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Outage Information Rate of Spatially Correlated
Multi-Cluster Scattering MIMO Channels†

Giorgio Taricco Giuseppa Alfano

Abstract—A one-sided spatially-correlated multi-cluster scat-
tering Rayleigh MIMO channel is considered in this work and
its outage probability is derived in an analytic form based on
Meijer function determinants. First, the spatially-uncorrelated
case is addressed and the Moment Generating Function (MGF)
of the information rate is expressed in an analytic closed-form.
The MGF is then used to obtain the outage probability. A
few special cases are addressed to provide a confirmation of
the analytic results. Next, the MGF in the one-sided spatially
correlated case is derived with the constraint of distinct positive
spatial correlation eigenvalues. Numerical results are included to
provide confirming evidence of the analytic results. These results
are then used to assess the outage probability degradation due
to spatial correlation in a selected example.

I. INTRODUCTION

According to recent statistical analyses [1], the overall
mobile data traffic is expected to grow more than linearly in
the next few years and exceed an overall amount of 30 EB per
month by 2020. The traffic demand growth is largely due to
the ever increasing use of the wireless channel to convey video
information to stream popular contents such as news reports
or entertainment programs. This is spurring an increasing
demand for traffic coverage and capacity, especially from
smartphone devices and machine-to-machine communications.
Eventually, it may lead current networks to become unable to
meet the traffic demand and has motivated the development
of new technologies in the framework of a yet unknown
fifth generation (5G) wireless communication system, which
is expected to be deployed around 2020 [2].

The interest in 5G technologies has pushed a great deal of
attention on Pico-Cellular networks, which have been proposed
to improve the traffic coverage in small areas like train stations,
office buildings, shopping malls, airports, trains, and aircrafts.
For these networks, multi-layered scattering channel models
are considered to describe the indoor signal propagation be-
tween different floors in a building or through walls separating
a common environment [3, ch. 13]. The ergodic capacity
of multiple-input multiple-output (MIMO) channels based on
multi-layered scattering has been derived in [4], [5] in the
case of equal and unequal number of scatterers in each cluster,
respectively. Moreover, the ergodic capacity scaling law has
been established in [7]. More recently, the outage information
rate has been derived under the assumption of Orthogonal
Space–Time Block Code (OSTBC) transmission in [8].

† This research was supported by INdAM-Gnampa through the project
“Spectral Problems in Perturbed Domains: Mathematical Models for Fifth
Generation Mobile Communications.”

In the current work we extend the analysis to encompass the
outage information rate of a multi-layered scattering MIMO
channel without any constraints on the coding scheme. Our
approach is based on the results from [5], [6], [9] concerning
the joint positive singular value distribution of the product
of iid Rayleigh MIMO channel matrices modelling a multi-
layered scattering MIMO channel. The authors of [5] focused
their work on the derivation of the ergodic capacity and
derived expressions for the marginal distribution of the positive
singular values of the Wishart matrix derived from the multi-
layered scattering channel matrix. However, their results can
also be used to derive an analytic expression of the Moment-
Generating Function (MGF) of the capacity. In turn, the MGF
leads to the derivation of the outage probability, thereby
completing the picture of the capacity analysis.

As already mentioned, an outage analysis was carried out
in [8] but it was limited to the case of OSTBC transmission
and did not apply in general. The authors exploited a peculiar
property of OSTBCs consisting in the fact that their capacity
depends on the squared Euclidean norm of the channel matrix
so that they obtained its MGF and used it for their outage
analysis. Here, we resort to a different approach based on
the MGF of the MIMO channel capacity without specific
assumptions on the code used.

