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3D CAPABILITY OF REFINED GDQ MODELS FOR THE BENDING ANALYSIS OF 

COMPOSITE AND SANDWICH PLATES, SPHERICAL AND DOUBLY-CURVED SHELLS 

Francesco Tornabene1, Salvatore Brischetto2 

 

ABSTRACT. The paper proposes a comparative study between different analytical and numerical three-

dimensional (3D) and two-dimensional (2D) shell models for the bending analysis of composite and sandwich 

plates, spherical and doubly-curved shells subjected to a transverse normal load applied at the top surface. 3D 

shell models, based on the equilibrium equations written in mixed orthogonal curvilinear coordinates, are 

proposed in closed form considering harmonic forms for displacements, stresses and loads and simply supported 

boundary conditions. The partial differential equations in the normal direction are solved in analytical form using 

the Exponential Matrix (EM) method and in numerical form by means of the Generalized Differential 

Quadrature (GDQ) method. The first 3D model is here defined as 3D EM model and the second one is here 

defined as 3D GDQ model. Two-dimensional shell solutions are based on the unified formulation which allows 

to obtain several refined and classical 2D shell theories in both Equivalent Single Layer (ESL) and Layer Wise 

(LW) form. Classical theories such as the First order Shear Deformation Theory (FSDT), the Third order Shear 

Deformation Theory (TSDT) and the Kirchhoff-Love (KL) theory are obtained as particular cases of refined 2D 

ESL models. 2D shell solutions are proposed by means of a complete generic numerical method such as the 

GDQ method which allows the investigation of complicated geometries, lamination schemes, materials, loading 

conditions and boundary conditions. The analyses and comparisons are proposed in terms of displacements, 

stresses and strains. In 2D GDQ models the transverse shear and transverse normal stresses are recovered from 

the 3D equilibrium equations allowing results in accordance with the 3D shell solutions. After these validations, 

the refined 2D GDQ shell models are used for the investigations of new cases which cannot be analyzed by 

means of closed form solutions. In the present work, the static analysis of an elliptic pseudo-sphere is proposed. 

Considerations about the typical zigzag form of displacements for multilayered structures are given. The 

interlaminar continuity in terms of compatibility and equilibrium conditions are also discussed for all the 

proposed assessments and benchmarks. 
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1. INTRODUCTION 

Multilayered composite and sandwich structures give high level performances, increasing the safety 

requirements and improving the dynamic behavior,  and they can be employed to design stiffer structures with 

limited weight. These structures have a great diffusion in aerospace, marine, building and automotive 

engineering fields where they are analyzed as shell and plate elements [1-3].  Shell and plate structures can be 

investigated using analytical and numerical three-dimensional (3D) or two-dimensional (2D) shell models. 3D 

shell models give more accurate results but they are heavy from the computational and mathematical point of 

view. For these reasons, 2D shell models have a great diffusion in practical engineering applications. They 

propose an approximation though the thickness of the structure but they allow a drastic reduction of the 

computational time and the complexity of the formulation. 

3D plate and shell formulations proposed in the literature show a restricted range of applications when they are 

developed in analytical form. These limitations could be overcome when they are implemented in numerical 

form. Pagano [4-6] proposed the bending investigation of multilayered composite and sandwich plates showing 

several benchmarks frequently used in the literature to perform model comparisons. The 3D numerical plate 

model by Xu and Zhou [7] allowed the bending analysis of plates with variable thickness. The elasticity 

beam/plate solution by Meyer-Piening [8] is of particular interest for the bending analysis of sandwich structures 

with soft core. Demasi [9] proposed a 3D analytical elasticity solution for plates using the mixed form of 

constitutive equations. Ren [10] proposed the exact 3D bending analysis of composite cylindrical panels 

subjected to transverse normal loads. Varadan and Bhaskar [11] developed an exact 3D model for composite 

cylinders subjected to transverse normal loads. Composite spherical panels were analyzed by Fan and Zhang 

[12-13] using 3D static shell solutions. Soldatos and Ye [14] proposed a similar formulation in the case of 

composite cylinders subjected to harmonic loads. The three-dimensional elasticity solution by Fan and Ye [15] 

was devoted to composite plates with classical load applications. A typical 3D exact plate solution extended to 

the static analysis of single-layered Functionally Graded Material (FGM) structures was that by Kashtalyan [16]. 

This method was extended to sandwich plates embedding FGM cores by Kashtalyan and Menshykova [17]. 3D 
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free vibration and dynamic models for plates can be found in [18-21]. Three-dimensional elasticity solutions for 

free vibration and dynamic analysis of shells are typical of works [22-24]. Further interesting 3D solutions in 

numerical form can be found in [25-30] for free frequency, dynamic and bending analysis of plate and shell 

structures. All the discussed 3D models in [4]-[30] are very accurate but they were developed only for particular 

geometries. Recently, this limit has been overcome by Brischetto which developed a general analytical 3D exact 

shell model for the investigation of plates, cylinders and spherical/cylindrical shell panels embedding isotropic, 

composite and functionally graded layers. Free vibration problems were proposed in [31-34] in the case of one-

layered, laminated composite, sandwich and functionally graded structures and for single-walled carbon 

nanotubes. Static analyses with the applications of transverse shear and transverse normal loads at the external 

surfaces were proposed in [35-38] for multilayered composite, sandwich and functionally graded plates and 

shells. The 3D exact model by Brischetto [31-38] uses the exponenetial matrix method, the layer-wise approach, 

the interlaminar continuity conditions in terms of displacements and transverse stresses and the 3D equilibrium 

equations in mixed orthogonal curvilinear coordinates. It is a generalization of the plate and shell models already 

presented in [13-14] and [20]. 

2D plate and shell models are developed in order to reduce the degrees of freedom of the system and to have a 

simpler formulation. In this way, the computational cost of the models is reduced. Moreover, numerical models 

allow the solution of more complicated problems in terms of loads, boundary conditions and lamination 

schemes. The most popular numerical methods available in the literature are based on the weak formulation of 

the governing equations, a typical example is the Finite Element Method (FEM). Recently, alternative methods 

have been proposed in terms of strong form of the governing equations. A typical example of these methods is 

the Generalized Differential Quadrature (GDQ) method proposed by Shu [39-40].  This approach and further 

methods related with this procedure allow the accurate and complete analysis of composite and sandwich 

structures. Several examples about GDQ methods used for the analysis of composite and sandwich structures can 

be found in [41-50]. The present new 2D GDQ shell models include more refined 2D kinematic models (in both 

equivalent single layer (ESL) and layer wise (LW) form) and a more general geometrical approach. Tornabene 

developed classical and refined 2D GDQ models for the analysis of plates and doubly-curved shells using the 

differential geometry of curves and surfaces. The free vibration analysis of doubly-curved laminated shells and 

plates was performed in [51] using general higher-order shear deformation theories developed in the framework 

of the GDQ method. The same models was extended to the static analysis of doubly-curved laminated shells and 
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panels in [52]. The extension to higher order equivalent single layer theories was made in [53] extending the 

Carrera Unified Formulation (CUF) [54-55] to GDQ solutions for the free vibration analysis. The same 

formulation [54-55] was used in [56] to analyze the static behaviour of doubly-curved anisotropic shells and 

panels. The use of a posteriori shear and normal stress recovery in the GDQ static analysis of composite plates 

and shells was introduced by Tornabene and his collaborators in [57-60]. In particular, the a posteriori recovery 

procedure was applied previously to the First-order Shear Deformation Theory [57-58], and secondly to various 

Higher-order Shear Deformation Theories [59-60]. Furthermore, in the present new paper, the recovery 

procedure is not compared with 3D FEM solutions, but with different analytical and numerical three-dimensional 

(3D) shell models, which are more accurate with respect the previous adopted FEM solutions. 

