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Abstract: In this work, a novel procedure is presented for the measurement and prediction of pore size 

distribution of freeze-dried solutions in vials. A method based on segmentation is proposed for 

determining the size of the pores left by ice crystals, using images obtained by Scanning Electron 

Microscopy. The original ice crystal size distribution is also predicted using a mathematical model 

based on balance equations. The model predictions and the results of the segmentation technique show 

a fairly good agreement. The proposed procedure could be used to efficiently estimate the resistance 

to mass transfer during drying and hence optimize the freeze-drying process. 

 

Introduction 

The freeze-drying process is currently used as a common industrial processing and preservation 

technique, applied to a wide variety of products, the large part of them being foodstuffs, bio-products 

and pharmaceuticals. Consequently, the freeze-drying process has a high impact on industry and 

society. 

Because of this fundamental role, research on freeze-drying is attracting the efforts of several 

scientific disciplines, rendering it the subject of a highly interdisciplinary area of studies.  

The freezing step is actually the less investigated and understood, even though it strongly affects 

the following drying steps and the final quality of the product. In fact, the dimension of the ice crystals 

(or more generally of the solvent crystals) formed at this stage in the product to be freeze-dried is a 

critical aspect [1, 2, 3, 4], as it is linked to thermal stresses for the product, processing time [5, 6], 

product quality attributes, and inter- and intra-vial heterogeneity [6, 7].  

In case of freeze-drying of solutions, in particular, the final pore structure of the matrix is mainly 

responsible for the resistance to vapor flow during primary drying, and for the desorption rate during 

secondary drying. Larger crystals, in fact, will result in larger pores and, thus, in a shorter primary 

drying, while secondary drying will be longer. This has been proven experimentally, evidencing also 

that obtaining larger pores by controlled nucleation may be beneficial, as it may finally lead to a 

reduced total processing time [8].  

This explains recent interest for controlled ice nucleation in freeze-drying research, which has 

been proven to improve batch uniformity and may allow process optimization and process 

intensification [9]. The most interesting techniques, suitable for or already tested in industrial 

applications are the ice-fog [10, 11], the depressurization [12, 13, 14] and the vacuum induced 

nucleation [15, 16, 17]. 

The knowledge and control of the pore structure (pore shape, pore size distribution, and its 

variation within the product volume) or at least of the average pore size, may be very useful not only 

for allowing process optimization, but also for safe process transfer and scale up. In fact, all the model-

based methods to predict the design space for primary drying [18, 19] and for both in-line and off-line 

process optimization [20, 21, 22], require knowledge (or in-line estimation) of the cake resistance to 

vapor flow.  

This modeling approach is particularly complex in case of scale up and process transfer. In fact, 

in different pieces of apparatus or when different conditions are used (in particular GMP or not-GMP 

conditions), ice nucleation can occur differently, leading to different cake resistances and, thus, to 

different product temperatures during drying, or different drying duration. The use of models would 

allow optimization of the cycle, if the cake resistance obtained in the different conditions is known [23, 

24]. The use of a lyobalance [20, 25], of thermocouples inserted into the product [26, 27, 28, 29], the 

direct measurement of the sublimation flux (coupled with knowledge of the heat transfer coefficient) 

[30] or the Pressure Rise Test, coupled with a suitable model [31, 32], are the methods usually 

employed for estimating the cake resistance during a freeze-drying cycle. However, these approaches 

are not generally available in industrial apparatus or compatible with GMP requirements.  

An interesting alternative is the analysis of freeze-dried samples using micro-computed X-ray 

tomography (micro-CT) [33] or scanning electron microscopy (SEM) [34]. These techniques allow 

recovery of the required information without the necessity of expensive and time-consuming 

experiments, and the risk of altering the real processing conditions. To this scope it is also necessary 

to improve model prediction for cake resistance based on pore size information. In this regard, current 

approaches have shown promising results [34, 35 and 36], but they all still strongly rely on fitting 

parameters. 
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In perspective, the final goal of the current research is both the prediction of the final pore structure 

of the product as a function of the freezing operating conditions, and the evaluation of the mass transfer 

resistance from pore size information. To reach this goal, it is also necessary to develop an efficient 

way to recover the required information on pore structure form micro-CT or SEM analysis. All the 

model based approaches can thus receive a large benefit from improved techniques of image 

processing. 

