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Memristor Circuits: Pulse Programming via
Invariant Manifolds

Fernando Corinto, Senior Member, IEEE, and Mauro Forti

Abstract—The paper considers a large class of memristor
circuits of arbitrary order, and containing an arbitrary number of
flux– or charge–controlled memristors, for which a state equation
(SE) description can be obtained. By means of the SEs, it is shown
that the state space of each circuit can be decomposed in infinitely
many manifolds, and that in the autonomous case each manifold is
positively invariant and is characterized by a different reduced–
order dynamics and attractors. These results are the basis for
extending the analysis to the non–autonomous case where time–
varying independent sources are present. In particular, the chief
result obtained in the paper shows how to analytically design
external pulses for programming memristor circuits, i.e., how
invariant manifolds and attractors can be changed and controlled
by applying suitable charge or flux sources via time–varying
voltage and/or current pulses with finite time duration. The main
results are obtained by relying on a recently introduced technique
for the analysis of memristor circuits in the flux–charge domain.

Index Terms—Memristor, circuit theory, nonlinear dynamics,
bifurcations, invariant manifolds, coexisting attractors.

I. INTRODUCTION

RECENTLY, the authors have introduced in [1], [2] a
new technique, named “Flux–Charge Analysis Method”

(FCAM), for the analysis of a wide class of dynamic memris-
tor circuits in the flux–charge (ϕ, q)–domain. FCAM is based
on using Kirchhoff flux and charge laws, and constitutive
relations of circuit elements, directly expressed in the (ϕ, q)–
domain and, as such, it basically differs from other traditional
approaches for analyzing memristor circuits described in the
voltage–current (v, i)–domain [3]–[7]. Also worthy of mention
are flux–charge models of actual memristor devices derived
from experimental results [8], [9] and a complete classification
of memristors in terms of flux and charge [10].

The application of FCAM to specific low–order autonomous
memristor circuits has shown that the state space in the
(v, i)–domain can be decomposed in infinitely many positively
invariant manifolds and that on each manifold the circuit
is characterized by a different reduced-order dynamics and
attractors. An interesting consequence is that bifurcations
may be induced in two different ways. In the classical way,
where the circuit parameters are changed for initial conditions
(ICs) belonging to a fixed manifold (standard bifurcations).
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Otherwise, by changing invariant manifold due to different
ICs for fixed circuit parameters (also known as bifurcations
without parameters [2]). In particular, in [1], [2] FCAM is
used to analyze the dynamics and saddle–node bifurcations
due to varying ICs for the simplest memristor circuit composed
by a capacitor and a flux–controlled memristor, and the Hopf
and period–doubling bifurcations leading to chaotic behavior,
induced once more by varying the ICs, for some memristor
oscillatory circuits. In overall, the results in [1], [2] have
provided an analytic explanation of intriguing dynamic phe-
nomena displayed by memristor circuits, as the co–existence
of several attractors for the same set of parameters, and the
sensitivity to ICs of the long–term behavior of solutions. We
stress that such phenomena have been previously investigated
mainly via numerical, or experimental means, see, e.g., [11]–
[19], and references therein.

In [1], [2], only specific low–order autonomous memristor
circuits have been considered for which invariant manifolds,
and the dynamics on manifolds, are obtained by writing by
inspection the state equations (SEs) via FCAM and relying
on ad hoc mathematical manipulations of these SEs. Due
to the huge variety and complexity of memristor circuits
encountered in different applications (e.g., memristor synapses
for neuromorphic systems, memristor–based chaotic circuits
for cryptography, memristor–based biosensors, etc.), it would
be desirable to develop a technique to study the existence of
invariant manifolds, to derive their explicit expression, and
to obtain the reduced-order dynamics on invariant manifolds,
that is applicable to a large class of memristor circuits used
in the technical applications. The main results in the paper
concerning this point are as follows:

(a) we introduce a systematic method for writing the differ-
ential algebraic equations (DAEs) and the SEs, both in
the (ϕ, q) and in the (v, i)-domain, of a general class of
memristor circuits of any order and with any number of
flux- or charge-controlled memristors;

(b) in the autonomous case, under certain assumptions, we
introduce a new systematic method to identify and write
analytically the invariant manifolds and to obtain the
reduced-order dynamics on each invariant manifold.

