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Abstract 

This thesis investigates the preparation and characterization of organic Nano 

composite (NC) based hybrid Resistive switching device (RSD) or memristor.  

The research in this field has been going on for years, yet a proper device with a 

unified working principle has never been developed in practical memory 

application. The main aim of the research activity is to fabricate an RSD based on 

organic nanocomposite and to focus on its working mechanism, material 

properties and electrical characteristics in detail. Several experiments were 

conducted to obtain an optimized hybrid device measuring its endurance, memory 

retention, memory window (On/Off) etc. The initial stage of research dealt with 

the development of a planar symmetric RSD based on Silver NC. Here the 

resistive switching was explained in terms of field-induced formation of 

conductive filament along the silver clusters. This work enables the assembling of 

a logic device, which exhibits a bipolar non-volatile switching behaviour that is 

controlled by means of the current compliance level. The work further progressed 

with the use of silver salt along with Ionic Liquid (IL) in various polymeric 

matrices. This active matrix worked well both on symmetric (RSDs with identical 

electrodes) as well as on asymmetric RSDs (RSDs with electrodes made different 

metal). The addition of room temperature Ionic Liquid plays an important role in 

initiating permanent memory and reducing the set voltage range which was a real 

eye opener in the present research work. The presence of well dispersed silver 

ions in the polymer matrix which has a great diffusivity, helps to maintain 

reversible electrochemical states that store information or logic bits in the form of 
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recoverable conducting filament in our polymer based hybrid switching matrix. In 

this work, we present a detailed study showing the interaction between the 

polymer and the Nano particles by means of various techniques. The hybrid 

switching matrix based RSDs discussed here, present some of the best results 

obtained worldwide in the field of Polymer hybrid RSDs.  The active switching 

matrices prepared throughout our research enables an easy deposition onto various 

substrates thus widening printed electronics potentialities. The final part of the 

thesis deals with the fabrication and characterization of a low power, high speed 

hybrid selector device. 
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Chapter 1 

Introduction 

1.1 Thesis Organization 

The thesis is organized as follows:  

Chapter 1 provides a brief overview on the existing memory technologies and 
their limitations. This leads to our discussion on memristors or Resistive 
Switching Devices (RSD).  A detailed explanation on types of switching devices 
and switching behaviors has been given. This chapter is concluded by discussing 
the main applications and the present state of art of these devices. 

Chapter 2 describes the materials, methods and technologies used in the 
present research work. This chapter deals with the experimental procedures, 
setups and various technologies used. In Chapter 3, we start discussing about the 
different polymer NC used to develop RSDs. This section provides the 
explanation on metallic silver nano particle based RSDs. The work gives a 
detailed explanation on the switching mechanism and electrical parameter 
dependence on the switching behavior. This chapter also discuss about various 
deposition techniques used to deposit the switching matrix, and the difference in 
the switching behavior based on these techniques. Chapter 4 deals with   a slightly 
different type of switching matrix. This consists of a polymer matrix and a 
metallic salt. After further studies, it was observed that the addition of Ionic 
Liquid (IL) into this matrix, improved the device switching behavior. Two 
different device architectures have been explained here. The difference in 
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computing [16]. Even though the concept of two terminal RSDs became 
significant after 2008, there were many studies reported way back which 
explained resistance switching in three terminal hybrid electronic devices [17-19]. 
Erokhin et al. [19] has demonstrated a 3 terminal hybrid device based on PANI 
emaraldine base-PEO/LiCl in which the transition in the resistance state was 
observed due to the electrochemical control of the redox state of PANI. Before 
explaining more about the RSDs, a detailed explanation of the resistance 
switching and its different types is needed.  

Resistive switching is the physical phenomenon that consists of a sudden and 
non-volatile change of the impedance due to the application of electric stress, 
typically voltage or current pulsing. This effect may allow the fabrication of 
future novel electronic memory concepts, such as non-volatile random access 
memories (RAM), hence, it is also termed resistive RAM, RRAM, or ReRAM. In 
the following part we will discuss about the main types of resistive switching.  

1.4.1 Resistive switching behaviours 

Resistive switching can be divided into two main categories: Switching assisted 
by filament formation [20-23] and switching assisted by an interface [24]. 
Filamentary switching is due to the formation of local conductive filaments, 
which is formed as a result of redistribution of oxygen vacancies [25] or the 
diffusion of metal ions [26]. For interface switching, different mechanisms have 
been proposed, such as charge trapping [27], or polarization switching [28].  