Several methods can be proposed for image analysis; in particular, the classical bi-dimensional 

Fourier Transform (2D-FFT) has been selected for this particular application in a previous work due 

to its easiness and to the possibility of directly relating the results to the spatial characteristics of the 

cake surface [37]. The approach based on the image wavelet decomposition followed by a non-linear 

processing based on an artificial neural network resulted to be a faster and more accurate solution, and 

in addition it did not require a model to link the cake surface porosity with the mass transfer coefficient 

[34, 38]. 

Here, we are proposing a method based on segmentation [39] for analyzing SEM images of dried 

products; it is often used in many applications of image processing, in particular in the medical image 

processing, where the aim is that of determining the presence of pathologies, and for the stacking of the 

maps coming from tomography to obtain 3D reconstructions [40, 41]. 

Segmentation is an image processing method used for partitioning an image into multiple sets of 

pixels, which are defined as its “super-pixels”. The dimension of pores, which corresponds to the size 

of ice crystals, is estimated through the areas of the super-pixels of the segmented image. 

Results obtained from image processing are compared with predictions of a mathematical model, 

which substantially differs from previous approaches. In fact, equations proposed so far to correlate 

the crystal size with the product thermal history during freezing are based on empirical formulas and 

lack of physical explanation. Many of such works relate the crystal dimension, Dp, with the temperature 

gradients within the frozen zone θ and the freezing front velocity ν: 

 

 𝐷𝑝 =  𝛼 𝜃−𝜆1  𝜈−𝜆2 (1) 

 

where α, λ1 and λ2 are adjustable coefficients that vary according to the type of product and process, 

and that sometimes change even within the same application. In literature, the values -0.5 or -1 have 

been proposed for 1 (but the dependence on  has also sometimes been neglected), while 2 ranges 

from -0.25 to -1 [42, 43, 44]. For pharmaceutical solutions, the value -0.5 for both exponents, as 

originally proposed by Bomben and King for freezing of apples [42], has been employed in previous 

modeling works [36, 45]. 

On the contrary, in this work we employ a mechanistic model capable of providing physical 

insight into the process and of predicting the ice crystal size distribution in wide ranges of conditions. 

The model has been developed in both a detailed and a simplified version [46], but we will focus here 

on the simplified one. The simplified model is easier to be implemented, but it is valid for dilute 

solutions only. In spite of this limitation, it was able to predict with good accuracy the ice crystals 

dimension of typical pharmaceutical formulations.  

Combination of the image processing technique and of the mathematical model proposed could 

be extremely beneficial for the modeling and optimization of the freeze-drying process. 
 

Image segmentation 

As previously stated, in image processing, segmentation is the process of partitioning an image into 

multiple sets of pixels, defined as super-pixels, in order to have a representation which is simpler than 

the original one and more useful for the following desired analyses. 

The typical use of image segmentation is that of locating objects, or domains, and boundaries 

among them. More specifically, segmentation is the process of assigning a label to every pixel in an 

image, such that pixels having the same label share certain characteristics. As a consequence, the result 

of segmentation is a set of "segments", or “super-pixels”, that are covering the whole image. Several 

methods exist for segmentation, mainly based on the use of binary (black and white) images (see, for 

instance, [47]).   
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In general, we have a color RGB source image of   pixels, represented by the three-

channel brightness function , where  and . From 

this function, a grey-tone map can be obtained as follows, 

   

                                               (2) 

 

The index c corresponds to the three RGB channels. The integer indices i and j are ranging in the 

x and y directions of the Cartesian frame corresponding to the image frame. In this way, a brightness 

map of grey-tone pixels can be obtained. 

The images that we are here considering are coming from a SEM instrument and therefore have 

already grey-tone pixels. Our aim is that of measuring the size of the pores, which are, in the SEM 

images, represented by dark or black pixels. Thus, in the segmentation of the image, a method for the 

thresholding of the brightness map must be defined. The thresholding is carried out using a clip-level 

(the threshold value τ), according to which a grey-scale image is turned into a binary image T(i,j).  

 

     (3) 

 

The clip-level has a crucial role in the rendering of the binary image; often it is determined by 

means of the entropy, evaluated on the histogram of grey-tones of the pixels [48, 49, 50]. 

In the case of SEM images, we preferred using a software such as GIMP (GNU Image Manipulation 

Program, for X Windows systems) and making a visual choice of thresholding. Usually, it is necessary 

to equalize the histogram of the grey-tones of the SEM image, before converting the image into a binary 

one. Sometimes, other tools of GIMP are necessary to have a further adjustment of the binary image, as 

we will discuss in the following given examples. Once we have obtained the binary image, we have at 

our disposal a matrix of pixels containing black and white domains. Starting from the left/upper corner 

of this matrix, we can thus move following rows and columns of the matrix. We focus on black pixels 

and characterize each of them by a sequential integer number k, which is acting as a label of the single 

pixel. Some of these labels will be the labels identifying the domains, or super-pixels, to which the pixels 

belong (see Figure 1). 