In the area of plate- and shell-type structures, many contributions were published in the past. In particular, 

different approches were considered such as Discrete Sigular Convolution Methodology [61-63], Meshless Local 

Petrov-Galerkin Method [64], Semi-Analytical Procedures [65-66], Finite Element Method [67-68] and 

Isogeometric Analysis [69-71]. Finally, a new methodology, called Variational Differential Quadrature (VDQ) 

Technique [72], was recently proposed. In particular, the VDQ method was based on the variational formulation 

of the considered problem and it presented very accurate and converging properties as shown in the paper by 

Shojaei and Ansari [72]. The 2D GDQ models here proposed are more general from the geometrical and 

kinematic point of view because they include higher order ESL and LW models able to investigate plates and 

complicated double-curved structures. 

The present paper proposes the static analysis of laminated composite/sandwich plates and spherical or double-

curved shells subjected to transverse normal loads applied at the top surface in harmonic form. The choice of 

these geometries, lamination schemes, materials and loads allows to clearly evaluate the zigzag form of 

displacements and the problems connected with the interlaminar conditions in terms of displacement and 

transverse stress continuity.  Classical and refined GDQ shell models by Tornabene [40-45], [51-53], [56-57], 

[73-74] have been compared with two different closed-form three-dimensional shell theories. The first form uses 

mixed orthogonal curvilinear coordinates, layer-wise approach, interlaminar continuity for transverse stresses 

and displacements and exponential matrix methodology for the analytical resolution of differential equations in 

the normal direction. This form was developed by Brischetto in [31-38]. The second form, here presented for the 

first time, uses mixed orthogonal curvilinear coordinates, layer-wise approach, interlaminar continuity for 

transverse stresses and displacements and the GDQ method by Tornabene [40-45], [51-53], [56-57], [73-74] to 
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numerically solve the differential equations in the normal direction. The proposed refined and classical 2D GDQ 

theories use a posteriori shear and normal stress recovery in order to improve the evaluation of these quantitities 

through the thickness direction. The proposed 3D and 2D shell models are accurate enough in terms of 

displacements, stresses and strains. This feature easily allows their extention to non-linear problems for large 

elastic deformations. 

The main novelties and new contributions of the present work are summarized as follows.  First of all, the 

proposed closed-form 3D shell model, which includes the solution of differential equations in normal direction 

by means of the GDQ method (here called as 3D GDQ shell model), is for the first time proposed in the present 

paper in the framework of a general formulation for the geometry able to investigate plates, cylinders, cylindrical 

shells and spherical shells. To the best of authors’ knowledges, in the literature this idea has never been 

proposed. The other 3D shell model in closed form, which uses the Exponential Matrix method for the solution 

of differential equations in normal direction (here called as 3D EM shell model), was already proposed by one of 

the two authors in [31-38]. 3D EM model has been included in the present paper for comparison purposes in 

order to validate the new 3D GDQ model. Secondly, GDQ combined with CUF was already proposed by one of 

the two authors in [56-60], but it is now developed in a more general way which allows a complete static 

analysis for several geometries (also including one of the novelty of the present paper which is the elliptic 

pseudosphere). The proposed 2D GDQ models based on  CUF are very general because they analyze true 

double-curved shells and not only plates, cylindrical and spherical shells. Moreover, they also consider 

complicated boundary conditions and they use the “a posteriori stress” recovery. Finally, to the best of authors’ 

knowledge, there are no papers in the literature which propose a complete static investigation as the present one. 

In fact, stress, displacement and strain results are proposed for plates, spherical shells and true double curved 

shells by comparing different classical and refined 2D theories, a 3D closed-form shell model based on the 

exponential matrix method, and a 3D closed-form shell model based on the generalized differential quadrature 

method. The comparisons of these three methodologies, which are very different between them, always 

guarantee correct results and the possibility to give fundamental considerations about the modelling of plates and 

shells. In fact, zigzag form of displacements and stresses, and interlaminar continuity in terms of displacements 

(compatibility conditions) and transverse stresses (equilibrium conditions) are clearly shown in the proposed 

graphical results. 
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2. 3D SHELL THEORY AND NAVIER EXACT SOLUTION 

The 3D shell theory is based on the 3D equilibrium equations written in principal curvilinear coordinates 

 1 2, ,s s  [73]. Figure 1 shows the curvilinear coordinates, the geometrical features, the several possibilities for 

thickness coordinates and the meaning of the mean radii of curvature  1 1 2,R s s  and  2 1 2,R s s  along the two 

directions 1s  and 2s . For a generic isotropic or cross-ply k -th lamina we can write the kinematic, costitutive 

and equilibrium equations [73] as follows: 
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where the parametric coefficients 
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k
H  and 

 
2

k
H  have the following form: 
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In the equations (1)-(3),  1 1 2, ,U s s  ,  2 1 2, ,U s s   and  3 1 2, ,U s s   are the 3D displacements components, 
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components for the k -th ply. Symbol   indicates partial derivatives and 
( )k

ijC are the elastic coefficients. 

Structures are considered simply supported and with harmonic forms for displacements, stresses, loads and body 

forces: 
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where m and n are the half-wave numbers, and 1L and 2L are the dimensions of the structures. 
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The considered Navier’s solution (5)-(8) (see Reddy [1]) may exist only when the laminate staking sequences 

regard to isotropic or cross-ply laminates for which we have the following zero elastic coefficients: 
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 

 

 

 

 

 

 

 

   

 

 

 

   

 

   

   

   

2 2 2 2 2
12 66 55 55 66 22 55 55

1 55 22 2 22 2 2 2
1 2 1 21 2 1 1 2 2 1 2 1 2 1 2 2 2

23 55 12 55 22 55

2 22 1 2 1

U U

k k k k k k k k

k k k

k k k k k k k k k

k k k k k k

k k k

C C C C C C C Cn m n m
C

L L L LH H H R H R H H H H R R H R

C C C C C Cm m

L LH H H R H

   



 



      
            

    
    

  
  

  

   
3 22

2 2

U f 0
k k

k
R

  
    

  
  

(11) 

   

 

   

   

   

 

 
   

 

   

   

   

 

 

 
 

 

 

 

13 44 13 12 11 44 23 55 23 12 22 55

1 22 2

1 1 2 21 1 2 2 1 1 2 1 2 1 2 2

2 2
33 33

33 2

1 1 2 2

U U

k k k k k k k k k k k k

k k

k k k k k k k k

k k

k

k k

C C C C C C C C C C C Cn n m m

L L L LH H H R H R H H H R H R

C C n
C

H R H R

   

 



            
             

       
      

  
    
  
 

 

 

 

 

     

   

 

 

 

 

   
2 2 2

44 55 13 23 12 11 22

3 32 22 2 2 22 2
1 21 2 1 2 1 2 1 1 2 2

2
U f 0

k k k k k k k

k k

k k k k k k

C C C C C C Cm

L LH H H H R R H R H R

   
      
 
 

 (12) 

The proposed 3D theory is given in layer-wise form and for this reason the compatibility conditions for 

displacements and equilibrium conditions for transverse stresses are imposed at each interface: 

 

       
       
       

1

1 1 2 1 1 1 2 1

1

2 1 2 1 2 1 2 1

1

3 1 2 1 3 1 2 1

, , , ,

, , , ,

, , , ,

k k

k k

k k

k k

k k

k k

U s s U s s

U s s U s s

U s s U s s

 