In most of the organic devices, switching has been attributed to filamentary 
conduction mechanism. In polymer-based systems, carbonaceous filaments can 
arise from arrested degradation of the organic film [29] or metal filaments might 
form across organic layer [20, 30-32]. Filamentary conduction can also arise from 
localized high mobility paths within the polymer material due to defects or field-
induced electronic processes [33]. In general the filamentary switching happening 
in most of the devices takes place due to a local redox reaction. Thus this can also 
be generalised as redox based switching. Redox based switching can be broadly 
classified into four: Electro Chemical Metallization (ECM) which will be 
explained further in detail, Valence change mechanism (VCM), Thermo-chemical 
mechanism (TCM) and Interfacial coupling mechanism (ICM). VCM occurs by 
the migration of oxygen anions due to an applied field and because of the valence 
change of the cation sublattice [34, 35]. TCM as the name suggests is a 
temperature assisted process. This process is related to a stoichiometric change in 
the oxide due to a current induced increase in temperature [34]. ICM which has 
been observed by Chiolerio et al. [36] in polymer composite matrices is a 
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switching effect where the switching is induced by electron transfer between the 
polymer matrix and the ZnO particles which is assisted by the polymer secondary 
bonds. 

So far there is no unified switching mechanism that has been explained. 
Mentioning about resistive switching, usually there are two main switching modes 
observable in devices, bipolar and unipolar switching. In the former type of 
switching, the set process (Transition from High resistance state to Low resistance 
state) and Reset process (Transition from Low resistance state to High resistance 
state) takes place at different polarities (figure 1.4a).  While in the latter the set 
and reset happens at the same polarity (figure 1.4b), that is either they can happen 
in the positive or in the negative cycle. ECM mechanism which is cation assisted 
and VCM which is anion assisted switching process generally exhibits bipolar 
switching behaviour, whereas TCM which can be both cation and anion assisted 
exhibits unipolar switching process [34]. While performing electrical 
measurements compliance current (CC) is set in order to ensure the safe operation 
of the device. The compliance level is set usually during the set operation. This 
ensures that the device current does not exceed the compliance level. Many 
studies have shown the importance of compliance on the switching behaviour of 
RSDs [38-40]. 

 

Figure 1.4: Types of resistive switching. a) Bipolar Switching. b) Unipolar Switching 
[37]. 

1.4.2 Types of resistive switching devices 

RSDs are classified into organic, inorganic and hybrid, according to the nature of 
the active layer that is present between the two electrodes or leads.  
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Inorganic RSDs represent the most widely studied case due to their simpler 

switching matrix compared to organic and hybrid RSDs [41-45]. Thin film based 
RSDs are good examples of inorganic RSDs, where a careful control of the active 
material thickness allows to electrically tune certain properties and to modulate 
the current flowing perpendicularly to the same film [46]. The technologies used 
for thin film deposition is more matured, controllable and widespread and thus 
inorganic RSDs are more probable to hit the market at the first place.   
Nanocomposite (NC) RSDs, alternatively known as hybrid, features a matrix and 
an active filler that do not share the same electronic behavior. NC RSDs are 
normally characterized by a passive matrix containing dispersed active fillers in 
the form of clusters or nanoparticles (NPs), which can be electrically activated 
and can also produce current modulation [47-51]. Extensive research and studies 
were conducted on RSDs based on different switching matrices, each of which 
has its unique properties. Organic RSDs exploit the intrinsic properties of organic 
materials, including processability, low cost, good retention time, high endurance 
and mechanical flexibility, when coupled with polymeric or natural flexible 
substrates [52-57].  In the present thesis, main focus is given to RSDs based on 
polymers and Nano Composites (NC) or in other words Hybrid RSD. 

1.4.2.1 Hybrid (Organo-metallic) RSD  

Hybrid nanomaterials gained widespread interest due to their novel properties in 
various fields of science including optoelectronics, anti-bacterial, medicine, 
environment applications etc [58-62]. Nanometer-sized materials feature quantum 
confinement of charge carriers and often result in amazing properties that could be 
exploited to realize electronic devices enhanced with innovative functionalities 
[63, 64]. NCs can be easily prepared by blending polymers with inorganic NPs 
such as silver, gold etc [65]. Such devices offer several potential advantages like 
reduced cost if compared to batch-processed inorganic materials, ease of additive 
manufacturing (i.e. printing) over large areas, high throughput processing, light-
weight and flexible mechanical properties [51].  Nanomaterials used in this field 
include metallic NPs [66] as well as nanotubes, nanowires, nanorods etc [67,68].  