The label of a black pixel is determined according to the labels k of the nearest black pixels above 

(A) and on the left (L) of the considered pixel. If the labels kA and kL are the same, their value is the 

label of the pixel under examination. If these labels are different, the pixel assumes as its label the lower 

value among them. Then, all the pixels having the label with the larger value change their labels into 

the value of the smaller one (see Figure 1). This approach can be easily obtained by logic instructions 

in any programming language (here we used Fortran 77).   

First, the binary image is converted into .ppm ascii file. This file is easily read by Fortran and the 

image is converted into a 2x2 matrix. Once this matrix has been obtained, the following algorithm is 

applied. The algorithm gives to each of the super-pixel a different label, generating a matrix of labels:   

 

     (4) 

 

Then, a new map can be proposed, where a color tone is associated to such labels and, therefore, 

to each super-pixel, such as in the example given in Figure 2. Since each black pixel of the original 

grey-tone image has the label of the super-pixel to which it belongs, we can easily do some calculations. 

First of all, we have the number of the super-pixels. Then, for each of them, we can give the number of 

pixels, that is, the area (in pixels) the super-pixel is covering, as shown in Figure 2. 

The world of image segmentation is very wide, but, to the best of our knowledge, our approach is 

substantially different from previous ones. For example, the proposed algorithm is inspired, as Figure 1 
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shows, by crossword puzzles. In our case, the words are the black domains characterized by a single 

label. Solving the puzzle means determining the label of each domain. A recently proposed crossword 

algorithm, based on an iterative k-means clustering [51], is however considerably different from the 

approach given here. Actually, our algorithm is closer to those concerning the solution of QR codes 

[52], but the differences between these codes and the one proposed in the present paper remain in any 

case remarkable. 

 

Mathematical model 

The domain under investigation is the cylinder of product, having height Δz and diameter D, where 

crystal growth is occurring. A picture of the domain under investigation, which corresponds to a slice 

of the product in the vial, is shown in Figure 3. 

In order to determine ice crystals size, an energy balance is written that describes the crystal 

growth process, once nucleation occurred. The domain considered changes its position during the 

process, as it follows the freezing front. Thus, the product height needs to be discretized into a finite 

number n of intervals, which will be denoted by subscript i.  

During the process, the temperature of the freezing front and of the zone where freezing has not 

yet completed is almost constant and equal to the equilibrium value. So, it is reasonable to model our 

domain considering steady state conditions, as well as absence of energy exchange with the unfrozen 

zone. Thus, the following energy balance, which applies to the crystal growth phase, can be written: 

 

(

ℎ𝑒𝑎𝑡 𝑟𝑒𝑚𝑜𝑣𝑒𝑑 
𝑏𝑦 𝑡ℎ𝑒

𝑓𝑟𝑜𝑧𝑒𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑡
) + (

ℎ𝑒𝑎𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑟𝑒𝑑 
𝑓𝑟𝑜𝑚 𝑡ℎ𝑒

𝑙𝑎𝑡𝑒𝑟𝑎𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒
) + (

ℎ𝑒𝑎𝑡 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑
𝑏𝑦

𝑖𝑐𝑒 𝑐𝑟𝑦𝑠𝑡𝑎𝑙𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛
) + (

𝑒𝑛𝑡ℎ𝑎𝑙𝑝𝑦 𝑐ℎ𝑎𝑛𝑔𝑒 
𝑑𝑢𝑒 𝑡𝑜 𝑛𝑒𝑤

𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛
) = 0 

 

−𝑘𝑠𝜃𝑖𝜋
𝐷2

4
− 𝜋𝐷∆𝑧ℎ∆𝑇 + 

𝑑𝑉𝑖𝑐𝑒,𝑖
𝑑𝑡

𝜌𝑖𝑐𝑒∆𝐻𝑓 −
𝑑𝑆𝑖𝑐𝑒,𝑖
𝑑𝑡

𝛾 = 0 
(5) 

The last term of Equation 5, related to generation of new solid-solid surfaces, is significant and cannot 

be neglected. In fact, simulations have proven that it can contribute up to 50% to removal of heat 

released by ice crystallization.  