The paper is organized as follows. Section II introduces
the multi-layered scattering Rayleigh MIMO channel model
based on the product of size-compatible iid Rayleigh chan-
nel matrices. Then, it reports the relevant results from [4],
[9] concerning the joint distribution of the positive singular
values of the channel matrix itself (by which they derived
the marginal distribution and an expression for the ergodic
capacity). The MGF of the capacity is therefore derived
by integration over the unitary group. Two special cases,
corresponding to zero and one intermediate scattering clusters,
are considered in detail, the former of them being used to
check the compatibility with existing literature results. Finally,
the outage probability is derived according to methods adapted
from [10]. Section III addresses the case of one-sided spatial
correlation at the receive or transmit side. Obviously the
transmit-side correlation case encompasses that of correlated
transmitted signal. This work extends the results from [11]
where only the ergodic capacity was addressed. Numerical
results are presented in Section IV addressing the spatially
uncorrelated and correlated cases for specific MIMO systems.
The results are presented along with Monte-Carlo simulation
points for numerical validation. Finally, concluding remarks
are provided in Section V.
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II. CHANNEL MODEL

We consider a MIMO channel model described by the
equation

y = Hx+ z (1)

where the channel matrix is written as

H = HMHM−1 · · ·H1 (2)

and the matricesHm ∈ CNm×Nm−1 contain iid random entries
distributed as CN (0, 1) (Ginibre matrices). Therefore, H ∈
CNM×N0 , so that nR = NM and nT = N0 are the number
of receive and transmit antennas, respectively. Moreover, we
assume that the entries of x and z are iid and distributed as
CN (0, γ) and CN (0, 1), respectively.

A. Positive singular value distribution
The following results have been shown in [5], [9]:
• The positive singular values of (2) are identical to the

singular values of the matrix product

H̃ = H̃MH̃M−1 · · · H̃1

where the matrices H̃m are square matrices of size

Nmin , min
m

Nm (3)

obtained by the factorization

Hm = Um

(
H̃m Am

0 Bm

)
U−1
m−1

where, for m = 1, . . . ,M ,

Um ∈ CNm×Nm is a unitary matrix: U−1
m = UH

m

H̃m ∈ CNmin×Nmin

Am ∈ CNmin×(Nm−1−Nmin)

Bm ∈ C(Nm−Nmin)×(Nm−1−Nmin)

• Based on the previous factorization, the joint distribution
of the positive singular values of H is independent of
the ordering of the matrix sizes Nm, so that they can
be arbitrarily permuted without changing the resulting
joint distribution. This fact is implicitly proved in [9] and
explicitly stated in [8, Sec. III-A].
To fix ideas, it will be assumed that the right-
most matrix size, N0, is equal to Nmin. This can
be obtained, for example, by sorting the sequence
(NM , NM−1, . . . , N1, N0) in nonincreasing order.

• Assuming N0 = Nmin, the joint pdf of the eigenvalues
λ = (λ1, . . . , λN0) of HHH is given by [6]: p(λ) =

∆(−λ)

CM
det

[
GM,0

0,M

(
−

νM , . . . , ν2, ν1 + i− 1

∣∣∣∣λj)]N0

i,j=1
(4)

where

∆(λ) = det(λN0−j
i )N0

i,j=1 =
∏
i<j

(λi − λj),

CM = Nmin!

N0∏
n=1

M∏
m=0

Γ(n+ νm),

and the function GM,0
0,M (· · · ) is a Meijer-G function de-

fined in [13, 9.30].

B. Moment-Generating Function

By using the joint pdf in (4) we obtain the MGF of the
mutual information of the MIMO channel

I = log det(I + γHHH)

=

Nmin∑
i=1

log(1 + γλi) (5)

as follows:

ΦI(s) , E[exp(−sI)]

= E

[Nmin∏
i=1

(1 + γλi)
−s
]

(6)

Notice that the SNR can be obtained as follows:

SNR =
γE[‖H‖2]

nR
=
γ
∏M−1
m=0 Nm
NM

.

Applying the Andreief identity [12]∫
det(Ai(λj))

m
i,j=1 det(Bi(λj))

m
i,j=1dλ

= m! det

(∫
Ai(λ)Bj(λ)dλ

)m
i,j=1

(7)

we obtain the MGF as

ΦI(s) =
1∏N0

n=1

∏M
m=0 Γ(n+ νm)

det

[ ∫ ∞
0

λi−1

× (1 + γλ)−sGM,0
0,M

(
−

νM , . . . , ν2, ν1 + j − 1

∣∣∣∣λ)dλ]N0

i,j=1

(8)

where νm , Nm − Nmin. Then, by applying [13, 7.811.5]
and [13, 9.31.5] we get the following closed-form expression
of the integrals in (8):∫ ∞

