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Forcing Scale Invariance in Multipolarization
SAR Change Detection

Vincenzo Carotenuto, Student Member, IEEE, Antonio De Maio, Fellow, IEEE, Carmine Clemente, Member, IEEE,
John J. Soraghan, Senior Member, IEEE, and Giusi Alfano

Abstract—This paper considers the problem of coherent (in
the sense that both amplitudes and relative phases of the polari-
metric returns are used to construct the decision statistic) mul-
tipolarization synthetic aperture radar change detection starting
from the availability of image pairs exhibiting possible power
mismatches/miscalibrations. The principle of invariance is used
to characterize the class of scale-invariant decision rules which
are insensitive to power mismatches and ensure the constant false
alarm rate property. A maximal invariant statistic is derived
together with the induced maximal invariant in the parameter
space which significantly compresses the data/parameter domain.
A generalized likelihood ratio test is synthesized both for the
cases of two- and three-polarimetric channels. Interestingly, for
the two-channel case, it is based on the comparison of the condition
number of a data-dependent matrix with a suitable threshold.
Some additional invariant decision rules are also proposed. The
performance of the considered scale-invariant structures is com-
pared to those from two noninvariant counterparts using both
simulated and real radar data. The results highlight the robustness
of the proposed method and the performance tradeoff involved.

Index Terms—Coherent change detection, maximal invariant,
multipolarization, scale invariance.

I. INTRODUCTION

A TOPIC of great interest in the remote sensing, signal
processing, and synthetic aperture radar (SAR) commu-

nities is change detection. This is the ability to identify tem-
poral changes within a given scene starting from a pair of
coregistered SAR images representing an area of interest [1],
[2]. Incoherent and coherent change detections are the two
main approaches that have been proposed in the open litera-
ture to process the image pair. The former attempts to detect
changes in the mean power level of a given scene, exploiting
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only the intensity information from the available images (thus
neglecting phase information [3]): differencing and rationing
are well-known techniques in this context [4]. The latter jointly
uses both amplitude and phase from the reference and the test
data to detect possible changes in the region of interest. In
[3], a thorough comparison between incoherent and coherent
change detection strategies, including the maximum likelihood
estimate of the SAR coherence parameter, is performed based
on high-resolution (0.3 m × 0.3 m) SAR images. In [4], sev-
eral techniques for change detection have been presented and
compared based on their probability of error and on results
obtained using repeat-pass ERS-1 SAR data. In [5]–[7], the
multipolarization signal model for the SAR change detection
problem is laid down, the detection problem is formulated as
a binary hypothesis test, and a decision rule based on the gen-
eralized likelihood ratio test (GLRT) is developed. Moreover,
the performance analysis [6] of the GLRT is given in the form
of receiver operating characteristics (ROC), namely, detection
probability (Pd) versus false alarm probability (Pfa), quanti-
fying the benefits of the multipolarization information in SAR
change detection. A complementary approach to the GLRT is
considered in [8] based on the use of perturbation filters and a
separated treatment between polarimetry and amplitude.

A detection scheme based on canonical correlation analysis
is applied to scalar EMISAR data in [9], [10], whereas in [11],
a mutual-information-based framework is developed to address
coherent similarities between multichannel SAR images. Start-
ing from the multipolarization data model developed in [5]
and [6], in [12] and [13], a new and systematic framework
for change detection based on the theory of invariance in
hypothesis testing problems is proposed. This setup allows us
to focus on decision rules which exhibit some natural sym-
metries implying important practical properties such as the
constant false alarm rate (CFAR) behavior. Furthermore, the
use of invariance leads to data reduction because all invariant
tests can be expressed in terms of a statistic, called maximal
invariant, which organizes the original data into equivalence
classes. Also, the parameter space is usually compressed after
reduction by invariance, and the dependence on the original set
of parameters becomes embodied into a maximal invariant in
the parameter space (induced maximal invariant). Starting from
the framework proposed in [12], in this paper, we introduce the
capability to account for a possible scale mismatch factor.

The new approach is able to produce scale-invariant decision
rules, providing advantages in terms of robustness to intensity
mismatches and/or miscalibrations and false alarm rejection
with respect to [12]. This is an important property as images
over the same scene can exhibit different intensity scales due

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/
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to different observation angles and propagation properties. As
a matter of fact, there are situations in earth observation where
a change detector without scale invariance is likely to fail. A
classic example is the sea where different sea states can trigger
a detector without scale invariance. Another example is the
ground surface that shows very different moisture conditions
(due, for instance, to rain). The mentioned effects can often
lead to false alarms in a change detection structure that is not
designed to be robust with respect to such scale variations. We
also compute the GLRT detector and prove that it belongs to
the class of scale-invariant decision rules. Interestingly, with
reference to two-polarimetric channels, it is tantamount to
comparing the condition number of a data-dependent matrix
with a suitable threshold.

From a technical (detection theory) point of view, the deriva-
tions of the GLRT receiver for the considered problem are, to
the best of the authors knowledge, a new result together with the
analytic expressions of Pfa and Pd (developed in Appendix B)
and the determination of the maximal invariant statistic.

At the analysis stage, we assess the performance of the
considered invariant decision rules in correspondence of a two-
(and three-) channel polarization diversity providing detection
probability contours, for a given false alarm level, versus the
induced maximal invariant which turns out one- (bi-) dimen-
sional ROC curves and the value of the Pfa for different scale
values. Finally, to validate the behavior of the considered tests
on real SAR images, we use a high-resolution change detection
dataset, available from Air Force Research Laboratory (AFRL)
[14], [15] and collected from an X-band SAR. The conducted
analysis highlights the capability of the proposed detectors to
provide scale invariance in real environments and, at the same
time, to ensure satisfactory detection performances.

The remainder of this paper is organized as follows. In
Section II, we deal with the formulation of the multipolarization
SAR change detection problem. In Section III, the maximal
invariant for the scale-invariant SAR change detection problem
is established. The design of the GLRT and other scale-invariant
receivers is presented in Section IV, whereas in Section V, the
performance of the introduced invariant tests is shown on both
simulated and real multipolarization SAR images. Finally, the
conclusion is provided in Section VI.

A. Notation

We adopt the notation of using boldface for vectors and
matrices. The transpose and conjugate transpose operators are
denoted, respectively, by the symbols (·)T and (·)†. tr(·) and
det(·) are, respectively, the trace and the determinant of the
square matrix argument. I and 0 denote, respectively, the
identity matrix and the matrix with zero entries (their size is
determined from the context). Diag(a) indicates the diagonal
matrix whose ith diagonal element is the ith entry of a. The
curled inequality symbol� is used to denote generalized matrix
inequality: for any Hermitian matrix A, A � 0 means that
A is a positive definite matrix. The general linear group of
degree N over the field of complex numbers, denoted by
GL(N), is the set of N ×N nonsingular matrices together
with the operation of ordinary matrix multiplication. H++

N and

Fig. 1. Construction of the datacube.

R++ denote, respectively, the set of N ×N Hermitian positive
definite matrices and the set of positive real numbers. 1N is the
N × 1 vector with all of the entries equal to one.