The derivatives in Equation 5 can be approximated by the corresponding finite increments,  

𝑑𝑉𝑖𝑐𝑒,𝑖
𝑑𝑡

=  
∆𝑉𝑖𝑐𝑒,𝑖
∆𝑡𝑖

= 
𝑁𝑖𝜋𝐷𝑝,𝑖

2 𝜏̃ ∆𝑧

4∆𝑡𝑖
= 

𝑁𝑖𝜋𝐷𝑝,𝑖
2 𝜏̃ 𝜈𝑖

4
 

 

(6) 

 
𝑑𝑆𝑖𝑐𝑒,𝑖
𝑑𝑡

=  
∆𝑆𝑖𝑐𝑒,𝑖
∆𝑡𝑖

= 
𝑁𝑖𝜋𝐷𝑝,𝑖𝜏̃ ∆𝑧𝑎𝑆,𝑖

∆𝑡𝑖
= 𝑁𝑖𝜋𝐷𝑝,𝑖𝜏̃ 𝑎𝑆,𝑖𝜈𝑖 

 

(7) 

In Equations 6 and 7, we assumed the pores to be cylinders with constant diameter Dp,i in Δz, and 

neglected the initial volume and surface of crystal nuclei. The tortuosity value τ̃ must be introduced to 

take into account that pores are inclined from the vertical axis, and the inclination angle δ is linked to 

the tortuosity by the relation τ ̃= cos δ-1. The freezing front velocity, νi, is defined as νi = Δz/Δti, while 

aS,i is the ratio between the real ice surface area and the fictitious one calculated considering the ice 

crystals as perfect and smooth cylinders, 

𝑎𝑆,𝑖 = 
𝑟𝑒𝑎𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎

𝑁𝑖𝜋𝐷𝑝,𝑖𝜏̃ ∆𝑧
 

 

(8) 

By substitution of Equations 6 and 7 into Equation 5, we obtain 

−𝑘𝑠𝜃𝑖𝜋
𝐷2

4
− 𝜋𝐷∆𝑧ℎ∆𝑇 + 𝑁𝑝,𝑖𝜋

𝐷𝑝,𝑖
2

4
𝜌𝑖𝑐𝑒𝜏̃ 𝜈𝑖∆𝐻𝑓 −𝑁𝑝,𝑖𝜋𝐷𝑝,𝑖𝜏̃ 𝜈𝑖𝛾𝑎𝑆,𝑖 = 0 

(9) 

 

We can then combine the energy balance with the following mass balance, 
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∑𝑁𝑝,𝑖𝜋
𝐷𝑝,𝑖
2

4

𝑛

𝑖=1

𝜌𝑖𝑐𝑒𝜏̃ ∆𝑧 =  𝑚 
(10) 

 

where m is the mass of water which crystallizes.  

If we then assume that the mass of ice which crystallizes is proportional to the heat removed, we 

obtain the following equation, 

 

𝐷𝑝,𝑖 =
16𝑚𝜃𝑖 𝛾𝑏𝜈𝑖

𝜌𝑖𝑐𝑒𝜃𝑖
2/3

(4𝑚𝜃𝑖𝜈𝑖𝛥𝐻𝑓 − 𝑘𝑠 𝜃𝑖𝐷
2𝜋∆𝑧∑ 𝜃𝑖 − 4𝜋∆2𝑧𝑛

𝑖=1 ∑ 𝜃𝑖𝐷ℎ∆𝑇)
𝑛
𝑖=1

 

 

(11) 

where the term b accounts for surface irregularities and the real ice crystal habit. This is the general 

result of the model.  

However, if we assume that the solution is dilute, the model can be further simplified. More 

specifically, if the water content is very high, we can assume that the term NDp is large and, hence, the 

second term in Equation 5, i.e., heat transferred from the lateral surface, is negligible with respect to 

the others. 

Moreover, we could write the following approximated mass balance: 

 

𝜀𝜋
𝐷2

4
≈ 𝑁𝑝,𝑖𝜋

𝐷𝑝,𝑖
2

4
 𝜏̃  

 

(12) 

where ε is the ratio between the volume of ice and the total volume of the system.  

If we make these two approximations, we obtain a simpler equation: 

𝐷𝑝,𝑖 =
4𝜀𝛾𝑏𝜈𝑖

(𝜀𝜌𝑖𝑐𝑒𝜈𝑖𝛥𝐻𝑓 − 𝑘𝑠 𝜃𝑖)𝜃𝑖
2/3

 
(13) 

 

Equation 13 is valid for dilute solutions only, but we previously showed [46] that it can be 

effectively applied to the freeze-drying of all typical pharmaceutical formulations, whose solid content 

is generally lower than 10%. Moreover, if the solution is not sufficiently dilute, Equation 11, in which 

no simplifications were introduced, could be used. 

