (while SAPE ≤ 100% by definition). This suggests how few
bad predictions can affect the overall MAPE and SMAPE values and explains why
median error values are always lower than the corresponding means.
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(a) Absolute Percentage Error

(b) Symmetric Absolute Percentage Error

Fig. 6.35 Percentile distribution of APE and SAPE over the whole season for a single-cycle
building
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6.4.4 Sensitivity analysis

6.4.4.1 Sensitivity and robustness of the energy signature method

The two main user-defined parameters of the proposed Energy Signature method are
the aggregation period twindow and the tslot day-time filter. Hence, an evaluation of
the robustness of the proposed energy signature analysis to such parameter settings
is presented. Table 6.12 shows the Ktot estimation computed through the linear
regression and the S values indicating how the linear regression is able to correctly
model the studied phenomenon. Furthermore, the comparison between the best and
the average building allows to see the results from a different perspective.

Focusing on S, the first evidence is that the longer the twindow, the better the linear
regression. For each tslot , S values are lower for weekly twindow than daily twindow.
S values for hourly twindow are much higher than the rest. This general behavior is
expected and stems from the data smoothing effect of considering averages over
longer periods of time, which hides outliers or temporary exceptional behaviors.
Even if the equation ∀tslot , t1 ≥ t2 ⇒ Stwindow=t1 ≥ Stwindow=t2 holds true in all reported
cases but one, is possible to see that the S values for hourly twindow are more sensitive
to the tslot selection. In particular, both the 5:00-7:00pm and the 5:00-9:00pm tslot

ranges yields similar results in terms of S values (of course, periods also overlap),
whereas the 6:00am-10:00pm tslot range for hourly twindow has extremely high S
values: 4.61 for the best building, 7.41 for a random building. From such values, is
possible to note that (i) the 6:00am-10:00pm tslot range is generally the best fit for
the linear regression, thanks to the longer period facilitating steady state modeling
of the heating system and limiting the dynamic and thermal inertia effects; (ii) the
hourly twindow often leads to unsatisfactory Ktot estimations, due to the poor fit of the
linear regression. The exception to these findings is the 5:00-7:00pm tslot for hourly
twindow, which has a low S value (0.88) with respect to the average hourly model
behavior (S always above 1.11). Finally, is possible to note that all combinations of
parameters that have a low S (from Table 6.12, lower than 1.2) lead to a coherent
and stable Ktot estimation: for each fixed tslot , the best building Ktot estimation delta
is always lower than 0.02, and the random building is always lower than 0.01.
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Best Building Building N.* District Mean
twindow tslot Ktot S Ktot S Ktot

Weekly 6:00am-10:00pm 0.46 0.35 0.53 0.47 0.55
Weekly 5:00-7:00pm 0.51 0.67 0.72 0.55 0.74
Weekly 5:00-9:00pm 0.54 0.57 0.68 0.68 0.68

Daily 6:00am-10:00pm 0.46 0.64 0.53 0.55 0.54
Daily 5:00-7:00pm 0.53 1.02 0.72 0.90 0.73
Daily 5:00-9:00pm 0.55 0.62 0.67 0.77 0.67

Hourly 6:00am-10:00pm 0.36 4.61 0.49 7.41 0.51
Hourly 5:00-7:00pm 0.52 1.16 0.71 0.88 0.73
Hourly 5:00-9:00pm 0.53 1.11 0.64 2.38 0.64

Table 6.12 twindow and tslot sensitivity and robustness.