The resistive switching process happening in these devices are mainly due to 
1: formation of metallic filament 2: Interface switching. In the former, which is a 
common mode of switching in hybrid memristors [69-73] a metallic conductive 
filament is formed between the two terminals. In filamentary resistive switching, 
current in LRS flows through the confined local path in the insulating matrix 
while current in HRS flows through the films homogeneously. Although the 
filamentary conducting path has been presented in many systems, the composition 
of filaments vary from case to case. In case of devices with inert electrodes, the 
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Figure 1.6: Pictorial representation of resistive switching mechanism in ECM. a) 
Electrochemically active metal ions migrating to cathode. b) Precipitation of active metal 
atoms at the electrochmically inert electrode and forms a conducting filament. c) 
Electrochemical dissolution of the filament with change in applied polarity [77]. 

ECM memories can be regarded as the next generation memory devices, due 
to the possibility of scaling down almost to the atomic level. One of the most 
peculiar feature of filament type resistive switching is that the switching does not 
depend on the device area [78].  

In interface type switching, the conduction depends on the barrier height at 
the interface of the active switching layer and the electrode. This interface barrier 
can be modulated by applied electrical stimuli [77]. Lin et al. has described well 
the interface type switching where Gold nanoparticles are embedded in 
Polystyrene [79].  The current transition happening in this device is explained by 
means of trap filled space charge limited current model (SCLC).  The SCLC 
occurs when the number of acceptor levels is smaller when compared to the 
injected charge concentration. This forms a space charge cloud near the electrode 
[80].  In SCLC model the current V/s voltage curve will have mainly 4 regions 
which explains the entire switching process.  At lower voltages the current 
increases linearly as the bias voltage is increased. This region is known as the 
Ohmic region, where the device behaves as an ideal resistor. Afterwards, current 
shows a voltage square dependence. This region where the current shows a 
voltage square dependence is the SCLC. This occurs when the equilibrium charge 
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flexible [91-93]. While using memristors for creating large crossbar arrays for 
potential memory applications, sneak path current is a major issue.  This is a 
major problem in crossbar arrays that effects the reliable reading of data from 
individual memory cells and increases power consumption [94].  By using 
selector devices along with transistors or memristors, the problem of sneak path 
current can be mitigated.  Usually selector devices are tunneling diodes, threshold 
switches, bidirectional varistors etc. Among these a simple two terminal volatile 
or otherwise threshold memristor or RSD can act as a very good selector device 
which can mitigate the issue of sneak path current without compromising the 
scalability and 3D stacking capability of memristor. The key requirements for 
selector devices are: high selectivity (High On to Off ratio between the current at 
a particular voltage), steep turn on slope, high current density, fast turn On and 
Off and high endurance. Many research teams are now working on selector 
devices incorporated in high density memory arrays [95-98].  

1.5.2 The artificial synapse 

Memristors have been experimentally proven to be similar to our synapse. This is 
a great step towards building neuromorphic chips using memristors. Finally they 
can be used to emulate a working human brain, which is indeed a very 
challenging result.   

There have been so many studies going on in the direction of memristors 
emulating a biological synapse [96, 99-101]. Neurons consist of axons and 
dendrites and each neuron is interconnected with junctions know as synapses. 
Axons and dendrites are responsible for transmitting information while the 
synapse controls the signals [102]. Synapses are junctions between the neurons 
where the presynaptic terminal of one cell comes into contact with the 
postsynaptic membrane of another. The neurons are excited at these junctions. 
There are mainly two types of synapses: Electrical and Chemical synapse. 
Electrical synapses occur when the pre synapse is in electrical continuity with the 
post synapse.  Here the electrical changes in one cell are transmitted 
instantaneously to the next. Chemical synaptic junctions are much more 
complicated. In this case, the gap between the pre and post synaptic terminal is 
larger and the information is carried by neuroactive substances released at the 
presynaptic side of the junction. Spike-Time-Dependent-Plasticity (STDP) is 
known as one of the fundamental rules of learning and memory in the brain, 
which can explain how synapse can adapt to the surrounding environment. 
Memristor based models can emulate the STDP in neuronal communication [103, 
10]. The STDP rule is one of the fundamental rules of learning and memory in the 
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The research taking place in this field is huge and rapid and extremely 

competitive. Every day the field of memristors or RSDs come up with modified 
design or devices based on optimized technology or mind blowing characteristics.  
The field of memristors is not just something which is confined in the field of 
memory devices. The main anticipated application of which is in the field of 
neuromorphic applications. RSDs could potentially replace integrated electronic 
devices for advanced computing and digital and analog circuit applications 
including neuromorphic networks [107].  