 

 



 



 



 







 (13) 

 

       
       
       

1

13 1 2 1 13 1 2 1

1

23 1 2 1 23 1 2 1

1

33 1 2 1 33 1 2 1

, , , ,

, , , ,

, , , ,

k k

k k

k k

k k

k k

k k

s s s s

s s s s

s s s s

   

   

   



 



 



 







 (14) 

The load conditions at the external surfaces in the three directions 1 2, ,s s   are imposed as: 

 

       

       

       

1, 1,

13 1 2 1 1 2 1 1 2

1 2

1, 1,

23 1 2 2 1 2 2 1 2

1 2

1, 1,

3 1 2 3 1 2 3 1

1 2

, , , q cos sin
2

, , , q sin cos
2

, , , q sin sin
2

l l

l l

l l

h n m
s s q s s s s

L L

h n m
s s q s s s s

L L

h n m
s s q s s s s

L L

 


 


 








    
                

    
                

  
          

2

 
 
 
 

 (15) 

1  means the first layer and l  is the last layer. h is the global thickness of the structure.   means the top of the 

structure and   means the bottom of the structure. The sistem of differential equations in the thickness direction 

is given in closed form as shown in Eqs. (10)-(12). This system can be  solved in analytical form by means of the 

exponential matrix method: 

 
         *exp 0 with 0,

j jj j j j jz z z h    U A U  (16) 

j is the general mathematical layer and 
jz is defined in each j  layer. 

*j
A is the exponential matrix and it is 

defined by means of the material and geometrical information of each j  layer as clearly explained in past works 
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[31-38] where all the details were given. The vector 
 j

U  contains the three displacement components and their 

derivatives made with respect to the thickness coordinate. This vector can be evaluated at each thickness 

coordinate 
jz  of the j  layer starting from its value at the bottom of the considered j  layer (

   0
j

U ). The  

exponential term  *exp j jzA  can be rewritten by means of a Taylor expansion in order to pass from a system of 

differential equations in z to an algebraic system (see works [31-38] for further details). In the section about 

results this solution is called as “3D EM” because the Exponential Matrix method is employed for an analytical 

solution of partial differential equations in  . More details about its development can be found in [31-38]. In 

these works the “3D EM” solution has been validated by means of several comparisons with other 3D solutions 

presented in the literature. In particular, comparisons have been performed with the well- known 3D solution by 

Pagano [4-6] for sandwich and laminated plates, with the 3D solution by Ren [10] for the bending of laminated 

cylindrical panels, with the elasticity solution by Varadan and Bhaskar [11] for the static analysis of composite 

cylinders, with the exact solutions of Fan and Zhang [12] for thick laminated spherical shells, with the 3D model 

by Soldatos and Ye [14] for hollow cylinders, with the 3D exact solutions by Kashtalyan [16] and  Kashtalyan 

and  Menshykova [17] for bending analysis of one-layered and multilayered functionally graded plates, with the 

elasticity model by Vel and Batra [18] for the vibration of functionally graded plates and with the 3D exact 

solution by Messina [20] for the free vibration analysis of laminated composite plates.  

The other closed form 3D shell solution proposed in the results is called as “3D GDQ”. The model uses the same 

procedure already described in Eqs. (1)-(15). In this second case, the closed form of partial differential equations 

in   has been solved in numerical way by the first author using the generalized differential quadrature model 

(GDQ) described in the past works [40-45], [51-53] and [56-57], [73-74] for the two-dimensional analysis of 

plates and shells. For a one-dimensional domain defined in the interval  1, Tx x , the GDQ method permits to 

approximate the n -th derivative in a generic point ix  of a sufficiently smooth function  f x  by means of a 

weighted linear sum of the function values at some defined points 

 
     

1
i

n T
n

ij jn
j

x x

d f x
f x

dx





  (17) 

for  = 1, 2,..., i T , where T  indicates the total number of grid points. 
 n

ij  are the weighting coefficients 

calculated using the recursive expressions presented by Shu (see [40], [74]). This method allows the evaluation 
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of the derivative of a function for each point of the domain. The nodes must be positioned within the domain 

according to a specific grid distribution. In the proposed work, the Chebyshev-Gauss-Lobatto grid distribution is 

used because of its stability and accuracy (see [40], [74]). In this case, the discrete points are defined as 

 
 1

1

1
1 cos

1 2

T

i

x xi
x x

T


   
    

  
 (18) 

for 1,2,...,i T  and 1 , Tx x x    . The numerical solution of partial differential equations (10)-(12) in   by 

means of the GDQ method allows a reduction of the computational cost without significantly modifying the 

precision of the results as can be seen in the section 4 where “3D EM” and “3D GDQ” theories are compared for 

several benchmarks. By means of these comparisons, 3D GDQ model can be considered validated for the static 

analysis of composite and sandwich plates and spherical shells. 

 

3. REFINED 2D GDQ MODELS 

The equations of the present formulation describe the doubly-curved surfaces by means of the differential 

geometry. These surfaces constitute the reference surface as defined in the book [73]. The two-dimensional 

structural analysis of a general doubly-curved shell is strictly connected with the mechanical behavior of its 

reference surface. The reference surface coincides with the middle surface of the shell in the case of multilayered 

configuration as shown in Figure 1. A shell is a three-dimensional body in the space defined by the global 

reference system 1 2 3Ox x x . The thickness of the shell is defined as the distance between the two external curved 

surfaces. In the case of multilayered shells, the global thickness is defined as: 

 
1

l

k

k

h h


  (19) 

kh  is the thickness of the generic layer k which goes from the first layer 1  to the last layer l . A local reference 

system 1 2O     can be employed as shown in Figure 1. In this case, a shell is bounded by the following limits 

 

 

0 1

1 1 1

0 1

2 2 2

,

,

2 , 2h h

  

  



   

   

 

 (20) 

The curvilinear orthogonal coordinates 1 2,   coincide with the lines of principal curvature of the reference 

surface of the shell. This basic hypothesis has been discussed in the book [73]. h  is the global thickness. 1 2,   
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are a generic couple of principal coordinates and this feature allows different meanings. For example, 

1 2,      in the case of shells of revolution, 1 2, y     in the case of singly-curved panels of 

translation, 1 1 2 2,s x s y      for a rectangular plate. The following vector identifies each point P of the 

three-dimensional body 

      1 2 1 2 1 2, , , ,
2

h
z       R r n  (21) 

   1 22 , 1,1z h      is a no-dimensional coordinate. It indicates the distance of the point P  from its 

projection P   on the reference surface of the shell.  1 2, r is the position vector and it indicates each point of 

the reference surface. This vector changes its expression according to the investigated structural element. 

 1 2, n  is the outward unit normal 

 
,1 ,2

,1 ,2






r r
n

r r
 (22) 

,i i  r r , for 1, 2i  . The symbol “  ” indicates the vector product. The position vector  1 2, r  permits 

the calculation of the first fundamental forms of the reference surface [73]. The Lamè parameters  1 1 2,A    

and  2 1 2,A    are calculated as 

 
1 ,1 ,1

2 ,2 ,2

A

A

 

 

r r

r r
 (23) 

the symbol “  ” is used for the scalar product. When the curvilinear orthogonal coordinates match the lines of 

principal curvature of the reference surface of the shell, the principal radii of curvature of the surface  1 1 2,R    

and  2 1 2,R    are defined as 

 

,1 ,1

1

,11

,2 ,2

2

,22

R

R


 




 



r r

r n

r r

r n

 (24) 

In the case of a generic doubly-curved shell, the principal radii of curvature vary in each point of the domain. 