6.4.4.2 Sensitivity analysis of Power Prediction

Here the robustness of the Power Prediction (PP) algorithm to the variation of
its parameters is analyzed. For each parameter (i.e., training window size, slot
duration, prediction horizon, and weather maximum error described below), a set of
experiments were run to find, when possible, a good input parameters setting. The
training window size (trWdw) was set to 7 and 14 days; The slot duration (slDur)
was set to 15, 30 and 60 minutes; For each value, the daily timeline is split in fixed
time slots, hence with a granularity of 15 minutes the slots start at 00:00, 00:15,
00:30, and so on. A similar partitioning is done for granularities of 30 (00:00, 00:30,
etc.) and 60 minutes (00:00, 01:00, etc.). Finally, even if (near-)real-time predictions
are based on forecasts of weather data, validation was performed with real measures
of past weather data. Therefore, to take into account the prediction error, a random
percentage value was added to such measures. The percentage error was modeled
as a uniform random variable W with a support defined by the weather maximum
error (weErr) parameter, i.e., W ∼U [−weErr,+weErr]. The value of weErr was
set to 0%, 5% and 10%. Finally, the prediction horizon (prHor) was been set to
1, 2, 4, 8 and 24 hours and analyzed in combination with the other parameters.
These five values were chosen to consider not only short-term, but also medium-term
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predictions, which even with lower precision values can still be of interest for some
end users.

Tables 6.13 to 6.15 show how percentage errors, i.e. mean (MAPE) and median
values, vary with respect to the aforementioned parameters.

Table 6.13 highlights the variation between the two different values of training
window size (which determines the amount of training data). A wider training
window (14-days) corresponds to lower error values, in both transient and steady
states. Indeed, the prediction algorithm learns from a larger training set and can fit
overall a more accurate hyper-plane. Wider training window sizes (e.g. 30 days)
have been tested too, but they are not reported in Table 6.13 because no significant
improvement has been noticed. The difference with the 7-day window is reduced for
shorter prediction horizons and becomes negligible for short term predictions (only
0.27% the overall MAPE for prHor=1), with a trend reversal in the steady state,
where the lowest values of mean and median errors are registered with the 7-day
window. This means that a stricter training window can be preferable for predictions
over a shorter horizon (1 hour or less) to make the algorithm fit the most recent
samples better. Hence, days as the default value for trWdw are selected.

Table 6.13 Sensitivity analysis on training window size

prHor
(hours)

trWdw
(days)

Overall error (%) Transient error (%) Steady error (%)
mean median std dev mean median std dev mean median std dev

1
7 10.76 6.58 22.52 24.05 19.48 34.21 9.24 5.96 20.21

14 10.49 6.96 20.37 19.80 19.05 22.38 9.42 6.30 19.84

2
7 11.38 6.81 27.15 23.52 18.44 37.43 9.99 6.17 25.34

14 10.84 7.10 23.74 19.75 18.29 30.14 9.82 6.44 22.67

4
7 12.28 7.13 31.31 23.53 18.34 38.43 10.99 6.44 30.12

14 11.31 7.29 26.81 19.64 18.17 31.09 10.36 6.63 26.10

8
7 13.43 7.57 35.70 23.53 18.34 38.43 12.27 6.85 35.19

14 11.98 7.53 29.92 19.64 18.17 31.09 11.10 6.84 29.66

24
7 14.76 8.13 34.32 24.00 18.81 36.68 13.70 7.39 33.88

14 12.90 7.85 36.90 20.25 18.69 32.13 12.06 7.14 37.31

prHor: prediction horizon in hours
trWdw: training window size in days
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Table 6.14 reports the variation of prediction errors with respect to the slots
duration. Overall, the prediction error for slDur=60 is always substantially higher
than for the other two values (between 0.68% and 1.37%). The lowest values of
prediction error for all the prediction horizons are obtained with slDur=30 instead.
This is true both in the steady state and for the overall errors. The transient state
exhibits a higher variability and no particular trend can be detected. Hence, 30
minutes as the default value for slDur are selected.