The results in (a) and (b) are then used and extended for
addressing the non–autonomous case, i.e., the case where
time–varying independent sources are present in the memristor
circuit. In this regard the chief contribution is as follows:

(c) we develop analytic results showing how invariant man-
ifolds, reduced–order dynamics, and attractors of non–
autonomous memristor circuits can be programmed (i.e.,
how solutions can be driven between different manifolds
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and dynamics) by applying suitable charge and/or flux
sources via time–varying current and/or voltage pulses
with finite time duration.

II. NETWORK STRUCTURE AND DAE DESCRIPTION

Consider the class LM of memristor circuits N constituted
by nC ideal capacitors, nL ideal inductors, nR ideal resistors,
nE ideal independent voltage sources, nA ideal independent
current sources, and nM memristors that are either flux–
controlled or charge–controlled.1 Assume that:
• flux–controlled memristors are described by q(t) =
f(ϕ(t)), where ϕ(t) and q(t) are the flux and charge
in the memristor (i.e., the voltage and current momenta
[20]), respectively. The nonlinear function f(·) is of class
C2 for any ϕ and there exist σ < ∞ and ε0 > 0 such
that f ′(ϕ) > ε0 for any |ϕ| ≥ σ

• charge–controlled memristors are described by ϕ(t) =
h(q(t)), where the nonlinear function h(·) has mathe-
matical properties similar to f(·).

We wish to analyze the nonlinear dynamics and bifurcations
in memristor networks N for t ≥ t0, where t0 is a given finite
time instant. For any two–terminal circuit element in N , in
addition to the voltage v(t), current i(t), flux ϕ(t) and charge
q(t), we consider also the incremental flux and charge

ϕ(t; t0) = ϕ(t)− ϕ(t0) =

∫ t

t0

v(τ)d τ (1a)

q(t; t0) = q(t)− q(t0) =

∫ t

t0

i(τ)d τ (1b)

and thus the following properties hold (the dot denotes
the time derivative): ϕ(t) = ϕ(t; t0) + ϕ(t0); q(t) =
q(t; t0) + q(t0);ϕ(t0; t0) = 0; q(t0; t0) = 0; ϕ̇(t; t0) =
ϕ̇(t) = v(t); q̇(t; t0) = q̇(t) = i(t); ϕ̇(t0; t0) = ϕ̇(t0) =
v(t0); q̇(t0; t0) = q̇(t0) = i(t0).

Hereinafter, N is described by means of FCAM in the
(ϕ, q)-domain (see [1] for constitutive relations (CRs) of
circuits elements and topological constraints given by the
Kirchhoff Flux Law (KϕL) and Kirchhoff Charge Law (KqL)
in terms of incremental fluxes and charges).

Goal of the manuscript is first to obtain via FCAM a DAE
description of the networks N in LM and, on this basis, and
under suitable assumptions, to obtain the explicit SEs for a
large subclass of memristor networks N in LM. We stress
that the knowledge of the SEs is a fundamental pre–requisite
for studying basic qualitative aspects such as identifying the
invariant manifolds and the dynamics on manifolds and study
how dynamics through different manifolds can be controlled
by external inputs. The importance to derive the explicit SEs
for any dynamic network is clearly discussed in [21], [22]
where one chief observation is that network models that do
not admit a SE representation may be ill defined due to
the presence of singular points (a.k.a. impasse points) where
solutions cannot be continued.

To obtain a DAE description we note that, without losing
generality, any N ∈ LM can be decomposed into the

1Resistors, capacitors and inductors can be either passive or active.
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Figure 1: Decomposition of N into NA and ND . The network
ND = Dϕ

⋃
Dq contains all two–terminal elements external to NA.

The nC elements Dϕ, nL elements Dq and the linear network NR
are highlighted. Reference directions for circuit elements external to
NR are in red.

algebraic and the dynamic parts (see [21] for definition of
algebraic and dynamics elements). In particular, NA denotes
the nonlinear algebraic (nC + nL)–ports with no capacitors
and inductors, whereas ND (i.e., NA

⋃ND results to be N )
is assumed to be composed by nC (resp., nL) nonlinear dy-
namic flux–controlled (resp., charge–controlled) two–terminal
elements Dϕ (resp., Dq) connected to the ports of NA.2 The
conceptual decomposition of N into NA and ND is shown
in Fig. 1. We will see that the knowledge of the structure of
NA is essential to develop a general methodology to study
DAEs and SEs. In this regard, it is convenient to further
decompose NA, i.e., to extract from NA the linear negative
resistors and the memristors. Note that such negative resistors
and memristors are not in parallel to a capacitor or in series
with an inductor. Hence, NR is composed of positive resistors
and/or independent sources (see again Fig. 1).