II. PROBLEM FORMULATION

A multipolarization SAR sensor measures for each pixel
of the image under test N ∈ {2, 3} complex returns, collected
from different polarimetric channels (for instance, HH and
VV for N = 2; HH, VV, and HV with reference to N = 3).
The N returns from the same pixel are stacked to form the
vector X(l,m), where l = 1, . . . , L and m = 1, . . . ,M (L and
M represent the vertical and horizontal sizes of the image,
respectively). Thus, the sensor provides a 3-D data stack X of
size M × L×N which will be referred to in the following as
a datacube (Fig. 1).

For SAR change detection applications, we suppose that
two datacubes X (reference data) and Y (test data) of the
same geographic area are available; they are collected from
two different sensor passes and are quite accurately pixel
aligned (coregistered). We focus on the problem of detecting the
presence of possible changes in a rectangular neighborhood A,
with size K = W1 ×W2 ≥ 3, of a given pixel. To this end, we
denote by RX (RY ) the matrix whose columns are the vectors
of the polarimetric returns from the pixels of X (Y ) which fall
in the region A and SX = RXR†

X (SY = RY R
†
Y ).

The matrices RX and RY are modeled as statistically inde-
pendent random matrices. Moreover, the columns of RX (RY )
are assumed statistically independent and identically distributed
random vectors1 drawn from a complex circular zero-mean
Gaussian distribution with positive definite covariance matrix
ΣX (ΣY ). From the physical point of view, this is tantamount
to assuming a fully developed speckle [16], [17]. Under the
aforementioned settings, the change detection problem in the
region A can be formulated in terms of the following binary
hypothesis test: {

H0 : ΣX = γΣY

H1 : ΣX �= γΣY

(1)

1Spatial independence among the polarimetric returns from different pixels
may be somewhat limiting especially in the presence of spatial oversampling
and after the processing operations required by geocoding. However, this
assumption is usually met in many multilook SAR signal processing techniques
in order to obtain analytic tractability. The goodness of the approximation is A
POSTERIORI assessed when testing the processors on real data.
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where the null hypothesis H0 of change absence is tested
versus the alternativeH1. The parameter γ > 0 models possible
received power variations between two different acquisitions
from the same scene, mainly due to misalignment of the flight
paths as well as channel propagation effects.

Exploiting the Gaussian assumption, we can write the joint
probability density function (pdf) of RX and RY as

fRX ,RY
(RX ,RY |H1,ΣX ,ΣY )

=
1

π2NK det(ΣXΣY )K
exp

{
−tr

(
Σ−1

X SX +Σ−1
Y SY

)}
.

(2)

Using the Fisher–Neyman factorization theorem [18], we can
claim that a sufficient statistic for (1) is represented by the
two sample Grammian matrices SX and SY which are statis-
tically independent and follow a complex Wishart distribution,
i.e., [19]

fSX
(SX |H1,ΣX) =

cW
det(ΣX)K

exp
{
−tr

(
Σ−1

X SX

)}
× det(SX)K−N , SX � 0 (3)

fSY
(SY |H1,ΣY ) =

cW
det(ΣY )K

exp−
{
tr
(
Σ−1

Y SY

)}
× det(SY )

K−N , SY � 0 (4)

with cW being a proper normalization constant. From the suf-
ficient statistic, we can evaluate the optimum Neyman–Pearson
detector as the likelihood ratio test (LRT), which, after standard
algebra and statistical equivalences, can be recast as

tr

[(
Σ−1

Y

γ
−Σ−1

X

)
SX

]
H1

≷
H0

T0 (5)

where T0 is the detection threshold. Evidently, test (5) is not
uniformly most powerful, and consequently, it is not practically
implementable because it requires the knowledge ofΣX , γ, and
ΣY which, in realistic applications, are usually unknown.

III. DATA REDUCTION AND INVARIANCE ISSUES

Both hypotheses under test are composite, or otherwise
stated, H0 and H1 are equivalent to a partition of the parameter
space Θ into the two disjoint sets

Θ0 =
{
ΣX = γΣY , (ΣX ,ΣY , γ) ∈ H++

N ×H++
N ×R++

}
Θ1 =

{
ΣX �= γΣY , (ΣX ,ΣY , γ) ∈ H++

N ×H++
N ×R++

}
.

(6)

This formulation indicates that the individual values of the
nuisance parameters are irrelevant: one must only discern to
which hypothesis they belong to, namely, whether the covari-
ances are proportional or not. This observation highlights that
we can cluster the data considering transformations that leave
unaltered:

1) the two composite hypotheses, namely, the partition of
the parameter space;

2) the families of distributions under the two hypotheses.

This can be achieved through the principle of invariance
[20] by which we look for transformations that preserve the
formal structure of the hypothesis testing problem and, then,
for decision rules invariant to them while also acting as a data
reduction technique (i.e., leading to an observation space of
significantly lower dimensionality than the original one).

It is not difficult to prove that our testing problem is invariant
under the group of transformations G acting on the sufficient
statistic as2

G =
{
g : SX → BSXB†, SY → aBSY B

†,

B ∈ GL(N), a ∈ R++
}
. (7)

In fact, the families of distributions are preserved because, if
SX (SY ) is Wishart distributed, then BSXB† (BSY B

†)
is also Wishart with the same scalar parameters and matrix
parameter B†ΣXB (aB†ΣY B), where B ∈ GL(N) and a >
0. Moreover, the original partition of the parameter space is left
unaltered since, if ΣX �= γΣY , then BΣXB† �= aγBΣY B

†

and, if ΣX = γΣY , then BΣXB† = aγ1BΣY B
†.

A. Maximal Invariant Design

The invariance property induces a partition of the data space
into orbits (or equivalence classes) where, over each orbit,
every point is related to every other through a transformation
which is a member of the group G. Any statistic that identifies
different orbits in a one-to-one way significantly reduces the
total amount of data necessary for solving the hypothesis testing
problem and constitutes the compressed data set to be used in
the design of any invariant detector. This kind of statistics is
called maximal invariant since they are constant over each orbit
(invariance) while they assume different values on different
orbits (maximality).

Formally, a statistic T(SX ,SY ) is said to be a maximal
invariant with respect to the group of transformations G if and
only if:

1) Invariance:

T(SX ,SY ) = T [g(SX ,SY )] , ∀ g ∈ G.

2) Maximality:

T (SX1
,SY1

) = T (SX2
,SY2

) implies that ∃ g ∈ G

such that (SX2
,SY2

) = g (SX1
,SY1

) .

Notice that there are many maximal invariant statistics, but
they are equivalent in that they yield statistically equivalent
detectors. Moreover, all invariant tests can be expressed as a
function of the maximal invariant statistic [21], [22], which, for
the problem of interest, is provided by the following.

Proposition 1: A maximal invariant statistic for problem (1)
with respect to the group of transformations (7) is the (N − 1)-
dimensional vector (

λ2

λ1
,
λ3

λ1
, . . . ,

λN

λ1

)
(8)

2The proof that (7) is a group is given in Appendix A.
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where λ1 ≥ λ2 ≥ · · · ≥ λN are the eigenvalues of SXS−1
Y .

Proof: The transformation group G can be obtained as a
composition of the subgroups

D =
{
d : SX →BSXB†, SY →BSY B

†, B ∈ GL(N)
}

(9)

E =
{
e : SX → SX , SY → aSY , a ∈ R++

}
. (10)

As a consequence, the maximal invariant can be obtained in
two steps, each corresponding to a subgroup of G [20]. To this
end, a maximal invariant under the group D has been derived
in [13] and is given by the eigenvalues λ1, . . . , λN of SXS−1

Y .
Additionally, ∀ e ∈ E, namely, ∀ a > 0, if the eigenvalues of
SX,1S

−1
Y,1 are equal to those of SX,2S

−1
Y,2, then the eigen-

values of a−1SX,1S
−1
Y,1 coincide with those of a−1SX,2S

−1
Y,2.