Table 6.14 Sensitivity analysis on slots duration

prHor
(hours)

slDur
(min)

Overall error (%) Transient error (%) Steady error (%)
mean median std dev mean median std dev mean median std dev

1
15 10.45 6.64 21.94 22.99 19.30 32.34 9.25 6.06 20.27
30 10.46 6.77 20.23 21.47 19.44 28.31 9.12 6.15 18.57
60 11.54 7.33 21.98 20.31 18.92 21.41 10.03 6.33 21.72

2
15 10.93 6.83 25.68 22.62 18.42 38.28 9.81 6.27 23.83
30 10.86 6.94 23.50 20.54 18.08 32.49 9.68 6.31 21.87
60 12.23 7.47 28.26 21.08 18.78 25.58 10.71 6.47 28.42

4
15 11.70 7.11 29.84 22.62 18.42 38.28 10.66 6.51 28.69
30 11.44 7.17 26.07 20.54 18.08 32.49 10.33 6.50 24.95
60 12.79 7.74 31.93 20.88 18.21 30.87 11.40 6.76 31.90

8
15 12.71 7.44 34.63 22.62 18.42 38.28 11.76 6.82 34.11
30 12.33 7.50 30.10 20.54 18.08 32.49 11.34 6.80 29.65
60 13.39 8.03 31.88 20.88 18.21 30.87 12.10 7.06 31.88

24
15 13.74 7.82 36.47 22.41 18.70 34.38 12.91 7.19 36.56
30 13.67 8.02 35.57 21.66 18.51 32.82 12.70 7.28 35.77
60 14.44 8.56 32.75 22.17 19.02 37.05 13.11 7.51 31.76

prHor: prediction horizon in hours
slDur: slot duration in minutes

Table 6.15 reports the variation of prediction errors with respect to the weather
maximum error. In this case, mean error (MAPE) and median error have opposite
trends. While MAPE is lower for higher values of weErr (especially for longer
prediction horizons), the median values exhibit more straightforward behavior, as
they are lower for lower values of weErr with a monotonic trend, i.e. error(weErr =
0%)< error(weErr = 5%)< error(weErr = 10%). In this case, a wise setting is
to use higher values of weErr for longer prediction horizons.
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Table 6.15 Sensitivity analysis on weather maximum error

prHor
(hours)

weErr
(%)

Overall error (%) Transient error (%) Steady error (%)
mean median std dev mean median std dev mean median std dev

1
0 10.75 6.50 25.95 22.14 19.47 25.36 9.45 5.89 25.70
5 10.49 6.74 19.55 22.40 19.32 34.31 9.12 6.10 16.52

10 10.64 7.07 18.09 21.23 18.98 26.45 9.42 6.39 16.43

2
0 11.45 6.71 31.89 21.35 18.57 26.39 10.32 6.07 32.26
5 10.92 6.91 22.76 22.52 18.49 42.53 9.58 6.27 18.79

10 10.97 7.24 20.42 21.03 18.06 31.09 9.81 6.60 18.46

4
0 12.30 6.96 35.93 21.18 18.50 26.42 11.28 6.31 36.72
5 11.61 7.17 27.52 22.36 18.37 43.10 10.38 6.48 24.83

10 11.49 7.55 22.41 21.22 17.99 33.43 10.38 6.83 20.48

8
0 13.94 7.36 44.77 21.18 18.50 26.42 13.11 6.65 46.34
5 12.21 7.48 27.09 22.36 18.37 43.10 11.05 6.79 24.33

10 11.97 7.83 22.85 21.22 17.99 33.43 10.91 7.09 21.04

24
0 15.04 7.76 47.04 21.87 18.97 28.66 14.25 7.06 48.65
5 13.49 7.91 31.32 23.13 18.84 43.26 12.39 7.18 29.44

10 12.98 8.26 25.03 21.37 18.30 29.70 12.02 7.55 24.25

prHor: prediction horizon in hours
weErr: weather maximum percentage error

6.5 Simulation results of Indoor air Temperature

As case study for the Building Temperature Simulation methodology described in
Section 5.2.4 a primary school of the EEB Project has been chosen. It is a public
building of the Settimo Torinese Municipality with about 14,500 m2 spread on two
floors (see Figure 6.36) with brick walls facades, double glazed windows and pitched
roofs. The building is connected to the district heating distribution system. During
working-days, the heating system cycle is from 4:00 a.m. to 7:30 p.m.. To ensure a
comfortable environment for users the ignition of Monday is anticipated on previous
Sunday at 11:00 p.m..
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Fig. 6.36 BIM of Rodari Primary School