A. CRs of Two-terminal Elements

Here, we provide a systematic description of the different
types of two-terminal elements in ND, NA and NR. For each
two-terminal element connected to NR we use coordinated
reference directions for incremental flux and charge as in [21,
Fig. 20]. By [21, Theorem 2], the following cases can take
place for any element Dϕ and Dq in ND.3

2Mutual coupling between the elements Dϕ (and elements Dq) is excluded
since by assumption LM is constituted of two-terminal elements, only.

3A negative resistor in parallel with a flux–controlled memristor or in series
with a charge–controlled memristor can be embedded in any memristor in N
without modifying the results provided in this manuscript.



3

• γM is the number of DϕM ∈ ND made of a capacitor in
parallel with a flux–controlled memristor; (incremental)
fluxes and charges of DϕM define the vectors ϕγM (t; t0)
and qγM (t; t0), respectively. By FCAM [1], the CRs of
DϕM are expressed in the following vector form:4

−qγM (t; t0) = CγM ϕ̇γM (t; t0)− qCγM (t0)

+ f(ϕγM (t; t0) + ϕMγM
(t0))

− f(ϕMγM
(t0)) (2)

where CγM is a diagonal matrix having the capacitance
of capacitors in DϕM and qCγM (t0) are their ICs, whereas
ϕMγM

(t0) are the ICs of memristors in DϕM . The memris-
tor fluxes in DϕM are ϕMγM

(t) = ϕγM (t; t0)+ϕMγM
(t0)

and the capacitor voltages are vCγM (t) = ϕ̇γM (t; t0).
• γG is the number of DϕG ∈ ND made of a capacitor

in parallel with a negative resistor; fluxes and charges
in such DϕG define the vectors ϕγG(t; t0) and qγG(t; t0),
respectively. The CRs of the elements DϕG are

−qγG(t; t0) = CγGϕ̇γG(t; t0)−qCγG (t0)+GγGϕγG(t; t0)
(3)

where CγG is a diagonal matrix having the capacitance
of capacitors in DϕG and qCγM (t0) are their ICs.

• γC = nC − γM − γG is the number of DϕC ∈ ND made
of just a capacitor; fluxes and charges in such capacitors
define the vectors ϕγC (t; t0) and qγC (t; t0), respectively.
The CRs of the elements DϕC are

−qγC (t; t0) = CγC ϕ̇γC (t; t0)− qCγC (t0) (4)

where CγC is a diagonal matrix having the capacitance
of capacitors in DϕC and qCγC (t0) are their ICs.

• Dϕ = DϕM
⋃DϕG⋃DϕC and nC = γM + γG + γC .

We can use dual notations for DqM ∈ ND as follows.
• λM is the number of DqM ∈ ND made of an inductor in

series with a charge–controlled memristors. The CRs are

−ϕλM (t; t0) = LλM q̇λM (t; t0)−ϕLλM (t0)

+ h(qλM (t; t0) + qMλM
(t0))

− h(qMλM
(t0)) (5)

where ϕLλM (t0) (resp., qMλM
(t0)) are the ICs for induc-

tors (resp., memristors) in DqM . The memristor charges
in DqM are qMλM

(t) = qλM (t; t0) + qMλM
(t0) and the

inductor currents are iLλM (t) = q̇λM (t; t0).
• λR is the number of DqR ∈ ND made of an inductor in

series with a negative resistor. The CRs are

−ϕλR(t; t0) = LλR q̇λR(t; t0)−ϕLλR (t0)+RλRqλR(t; t0)
(6)

where ϕLλR (t0) are the ICs of inductors in DqR.
• λL = nL − λM − λR is the number of DqL ∈ ND made

of just an inductor. The CRs are

−ϕλL(t; t0) = LλL q̇λL(t; t0)−ϕLλL (t0) (7)

where ϕLλL (t0) are the ICs of inductors in DqL.
• Dq = DqM

⋃DqR⋃DqL and nL = λM + λR + λL.

4The source sign convention is used for any element Dϕ and Dq in ND .