The described approach is valid for both static and dynamic analyses of thick and moderately thick shells that 

mean 
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min min

0.01 max , 0.2
h h

R L

 
  

 
 (25) 

minR  and minL  are the minimum radius of curvature and the lowest size of the structure. The three displacement 

components of a generic shell are developed by means of the Carrera Unified Formulation (CUF) [73]. The 

displacement field is developed as 

 

           

           

           

0 1 2 3 1

1 0 1 1 1 2 1 3 1 1 1 1

0 1 2 3 1

2 0 2 1 2 2 2 3 2 2 1 2

0 1 2 3 1

3 0 3 1 3 2 3 3 3 3 1 3

...

...

...

N N

N N

N N

N N

N N

N N

U F u F u F u F u F u F u

U F u F u F u F u F u F u

U F u F u F u F u F u F u













      

      

      

 (26) 

 1 1 2, ,U    ,  2 1 2, ,U    ,  3 1 2, ,U     are the 3D displacements components. 
   1 1 2,u


  , 
   2 1 2,u


  , 

   3 1 2,u


   are the generalized displacement components   which represent the degrees of freedom and the 

unknown variables of the problem written inside the algebraic vector 
     1 2,
 

 u u .  F F    are the 

thickness functions used for the  -th order of the kinematic expansion [73]. Several kinematic models can be 

developed according to the order of expansion  and the type of thickness function  F  . Several Higher-

order Shear Deformation Theories (HSDTs) are developed in a unified manner to analyze the mechanical 

behavior of shell structures. The Reissner-Mindlin theory or the First-order Shear Deformation Theory (FSDT) 

can also be obtained as particular cases. The zigzag Murakami’s function  Z Z   can be added as the  1N 

-th degree of freedom in order to capture the zig-zag effect along the shell thickness in the case of transverse 

anisotropy. The Murakami’s function is defined as 

   1

1 1

2
Z 1

k k k

k k k k

 


   


 

 
   

  
 (27) 

where k  is the coordinate of the k -th layer through the thickness direction. Further details about the zigzag 

Murakami’s function can be found in [73]. The Equivalent Single Layer (ESL) theories of the present paper are 

developed using power functions 
 , with 0,1, 2,..., N  , as thickness functions  F   [73]. Using the 

maximum order of kinematic expansion N  , the following theories are obtained for 4N   

 

1 2

3 4

ED1 EDZ1 ED2 EDZ2

ED3 EDZ3 ED4 EDZ4

N N

N N

 

 
 (28) 
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 “E” indicates ESL, “D” indicates that the generalized displacements are the main variables of the problem, “Z” 

indicates the Murakami’s function. The  -th order generalized strain components evaluated on the reference 

surface can be included in the vector 
     1 2,
 

     

                    
1 2 1 2 13 23 13 23 3

T
         

         
 

  (29) 

The  -th order generalized strain component vector is linked to the  -th order generalized displacement 

component vector 
 

u  by means of the following compact form 

 
    

 D u  (30) 

the operator matrix D  has both differential and geometrical contributions 

 

2 1

1 1 1 2 1 1 2 2 2 2 1

1 2

1 2 2 2 2 1 1 1 2 1 2

1 2 1 1 2 2

1 1 1 1 1
0 1 0 0

1 1 1 1 1
0 0 1 0

1 1 1 1
0 0 0 0 1

T
A A

A A A A A A R

A A

A A A A A A R

R R A A

   

   

 



  
  

    
      
    
 

  
  
 

D  (31) 

The stress resultant vector 
     1 2,
 

 S = S  for the  -th order of kinematic expansion is 

                    
1 2 12 21 1 2 1 2 3

T

N N N N T T P P S
          

 
S  (32) 

and it is related to  -th order generalized displacements according to the following compact equation 

 
     

1

0

N
  









S A D u  (33) 

where 0,1, 2,..., , 1N N   . The term 
 

A , for , 0,1, 2,..., , 1N N    , is the stiffness matrix. For a generic 

laminated composite shell including l  orthotropic elastic layers we can write 
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 
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 

 
 
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 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

11 20 12 11 16 20 16 11 13 10

12 11 22 02 26 11 26 02 23 01

16 20 26 11 66 20 66 11 36 10
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where the elastic coefficients are calculated as 
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 (35) 

for , 0,1, 2,..., , 1N N    , , 1, 2,3, 4,5,6n m   and , 0,1,2p q  . The terms ,   specify the thickness functions 

,F F   and ,   their derivatives with respect to the  . The parameters 1 11H R   and 2 21H R   are 

representative of the shell curvature. The stiffness terms
 k

nmB  are  

 

( ) ( )

( ) ( )

for , 1,2,3,6

for , 4,5

k k

nm nm

k k

nm nm

B E n m

B E n m

 

 
 (36) 

Terms 
 k

nmE  are used to specify the elastic constants and they depend on the mechanical properties of the body. 

This general notation allows the use of the reduced elastic coefficients (
   k k

nm nmE Q ) or the classical ones (

   k k

nm nmE C ), as explained in [73]. The reduced stiffness values must be used when the stretching effect  is 

discarded or considered as constant through the thickness. The subscript RS  is used for structural theories, 

which do not consider this effect (e.g., the Reissner-Mindlin theory). If a HSDT includes a linear stretching 

effect, the non-reduced elastic coefficients are employed. These elastic constants are defined in geometric 

reference system 1 2O    . Similar considerations can be made for the shear correction factor  . It is equal to 
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the constant value of 5 6  in the case of a structural theory which considers a non-parabolic shear stress through 

the thickness. In the other cases, it is neglected. Its value will be specified in the notation of the employed 

structural model via an opportune superscript [73]. The HSDTs here proposed do not require the shear correction 

factor. The integrals in (35) must be numerically computed. Different numerical approaches can be used for this 

calculation. A possibility is the Generalized Integral Quadrature (GIQ) technique as proposed in [74]. 

The equilibrium equations are obtained via the Hamilton’s principles and can be written as 

 
   *  

  D S q 0  (37) 

where 
 

q  indicates the load vector including the forces applied at the external surfaces of the shell. This 

expression is valid for each order 0,1,2,..., , 1N N    of the kinematic expansion. The equilibrium differential 

operator 
*

D  has the following form 
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 (38) 

Three load components for each order 0,1,2,..., , 1N N    of the kinematic expansion are considered 

        
1 2

T

nq q q
    

 
q  (39) 

The principle of static equivalence is employed to transform these external loads in statically equivalent forces 

applied on the shell reference surface. The structure is loaded only by external pressures applied along the 

principal curvilinear coordinate directions, on the top surface 
     
1 2, , nq q q
  

 and on the bottom one 

     
1 2, , nq q q
  

. The generalized external forces are given as 
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 (40) 

The external loads are applied on the outer surfaces, and both the thickness function 
 

F


 and the geometric 

parameters 
   
1 2,H H
 

 must be evaluated on the external surfaces of the shell. These surfaces are identified by 

2h   . All these features can be shown as one differential system, which has the following form 

 
     

1

0

N
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





 L u q 0  (41) 

The system is valid for each order 0,1, 2,..., , 1N N    of the kinematic expansion and it is the fundamental 

nucleus of the present unified formulation. The fundamental operator 
   * 

 L D A D , for 

, 0,1, 2,..., , 1N N    , is 
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L  (42) 