Fig. 6.37 Sensor positioning at Rodari Primary School

The building has been equipped with 16 IoT devices, 15 indoor and 1 outdoor
(see Figure 6.37), to send air temperature and relative humidity. Sensors have
been installed in the most meaningful building zones according to its intended use,
construction type and floors number (i.e. main entrance, classrooms, gym and student
canteen). The Wireless Sensor Network has been evaluated to optimize the employed
IoT devices with respect to the good result of the energy simulation. In this study,
indoor devices have been placed in comparable rooms in terms of use and dimension
characterized by a different orientation. Instead the outdoor device has been placed
at the worst solar exposure to detect the minor outdoor temperature. The symmetrical
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shapes and the regular internal distribution of the building have allowed us to select
some reference rooms to collect enough data for energy analysis.

The energy simulation has been performed for the whole heating season. In
this section, the results from January 9th to January 15th 2017 are presented. The
validation model is achieved by comparing the Temperature trends, as described in
Section 5.2.4. For this purpose, three selected rooms in the building (see Figure 6.37)
are analyzed. These rooms have been chosen in relation to building shape and their
occupancy during the week, as described in the following:

• Room 1 is a classroom in the east part of the building occupied by 21 people.
It is located in correspondence of thick trees that act as solar shield for the
building.

• Room 2 is a classroom in the west part of the building occupied by 22 people.

• Corridor is at the entrance of the school in a central position of the building.
It is characterized by a very large environment with many openings and glazed
windows. It does not have a constant occupancy during the day.

Both east- and west-oriented facades receive substantial contributions of thermal
energy due to solar radiation. This is an advantage during winter season. Vice-
versa, this translates into increased heat load during summer season, which would
necessitate air conditioning. As the school is not equipped with such conditioning
system, the simulations cover only the winter period.

Figure 6.38 reports three air temperature trends for the observation period: i) mea-
sured data coming from IoT devices (green line), ii) simulated with TMY Weather
condition (red doted line) and iii) simulated with real-weather conditions (blue dashed
line). The daily trends identifies the different phases of the heating cycle: i) ignition
of the heating system (04:00 a.m.); ii) school entering (8:30 a.m.); iii) lunch break
with opening windows for air circulation (12:30 a.m.); iv) school exiting (4:30 p.m.);
v) shut-down of the heating system (07:30 p.m.). The air temperature chart highlights
that measured data and simulation results with real-weather conditions have similar
trends. On the contrary, the trend of TMY simulation results has the worst correlation
with real samples. Especially during night hours, the temperature trend decreases to
around 10 °C with TMY simulations, while both measured and real-weather trends
reaches about 16 °C. This because TMY refers to meteorological conditions, in



6.5 Simulation results of Indoor air Temperature 139

Table 6.16 Dispersion indicators of simulated indoor temperature against real measured
values

Rooms Indicator [%]
Real-weather Sim

vs Measured
TMY Sim vs

Measured

Room 1
MAD 8.02 16.82
MBD 2.18 -16.64

RMSD 9.78 19.01

Room 2
MAD 9.07 18.55
MBD 0.10 -18.34

RMSD 10.83 20.74

Corridor
MAD 9.35 16.94
MBD -0.17 -16.06

RMSD 11.52 20.85

terms of temperature and solar radiation, significantly different to daily weather
samples. Both simulations with real-weather data and TMY show a quicker slope of
increase and decrease in the temperature trend when the heating system is switched
on and off. This quicker response is related with the modelled heating capacity of the
building. Indeed in the development of the BIM model the stratigraphy of the walls
has been hypothesized fallowing the suggestions in [134]. Those hypothesis were
necessary due to a lack of information on real wall stratigraphy data in the building
documentation.