For what concern the structure of NA let us assume that:
• µF is the number of flux–controlled memristors AϕM ∈
NA with CRs

−qµF (t; t0) = f(ϕµF (t; t0)+ϕMµF
(t0))−f(ϕMµF

(t0))
(8)

where ϕMµF
(t0) are the ICs of memristors in AϕM .

• µQ is the number of charge–controlled memristors AqM ∈
NA with CRs

−ϕµQ(t; t0) = h(qµQ(t; t0)+qMµQ
(t0))−h(qMµQ

(t0))
(9)

where qMµQ
(t0) are the ICs of memristors in AqM .

• ρG is the number of negative conductances AϕG ∈ NA
with CRs

−qρG(t; t0) = GρGϕρG(t; t0) (10)

• ρR is the number of negative resistors AqR ∈ NA with
CRs

−ϕρR(t; t0) = RρRqρR(t; t0) (11)

Note that nM = µF +µQ+γM+λM is the the total number
of memristor in N .

The extraction of AϕM , AϕG, AqM and AqR from NA produces
a linear network NR with (nC +nL +µF +µQ + ρG + ρR)–
ports having only positive (linear) resistors and independent
sources. We have
• nE ideal independent voltage sources e(t) such that

ϕe(t; t0) =
∫ t
t0
e(τ)dτ

• nA ideal independent current sources a(t) such that
qa(t; t0) =

∫ t
t0
a(τ)dτ .

B. Hybrid Representation of NR
Among the different representations of the network NR, it

is convenient to exploit its description in terms of a suitable
hybrid matrix

qγM (t; t0)
ϕλM (t; t0)
qγG(t; t0)
ϕλR(t; t0)
qγC (t; t0)
ϕλL(t; t0)
ϕµQ(t; t0)
qµF (t; t0)
ϕρR(t; t0)
qρG(t; t0)


= HR



ϕγM (t; t0)
qλM (t; t0)
ϕγG(t; t0)
qλR(t; t0)
ϕγC (t; t0)
qλL(t; t0)
qµQ(t; t0)
ϕµF (t; t0)
qρR(t; t0)
ϕρG(t; t0)


+ u(t; t0) (12)

where
• u(t; t0) takes into account the effects due to the sources

ϕe(t; t0) and qa(t; t0) within NR
• the independent port variables in NR are the fluxes in the

two–terminal flux–controlled elements Dϕ, AϕM and AϕG
and the charges in the two–terminal charge–controlled
elements Dq , AqM and AqR

• the dependent port variables in NR are the charges in the
two–terminal flux–controlled elements and fluxes in the
two–terminal charge–controlled elements.
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According to known properties of connected linear graphs
[23]5, see also [24, Theorem 1], the hybrid description (12) of
NR holds if and only if the following assumption (hereinafter
named Assumption 1, or (A1) for short) holds

(A1) The subnetwork NR of N satisfies the following topo-
logical constraints:

– there exist no loops made of the flux-controlled two-
terminal elements Dϕ, AϕM and AϕG and/or the flux
sources ϕe(t; t0) within NR

– there exist no cutsets made of the charge–controlled
elements Dq , AqM and AqR and/or the charge sources
qa(t; t0) within NR.

Remark 1: As reported in [24], the description of NR by
means of the hybrid matrix HR is as general as the approach
based on the incidence matrix and the Tableau method.

C. DAEs of N in the (ϕ, q)-domain

The set of equations from (2) to (12) describe any memristor
circuit N ∈ LM that satisfies (A1) in terms of a system of
DAEs in the (ϕ, q)–domain.

The next example shows that the derivation of the SEs
from the DAEs require further assumptions on the memristor
circuit N . In particular, it shows that two-terminal elements in
NA\NR, such as negative resistors and/or charge–controlled
memristors not in series with an inductor and, by duality,
negative conductances and/or flux–controlled memristors not
in parallel with a capacitor, might cause problems for the
existence of the SE description.