 

Figure 1.10: Potential fields of applications of memristive devices 

As mentioned earlier the first and fastest developing practical application of 
memristors is in the field of nonvolatile memory for computing.  Table 1.2 
provides the features of already existing memory devices and the memristor based 
device features. Memristors can be used in analog applications such as 
programmable analog circuits, oscillators, analog filters etc [108, 109]. 
Memristors can be used in digital logic applications such as in memory computing 
[110]. Field Programmable gate array is one of the fastest and promising claim of 
memristors in the field of digital application [111]. Even before the finding of 
memristors, scientists have been trying to come up with brain like systems which 
can function as close as human brains. But building a brain like massive parallel 
system was always challenging due to the lack of devices which can emulate the 
neural synapse [112]. 
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Chapter 2 

Materials, Methods & Technologies 

2.1 Introduction 

The field of memristors is under vigorous research phase. Since there is no unique 
memristors with unique switching properties which can be regarded as the device 
to replace the silicon technology, a great deal of studies are being conducted on 
the switching medium, switching mechanism, device structure etc. A number of 
studies have been reported in this field, each of which displays good engineering 
properties. 

This chapter deals mainly with all the materials, characterizations and other 
technologies used during the entire framework of research. Since the main focus 
during the PhD programme was on polymer NC based RSDs, several polymer 
based switching composites were synthesized and characterized. Several electrode 
configurations have also been studied in order to understand the switching 
differences. This chapter gives a thorough understanding on how the polymer NCs 
and corresponding switching devices were fabricated. All the electrical, optical 
and chemical characterizations carried out on the switching matrix as well as on 
the device will be discussed in this chapter.   

2.2 Device Architecture 

Device architecture plays an important role in the behavior of the RSD. 
Architecture in this particular study refers to the electrode structure as well the 
electrode symmetry. In the present work we have considered planar as well as 
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stacked device. RSDs very much depend on the electrode structure and symmetry 
[1, 2]. 

2.2.1 Planar Symmetrical Device based on Au electrodes 

The use of planar devices are not common when it comes to real time 
applications. But during the initial phase of any study, these device architectures 
are always preferred due to the possibility for a clear visualization of what 
happens in the matrix or the device itself while electrically probed. 

A planar device structure with gold (Au) electrodes separated by a 10 µm gap 
is the initial architecture of choice. The fabrication technique of this particular 
device is as follows: Electron beam evaporator (ULVAC EBX-14D) was used in 
order to deposit the gold electrodes on a (100) oriented Si wafer with a 200 nm 
SiO2 layer grown using dry oxidation. A Ti layer (10 nm thick) was used to 
promote adhesion of the Au layer (100 nm thick) to the substrate. Both layers 
were grown using a deposition rate of 0.3 nm/s. Electrodes were patterned using 
AZ5214E photoresist (Microchemicals) in a standard UV photolithographic 
process, with the aid of a Neutronix Quintel NXQ 4006 mask aligner. Au layer 
was selectively etched using a solution made by Iodine (I2) and Potassium Iodide 
(KI) in water, with an estimated etch rate of 0.2 nm/s. The underlying Ti layer was 
etched using a solution of Hydrofluoric Acid (HF) and Hydrogen Peroxide (H2O2) 
in water. The final step involves the dicing of the substrates using a diamond 
dicing saw, in order to obtain samples with an area of 5 mm x 7 mm, each with 
three identical Ti/Au electrodes. The electrodes have a width of 300 µm, and they 
are separated by a 10 µm gap. The final switching matrix is then deposited onto 
the planar device.   

2.2.2 Planar Asymmetrical Device based on Ag and Pt electrodes 

The planar asymmetrical device structure used in our case is not much different 
from the planar symmetrical case.  In this particular architecture, we use 2 
different electrodes. Instead of inert electrode (Au), we use an active as well as a 
passive electrode (Ag, Pt).  

The use of a passive and an active electrode is the most common electrode 
design for normal RSDs [3, 4]. The presence of an active metal like Ag, Cu etc 
takes active part in the switching mechanism due to the REDOX process 
happening in the device when biased. In our study we have fabricated a planar 
device with Ag and Pt electrodes deposited on Si wafer with 10 µm gap between 
them. The fabrication techniques are mostly same as that of the planar symmetric 
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case, except for the Au electrodes, we have a Pt electrode (100 nm thick) 
deposited using a Kurt J. Lesker PVD 75 DC sputtering, at a deposition rate of 0.2 
nm/s. A 20 nm thick Ta layer was used as the adhesive layer for Pt on Si. The 
electrode was patterned using lift off process. DMSO was used as the solvent. The 
Ag electrode (100 nm thick) was patterned using the same image reversal 
photoresist used for Pt and then 100 nm Ag was deposited using an Ulvac EBX-
14D electron beam evaporator, at a deposition rate of 2.0 nm/s. A 20 nm thick 
titanium (Ti) adhesion layer was electron beam deposited before the Ag layer at a 
deposition rate of 0.3 nm/s. Lift-off in DMSO was the final patterning step. 
Figure 2.1 provides the schematic representation of the planar device. During 
electrical characterization, the active bias will always be provided to Ag and Pt 
electrode will be grounded. 