Each term 
 
fgL


is defined in [73], for , 1, 2,3f g   and , 0,1, 2,..., , 1N N     of the fundamental operator. The 

fundamental system has  3 2N   equilibrium equations for a generic N  order of kinematic expansion. The 

opportune boundary conditions must be enforced to solve the static problem. In the numerical applications, 

completely clamped (C), simply-supported (S) and free (F) edges are investigated. Therefore, for 
0

1 1   or 

1

1 1   and 
0 1

2 2 2,       we have 
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 (43) 

For 
0

2 2   or 
1

2 2   and 
0 1

1 1 1,      , these conditions are 
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 (44) 

Equations (43) and (44) must be enforced for each order   of the kinematic expansion. A clamped (C) or free 
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edge (F) condition must be specified on each edge of a generic doubly-curved panel. Each side is identified by 

means of an appropriate value of the curvilinear coordinates. The West edge (W) is defined by 
0

2 2   and 

0 1

1 1 1    ; the South edge (S) is defined by 
1

1 1   and 
0 1

2 2 2    ; the coordinates 
1

2 2   and 

0 1

1 1 1     define the East edge (E); 
0

1 1   and 
0 1

2 2 2     define the North edge (N). After the 

definitions of the four edges, the boundary conditions are indicated by means of the sequence WSEN. For 

example, the notation CFCF means that the West and the East edges are clamped (C) and the other sides are free 

(F). Furthermore, the higher-order layer-wise theory adopted in the present work is based on the following 

displacement field: 
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k l
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  U F u F u  (45) 

similar to what has already done in the previous work [73-75]. The only difference from the ESL theory 

presented above is that all the quantities are referred to each k -th layer. In order to simplify the notation, it is 

possible to use the following representation: 
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 (46) 

where L  indicates that a layer-wise theory is considered; D  specifies that the governing equations are only 

expressed in terms of generalized displacements; 1 2, ,    denote the principal directions of the variable 

expansion in the kinematical model, respectively;  F  stands for the type of thickness function  F   chosen 

for the  -th order of expansion in each principal direction and in each layer. The symbology (46) can be 

simplified when the same thickness functions 
       k k k

F F    are chosen in each layer and for each 

displacement of the kinematical model assumed (45): 
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3.1 Numerical Procedure 

The system of governing equations is numerically solved using the Generalized Differential Quadrature (GDQ) 

method (17) as described in the review paper [40] and in the book [74]. This method allows the evaluation of the 

derivative of a function for each point of the domain (17). In the proposed work, the Chebyshev-Gauss-Lobatto 

grid distribution (18) is used as reported above. Now, the structural problems at issue are two-dimensional, and 

the grid distribution (18) must be used along the two principal curvilinear coordinates 1 2,  . Therefore, the total 

number of grid points must be separately given for each principal direction. In details, NT I  indicates the 

number of points along 1 , whereas MT I  is for the other coordinate 2 . The equation (17) can be extended 

to the two-dimensional case in accordance with [40]. The Generalized Integral Quadrature (GIQ) method uses 

the same ideas of the GDQ technique, as demonstrated in [40, 74]. The static problem is numerically solved. The 

fundamental equilibrium equations and the related boundary conditions are given in discrete form using the 

GDQ method. Therefore, the fundamental system (41) can be written as 

 K f  (48) 

where K  is the stiffness matrix,   is the displacement vector, and f  is the external load vector. Equation (48) is 

an algebraic linear problem. The static condensation permits to reduce the problem size by separating the degrees 

of freedom of the inner points of the domain (d) from the points linked to the boundaries (b). Therefore, the new 

system is 

 
bb b bd d b

db b dd d d

 

 

K K f

K K f

 

 
 (49) 

where the vector of the degrees of freedom related to the boundary b  is 

  1

b bb b bd d

 K f K   (50) 

The substitution of equation (50) in equation (49) gives the final algebraic system containing the unknown 

variable vector d   

  1 1

dd db bb bd d d db bb b

   K K K K f K K f  (51) 

In this way, the generalized displacements for each order of kinematic expansion are obtained. 

 

3.2 Strain and Stress Recovery Procedure 

The proposed shell problem is a two-dimensional model. Therefore, a posteriori recovery procedure based on the 
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three-dimensional elasticity [73] permits the evaluation of the effective shear and normal stresses through the 

thickness of the shell. The 3D equilibrium equations in principal curvilinear coordinates for a shell are 
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The meaning of the symbols employed in Eqs. (52)-(54) is the same already seen in Section 2. These equations 

must also be developed in discrete form in order to be evaluated in each point of the three-dimensional shell 

domain [74]. The GDQ method (17) is used for this purpose and the discrete system in each point  1 2,i j   of 

the reference surface of the shell is 
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for 1, 2,..., Tm I . The Chebyshev-Gauss-Lobatto grid distribution (18) containing TI  points is used to 

discretize the system along the normal direction  . In the proposed results, the value 31TI   is used for each 

numerical investigation. The equilibrium relations (55)-(56) are expressed as a function of the shear stresses 13  

and 23  which are the unknown variables. These stresses are obtained using the opportune boundary conditions 

at the bottom 
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and at the top 
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The through-the-thickness profile of the shear stresses is given by 
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for 2,3,..., Tm I , where 13  and 23  are the shear stresses connected with the boundary conditions on the top 

surface. The third equilibrium equation (57) permits the evaluation of the normal stress 3 , imposing the 
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appropriate boundary conditions on the shell external surfaces 
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The effective through-the-thickness profile of the normal stress is  

 
   

 
 

 3 3

3 3
2

Tij ijI

mijm ijm

q h

h


  


  

   
 

 (63) 

for 2,3,..., Tm I , where 3  is the normal stress connected with the boundary conditions on the top surface. It 

needs the correct imposition of boundary conditions at the top. Remembering the constitutive relations for an 

orthotropic body (2), the shear strains 13 23,   and the normal strain 3  can be calculated using the computed 

shear stresses 13 23,   and normal stress 3 . Thus, the through-the-thickness profiles of the strains are 
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A trivial error could occur in the strain profiles because equations (64)-(66) do not guarantee the strain 

compatibility between the different layers. A more accurate through-the-thickness profile can be calculated for 

the membrane stresses employing the effective value of the computed normal strain component 3  using the 

constitutive law (2). 

 

4. RESULTS 

The proposed benchmarks consider simply supported square plates, spherical shell panels and elliptic 

pseudospheres. In the first two proposed geometries, the transverse normal load is applied at the top surface in 

harmonic form with amplitude  
3q 10000Pa

 , half-wave numbers 1n m   and simply supported sides. The 

third geometry has a uniform transverse normal load applied at the top as  
3q 10000Pa

  , and the sequence 

clamped-free-clamped-free (CFCF) for the boundary conditions. The three geometries are proposed in images 
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(a), (b) and (c) of Figure 2. The square plate has dimensions 1ma b   and the investigated thickness ratios are 

10a h   (moderately thick plate) and 100a h   (moderately thin plate). The spherical shell panel has radii of 

curvature 1 2 10mR R   and dimensions 1 24 4a b R R     The investigated thickness ratios are 1 20R h   

(moderately thick shell) and 1 100R h   (moderately thin shell). The elliptic pseudosphere has a total thickness 

0.2h m  and dimension 2a m . In each proposed geometry, h  indicates the global thickness of the structure. 