0

λi−1(1 + γλ)−sGM,0
0,M

(
−

νM , . . . , ν2, ν1 + j − 1

∣∣∣∣λ)dλ
=

γ−i

Γ(s)
GM+1,1

1,M+1

(
1− i

s− i, νM , . . . , ν2, ν1 + j − 1

∣∣∣∣ 1γ
)

=
1

Γ(s)
GM+1,1

1,M+1

(
1

s, νM + i, . . . , ν2 + i, ν1 + i+ j − 1

∣∣∣∣ 1γ
)

(9)

C. Special case: M = 1, direct scattering

Here we review the special case of M = 1, which corre-
sponds to the standard iid Rayleigh MIMO channel. This case
has already been studied in the literature and the MGF has
been derived in [14] and reported in [15]. We apply the results
from our general multi-cluster scattering framework to derive
the direct scattering MGF in order to check the correctness of
our approach.

Let us assume that N1 ≥ N0 so that N0 = Nmin. If N1 <
N0 we simply exchange the two matrix sizes.
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Accordingly, we set ν1 = N1 −N0 and obtain from (9):∫ ∞
0

λi−1(1 + γλ)−sG1,0
0,1

(
−

N1 −N0 + j − 1

∣∣∣∣λ)dλ
=

∫ ∞
0

λN1−N0+i+j−2(1 + γλ)−se−λdλ

=
1

Γ(s)
G2,1

1,2

(
1

s,N1 −N0 + i+ j − 1

∣∣∣∣ 1γ
)

(10)

This result agrees with [14, eq. (25)] and [15, Th. 2.14] and
confirms the validity of our approach.

D. Special case: M = 2, single-cluster scattering

Let us consider a single-cluster scattering MIMO system
characterized by nT transmitting antennas, nS scattering ele-
ments in the intermediate cluster, and nR receiving antennas.
Let us sort the vector (nT , nS , nR) as (N2, N1, N0) with
the property that N0 = min{N2, N1, N0}. Then, setting
ν2 = N2 −N0 and ν1 = N1 −N0, we obtain from (9):∫ ∞

0

λi−1(1 + γλ)−sG2,0
0,2

(
−

ν2, ν1 + j − 1

∣∣∣∣λ)dλ
=

∫ ∞
0

λ(ν2+ν1+2i+j−3)/2(1 + γλ)−sK1−j−ν1+ν2(2
√
λ)dλ

=
1

Γ(s)
G3,1

1,3

(
1

s, ν2 + i, ν1 + i+ j − 1

∣∣∣∣ 1γ
)

(11)

where Kν(z) is the modified Bessel function of the second
kind [13, 8.432.1]. Previously, the outage probability has only
been characterized in the asymptotic regime of N0, N1, N2 →
∞, with fixed ratios N2/N1 and N1/N0 in [16].

E. Outage probability

From the related MGF Φ∆(s) , esRΦI(s) one can easily
obtain the outage probability (see [10]):

Pout(R) , P (I < R)

=
1

2π j

∫ c+ j∞

c− j∞
Φ∆(s)

ds

s

≈ 1

2L

L∑
k=1

Re
{

(1− j τk)Φ∆(c(1 + j τk))
}

where c must be in the convergence region of Φ∆(s) and,
in the last approximation, τk , tan((2k − 1)π/(4L)). The
approximation improves as L increases. In general, L = 32 is
sufficiently large for practical purposes.

In order to improve the numerical stability of this approach
it is convenient to choose c in order to minimize Φ∆(c).
In fact, this is a consequence of the well-known Chernoff
bound [17]:

P (∆ < 0) ≤ min
c>0

Φ∆(c).

The minimization of Φ∆(c) reduces the amplitude of the
oscillations of the function Φ∆(c+ j t) and hence makes the
calculation of the integral more stable from a numerical point
of view.

III. IMPACT OF SPATIAL CORRELATION

In this section we address the presence of spatial correlation
in the multi-cluster scattering MIMO channel. The problem
was addressed in [11], where the author derived the ergodic
capacity when the spatial correlation affects the receiver
only and the number of receive antennas coincides with the
minimum matrix size Nmin. The results of [11] do not apply
directly to the cases when nR > Nmin or nT > Nmin.