The product γb cannot be calculated theoretically and has therefore to be estimated by fitting of 

experimental data for crystal size vs. product thickness. However, it has a physical meaning and was 

found to be independent of operating conditions, such as cooling rate and nucleation temperature. This 

means that a single experiment needs to be carried out for each formulation, at any desired operating 

conditions. Then, the model allows evaluation of the pore size distribution resulting from any other 

possible choice of freezing conditions and/or freezing protocol. Moreover, the empirical laws 

previously proposed for prediction of pore size distribution [42-45], despite using from 2 to 3 fitting 

parameters, allowed prediction in a limited range of operating conditions, without providing any insight 

into process behavior. Thus, the increased range of validity and the clear meaning of all terms involved 

are other strengths of the mechanistic model. 

We will focus here on the simplified model, Equation 13, which is easier to implement. Details 

on validation of the complete model for conventional and controlled nucleation can be found elsewhere 

[46]. 

 

Materials and Methods 

The image segmentation technique and the mathematical model were validated using two different 

solutes, mannitol and sucrose, which represent an amorphous and a crystalline system respectively. 

Mannitol and sucrose were purchased from Sigma Aldrich and used as supplied. The vials employed 

(type 1, 10R, 45x24 mm, Schott AG, Germany) were accurately filled with 3 ml of sample solution. A 

freeze-dryer LyoBeta 25 (Telstar, Terrassa, Spain) was used for the freeze-drying cycles. In order to 

monitor the temperature of the shelves and of the product a system of T-type copper/constantan 

miniature thermocouples was used. 
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The experiments were performed using the traditional shelf-ramped freezing technique. The vials 

were loaded onto the freeze-dryer shelves and then the refrigerating fluid temperature was decreased 

with a precise cooling rate until a value of -45°C was reached. Table 1 lists the details of formulations 

and operating conditions investigated. 

After freeze-drying, the pore dimension of the product obtained, which corresponds to the ice 

crystal size formed after freezing, was evaluated using SEM analysis (SEM, FEI type, Quanta Inspect 

200, Eindhoven, the Netherlands). The specimens were metalized and for each sample, three images 

were taken at the top, center, and bottom of the product; the problems connected with the image 

acquisitions have been already discussed in detail [34]. 

Images obtained by Scanning Electron Microscopy were processed using the image segmentation 

technique previously described. Moreover, in order to have a reference value, SEM images were 

analyzed using the traditional technique adopted in a previous work [46]; that is, a large number 

(approximately 100) of pores per image was selected and each pore was approximated to an ellipse. 

The dimension, Dp, we attributed to the pore, was the diameter of the circle having the same area to 

perimeter ratio of the approximating ellipse. 

The product temperature profiles during freezing were obtained using the model developed by 

Nakagawa et al. and Pisano and Capozzi [36, 45] and compared with the experimental value. The 2D 

axisymmetric model for temperature prediction was solved using the commercial software COMSOL 

Multiphysics. While the experimental measure provided the temperature value at a single point of the 

sample, Nakagawa’s model allowed the estimation of temperature within the whole product, providing 

the information required for the evaluation of ν and θ. In fact, at the freezing front the temperature is 

equal to the equilibrium value and thus its position can be easily known; thus, ν can be evaluated as 

the ratio between the variation of the freezing front position Δzf and the time interval Δt 

𝜈 =
𝛥𝑧𝑓

∆𝑡
 

 

(14) 

The temperature gradient θ is equal to the slope of the curve, at a given time, below the equilibrium 

freezing temperature.  

 

Results and discussion  
To estimate the size of the pores, we processed the SEM images using the segmentation approach 

outlined in the previous section.  

Let us consider mannitol 5% w/w, test A in Table 1. Using SEM, three images of the dried cake 

were taken at top, center and bottom, see Figure 4a. We determined the thresholding using GIMP and 

visual inspection of the SEM images, to obtain the binary images from the grey-tone original ones, 

Figure 4b. A smoothing was required, to avoid the presence of a multitude of domains containing few 

black pixels. The smoothing was obtained applying the GIMP filter, which simulates the brushstrokes 

of oil painting. Since the filter applied to remove the small domains also removes the thin walls between 

pores, to restore them we used the binary watershed tool of ImageJ, a public domain Java-based image 

program.  