The first benchmark proposes a square multi-layered composite  0 / 90 / 0 / 90  plate where the thickness of each 

layer is 1 2 3 4 4h h h h h    . The second benchmark considers a sandwich square plate with external skins 

made of Titanium Alloy and an internal Foam core. The two skins have thickness 1 3 0.15h h h   and the core 

has thickness value 2 0.7h h . The third benchmark proposes a spherical shell panel with the same lamination 

scheme already discussed for the benchmark one about the multi-layered composite plate. The fourth benchmark 

considers a spherical shell panel with the same lamination scheme already employed for the sandwich plate of 

the benchmark two. The fifth benchmark is a composite laminated  20 / 35 / 45 / 70  elliptic pseudosphere where 

the thickness for each layer is 1 4 2 30.03m and 0.07 mh h h h    . Material for the layers 1 and 3 of the fifth 

benchmark is the Graphite-Epoxy (Young modulus 1 137.9 GPaE   and 2 3 8.96 GPaE E  , shear modulus

12 13 7.1 GPaG G  and 23 6.21GPaG  ,  Poisson ratio 12 13 0.3   and 23 0.49  ). Material for the layers 2 and 4 of the 

fifth benchmark is the Boron-Epoxy (Young modulus 1 206.9 GPaE  and 2 3 20.69 GPaE E  , shear modulus

12 13 6.9 GPaG G  and 23 4.14 GPaG  , Poisson ratio 23 13 0.25   and 12 0.3  ). For the first four benchmarks, the 

employed composite material is a carbon fibre reinforced material with Young modulus 1 172GPaE   and 

2 3 6. Pa9GE E  , shear modulus 12 13 3 Pa4G.G G   and 23 1. Pa4GG   and Poisson ratio 12 13 23 0.25    

The Foam used as core in the sandwich configurations is an isotropic material with Young modulus 

Pa232GE   and Poisson ratio 0.2  .  The Titanium Alloy used for the skins in the sandwich configurations is 

isotropic and has Young modulus Pa114GE   and Poisson ratio 0.3  . Furthermore, we indicate 13 1n  , 

23 2n   and 3 n   in order to simplify the figure reading. These particular geometries, lamination schemes, 

materials and load conditions have been chosen for the five proposed benchmarks in order to clearly show the 

zigzag form of displacements and the correct imposition of congruence conditions for displacements and 

equilibrium conditions for transverse stresses in the proposed refined 2D models and 3D shell theories. 
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Moreover, these benchmarks allow to see the differences between the classical 2D models and the refined 2D or 

3D models, and the importance of the “a posteriori” stress recovery. Shell geometries give a full coupling 

between all the displacement components, and the sandwich and composite configurations show important in-

plane and transverse anisotropy. All these features generate complicated through-the-thickness displacement and 

stress  forms which can be evaluated only by means of refined 2D models or 3D shell theories. 

Figures 3, 4 and 5 show the six strain components, the six stress components and the three displacement 

components evaluated through the thickness direction for a position in the plane (0.25, 0.25) of the square 

composite  0 / 90 / 0 / 90  plate in the case of thickness ratio 10a h  . The comparison has been proposed for the 

3D EM shell model, the 3D GDQ shell model and several classical and refined 2D GDQ shell models. The 

employed 2D GDQ shell models are the Kirchhoff-Love theory (KL), the First order Shear Deformation Theory 

(FSDT), the Third order Shear Deformation Theory (TSDT), the Equivalent single layer model in displacement 

formulation with a fourth order of expansion through the thickness for each displacement component (ED4), the 

ED4 model where the typical Zigzag effect for displacements has been obtained by means of the addition of the 

Murakami zigzag function (EDZ4) and the Layer wise model with fourth order of expansion for the three 

displacement components at each layer k  (LD4). In Figures 3-5, the two 3D shell models (EM and GDQ form) 

are always coincident for all the strains, stresses and displacements. In the strain plots of Figure 3, it is clear the 

typical zigzag effect of multi-layered structures and the discontinuity of transverse shear and transverse normal 

strains at each interface. The stresses of Figure 4 have the typical form of multi-layered composite structures. In-

plane stresses can be discontinuous because no interlaminar continuity has been imposed for these quantities. 

Transverse shear and transverse normal stresses are continuous at each layer interface because equilibrium 

conditions have been correctly imposed at each interface for both 3D shell models. Moreover, transverse shear 

and transverse normal stresses exactly fulfil the boundary loading conditions which are 1n  and 2n  equal zero at 

the external surfaces because no external transverse shear loads have been applied, and transverse normal stress 

n  equals the applied external transverse normal load at the top ( 5000Pa  in the position (0.25, 0.25)). The 

displacements in Figure 5 are continuous at each interface because the 3D layer-wise shell models have correctly 

imposed the compatibility conditions. Displacements are not constant through the thickness direction because the 

plate is thick and multi-layered composite. In Figures 3-5, it is clear how the best possible 2D theory is always 

the LD4 for all the displacement, strain and stress components. However, the stress recovery by means of 

equilibrium equations gives satisfactory analyses for all the stress components also using refined equivalent 
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single layer models (ED4 and EDZ4) and classical theories such as KL, FSDT and TSDT. This feature is 

possible because the multi-layered cross-ply composite plate does not have a great value for the transverse 

anisotropy. Figures 6-8 show the same quantities and analyses already seen for the thick plate in the case of 

multi-layered composite  0 / 90 / 0 / 90  plate with thickness ratio 100a h  . The small values for the transverse 

anisotropy and the thickness of the structure allow obtaining results where all the 3D and 2D shell theories are 

always very close. 

Figures 9, 10 and 11 propose strains, stresses and displacements for the same plate geometry seen in the first 

case but considering a sandwich configuration. The considered plate is thick ( 10a h  ) and the transverse 

anisotropy is high because of the great difference between the Young modulus of the external skins made of 

Titanium alloy and the Young modulus of the internal soft Foam core. Figure 9 shows the typical zigzag form of 

strain components in the case of sandwich structures. The discontinuity of transverse shear and transverse 

normal strains at each interface is clearly shown. The two proposed 3D shell theories are always coincident. 

Satisfactory results are also given by the LD4 and EDZ4 models. ED4 model shows some difficulties to recover 

the typical zigzag form of sandwich plates. This problem is more evident for classical equivalent single layer 

models such as KL, TSDT and FSDT. In Figure 10 is clear  how the stress recovery works very well for the LD4 

and EDZ4 models but it shows several difficulties for equivalent single layer models (both classical and refined 

theories). Figure 11 about displacement components confirms the great capability of LD4 and EDZ4 models to 

obtain the typical zigzag effect of displacements for sandwich structures and the evident difficulties of classical 

and refined equivalent single layer models (KL, FSDT, TSDT and ED4). The thin sandwich plate ( 100a h  ) is 

investigated in Figures 12-14. The reduced value of the thickness allows satisfactory analyses also for equivalent 

single layer classical and refined theories.  

Figures 15, 16 and 17 propose the strain, stress and displacement evaluations for a multi-layered spherical panel 

(thickness ratio 1 20R h  ) with the same lamination scheme already proposed for the composite plate 

investigated in Figures 3-8. The presence of the two radii of curvature 1 2R R  generates a full coupling between 

the three displacement components which gives a complicated evaluation of strains, stresses and displacements 

through the thickness. For this reason, even if the transverse anisotropy is not elevated, the difference between 

the layer wise approaches (3D EM, 3D GDQ and LD4 GDQ theories) and the equivalent single layer approaches 

(ED4, TSDT, FSDT and KL) is important for each proposed quantity. The presence of the Murakami zigzag 
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function in EDZ4 gives an improvement with respect to the other classical and refined equivalent single layer 

models. The presence of the curvature in the spherical shell gives also problems in classical 2D GDQ models 

even if a thin structure ( 1 100R h  ) is investigated. This last feature is clearly remarked in results proposed in 

Figures 18-20. 