Here, we consider the following spatially-correlated multi-
cluster scattering MIMO channel matrices:

Hrx = Σ1/2
rx HM · · ·H1 (12)

Htx = HM · · ·H1Σ
1/2
tx (13)

The corresponding mutual information functions are given by

Irx = I(γ; Σrx,HM · · ·H1) (14)
Itx = I(γ; Σtx,H

H
1 · · ·HH

M ) (15)

where

I(γ; Σc,H) , log det(I + γΣcHH
H). (16)

The invariance in distribution of all the Ginibre matrices Hm

with respect to the product by unitary matrices yields

I(γ; Σc,H) = I(γ; Λc,H) (17)

where Λc is the diagonal matrix of the eigenvalues of Σc.
Now, if the size of the square covariance matrix Σc is Nmin,
its eigenvalues are distinct, and Λc = diag(σ), with σ =
(σ1, . . . , σNmin

), the corresponding MGF is given by

ΦI(s; Λc) = E[det(I + γΛcUHΛHU
H
H)−s], (18)

where UH is a unitary matrix independent of ΛH = diag(λ)
and λ = (λ1, . . . , λNmin

). Then, applying eq. (4) and [18,
eqs. (47-48)], we obtain eq. (19). The derivation of (19) and
the extension to the case when the dimension of Λc is greater
than Nmin are reported in a full paper in preparation.

ΦI(s; Λc) =

∏Nmin−1
k=1 (Nmin − k)k

γNmin(Nmin+1)/2 det(Λc)∆(σ)
∏Nmin

k=1

∏M
m=0(k + νm − 1)!

∏Nmin−1
k=1 (s− k)k

det

[
1

Γ(s−Nmin + 1)
GM+1,1

1,M+1

(
0

s−Nmin, νM , . . . , ν2, ν1 + j − 1

∣∣∣∣ 1

γσi

)]Nmin

i,j=1

(19)
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Fig. 1. Outage probability of a 2×2 Rayleigh MIMO channel versus the SNR
in dB corresponding to different target rates R = 1 to 6 bit/s/Hz. Monte-Carlo
simulation results are reported as markers for comparison purposes.
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Fig. 2. Same as Fig. 1 but for a 2 × 3 × 2 multi-cluster Rayleigh MIMO
channel.

IV. NUMERICAL RESULTS

In order to test the validity of the analytic results obtained
in the previous sections we consider a MIMO channel with
nT = nR = 2 transmit and receive antennas and a variable
number of intermediate clusters (from 0 to 3) each of them
containing nS = 3 scatterers. The MIMO channels obtained
in this way are denoted as 2×3× · · · × 3︸ ︷︷ ︸

M−1

×2 Rayleigh MIMO

channels for M = 1, 2, 3, 4. The results obtained by our
analytic approach and by Monte-Carlo simulation are reported
in Figs. 1 to 4.

We observe that the Monte-Carlo simulation results exhibit
an excellent agreement for outage probabilities as low as 10−4,
which is a consequence of the fact that they are based on
106 samples. Moreover, we notice that increasing the number
of intermediate clusters progressively increases the outage
probability for given SNR and target rate R. However, the
rate of increase reduces as the number of intermediate clusters
increases.

The effect of spatial correlation is evidenced in Figs. 5
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Fig. 3. Same as Fig. 1 but for a 2× 3× 3× 2 multi-cluster Rayleigh MIMO
channel.
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Fig. 4. Same as Fig. 1 but for a 2 × 3 × 3 × 3 × 2 multi-cluster Rayleigh
MIMO channel.

to 7 assuming the spatial correlation matrix to be Σc =
(0.8(i−1)(j−1))2

i,j=1. Again, Monte-Carlo simulation results
(based on 106 samples) are in excellent agreement with
analytic results for outage probabilities as low as 10−4. Spatial
correlation introduces an overall degradation of the outage
probability ranging from 1 to 2 dB (approximately) in the
SNR scale.

V. CONCLUSIONS

We addressed the evaluation of the MGF of the information
rate of multi-cluster scattering MIMO channel in the spatially
uncorrelated case and in the one-sided spatially correlated
case. The results allowed us to obtain an analytic expression
for the outage probability based on determinants of Meijer
functions. Monte-Carlo simulation was used to confirm the
validity of the analytic results in some cases of interest.
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