Once the image is segmented, Figure 4c, it is possible to deduce the area of each pore from the 

area of the corresponding super-pixel. Then, we can plot the distribution of the super-pixels, and 

consequently the occurrences N of them, for given areas of the pores within intervals spaced of 100 

pixels (Figure 4d). As it is possible to notice, the presence of large pores is sensibly reduced in the 

bottom of the cake.  

For what concerns the real size of the pores, that is, in microns and not in pixels, we can use the 

scale given by the SEM images. Assuming roughly a circular section of the pores, we can calculate an 

effective radius of the pore. Let us consider the peaks in Figure 4d, as indicated by white arrows. These 

peaks correspond to the mode of the pore distribution, as measured by the image segmentation 

approach.  For the top of the cake, the peak corresponded to an area of 1150 pixels, giving a radius of 

about 25 microns. In the center, two peaks can be observed in Figure 4d. One corresponded to an area 

of 1350 pixels, and then to a radius of 27 microns. The other peak corresponded to an area of 1600 

pixels and then to a radius of about 30 microns. In the bottom of the cake, the peak corresponded to an 

area of 900 pixels, and then of a radius of about 23 microns.  
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As we did for mannitol, we repeated the segmentation for three SEM images of a cake of sucrose 

5% w/w (test B in Table 1). In Figures 5a-b, the original SEM images and the binary images are shown. 

The plots in Figure 5c give the distribution of the super-pixels, and consequently the occurrences N of 

them, for given areas of the pores within intervals spaced of 100 pixels. In this case, the presence of 

large pores seems to be sensibly reduced in the top of the cake.  

Again, for what concerns the real size of the pores, we can use the scale given by the SEM images. 

Assuming roughly a circular section of the pores, we can give an effective radius of the pore. In Figure 

5c, the peaks corresponding to the mode of the distribution are again indicated by white arrows. For 

the top of the cake, the peak corresponded to an area of 1200 pixel, giving a radius of about 35 microns. 

In the center, the peak corresponded to an area of 3300 pixels, and then to a radius of 55 microns. In 

the bottom of the cake, the peak corresponded to an area of 2700 pixels, and then to a radius of about 

50 microns. 

In Table 2, results obtained by image segmentation are compared with those obtained by the 

traditional image analysis technique. As it is possible to notice, the accordance is very good for the 

formulation containing mannitol, while for the sucrose-based one the image segmentation technique 

predicted pore dimensions which were in any case smaller than those measured by the traditional 

technique. This could be explained considering that the traditional method gives as output the 

numerical average of the distribution, while the image segmentation technique produces the mode of 

the same distribution. However, while the numerical value of the mode is the same as that of the mean 

in a normal distribution, it may be very different, and generally flattened on lower values, in highly 

skewed distributions. This could explain the difference between the two techniques in the case of the 

sucrose formulation. Nevertheless, the image segmentation approach could reproduce the trend 

evidenced by the traditional method, with the sucrose formulation having bigger pores than the 

mannitol one and with the center of the cake having bigger pores than the top and the bottom. 

As regards the mathematical model for prediction of ice crystal size, in this work we focused on 

the simplified approach, Equation 13. The aim is to demonstrate its validity for formulations and 

operating conditions which are usually employed for pharmaceuticals.  

The values of the parameters used in the model are listed in Table 3. 

As can be seen from the Table, the numerical value of parameter γb is much higher for sucrose 

than for mannitol. Another amorphous solute, dextran, has been found to have the same γb coefficient 

as sucrose [46]. 

Figure 6 shows that for both solutes, tests A and B, the model predicted fairly well the crystal size 

distribution as measured experimentally by SEM analysis. 

The model was then tested for different operating conditions and concentration, but using 

mannitol as model solute. More specifically, nucleation temperature, cooling rate and concentration 

were changed. The product morphology, as measured using the traditional SEM analysis approach and 

as predicted by the model, was characterized using the crystal diameter averaged over the vertical 

direction. As can be seen in Table 4, the simplified model could predict with good accuracy the product 

morphology.  

Tests A and C were performed using the same cooling rate, but the two samples had different 

nucleation temperatures. On the contrary, tests A and D had similar nucleation temperatures but were 

conducted using very different cooling rates. As can be seen from the Table, the model could 

effectively predict the crystal size increase with increasing nucleation temperature (tests A and C), and 

with decreasing cooling rate (tests A and D). In fact, nucleation temperature and cooling rate are taken 

into account by the model in the ν and θ terms.  