Example: Consider the memristor circuit in Fig. 2 in the
(ϕ, q)–domain, that is obtained from that in [2, Section II.A]
by including a negative resistor (R < 0) and a linear two-
terminal element NR represented by its Thevenin equivalent
circuit made of the resistor R1 ≥ 0 and the flux source
ϕe(t; t0). The DAE description in the (ϕ, q)–domain is

Cϕ̇C(t; t0) = −qM (t; t0) + qC(t0) (13a)
h(qM (t)) + (R1 +R)qM (t) = ϕC(t; t0)− ϕe(t; t0)

+ h(qM (t0)) + (R1 +R)qM (t0)
(13b)

for t ≥ t0, where qC(t0) = CvC(t0), qM (t0) are the ICs for
the state variables in the (v, i)–domain. The explicit SE for
the memristor circuit in Fig. 2 can be derived from the DAE
(13) only under suitable assumptions on the negative resistor
R and the nonlinearity of the charge–controlled memristor.

In particular, the following cases can take place:
1) if R = −R1 and h(·) is monotone, hence qM (t) =

h−1(ϕC(t; t0)− ϕe(t; t0) + h(qM (t0))), then the SE is

Cϕ̇C(t; t0) = −h−1(ϕC(t; t0)− ϕe(t; t0) + h(qM (t0)))

+ qC(t0) + qM (t0). (14)

On the contrary, if R = −R1 but ϕM (·) = h(qM (·)) is
not monotone, then the DAE cannot be cast in the form
of a SE. It can be seen that the memristor circuit in

5In particular, we can use the result described in the (v, i)-domain in [23,
Section 7, p. 125], that can be extended mutatis mutandis to the (ϕ, q)-domain.

qM0 ϕM0 = h(qM0)

h(qM)

NR

qM(t; t0)

ϕM(t; t0)
qC0 C

R < 0

R1

ϕe(t; t0)

qC(t; t0)

ϕC(t; t0)

2

Figure 2: Example of decomposition of N into NA and ND .
The network ND contains only a capacitor. The network NA has
a linear network NR, made up of a resistor R1 ≥ 0 and a
flux source ϕe(t; t0), connected to a charge–controlled memristor
ϕM (·) = h(qM (·)) and a negative resistor R < 0.

Fig. 2 describes a nonphysical situation because it does
not have a globally defined SE and it exhibits impasse
points (see [2, Section II.A] for more details).

2) If R 6= −R1 the DAE reduces to the next SE if and only
if H(qM (t)) = h(qM (t))+(R1 +R)qM (t) is monotone

Cϕ̇C(t; t0) = −H(ϕC(t; t0), ϕe(t; t0), qM (t0))

+qC(t0) + qM (t0) (15)

where we have let H(ϕC(t; t0), ϕe(t; t0), qM (t0)) =
H−1(ϕC(t; t0) − ϕe(t; t0) + h(qM (t0)) + (R1 +
R)qM (t0)). Note that, even if the memristor is passive,
there are values of R < 0 for which the monotone
condition on H(qM (t)) fails, so that once more the SE
does not exist and we have a nonphysical situation.6

III. SES OF N IN THE (ϕ, q)-DOMAIN

We consider henceforth memristor circuits N ∈ LM
satisfying (A1). Consider also the following assumptions –
denoted as Assumption 2, i.e., (A2), and Assumption 3, i.e.,
(A3) – enabling to specify all possible configurations of
N = ND

⋃NA according to the structure of NA:

(A2) The subnetwork NA of N has no memristors.
(A3) The subnetwork NA of N has no negative resistors.

Clearly, N admits of only these four configurations:
i) if both (A2) and (A3) are fulfilled then µF = µQ = 0 and
ρG = ρR = 0, that is NA = NR and N = ND

⋃NR
ii) if only (A2) is fulfilled then µF = µQ = 0, ρG 6= 0 and

ρR 6= 0, that is N = ND
⋃NR⋃AϕG⋃AqR

iii) if only (A3) is fulfilled then µF 6= 0, µQ 6= 0 and ρG =
ρR = 0, that is N = ND

⋃NR⋃AϕM ⋃AqM
6In both cases R = −R1 or R 6= −R1, as shown in the example of [2,

Sect II.A], a sufficient condition that always guarantees the explicit derivation
of the SE for the memristor circuit in Fig. 2 is the introduction of an inductor
in series with the charge–controlled memristor and the negative resistor.
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iv) if both (A2) and (A3) are not satisfied then µF 6= 0,
µQ 6= 0, ρG 6= 0 and/or ρR 6= 0, that is N =
ND

⋃NR⋃AϕM ⋃AqM ⋃AϕG⋃AqR.
The first case (i) is thoroughly investigated in this

manuscript; the other cases can be discussed, mutatis mutan-
dis, in a similar way. For the sake of brevity and the lack of
space they will be reported in detail in a further work.