Now, define the group E� of scale change acting on y =

(y1, . . . , yN)T ∈ (R++)
N as

E� =

{
e� : y → 1

a
y, a ∈ R++

}
(11)

and observe that a maximal invariant with respect to this last
group E� is

y2
y1

, . . . ,
yN
y1

. (12)

Hence, [20, Prop. 2, p. 288] implies that

λ2

λ1
, . . . ,

λN

λ1
(13)

is a maximal invariant under G.
As desired, the principle of invariance produces a significant

data reduction: the maximal invariant statistic is a real N -
dimensional vector, whereas the original sufficient statistic is
composed of the two N ×N Grammian matrices SX and
SY . A useful physical/intuitive meaning of the eigenvalues of
SXS−1

Y , which are involved in the computation of the maximal
invariant, stems from the observation that they are solutions
to suitable optimization problems involving the generalized
Rayleigh quotient (i.e., extrema of the backscattering ratio
varying the scattering mechanism [23]).

B. Induced Maximal Invariant Design

The data transformation induces a parameter transformation
which leaves the two composite hypotheses unaltered. In other
words, by the principle of invariance, one partitions also the
parameter space into orbits and usually deals with a reduced
set of parameters. The relevant parameters are embodied into
any induced maximal invariant, namely, any function of the
parameters that is constant over each orbit of the parameter

space (invariance) but assumes different values over different
orbits (maximality).

For the case at hand, an induced maximal invariant is com-
posed of (δ2/δ1, . . . , δN/δ1), where δ = [δ1, . . . , δN ]T , δ1 ≥
δ2 ≥ · · · ≥ δN , are the eigenvalues of the matrix

ΣXΣ−1
Y . (14)

The proof of this claim can be done following the same steps
as in the proof of Proposition 1, and it has been omitted for the
sake of compactness. The physical interpretation of the induced
maximal invariant components follows from the observation
that they are related to the spread among the backscattering
ratios associated with two different scattering mechanisms.

The previous observation highlights that the principle of
invariance also yields a significant reduction of the number
of the parameters: in fact, the induced maximal invariant is
an (N − 1)-dimensional vector, while the original parameter
space was composed of the two covariance matrices ΣX , ΣY ,
and γ.

We explicitly observe that, in the reduced parameter space,
the partition corresponding to the two composite hypotheses
of the test (1) is Ξ0 = {1N−1}, relative to ΣX = γΣY , and
Ξ1 = {1N−1}, relative to ΣX �= γΣY , where {1N−1} is the
set of the (N − 1)-dimensional column vectors with positive
elements and at least one entry different from 1. The structure
of Ξ0, which now corresponds to a simple H0 hypothesis,
clearly shows that all invariant receivers that process a max-
imal invariant statistic through a transformation independent
of (ω1, . . . , ωN−1) = (δ2/δ1, . . . , δN/δ1) achieve the CFAR
property with respect to both γ and ΣX .

IV. GLRT DERIVATION

This section is devoted to the derivations of the GLRT de-
tector for the considered problem. Precisely, it is considered the
decision rule shown in (15), at the bottom of the page, which,
after the optimizations over ΣX and ΣY at the numerator and
over ΣY at the denominator, can be recast (after some algebra
and statistical equivalences) as

min
γ>0

[
γN det2

(
SX

γ + SY

)]
det(SX) det(SY )

H1

≷
H0

T1 (16)

or equivalently as

min
γ>0

[
γN det2

(
S

− 1
2

Y
SXS

− 1
2

Y

γ + I

)]

det
(
S

− 1
2

Y SXS
− 1

2

Y

) H1

≷
H0

T1 (17)

where T1 is a suitable modification of the original threshold
T in (15). In order to proceed further, we have to distinguish

max
ΣX

max
ΣY

1
(π)2NK detK(ΣX) detK(ΣY )

exp
[
−tr

(
Σ−1

X SX +Σ−1
Y SY

)]
max
γ>0

max
ΣY

1
(π)2NKγNK det2K(ΣY )

exp
[
−tr

(
Σ−1

Y

(
SX

γ + SY

))] H1

≷
H0

T (15)
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between the cases of two- (N = 2) and three- (N = 3) polari-
metric channels.

A. Case N = 2

Forcing N = 2 in (16) yields

min
γ>0

[
γ2
(

λ1

γ + 1
)2 (

λ2

γ + 1
)2]

λ1λ2

H1

≷
H0

T1. (18)

It is now necessary to compute

min
γ>0

[
1

γ

(
λ1λ2 + γ2 + (λ1 + λ2)γ

)]2
. (19)

Standard arguments on optimization of univariate functions
provide the optimal point γopt,2 =

√
λ1λ2. As a consequence,

the GLRT becomes(√
λ1

λ2
+ 1

)2(√
λ2

λ1
+ 1

)2
H1

≷
H0

T1. (20)

Observing that the left-hand side of (20) is a monotone increas-
ing function of

√
λ1/λ2 for

√
λ1/λ2 ∈ [1,+∞[, the GLRT

(20) turns out equivalent to

λ1

λ2

H1

≷
H0

T2 (21)

with T2 being the modified threshold. Two important comments
are now in order. First, test (21) is equivalent to comparing
the condition number of the matrix S

−(1/2)
Y SXS

−(1/2)
Y with

a detection threshold to establish the presence of changes in
the considered scene. Second, the GLRT statistic is a maximal
invariant.

B. Case N = 3

Forcing N = 3 in (16) yields

min
γ>0

[
γ3
(

λ1

γ + 1
)2 (

λ2

γ + 1
)2 (

λ3

γ + 1
)2]

λ1λ2λ3

H1

≷
H0

T. (22)

It is thus necessary to solve the optimization problem

min
γ>0

[
γ

3
2

(
λ1

γ
+ 1

)(
λ2

γ
+ 1

)(
λ3

γ
+ 1

)]2
= min

γ>0
f3(γ).

(23)
Since

lim
γ→+∞

f3(γ) = +∞, lim
γ→0

f3(γ) = +∞ (24)

and f3(γ) is continuous in ]0,+∞[, the minimum is achieved
in correspondence of γopt ∈]0,+∞[. Moreover, finding the
optimum value of f3(γ) is equivalent to minimizing its
logarithm, i.e.,

log f3(γ) =
3

2
log γ +

3∑
i=1

log

(
λi

γ
+ 1

)
. (25)

Computing the derivative of log f3(γ), γ ∈]0,+∞[, and equat-
ing it to zero yields

3

2
−

3∑
i=1

λi

λi + γ
= 0 (26)

which is tantamount to solving

γ3+
1

3
(λ1+λ2+λ3)γ

2− 1

3
(λ1λ2+λ1λ3+λ2λ3)γ−λ1λ2λ3=0.