Moreover, it is remarkable that the model worked fairly well even at the higher concentration of 

10% w/w employed for test E. This means that the simplified model can be effectively applied to 

typical pharmaceutical formulations, whose concentration is generally smaller than 10% w/w.  

The image segmentation approach and the mechanistic model here presented, make it possible to 

know the whole pore size distribution within the product thickness. This is important for determination 

of a suitable mass transfer resistance to vapor flux, to be used in models of primary drying [53, 54]. 

For example, the sample could be divided into vertical sections, and a mean value of Dp could be 

attributed to each section. Using this value of Dp, a mass transfer resistance could be calculated for 

each of the selected sections. Subsequently, the values of mass transfer resistance calculated for 
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different sections could be considered as elements of a connection in series and summed up to give the 

resistance of the whole sample. This procedure could improve determination of a reasonable value for 

mass transfer resistance, especially for those formulations and operating conditions which tend to form 

very inhomogeneous cakes. By contrast, radial inhomogeneity in pore distribution is much more 

difficult to take into account. Thus, at present, it is not easy to translate this complexity into a compact 

analytical expression for the mass transfer resistance, suitable for conventional models of primary 

drying. 

Let us conclude mentioning the advantages of the image segmentation approach here proposed. 

In the case of the traditional approach, the time required for analysis of each image is ranging from 30 

min to 1 h, depending on the number of pores which have to be analyzed. Moreover, this approach 

provides results which depend on the sensibility of the person who is performing the analysis. This 

means that reliability of data obtained cannot be always guaranteed. By contrast, in the case of an 

automatized approach, time is considerably reduced, and reliability of the results obtained is improved. 

The only drawback is the proper choice of the thresholding value. Here, visual inspection was used to 

obtain reliable results, even if a choice based on maximum image entropy is under consideration for a 

fully automatized method [48-50]. However, we found that results of our algorithm were remarkably 

stable and were thus not dramatically influenced by choice of the threshold. For example, ImageJ was 

found to be more sensitive to changes in the thresholding value. Future work will quantitatively 

compare the role of the threshold in both approaches. Moreover, comparison with the results obtained 

by means of an algorithm based on wavelets is also under development [38]. 

According to the results obtained, the segmentation algorithm proposed in this paper could be 

really beneficial, and allow a more reliable analysis of images in a wide variety of fields. In fact, even 

if it was developed and validated for freeze-dried products, the proposed approach could also be 

effectively used for analysis of porous media in general, or whenever difficulties in detection of clear 

edges impede use of other techniques. 

Conclusions 

As we have illustrated, the study of the pores of lyophilized samples can be remarkably improved by 

image processing. Here, for instance, we have determined the segmentation of the super-pixels which 

are containing the pores, in order to estimate their size. Let us add that the approach we have used, 

namely, segmentation, is the first step for any further 3D reconstruction of the sample from images 

given by tomography.  

Moreover, a simplified model for the prediction of ice crystal size distribution in frozen products 

has been discussed. Unlike previous approaches, which were completely empirical, the model here 

presented provides physical insight into process phenomena.  

The model predictions have been validated upon experimental observations collected by analysis 

of SEM images. The validation has been performed for different operating conditions and 

concentrations, showing that the simplified model developed can be efficiently applied to typical 

pharmaceutical solutions. 

Knowledge of the average pore size and its distribution is essential for the determination of the 

resistance to mass transfer and hence for the use of the most recent model-based tools for the 

development and scale-up of freeze-drying cycles. The approach here developed is therefore a solid 

starting point for a more efficient design of the freeze-drying process. 

However, not all the problems have been solved. In the model developed there still is a term that 

must be evaluated from experimental data. Thus, further work is needed to make crystal size 

completely predictable from theoretical considerations, without need of experiments. 

 

List of Symbols 

 

aS empirical coefficient that accounts for the real ice crystals surface, - 

b coefficient that accounts for surface irregularities and crystal habit, K2/3 m-2/3 

bc three-channel brightness function, - 

B image of the three-channel brightness function, - 

c index corresponding to the three RGB channels, - 
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D vial base diameter, m 