To evaluate the performance of the simulations three indicators of dispersion, all
ready presented in section 6.1, have been used: i) Mean Bias Difference (MBD), ii)
Root Mean Square Difference (RMSD) and iii) Mean Absolute Difference (MAD).

Table 6.16 details the error rates given comparing measured data with simulations
performed with both real-weather and TMY conditions. As shown in Table 6.16, real-
weather information improves the simulation results drastically with respect to TMY.
Indeed, MAD, MBD and RMSD have lower values with real-weather conditions.
In particular in Room 1, a MAD of 8.02% against 16.82% is obtained; a MBD of
2.18% against −16.64%; a RMSD of 9.78% against 19.01%. Similar results have
been obtained for the other two rooms.
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Fig. 6.38 Simulated and measured indoor air temperature trends between 9th-15th of January
2017.



Chapter 7

Conclusions

This thesis presented SMIRSE a distributed infrastructure for modelling Renewable
and smart energy integration in urban contexts. SMIRSE is a novel flexible and
modular distributed infrastructure, based on real-time grid simulation, for multi-
purpose Smart Grid studies. Hence, it is flexible in simulating different scenarios in
power grids without affecting the whole infrastructure. SMIRSE combines different
technologies and correlates heterogeneous information, also sent in (near-) real-time,
to simulate multi-energy-flows and to evaluate the impact of novel policies in cities
and distribution networks. It exploits Communication Adapters that implements both
publish/subscribe (MQTT) and request/response (REST) paradigms for communi-
cation and data exchange among the real-time grid simulator and different external
modules. These modules can be software components, IoT devices, or other HW/SW
directly connected to the real-time simulation for HIL or SIL. Both publish/subscribe
and request/response are two communication models peculiar of IoT platforms, such
as future Smart Metering Infrastructures. Thus, the proposed solution is also flexible
i) to retrieve information in (near-) real-time from real IoT devices (i.e. smart meters)
installed along the distribution network and ii) to feed strategies and models with
real data during their running time. First, the motivations and challenges that have
been addressed to design such infrastructure are discussed. Then, the state of the art
solution for MES modeling and simulation with a particular focus on PV systems
are presented. Latter, the SMIRSE framework that is suitable for general purpose
energy simulations with different spatio-temporal resolutions is presented. Finally,
simulation results of RES production, integration in the distribution grid and building
thermal loads are presented.
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From the Photovoltaic modeling and simulation point of view it overcomes the
limitations of literature solutions by providing fine grained real-sky simulations
considering also meteorological data from weather stations. Thus, addressing the
challenges highlighted in [24]. Furthermore, the proposed solution performs simula-
tions on spatial and temporal domains, providing energy profiles of PV systems with
a good accuracy, as reported by the experimental results. Finally, the SMIRSE in-
frastructure can be use as a tool to help Energy managers and RES engineers in
monitoring the performances of existing PV systems as depicted in the analysed
GalFer system, where a malfunction has been identified.

An exemplification is presented and applied to the study of PV and storage
integration in the distribution network of an urban district. The proposed example
is simple but it is useful to demonstrate how the different distributed modules of
the infrastructure can interact and exchange data, cooperating for obtaining the
final results which is expected from an integrated co-simulation. Different load
and generation scenarios can be easily fed into the whole simulation independently
and also during running simulation. Storage control strategies can be tested as well
without being locally integrated inside the grid model.

Furthermore, the PPBEC module is presented. It provides a wide range of
software services including data collection and integration as well as an advanced
analytics task, i.e., predicting heating consumption in buildings. PPBEC has been
developed in a distributed environment to efficiently handle big datasets by exploiting
Apache Spark upon MongoDB data repository. The performed experiments on real
data highlighted the ability of PPBEC to effectively predict heating consumption in
buildings with a limited error, and its good scalability.
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