(27)

This is a third-order equation with real coefficients. Descartes’
rule of signs implies that it shares one positive real root which
necessarily coincides with the optimal point of (23). Addition-
ally, Tartaglia’s formula can be exploited to obtain the analytic
expression of the optimizer γopt,3. Precisely, denoting by a =
1/3(λ1 + λ2 + λ3), b = −(1/3)(λ1λ2 + λ1λ3 + λ2λ3), c =
−λ1λ2λ3, p = −a2/3 + b, and q = 2a3/27− ab/3 + c, the
optimal point is the real positive number chosen among the
three roots of (27) given by

−a

3
+

3

√
− q

2
+

√
q2

4
+

p3

27
+

3

√
− q

2
−
√

q2

4
+

p3

27

where 3
√
(·) and

√
(·) are complex roots.3

Summarizing, the GLRT can be computed as[
γ3
opt,3

(
λ1

γopt,3
+ 1

)2 (
λ2

γopt,3
+ 1

)2 (
λ3

γopt,3
+ 1

)2]
λ1λ2λ3

H1

≷
H0

T.

(28)

An equivalent expression in terms of the maximal invariant can
be also obtained. From (27), it can be shown that

γopt,3 = λ1h

(
λ2

λ1
,
λ3

λ1

)
(29)

with h(·, ·) being a suitable bidimensional real function of two
real variables. Hence, the GLRT statistic as a function of the
maximal invariant can be obtained by substituting (29) in (28).

C. Additional Suboptimum Invariant Detectors

This section presents additional suboptimum invariant de-
tectors with reference to the fully polarimetric processing (i.e.,
N = 3). They exploit suitable combinations of the maximal in-
variant components and, based on extensive numerical analysis,
are seen to achieve satisfactory detection performances. Two
chosen combination rules are the standard arithmetic mean and
geometric mean which, respectively, lead to the tests

λ1

λ2
+

λ1

λ3

H1

≷
H0

Ta, (30)

λ1

λ2

λ1

λ3

H1

≷
H0

Tb (31)

3Given a complex number y = ρ exp(jθ), the nth roots are uk =

ρ1/n[cos(θ/n+ (2πk/n)) + j sin(θ/n+ (2πk/n))], k= 0, 1, . . . , n− 1.
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Fig. 2. (a) Pd versus logω1, N = 2 and W = 3. (b) Pd versus logω1, N = 2 and W = 5.

where Ta and Tb are the detection thresholds set to ensure a
specified level of Pfa.

Moreover, based on the observations that unbalances among
the eigenvalues of Σ

−(1/2)
Y ΣXΣ

−(1/2)
Y are representative of

changes between the reference and test images and an index to
quantify eigenvalues’ unbalances is the deviation of the arith-
metic mean from the geometric mean,4 the following decision
rule is also considered:

tr
(
S

− 1
2

Y SXS
− 1

2

Y

)
det

1
3

(
S

− 1
2

Y SXS
− 1

2

Y

) =

(
λ2

λ1

λ3

λ1

)− 1
3
(
1 +

λ2

λ1
+

λ3

λ1

)
H1

≷
H0

Tc

(32)

where Tc is the detection threshold.
In the next section, the performance of the previously intro-

duced invariant (and hence CFAR) decision rules is compared
with the GLRT (28) both on simulated and real data.

V. PERFORMANCE ANALYSIS

This section presents the performance analysis of the pro-
posed scale-invariant detectors for both simulated and real
data. In particular, Pfa and Pd are obtained through Monte
Carlo simulations.5 Then, real data are used to demonstrate the
capability of the new algorithms to operate in real challenging
environments.

A. Performance Analysis on Simulated Data

This section presents the performance analysis via computer-
simulated data of the detectors introduced in Section IV. Three
different studies are performed to assess the properties of the
proposed receivers.

4If A is a positive definite N ×N matrix, the following inequality holds
true [det(A)]1/N ≤ (1/N)tr(A). Equality holds if and only if A = I
[24, p. 477] .

5The only exception where an analytic performance derivation can be carried
on is the GLRT for N = 2 (21). See Appendix B for details.

The first is conducted in terms of Pd for a given Pfa level,
assuming zero-mean complex circular multivariate Gaussian
observations with equal (but not proportional) covariance ma-
trices under H0 (H1). By doing so, all of the information
characterizing the set of polarimetric SAR images is contained
in the covariance matrix. This is equivalent to assigning the
following: 1) diagonal elements: power information and 2) off-
diagonal elements: correlation information. Different numbers
of polarizations and sizes of the square inspection window (i.e.,
W1 = W2 = W ) are considered. Monte Carlo simulation is
used to set the detection thresholds, assuming 100/Pfa inde-
pendent runs and considering a Pfa = 10−4. The value of Pd is
estimated using 5000 independent trials.

The first study refers to N = 2; in this case, the maximal
invariant, which completely governs the performance of any
invariant detector, is 1-D. This means that the Pd plots ver-
sus the induced maximal invariant ω1 = δ2/δ1 ≤ 1 completely
characterize the performance of detector (21). In other words,
the reported performances hold for any pair of covariances
(ΣX ;ΣY ) sharing the same induced maximal invariant. This
is a consequence of the fact that the performance of invariant
detectors depends on the pair (ΣX ;ΣY ) only through the
induced maximal invariant.

In Fig. 2(a) and (b), the values of Pd for W = 3 and W = 5
are drawn versus ω1. For W = 3, the receiver (21) provides a
Pd ≥ 0.9 for ω1 �∈ [10−1.8, 1]. The case W = 5 makes use of a
greater number of homogeneous data vectors in the Grammians
SX and SY whose scaled versions (1/K scale factor) are
unbiased and consistent estimates of the covariance matrices
ΣX and ΣY . For this situation, a Pd ≥ 0.9 is achieved for
ω1 �∈ [10−1.02, 1].

A similar analysis is performed for N = 3 and W = 3,
shown in Fig. 3. In this case, the contours showing Pd are
functionally dependent on two variables (namely, the two com-
ponents of the induced maximal invariant ω): ω1 = δ2/δ1 ≤ 1,
and ω2 = δ3/δ1 ≤ 1. In Fig. 3(a), the contour plot for detector
(28) is shown; for this scenario, Pd ≥ 0.9 is guaranteed if ωi �∈
[10−2.11, 1], i = 1, 2. The results for detector (30) are shown
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Fig. 3. Pd contours versus logω1 and logω2 for N = 3 and W = 3. (a) Detector (28). (b) Detector (30). (c) Detector (31). (d) Detector (32).

in Fig. 3(b); in this case, an acceptable Pd is achieved for
ωi �∈ [10−2.14, 1], i = 1, 2. For the decision rules (31) and (32),
whose results are displayed in Fig. 3(c) and (d), a Pd ≥ 0.9 is
guaranteed for ωi �∈ [10−2.83, 1] and ωi �∈ [10−2.46, 1], i = 1, 2,
respectively.

The contour plots for N = 3 and W = 5 are shown in Fig. 4;
the main difference with the case W = 3 is the increase in the
detection performance, as observed for the N = 2 analysis. In
particular, the region in the (ω1, ω2) space where Pd is greater
than 0.9 grows, e.g., for the decision rule (28), the region is now
described by the values ωi �∈ [10−1.1, 1], i = 1, 2.

The second analysis is conducted in terms of ROC curves
(namely, Pd versus Pfa) for a fixed value of the induced
maximal invariant ω = [0.04, 0.03]T , corresponding to the pair
of covariance matrices

C1=

⎛
⎝16 0 0.7

0 0.2 0
0.7 0 1

⎞
⎠ C2 = 2

⎛
⎝ 4 0 0.1

0 1.5 0
0.1 0 6

⎞
⎠ .