The sandwich spherical shell is investigated in Figures 21-23 for thickness ratio 1 20R h   and in Figures 24-26 

for thickness ratio 1 100R h  . In these cases, the transverse anisotropy is more evident with respect to the multi-

layered composite shell because of the soft Foam core. This high transverse anisotropy combined with the 

presence of the two radii of curvature (full coupling between the three displacement components) give 

complicated behaviours of strains, stresses and displacements through the thickness direction. For both thick and 

thin shells, the 3D EM and the 3D GDQ shell models are always coincident because of their layer wise approach 

and closed form solution based on the harmonic forms for displacements. The most accurate 2D GDQ shell 

models are the LD4 theory based on the layer wise approach and the EDZ4 theory (which introduces the 

Murakami zigzag function in the equivalent single layer kinematic approach). Classical and refined equivalent 

single layer theory always gives important errors because they are not capable of considering the typical zigzag 

effect of sandwich structures. 

In the four proposed benchmarks the best 2D GDQ solutions are LD4 and EDZ4 theories because they are 

capable of obtaining the zigzag effect for displacements and stresses. LD4 shows some small differences in the 

spherical shell cases because of some small problems in the connection between the layer-wise assembling 

procedure and the differential geometry. These small problems are missing in the equivalent single layer 

approach and for this reason the best results appear those where the Murakami zigzag function has been added. 

Figures 27-29 show the displacements, strains and stresses for the composite laminated elliptic pseudosphere. 

Only 2D GDQ results are proposed because the structure is not simply supported. Moreover, uniform loads 

different from the harmonic ones and lamination sequences different from 0° and 90° are employed. For these 

conditions the 3D closed-form solutions are not possible. Results clearly show the importance of layer-wise 

approach and the Murakami zigzag function. 2D GDQ classical theories are inadequate. This new benchmark is 

fundamental for those scientists interested in the validation of their new 2D numerical shell models. 

 

5. CONCLUSIONS 

The paper proposed the static analysis of multilayered composite and sandwich square plates, spherical and 
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double-curved shells. Plate and spherical shell structures are considered as simply supported with a transverse 

normal load applied at the top in harmonic form. Double-curved shell structure has different boundary and load 

conditions. The proposed results show a comparison, in terms of strain, stress and displacement components 

through the thickness, between several 3D and 2D shell theories. 3D shell models are based on the differential 

equilibrium relations given in closed form where the differential equations in the normal direction can be solved 

by means of the Exponential Matrix method (3D EM) or the Generalized Differential Quadrature  method (3D 

GDQ). 2D results are in numerical form by means of the GDQ solution. Classical and refined equivalent single 

layer (also including the Murakami zigzag function) and advanced layer wise theories are proposed. In the stress 

evaluation by means of 2D GDQ models, the transverse stress components are a posteriori recovered by using 

the differential equilibrium equations. This last method gives an important improvement in the results with 

respect to theories where the transverse stresses are obtained from the constitutive law. This improvement is 

evident for each investigated geometry, lamination, material and thickness ratio. 3D EM and 3D GDQ results are 

always coincident demonstrating how the closed-form does not introduce any numerical approximation. 

However, closed-from solutions are not general and they are valid only for simple cases where the sides are 

simply supported and the loads are in harmonic form. For this reason, the developing of opportune 2D numerical 

theories such as the proposed 2D GDQ shell models is mandatory. Advanced layer wise (LD4) and zigzag 

refined equivalent single theories (EDZ4) theories appear as the most promising because they are very close to 

the 3D shell solutions for all the proposed benchmarks. Moreover, LD4 and EDZ4 theories give a satisfactory 

description of the main features of multilayered sandwich and composite structures (zigzag effects of 

displacements and interlaminar continuity in terms of compatibility conditions for displacements and equilibrium 

conditions for transverse stresses). 
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Figure 1. Local reference system and lamination scheme of a general doubly-curved shell element. 
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b) Doubly-Curved Spherical Panel 
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c) Elliptic Pseudosphere 
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Figure 2. Geometry representation, GDQ discrete point distribution and local coordinate reference system for proposed benchmarks. 
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Figure 3. Through-the-thickness variation of strain components for a SSSS square plate  10a h   made of four layers  0 / 90 / 0 / 90  with 

1 2 3 4 4h h h h h     at the point  0.25 ,0.25P a b  subjected to a normal sinusoidal pressure 
 
3q 10000Pa

 with 1, 1n m   on the 

top surface. Comparison between different structural theories. 
 

 

 

 

 

 

 

 

 

 

 



33 

 

  

  

  

Figure 4.  Through-the-thickness variation of stress components [Pa] for a SSSS square plate  10a h   made of four layers 

 0 / 90 / 0 / 90  with 1 2 3 4 4h h h h h     at the point  0.25 ,0.25P a b  subjected to a normal sinusoidal pressure 
 
3q 10000Pa

 with 

1, 1n m   on the top surface. Comparison between different structural theories. 
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Figure 5. Through-the-thickness variation of displacement components [m] for a SSSS square plate  10a h   made of four layers 

 0 / 90 / 0 / 90  with 1 2 3 4 4h h h h h     at the point  0.25 ,0.25P a b  subjected to a normal sinusoidal pressure 
 
3q 10000Pa

 with 

1, 1n m   on the top surface. Comparison between different structural theories. 

 
 

 

 

 

 

 

 



35 

 

  

  

  

Figure 6. Through-the-thickness variation of strain components for a SSSS square plate  100a h   made of four layers  0 / 90 / 0 / 90  

with 1 2 3 4 4h h h h h     at the point  0.25 ,0.25P a b  subjected to a normal sinusoidal pressure 
 
3q 10000Pa

 with 1, 1n m   on 

the top surface. Comparison between different structural theories. 

 

 
 

 

 

 

 

 

 

 

 



36 

 

  

  

  

Figure 7.  Through-the-thickness variation of stress components [Pa] for a SSSS square plate  100a h   made of four layers 

 0 / 90 / 0 / 90  with 1 2 3 4 4h h h h h     at the point  0.25 ,0.25P a b  subjected to a normal sinusoidal pressure 
 
3q 10000Pa

 with 

1, 1n m   on the top surface. Comparison between different structural theories. 
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Figure 8. Through-the-thickness variation of displacement components [m] for a SSSS square plate  100a h   made of four layers 

 0 / 90 / 0 / 90  with 1 2 3 4 4h h h h h     at the point  0.25 ,0.25P a b  subjected to a normal sinusoidal pressure 
 
3q 10000Pa

 with 

1, 1n m   on the top surface. Comparison between different structural theories. 
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Figure 9. Through-the-thickness variation of strain components for a SSSS square plate  10a h   made of three layers 

 Titanium / Foam / Titanium  with 1 3 20.15 , 0.7h h h h h    at the point  0.25 ,0.25P a b  subjected to a normal sinusoidal pressure 

 
3q 10000Pa

 with 1, 1n m   on the top surface. Comparison between different structural theories. 
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Figure 10.  Through-the-thickness variation of stress components [Pa] for a SSSS square plate  10a h   made of three layers 

 Titanium / Foam / Titanium  with 1 3 20.15 , 0.7h h h h h    at the point  0.25 ,0.25P a b  subjected to a normal sinusoidal pressure 

 
3q 10000Pa

 with 1, 1n m   on the top surface. Comparison between different structural theories. 
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Figure 11. Through-the-thickness variation of displacement components [m] for a SSSS square plate  10a h   made of three layers 

 Titanium / Foam / Titanium  with 1 3 20.15 , 0.7h h h h h    at the point  0.25 ,0.25P a b  subjected to a normal sinusoidal pressure 