Dp crystals diameter, m 

h heat transfer coefficient, W m-2 K-1 

I domain of the three-channel brightness function, - 

ΔHf latent heat of crystallization, J kg-1 

k pixel label, - 

ks thermal conductivity of the solid, W m-1 K-1 

K(i,j) matrix of labels, - 

m mass of crystallized water, kg 

n number of discretization intervals, - 

N number of occurrences of super-pixels with a given area, - 

Np number of crystals, - 

Nx number of pixels in the x direction, - 

Ny Number of pixels in the y direction,- 

Sice surface of ice crystals, m2 

T temperature, K 

T(i,j) binary image map, - 

ΔT temperature difference between air and product, K 

t time, s 

Δt time interval, s 

Vice volume of ice crystals, m3 

z axial coordinate, m 

zf axial coordinate of the freezing front, m 

Δz axial interval, m 

Δzf variation of the freezing front position, m 

Greek letters 

α empirical coefficient of Equation 1, - 

β(̃i,j) grey-tone map, - 

γ solid-solid interfacial tension, J m-2 

ε ratio between the volume of ice and the total volume of the system, - 

θ temperature gradient within the frozen zone, K m-1  

λ1 exponent of Equation 1, - 

λ2 exponent of Equation 1, - 

ν freezing front velocity, m s-1 

ρice density of ice, kg m-3 

τ threshold value for binary image construction, - 

τ̃ tortuosity value, - 

 

Abbreviations 

GIMP GNU Image Manipulation Program, - 
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Table 1. Details of experimental tests. 

 Formulation Cooling rate, K min-1 Nucleation temperature, K 

A Mannitol 5% w/w 0.8 260.5 

B Sucrose 5% w/w 0.8 258.2 

C Mannitol 5% w/w 0.8 266.4 

D Mannitol 5% w/w 0.1 261.0 

E Mannitol 10% w/w 0.8 261.3 

 

 

 

 

Table 2. Comparison between the traditional image analysis technique and the newly developed 

segmentation approach. Data given for segmentation are those corresponding to the arrows in the 

Figures 4 and 5. 

  Dp, µm 

  Top Centre Bottom 

Mannitol 5 % 

(Test A) 

segmentation 25 27-30 23 

traditional 23 28 19 

Sucrose 5 % 

(Test B) 

segmentation 35 55 50 

traditional 83 100 68 

 

 

 

 

Table 3. Numerical values of the parameters employed 

ks 2.5 W m-1 K-1 

h 5 W m-2 K-1 

ρice 918 kg m-3 

ΔHf 333500 J kg-1 

γb (mannitol) 7·104 J K2/3 m-8/3 

γb (sucrose) 23·104 J K2/3 m-8/3 

 

 

 

 

Table 4. Mean crystal size for tests A, C, D and E, as evaluated experimentally (traditional technique) 

and by the simplified model  

 Mean crystal size, µm 

 Exp. Simpl. model 

A 24 23 

C 29 27 

D 35 36 

E 22 24 
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Caption of Figures 

Fig. 1. The white pixels have a label k=0. Each black pixel has a label different from zero, with a value 

which is increasing as we move from left to right on the rows. However, the final value is fixed 

according to the labels of the black pixels above and on the left of the considered pixel.  
 

Fig. 2. A SEM image (left), corresponding to a 5% w/w sucrose solution, is pre-processed to have the 

binary image (middle) used for segmentation. The segmented image (right) shows super-pixels (here 

rendered by different colour tones) and their area (in pixels). The image is 300 x 315 pixels (540 x 568 

μm). 

 

Fig. 3. Scheme of the domain under investigation. 

 

Fig. 4. (a) SEM and (b) binary images (images are 1024x870 pixels) corresponding to mannitol 5% 

w/w, test A in Table 2, and (c) the corresponding segmentations where the domains are represented by 

different colours. The white bar in (a) represents a width of 400 µm. (d) Distribution of the super-pixels 

(in logarithmic scales), by counting them according to their area (in pixels) within intervals spaced of 

100 pixels. Specific data indicated by the arrows in this figure are listed in Table 2. SEM images (Fig. 

4a) are adapted with permission from [46]. Copyright 2017 American Chemical Society. 

 

Fig. 5. (a) SEM and (b) binary images corresponding to sucrose 5% w/w, test B in Table 2.  The white 

bar in (a) represents a width of 500 µm. (c) Distribution of the super-pixels (in logarithmic scales), by 

counting them according to their area (in pixels) within intervals spaced of 100 pixels.  Specific data 

indicated by the arrows in this figure are listed in Table 2.  

 

Fig. 6. Comparison between simplified model predictions (-Δ-) and traditional SEM analysis results 

(■) for the average crystal size in the case of tests A and B (5% w/w mannitol or sucrose respectively). 

The histograms refer to the pore size radial distribution observed with SEM analysis. Insets show the 

temperature profiles at the product bottom as predicted by the model (solid black line) and as measured 

experimentally (black triangles). 
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Fig.5 
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Fig.6 

 