Of course, any other covariance pair with the same value
of ω leads to the same ROCs, while a different value of ω
leads to different ROCs. For comparison purposes, the ROCs

of the detector (7) in [12] and of that in [6] are also reported.
Specifically, the decision rule proposed in [6] is an adaptive
implementation of the LRT, whose expression in terms of the
eigenvalues λ1, . . . , λN is [6, eq. (B-5)]

N∑
i=1

(
1

λi
− ln

1

λi

)
H1

≷
H0

TH (33)

whereas the GLRT (also [5, eq. (15)], [7, eq. (6)], [11, eq. (20)],
and [12, eq. (7)]) is

N∏
i=1

(1 + λi)
2

λi

H1

≷
H0

Tg. (34)

In order to set the detection thresholds, Monte Carlo simu-
lations were used assuming 100/Pfa independent runs. Addi-
tionally, 100 000 independent trials were exploited to estimate
the Pd.

Fig. 5 shows the ROCs of the considered receivers for both
two- and three-polarimetric channels and W = 3. In particular,
Fig. 5(a) shows the two-polarization case, while Fig. 5(b) refers
to the N = 3 case. In all of the analyzed situations, the ROC
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Fig. 4. Pd contours versus logω1 and logω2 for N = 3 and W = 5. (a) Detector (28). (b) Detector (30). (c) Detector (31). (d) Detector (32).

Fig. 5. Pd versus Pfa. (a) N = 2, W = 3. (b) N = 3, W = 3.

highlights that the scale-invariant detectors are outperformed
in terms of Pd by the two receivers proposed in [12] and in
[6] if W = 3. However, as soon as W = 5, all of the receivers

provide the unit Pd value for Pfa ∈ [10−4, 1]. This behavior is
actually expected as, at the design stage, we are requiring “more
invariance” than the detectors (33) and (34). In fact, the new
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Fig. 6. Pfa versus α. (a) N = 2, W = 3. (b) N = 2, W = 5. (c) N = 3, W = 3. (d) N = 3, W = 5.

decision rules exhibit an additional scale invariance attempting
to robustify the CFAR property with respect to possible scale
mismatches between the reference and test images. In other
words, as it will also be clearer at the end of this section, with
the new approach, we are trading off detection performance
with an improved CFAR behavior.

The final analysis assesses the benefits of the proposed
approach in terms of CFAR property. The study is conducted
considering a nominal Pfa = 10−4 in the presence of observa-
tions with equal covariance matrices (i.e., assuming C1 = C2).
To estimate the actual Pfa, the covariance matrix C1 is the same
used for the ROC analysis, while C2 is selected as C2 = αC1,
with α ∈ [0.5, 2]. The nominal threshold for a Pfa = 10−4 is
then used to estimate the actual Pfa for each detector.

In Fig. 6, Pfa versus α for N = 2 and N = 3 with in-
spection window sizes W = 3 and W = 5 is shown. Also for
this analysis, the curves for the detectors (33) and (34) are
represented. In all of the considered situations, the invariant
detectors show a stable actual probability of false alarm at
10−4 (all of their Pfa curves overlap with the horizontal line
at 10−4). The detectors (33) and (34) exhibit poor capability in
handling scale variations between the reference and test images,

providing an actual Pfa different from the nominal value when
a scale variation is present (α �= 1). For example, in the case
N = 3 and W = 5, the detector (34) exhibits an actual Pfa of
0.139 for α = 2, while the proposed invariant rules are still
able to perform with an actual Pfa of 10−4 as predicted by the
developed theory.

B. Performance Analysis on Real Data

The analysis was performed using real X-band data; the
dataset used is the coherent change detection challenge dataset
acquired by the AFRL [14], [15]. The airborne SAR used to
acquire the dataset employed a coherent receiver with 640-MHz
bandwidth and dual-polarized mode. The depression angle was
45◦ for all of the images to scene center. The data are in the
form of focused complex images with a range and cross-range
resolution of 0.3 m. The overall dataset provides ten complex
images for each of the three available polarizations (HH, VV,
and HV), acquired the same day. The original image size is
4501× 4501 pixels and has been coherently aligned to a single
reference (per polarization) with the help of digital elevation
map information [14].
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Fig. 7. Reference and test images gathered in HH mode. (a) Reference image. (b) Test image.

For our analysis, we focus on two acquisitions from the
entire dataset. Unfortunately, the ground truths of the data are
not available (e.g., the actual changes between two different
acquisitions), so the selection of two passes providing the
opportunity to generate a sufficiently accurate ground truth is
required. Hence, two passes satisfying this requirement have
been identified: the acquisition named “FP0124” is used as a
reference pass, while the acquisition “FP0121” is used as a
test pass. From the two acquisitions, the area with the highest
activity (changes) between the images has been selected, and
this region is represented by a subimage of 1000× 1000 pixels
(i.e., L = M = 1000) and is composed of several parking
lots which are occupied by numerous parked (i.e., stationary)
vehicles. Fig. 7 shows the reference and test subimages for the
HH mode.

For this particular scenario, the changes between the ref-
erence and test images (denoted by X and Y , respectively),
which occurred during the time interval between the two acqui-
sitions, can be distinguished in two cases.

1) A vehicle is present in X but is not present in Y , i.e., the
vehicle has departed from its parking space (the pixels
relative to this kind of event will be referred to in the
following as departures).

2) A vehicle is not present in X but is present in Y , i.e.,
the vehicle has arrived in an empty parking space (the
pixels relative to this kind of event will be referred to in
the following as arrivals).

Using the cases defined previously, a total of 34 changes
between X and Y can be visually identified (by flickering the
two images). In the analysis, the straight line crossing the test
image has not been considered, as its nature does not represent
an arrival. However, as it is visible in the test image (but not
visible in the reference image), we expect it to be detected as a
change. The obtained empirical ground truth is shown in Fig. 8,
where the black regions represent the departures and the white
ones indicate the arrivals. In particular, denoting by K the set
of pixels that correspond to changes, the empirical ground truth
can be represented as a matrix G whose entries are given by

G(l,m) =

{
1 if (l,m) ∈ K l = 1, . . . , L

0 otherwise m = 1, . . . ,M.
(35)

Fig. 8. Empirical ground truth superimposed to the reference image.

Fig. 9. Empirical ground truth without/with the addition of guard cells.
(a) Empirical ground truth. (b) Empirical ground truth with guard cells.

In Fig. 9(a), the empirical ground truth mask G(l,m) is
shown. Although the acquisitions were performed during the
same day and the images were registered, the returns from
a scatterer contribute differently to neighbor pixels, e.g., a
slightly different aspect angle can produce a different amount of
energy spillover. These relative differences in the imaged data
can lead to false alarms in the change detection results. In order
to prevent a false alarm caused by pixel contamination by target
returns, we consider a guard area around each arrival–departure.
This allows the definition of an extended empirical ground
truth [see Fig. 9(b)] used in the following to compare the
performance of the considered detection algorithms.