 

Figure 2.1: Schematic representation of the planar device. Inset shows the image of 
the real device with switching matrix deposited on the device [1].  

2.2.3 Stacked Device 

Device architecture plays an important role while it comes to scaling in practical 
circuit models. Since the active switching gap between the electrodes is much less 
in this particular case, stacked structure is preferred over planar architecture. In 
the present thesis work we have discussed mainly two stacked device structures. 
One has symmetrical Au electrodes while the other has Au and ITO as electrode. 
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2.2.3.1 Au/ITO based stacked device 

The layered configuration set up is as follows: The bottom electrode (BE) 
comprises of a commercially bought glass substrate with an Indium Tin Oxide 
(ITO) coating. The active switching matrix is then deposited onto the ITO BE. 
Once the active switching matrix is deposited onto the ITO based BE, the Top 
electrode (TE) which is Au (100 nm) is deposited using a shadow mask. The TE 
was in the form of circular disks which had diameters varying from 1 mm to 4 
mm. Figure 2.2 provides the schematic representation of the stacked asymmetric 
device. 

 

Figure 2.2: Schematic representation of Au/ITO based stacked device. Inset provides 
the real image of the stacked device. 

2.2.3.2 Au/Au based stacked device:  

The device design of the stacked symmetrical device is more or less similar to 
the stacked asymmetrical device. In this case the BE, that is Au is deposited onto 
a Si substrate with 100 nm thermal oxide. The BE was deposited by evaporation 
method (deposition rate of 0.1 nm/s) using a shadow mask. A dog bone structure 
was used for the electrode. The BE was 20nm in thickness. Before the Au layer 
deposition an adhesive layer of Ti (2nm) was deposited. After the BE deposition, 
we have our active switching matrix deposited which will be discussed in section 
2.3.6. The TE (20 nm of Au) is deposited again using the same shadow mask 
which was used for the BE using Evaporation. Figure 2.3 provides the SEM 
image of the final device. 
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Figure 2.3: SEM image of BE deposited using dog bone shadow mask. 

2.3 Polymer NC based Switching Matrix Preparation 

The preparation of various polymer NCs plays an important role in the present 
work. Different polymer based matrices were synthesized along with Ag and Au 
NPs.  The coming subsections provide a detailed synthesis method of all the 
switching matrices used throughout our research work. 

2.3.1 Ex-Situ Ag based Switching matrix 

The preparation of a polymer NC by means of adding already synthesized NPs 
into a polymer matrix provides an easy way of synthesizing a switching matrix.  

The Ex-Situ Ag NP based switching matrix preparation is as follows: Here Ag 
NP solution is added directly to a polymer solution and mixed well inorder to 
obtain a good NP dispersion in the polymer matrix. In the present work, Poly 
vinylidene fluoride-hexafluoropropylene (PVDF-HFP) was used as the polymer 
matrix due to its high dielectric constant, good mechanical strength and due to its 
chemical stability [5, 6]. The presence of HFP in PVDF reduces its crystallinity, 
thus making it soluble in a wide range of solvents. The PVDF-HFP matrix acts as 
a quasi-solid medium for the silver NPs and silver ions supporting their 
movements when an electric field is applied. PVDF-HFP (10 wt. %) Kynar-
Superflex 2500 (pellets) with 20 wt% of hexafluoropropylene and a density of 
1.79 g cm-3  was dissolved in DMF (Dimethyl Formamide)  by vigourous stirring 
for 20 to 30 minutes at 30°C. The final Ag NP suspension (Ag-NP Ethanol 
suspension has Ag content of 6.8 wt%, with an average NP diameter of about 40 
nm which includes a PVP coating) was then added to the polymer solution such 
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Figure 2.5: Schematic representation of the finally prepared Ag NP based switching 
matrix 

Moreover, the formulation is processed at room temperature, which is one of 
the foremost properties that allows the material to be deposited on the cheapest 
flexible substrates, including paper. The achievable device uniformity [8], the 
cheaper production method and the easy deposition technique along with the 
advantage of room temperature processing make these NCs preferred in the field 
of disposable devices [9, 10]. Figure 2.6 provides the SEM image of the AG NP, 
PVDF-HFP based switching matrix. 

 

Figure 2.6: SEM image of the switching composite 














































































































































































