 
3q 10000Pa

 with 1, 1n m   on the top surface. Comparison between different structural theories. 
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Figure 12. Through-the-thickness variation of strain components for a SSSS square plate  100a h   made of three layers 

 Titanium / Foam / Titanium  with 1 3 20.15 , 0.7h h h h h    at the point  0.25 ,0.25P a b  subjected to a normal sinusoidal pressure 

 
3q 10000Pa

 with 1, 1n m   on the top surface. Comparison between different structural theories. 
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Figure 13.  Through-the-thickness variation of stress components [Pa] for a SSSS square plate  100a h   made of three layers 

 Titanium / Foam / Titanium  with 1 3 20.15 , 0.7h h h h h    at the point  0.25 ,0.25P a b  subjected to a normal sinusoidal pressure 

 
3q 10000Pa

 with 1, 1n m   on the top surface. Comparison between different structural theories. 
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Figure 14. Through-the-thickness variation of displacement components [m] for a SSSS square plate  100a h   made of three layers 

 Titanium / Foam / Titanium  with 1 3 20.15 , 0.7h h h h h    at the point  0.25 ,0.25P a b  subjected to a normal sinusoidal pressure 

 
3q 10000Pa

 with 1, 1n m   on the top surface. Comparison between different structural theories. 
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Figure 15. Through-the-thickness variation of strain components for a SSSS spherical panel  20R h   made of four layers  0 / 90 / 0 / 90  

with 1 2 3 4 4h h h h h     at the point     1 0 1 0

1 1 2 20.25 ,0.25P        subjected to a normal sinusoidal load 
 
3q 10000Pa

  with 

1, 1n m   on the top surface. Comparison between different structural theories. 
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Figure 16.  Through-the-thickness variation of stress components [Pa] for a SSSS spherical panel  20R h   made of four layers 

 0 / 90 / 0 / 90  with 1 2 3 4 4h h h h h     at the point     1 0 1 0

1 1 2 20.25 ,0.25P        subjected to a normal sinusoidal load 

 
3q 10000Pa

  with 1, 1n m   on the top surface. Comparison between different structural theories. 
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Figure 17. Through-the-thickness variation of displacement components [m] for a SSSS spherical panel  20R h   made of four layers 

 0 / 90 / 0 / 90  with 1 2 3 4 4h h h h h     at the point     1 0 1 0

1 1 2 20.25 ,0.25P        subjected to a normal sinusoidal load 

 
3q 10000Pa

  with 1, 1n m   on the top surface. Comparison between different structural theories. 
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Figure 18. Through-the-thickness variation of strain components for a SSSS spherical panel  100R h   made of four layers 

 0 / 90 / 0 / 90  with 1 2 3 4 4h h h h h     at the point     1 0 1 0

1 1 2 20.25 ,0.25P        subjected to a normal sinusoidal load 

 
3q 10000Pa

  with 1, 1n m   on the top surface. Comparison between different structural theories. 
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Figure 19.  Through-the-thickness variation of stress components [Pa] for a SSSS spherical panel  100R h   made of four layers 

 0 / 90 / 0 / 90  with 1 2 3 4 4h h h h h     at the point     1 0 1 0

1 1 2 20.25 ,0.25P        subjected to a normal sinusoidal load 

 
3q 10000Pa

  with 1, 1n m   on the top surface. Comparison between different structural theories. 
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Figure 20. Through-the-thickness variation of displacement components [m] for a SSSS spherical panel  100R h   made of four layers 

 0 / 90 / 0 / 90  with 1 2 3 4 4h h h h h     at the point     1 0 1 0

1 1 2 20.25 ,0.25P        subjected to a normal sinusoidal load 

 
3q 10000Pa

  with 1, 1n m   on the top surface. Comparison between different structural theories. 
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Figure 21. Through-the-thickness variation of strain components for a SSSS spherical panel  20R h   made of three layers 

 Titanium / Foam / Titanium  with 1 3 20.15 , 0.7h h h h h    at the point     1 0 1 0

1 1 2 20.25 ,0.25P        subjected to a normal 

sinusoidal load 
 
3q 10000Pa

  with 1, 1n m   on the top surface. Comparison between different structural theories. 
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Figure 22.  Through-the-thickness variation of stress components [Pa] for a SSSS spherical panel  20R h   made of three layers 

 Titanium / Foam / Titanium  with 1 3 20.15 , 0.7h h h h h    at the point     1 0 1 0

1 1 2 20.25 ,0.25P        subjected to a normal 

sinusoidal load 
 
3q 10000Pa

  with 1, 1n m   on the top surface. Comparison between different structural theories. 
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Figure 23. Through-the-thickness variation of displacement components [m] for a SSSS spherical panel  20R h   made of three layers 

 Titanium / Foam / Titanium  with 1 3 20.15 , 0.7h h h h h    at the point     1 0 1 0

1 1 2 20.25 ,0.25P        subjected to a normal 

sinusoidal load 
 
3q 10000Pa

  with 1, 1n m   on the top surface. Comparison between different structural theories. 
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Figure 24. Through-the-thickness variation of strain components for a SSSS spherical panel  100R h   made of three layers 

 Titanium / Foam / Titanium  with 1 3 20.15 , 0.7h h h h h    at the point     1 0 1 0

1 1 2 20.25 ,0.25P        subjected to a normal 

sinusoidal load 
 
3q 10000Pa

  with 1, 1n m   on the top surface. Comparison between different structural theories. 
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Figure 25.  Through-the-thickness variation of stress components [Pa] for a SSSS spherical panel  100R h   made of three layers 

 Titanium / Foam / Titanium  with 1 3 20.15 , 0.7h h h h h    at the point     1 0 1 0

1 1 2 20.25 ,0.25P        subjected to a normal 

sinusoidal load 
 
3q 10000Pa

  with 1, 1n m   on the top surface. Comparison between different structural theories. 
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Figure 26. Through-the-thickness variation of displacement components [m] for a SSSS spherical panel  100R h   made of three layers 

 Titanium / Foam / Titanium  with 1 3 20.15 , 0.7h h h h h    at the point     1 0 1 0

1 1 2 20.25 ,0.25P        subjected to a normal 

sinusoidal load 
 
3q 10000Pa

  with 1, 1n m   on the top surface. Comparison between different structural theories. 
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Figure 27. Through-the-thickness variation of strain components for a CFCF elliptic pseudosphere (Figure 2c) made of four layers 

 20 / 35 / 45 / 70  with 1 4 2 30.03m, 0.07 mh h h h     at the point     1 0 1 0

1 1 2 20.25 ,0.25P        subjected to a uniform load 

 
3q 10000 Pa

   on the top surface. Comparison between different structural theories. 
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Figure 28.  Through-the-thickness variation of stress components [Pa] for a CFCF elliptic pseudosphere (Figure 2c) made of four layers 

 20 / 35 / 45 / 70  with 1 4 2 30.03m, 0.07 mh h h h     at the point     1 0 1 0

1 1 2 20.25 ,0.25P        subjected to a uniform load 

 
3q 10000 Pa

   on the top surface. Comparison between different structural theories. 
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Figure 29. Through-the-thickness variation of displacement components [m] for a CFCF elliptic pseudosphere (Figure 2c) made of four 

layers  20 / 35 / 45 / 70  with 1 4 2 30.03m, 0.07 mh h h h     at the point     1 0 1 0

1 1 2 20.25 ,0.25P        subjected to a uniform 

load 
 
3q 10000 Pa

   on the top surface. Comparison between different structural theories. 

 