In the following, a CFAR analysis based on the previously
described real data is conducted. To this end, the thresholds are
set to ensure Pfa = 10−4 in the complement of the extended
empirical ground truth area, namely, in the region where no
changes occur (there are no true positives). This means that, for
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Fig. 10. Pfa versus α. (a) N = 2, W = 3. (b) N = 2, W = 5. (c) N = 3, W = 3. (d) N = 3, W = 5.

each detector, after computing the decision statistics (for each
pixel belonging to the complement of the extended empirical
ground truth), the threshold has been selected in order that

10−4 × total number of available statistics (trials)

are greater than the threshold. This ensures that all of the
comparisons refer to the same nominal Pfa level, namely, the
number of threshold crossings in the complement of the ex-
tended empirical ground truth is exactly the same for all of the
analyzed detectors. Then, exploiting the previously computed
thresholds, the actual Pfa is estimated by applying a scaling

√
α

to the test image for α ∈ [0.5, 2].
In Fig. 10, the Pfa versus α for N = 2 and N = 3 with

inspection window sizes of W = 3 and W = 5 is shown.
The behaviors of the detectors (33) and (34) are also

displayed. Confirming the simulated analysis, in all of the
situations, the invariant detectors show to provide a stable
probability of false alarm. The detectors (33) and (34) show
poor ability to keep a CFAR in the presence of scale variations
between the reference and test images. Specifically, they exhibit
an actual Pfa different from the nominal value when a scale
variation is present (α �= 1).

For the same scenarios, the number of correct detections in
the extended empirical ground truth has been evaluated. The

results are shown in Fig. 11; as expected, the scale-invariant
detectors provide constant performance for different values of
α, but in this case, they are outperformed by the detectors (33)
and (34).

The final analysis investigates the effects of an aggregation
strategy after single pixel detection in order to eliminate iso-
lated false alarms and confirm true detections, which are due
to the typical car size and system resolution, which appear
quite often. More precisely, a window of size 5× 5 slides
along the horizontal and vertical dimensions of the detection
maps (which, as already highlighted, are binary images: “0” no
detection and “1” detection). Then, for a given pixel localized
at the center of the moving window and labeled with “1,” a
detection is associated if the number of “1” in the window is
greater that a certain integer “fill parameter” (denoted by F and
complying with 1 ≤ F ≤ 25).

These kinds of logics look like n-of-m aggregation tech-
niques [25, Ch. 3] and can be interpreted as a postdetection
binary integration within the reference window. As to the pixels
on the image edge (namely, those lying on the first/last two
rows or columns), no aggregation is performed because they
never fall at the center of the moving window. In other words,
the “0” or “1” value in the original detection map is simply
confirmed.
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Fig. 11. Number of correct detections versus α. (a) N = 2, W = 3. (b) N = 2, W = 5. (c) N = 3, W = 3. (d) N = 3, W = 5.

Fig. 12. (a) Number of correct detections in the extended empirical ground truth and (b) number of false alarms in the complement of the extended empirical
ground truth versus F .

The case of three-polarimetric channels, with W = 5 and
α = 1, is considered, and the effect of the fill parameter is
studied in Fig. 12 for detectors (28), (30)–(32). This analysis
highlights that all of the proposed receivers are sensitive to the
fill parameter value. Otherwise stated to get a lower number of
false alarms through the aggregation procedure, it is necessary
to accept some detection loss.

VI. CONCLUSION

In this paper, multipolarization scale-invariant change detec-
tion from SAR images has been considered. The problem has
been formulated as a binary hypothesis test, and the principle
of invariance has been applied to synthesize decision rules.
This framework allows us to both enhance the robustness of the
detectors with respect to intensity miscalibration effects and to
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force the CFAR feature at the design stage. A maximal invariant
statistic, which fully characterizes the class of invariant tests,
as well as the induced maximal invariant was determined
with reference to the processing of two- or three-polarimetric
channels. Moreover, the GLRT is computed; interestingly for
two-polarimetric channels, the test is equivalent to comparing
the condition number of a data-dependent matrix with a suitable
detection threshold. Further decision rules have been also intro-
duced as combinations of the maximal invariant components.

At the analysis stage, the proposed framework has been
assessed both on simulated data and on real high-resolution
SAR images. The conducted study has shown the capability
of the novel decision rules to provide the CFAR property
even in the presence of power mismatches among the different
acquisitions. The tradeoff between robustness and detection
performance has also been discussed. Future work will perform
an analysis of the new detectors as well as possible polarimetric
extensions of other decision rules such as that in [27], in
the presence of further real datasets collected under different
environmental and operating conditions.

APPENDIX A

In this appendix, we show that the set of transformations
G is a group. To this end, we define the group multiplication
[20, p. 569] which with any two elements of G

g1 = [B1, a1 : B1 ∈ GL(N), a1 > 0] ∈ G

g2 = [B2, a2 : B2 ∈ GL(N), a2 > 0] ∈ G

associates the element

g3 = [B1B2, a1a2 : B1B2 ∈ GL(N), a1a2 > 0] ∈ G

called product and denoted as g1g2. It is easy to show the
following.

1) Group multiplication obeys the associative law, i.e.,

(gagb)gc = ga(gbgc), ∀ ga, gb, gc ∈ G.

2) The element

e1 = [IN , 1] ∈ G

is the unique identity, namely, ge1 = e1g = g ∀ g ∈ G.
3) ∀ g ∈ G, there exists the unique inverse

g−1 =
[
B−1, a−1 : B−1 ∈ GL(N), a−1 > 0

]
∈ G

such that gg−1 = e1.

Hence, G satisfies the conditions which define a group
[20, p. 569].

APPENDIX B

This appendix is devoted to the derivation of the Pfa and Pd

for the GLRT exploiting N = 2 polarimetric channels. Under
either H0 and H1, the test statistic in (21) is the standard condi-
tion number of a matrix following the so-called F distribution

[19]. We begin providing its cumulative distribution function
(CDF) under both hypotheses in the following

Proposition 2: Under H0, the CDF of the test statistic (21)
can be written as

F 0
η (x) =

β

γ2K

⎡
⎣ +∞∫

0

λK−2

(1 + λ/γ)2K

xλ∫
λ

uK

(1 + u/γ)2K
du dλ

− 2
λK−1

(1 + λ/γ)2K

xλ∫
λ

uK−1

(1 + u/γ)2K
du dλ

+
λK

(1 + λ/γ)2K

∫ xλ

λ

uK−2

(1 + u/γ)2K
du dλ

⎤
⎦

(36)

with β = ((2K − 1)/[(K − 2)!]2)
∏2K−2

r=K r2. Under H1

F 1
η (x) = υβ

+∞∫
0

2∑
�=1,k �=�

(−1)�+1λK−2

(1 + λ/δ�)2K−1

×

⎡
⎣ xλ∫

λ

uK−2(u − λ)

(1 + u/δk)2K−1
du

⎤
⎦ dλ (37)

where υ = (2K − 1)/(δK−1
1 δK−1

2 (δ2 − δ1)), β is the same as
in (36), and δi, i = 1, 2, is the ith eigenvalue of ΣXΣ−1

Y .
Proof: The CDF of the condition number of a matrix-

variate whose joint eigenvalue distribution can be written as
[26, Formula (6)]

f(λ) = K det (Φ(λ)) det (Ψ(λ))
2∏

�=1

ξ(λ�) (38)

can be obtained by exploiting [26, Formula (9)]. By inspection
of the corresponding joint distribution of λ1 and λ2 under H0,
i.e., ([19, Formula (98)] with Ω = γI)

p(λ1, λ2) =
β

γ2K

2∏
i=1

λK−2
i

(1 + λj/γ)2K
(λ2 − λ1)

2 (39)

and, respectively, under H1 (see again [19, Formula (98)])

p(λ1, λ2) = υβ
2∏

i=1

λK−2
i det

(
(1 + λj/δi)

1−2K
)
(λ2 − λ1)

(40)
it is immediate to verify that both of the aforementioned laws
are in the form (38). Henceforth, under H0, the CDF takes the
form

F0(x) = β

+∞∫
0

{det (F1(λ)) + det (F2(λ))} dλ (41)
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where the entries of the 2× 2 matrices F1 and F2 are listed in
the following, skipping for simplicity the subscript of λ

(F1)1,1 =
λK−2

(1 + λ/γ)2K
(F1)1,2 =

λK−1

(1 + λ/γ)2K

(F1)2,1 =

xλ∫
λ

uK−1

(1+u/γ)2K
du (F1)2,2=

xλ∫
λ

uK

(1+u/γ)2K
du

(F2)1,1 =

xλ∫
λ

uK−2

(1+u/γ)2K
du (F2)1,2=

xλ∫
λ

uK−1

(1+u/γ)2K
du

(F2)2,1 =
λK−1

(1 + λ/γ)2K
(F2)2,2 =

λK−2

(1 + λ/γ)2K
.

Under H1, instead, the CDF can be expressed as

F1(x) = υβ

+∞∫
0

{det (G1(λ)) + det (G2(λ))} dλ (42)

where the entries of the 2× 2 matrix Gi, i = 1, 2, are given by

(G1)1,1 =
λK−2

(1 + λ/δ1)2K−1

(G1)1,2 =
λK−1

(1 + λ/δ1)2K−1

(G1)2,1 =

xλ∫
λ

uK−2

(1 + u/δ2)2K−1
du

(G1)2,2 =

xλ∫
λ

uK−1

(1 + u/δ2)2K−1
du

(G2)1,1 =

xλ∫
λ

uK−2

(1 + u/δ1)2K−1
du

(G2)1,2 =

xλ∫
λ

uK−1

(1 + u/δ1)2K−1
du

(G2)2,1 =
λK−2

(1 + λ/δ2)2K−1

(G2)2,2 =
λK−1

(1 + λ/δ2)2K−1
.

Hence, basic algebra leads to Proposition 2 statement.
As an immediate consequence of Proposition 2, we can now

prove the following.
Proposition 3: Pfa and Pd of the GLRT (21) are given by

Pfa = 1− β [J (0)− 2J (1) + J (2)] (43)

where β is the same as in Proposition 2, T2 is the detection
threshold, and for � = 0, 1, 2

J (�) =

+∞∫
0

zK+�−2

(1 + z)2K

T2∫
z

yK−�

(1 + y)2K
dy dz (44)

and by

Pd = 1− (2K − 1)υβ

+∞∫
0

zK−2

⎡
⎣ T2∫

z

yK−2(y − z)

(1 + y)2K−1
dy

⎤
⎦

×
[

δ2K−1
2

(1 + z/ω)2K−1
− δ2K−1

1

(1 + zω)2K−1

]
dz (45)

with ω = δ1/δ2.
Proof: Proposition 3 follows immediately from Proposition 2,

expanding the determinant in the argument of (39) and (40) for
Pfa and for Pd, respectively. As expected, Pfa does not depend
on the scaling factor γ, and Pd only depends on ω = δ1/δ2,
after replacing υ by its expression as a function of δi’s, i = 1, 2.

REFERENCES

[1] M. Preiss and N. J. S. Stacy, “Coherent Change Detection: Theoretical De-
scription and Experimental Results,” Intell., Surveillance Reconnaissance
Division, Def. Sci. Technol. Org., Canberra, Australia, DSTO-TR-1851,
2006.

[2] R. Touzi, A. Lopes, J. Bruniquel, and P. W. Vachon, “Coherence estima-
tion for SAR imagery,” IEEE Trans. Geosci. Remote Sens., vol. 37, no. 1,
pp. 135–149, Jan. 1999.

[3] I. Stojanovic and L. Novak, “Change detection experiments using Gotcha
public release SAR data,” in Proc. SPIE, Algorithms for Synthetic Aper-
ture Radar Imagery XX, Jun. 3, 2013, vol. 8746, p. 87460I, DOI: 10.1117/
12.2020650

[4] E. J. M. Rignot and J. J. Van Zyl, “Change detection techniques for
ERS-1 SAR data,” IEEE Trans. Geosci. Remote Sens., vol. 31, no. 4,
pp. 896–906, Jul. 1993.

[5] K. Conradsen, A. A. Nielsen, J. Schou, and H. Skriver, “A test statistic in
the complex Wishart distribution and its application to change detection
in polarimetric SAR data,” IEEE Trans. Geosci. Remote Sens., vol. 41,
no. 1, pp. 4–19, Jan. 2003.

[6] L. M. Novak, “Change detection for multipolarization, multipass SAR,”
in Proc. SPIE Conf. Algorithms Synthetic Aperture Radar Imagery XII,
Orlando, FL, USA, Mar. 2005, pp. 234–246.

[7] A. Reigber et al., “Very-high-resolution airborne synthetic aperture radar
imaging: Signal processing and applications,” Proc. IEEE, vol. 101,
no. 3, pp. 759–783, Mar. 2013.

[8] A. Marino, S. R. Cloude, and J. M. Lopez-Sanchez, “A new polarimetric
change detector in radar imagery,” IEEE Trans. Geosci. Remote Sens.,
vol. 51, no. 5, pp. 2986–3000, May 2013.

[9] A. A. Nielsen, R. Larsen, and H. Skriver, “Change detection in bi-
temporal EMISAR data from Kalø, Denmark, by means of canonical
correlations analysis,” in Proc. 3rd Int. Airborne Remote Sens. Conf.
Exhib., Copenhagen, Denmark, Jul. 7–10, 1997, pp. 281–287.

[10] A. A. Nielsen, “Change detection in multispectral bi-temporal spatial data
using orthogonal transformations,” in Proc. 8th Austral-Asian Sens. Conf.,
Canberra, ACT, Australia, Mar. 25–29, 1996, pp. 1–8.

[11] E. Erten, A. Reigber, L. Ferro-Famil, and O. Hellwich, “A new co-
herent similarity measure for temporal multichannel scene characteriza-
tion,” IEEE Trans. Geosci. Remote Sens., vol. 50, no. 7, pp. 2839–2851,
Jul. 2012.

[12] V. Carotenuto, A. De Maio, C. Clemente, and J. J. Soraghan, “Multi-
polarization SAR change detection with invariant decision rules,”
in Proc. IEEE Radarcon, Cincinnati, OH, USA, May 19–23, 2014,
pp. 0859–0862.

[13] V V. Carotenuto, A. De Maio, C. Clemente, and J. J. Soraghan, “Invariant
rules for multi-polarization SAR change detection,” IEEE Trans. Geosci.
Remote Sens., vol. 53, no. 6, pp. 3294–3311, Jun. 2015.

[14] “Coherent Change Detection Challenge Problem,” U.S. Air Force Sen-
sor Data Management System, Arlington, VA, USA. [Online]. Available:
https://www.sdms.afrl.af.mil/index.php?collection=ccd_challenge

[15] S. Scarborough et al., “A challenge problem for SAR change detection
and data compression,” in Proc. SPIE, Algorithms for Synthetic Aperture
Radar Imagery XVII, Apr. 18, 2010, vol. 7699, p. 76990U.

[16] S. N. Anfinsen, A. P. Doulgeris, and T. Eltoft, “Estimation of the equiva-
lent number of looks in polarimetric synthetic aperture radar imagery,”



50 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 54, NO. 1, JANUARY 2016

IEEE Trans. Geosci. Remote Sens., vol. 47, no. 11, pp. 3795–3809,
Nov. 2009.

[17] C. Lopez-Martinez, “Speckle noise characterization and filtering in polar-
imetric SAR data,” Eur. Space Agency, Paris, France. [Online]. Available:
https://earth.esa.int/documents/10174/669756/Speckle\_Noise\_
Characterisation.pdf

[18] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation
Theory, vol. 1. Upper Saddle River, NJ, USA: Prentice-Hall, 1998.

[19] A. T. James, “Distribution of matrix variates and latent roots derived
from normal samples,” Annals of Mathematical Statistics, vol. 35, no. 2,
pp. 475–501, Jun. 1964.

[20] E. L. Lehmann, Testing Statistical Hypotheses. 2nd ed., New York, NY,
USA: Springer-Verlag, 1986.

[21] R. J. Muirhead, Aspects of Multivariate Statistical Theory. New York,
NY, USA: Wiley, 1982.

[22] L. L. Scharf, Statistical Signal Processing. Detection, Estimation, and
Time Series Analysis. Reading, MA, USA: Addison-Wesley, 1991.

[23] A. Marino and I. Hajnsek, “A change detector based on an optimization
with polarimetric SAR imagery,” IEEE Trans. Geosci. Remote Sens.,
vol. 52, no. 8, pp. 4781–4798, Aug. 2014.

[24] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge, MA, USA:
Cambridge Univ. Press, 1985.

[25] M. A. Richards, J. A. Scheer, and W. A. Holm, Principles of Mod-
ern Radar: Basic Principles. Raleigh, NC, USA: Scitech Publishing,
2010.

[26] M. Matthaiou, M. R. Mc Kay, P. J. Smith, and J. A. Nossek, “On the
condition number distribution of complex Wishart matrices,” IEEE Trans.
Commun., vol. 58, no. 6, pp. 1705–1717, Jun. 2010.

[27] J. Inglada and G. Mercier, “A new statistical similarity measure for change
detection in multitemporal SAR images and its extension to multiscale
change analysis,” IEEE Trans. Geosci. Remote Sens., vol. 45, no. 5,
pp. 1432–1445, May 2007.

Vincenzo Carotenuto (S’12) received the Laurea
Specialistica degree in telecommunication engineer-
ing from the University of Naples “Federico II,”
Napoli, Italy, in 2010 and the Ph.D. degree in elec-
tronic and telecommunication engineering from the
Department of Electrical Engineering and Informa-
tion Technologies, University of Naples “Federico II,”
in 2015.

His research interest lies in the field of statistical
signal processing, with emphasis on radar signal
processing.

Antonio De Maio (S’01–A’02–M’03–SM’07–F’13)
was born in Sorrento, Italy, on June 20, 1974. He
received the Dr.Eng. degree (with honors) and the
Ph.D. degree in information engineering from the
University of Naples “Federico II,” Napoli, Italy, in
1998 and 2002, respectively.

From October to December 2004, he was a Vis-
iting Researcher with the U.S. Air Force Research
Laboratory, Rome, NY, USA. From November to
December 2007, he was a Visiting Researcher with
the Chinese University of Hong Kong, Hong Kong.

He is currently an Associate Professor with the University of Naples “Federico
II.” His research interest lies in the field of statistical signal processing,
with emphasis on radar detection, optimization theory applied to radar signal
processing, and multiple-access communications.

Dr. De Maio was the recipient of the 2010 IEEE Fred Nathanson Memorial
Award as the young (less than 40 years of age) AESS Radar Engineer 2010
whose performance is particularly noteworthy as evidenced by contributions
to the radar art over a period of several years, with the following citation
for “robust CFAR detection, knowledge-based radar signal processing, and
waveform design and diversity.”

Carmine Clemente (S’09–M’13) received the Lau-
rea (B.Sc.; cum laude) and Laurea Specialistica
(M.Sc.; cum laude) degrees in telecommunications
engineering from Universita’ degli Studi del Sannio,
Benevento, Italy, in 2006 and 2009, respectively, and
the Ph.D. degree from the University of Strathclyde,
Glasgow, U.K., in 2012.

He is currently a Research Associate with the
Department of Electronic and Electrical Engineer-
ing, University of Strathclyde, working on advanced
radar signal processing algorithms, MIMO radar sys-

tems, and micro-Doppler analysis. His research interests include synthetic
aperture radar (SAR) focusing and bistatic SAR focusing algorithm develop-
ment, micro-Doppler signature analysis and extraction from multistatic radar
platforms, micro-Doppler classification, and statistical signal processing.

John J. Soraghan (S’83–M’84–SM’96) received
the B.Eng. (Hons.) and M.Eng.Sc. degrees in elec-
tronic engineering from University College Dublin,
Dublin, Ireland, in 1978 and 1983, respectively, and
the Ph.D. degree in electronic engineering from the
University of Southampton, Southampton, U.K., in
1989. His doctoral research focused on synthetic
aperture radar processing on the distributed array
processor.

After graduating, he worked with the Electricity
Supply Board in Ireland and with Westinghouse

Electric Corporation in the U.S. In 1986, he joined the Department of Electronic
and Electrical Engineering, University of Strathclyde, Glasgow, U.K., as a
Lecturer, where he became a Senior Lecturer in 1990, a Reader in 2000, and
a Professor of signal processing in September 2003, within the Institute for
Communications and Signal Processing (ICSP). In December 2005, he became
the Head of the ICSP. He currently holds the Texas Instruments Chair in Signal
Processing with the University of Strathclyde. He was a Manager of the Scottish
Transputer Centre from 1988 to 1991 and a Manager of the DTI Parallel Signal
Processing Centre from 1991 to 1995. His main research interests are signal
processing theories, algorithms, and architectures with applications to remote
sensing, telecommunications, biomedicine, and condition monitoring.

Prof. Soraghan is a member of the IET.

Giusi Alfano received the Laurea degree in commu-
nication engineering from the University of Naples
“Federico II,” Napoli, Italy, in 2001 and the Ph.D.
degree in information engineering from the Univer-
sity of Benevento, Benevento, Italy, in 2007.

She is currently holding a postdoctoral position
at Politecnico di Torino, Torino, Italy. Her research
work lies mainly in the field of random matrix theory
applications to MIMO wireless communications and
sensor networks, and to the characterization of the
physical layer of random networks. She was a Vis-

iting Researcher at FTW and TUW, Wien, Austria, from 2007 to 2010 and an
ERCIM fellow at NTNU Trondheim in 2011. In 2014, she was the Visiting ERC
Chair on Noncommutative Distributions in Quantum Probability, Saarbrucken,
Germany. She actively collaborates with the Theoretic Communication Chair,
Dresden, Germany.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