A. The Case N = ND
⋃NR

Suppose that (A1)-(A3) are satisfied, hence the memristor
circuit N is made of the (nC + nL)–port NR connected to
the nC elements Dϕ and to the nL elements Dq . In this case
(A1) is equivalent to the following assumption that can be
easily checked by inspection: the memristor network N has
no loops made by capacitors and/or flux sources and no cutsets
made by inductors and/or charge sources.

Moreover, the use of (2) to (12) directly yields the SE
representation7 of N in the (ϕ, q)-domain

M


ϕ̇γM (t; t0)
q̇λM (t; t0)
ϕ̇γG(t; t0)
q̇λR(t; t0)
ϕ̇γC (t; t0)
q̇λL(t; t0)

 = −(HR + G)


ϕγM (t; t0)
qλM (t; t0)
ϕγG(t; t0)
qλR(t; t0)
ϕγC (t; t0)
qλL(t; t0)



−


f(ϕγM (t; t0) + ϕMγM

(t0))

h(qλM (t; t0) + qMλM
(t0))

0
0
0
0



+


f(ϕMγM

(t0))

h(qMγM
(t0))

0
0
0
0

+



qCγM (t0)

ϕLλM (t0)

qCγG (t0)

ϕLλR (t0)

qCγC (t0)

ϕLλL (t0)

+ u(t; t0) (16)

for t ≥ t0 where
• M and G are diagonal matrices defined as

M = diag(CγM ,LλM ,CγG ,LλR ,CγC ,LλL) and
G = diag(0,0,GγG ,RλR ,0,0). In particular, M is
nonsingular;

• the state vector in the (ϕ, q)-domain includes the nC
fluxes across the capacitors (i.e., ϕγM (t; t0), ϕγG(t; t0)
and ϕγC (t; t0)) and nL charges through the inductors
(i.e., qλM (t; t0), qλR(t; t0) and qλL(t; t0));

• (16) is a system of n = nC +nL ODEs in which the first
nM = γM + λM ODEs are nonlinear, whereas the other
(nC + nL − nM ) ODEs are linear

• in general, the vector u(t, t0) in (12) can be written in
terms of the internal sources as

u(t; t0) = B

(
ϕe(t; t0)
qa(t; t0)

)
7Strictly speaking, the SEs in the normal form are obtained by multiplying

both sides of (16) by M−1.

with B ∈ R(nC+nL)×(nE+nA).
It is useful to write the SEs in a more compact form by

means of the following notations.

nx = γM + λM = nM (17a)
ny = (nC + nL)− nx = n− nx (17b)

x(t) = (ϕγM (t; t0),qλM (t; t0)) ∈ Rnx (17c)
y(t) = (ϕγG(t; t0),qλR(t; t0),ϕγC (t; t0),qλL(t; t0)) ∈ Rny

(17d)
xM (t) = (ϕMγM (t),qMλM (t)) ∈ Rnx (17e)

Mx = diag(CγM ,LλM ) ∈ Rnx×nx (17f)

My = diag(CγG ,LλR ,CγC ,LλL) ∈ Rny×ny (17g)

M = diag(Mx,My) ∈ Rn×n (17h)
F(·) = (f(·), h(·)) : Rnx → Rnx (17i)

u(t; t0) =

(
ux(t)
uy(t)

)
=

(
B11 B12

B21 B22

)(
ϕe(t; t0)
qa(t; t0)

)
(17j)

H = HR + G =

(
H11 H12

H21 H22

)
(17k)

where H11 ∈ Rnx×nx , H12 ∈ Rnx×ny , H21 ∈ Rny×nx and
H22 ∈ Rny×ny , whereas B11 ∈ Rnx×nE , B12 ∈ Rnx×nA ,
B21 ∈ Rny×nE and B22 ∈ Rny×nA .

Note that xM (t) is the state vector (fluxes and charges) of
the memristors and we have

xM (t) = x(t) + xM (t0)⇒ ẋM (t) = ẋ(t),∀t ≥ t0. (18)

In addition the following relationships hold for any t ≥ t0

Mxẋ(t) = Mx

(
vCγM (t)

iLλM (t)

)
=

(
qCγM (t)

ϕLλM (t)

)
(19a)

Myẏ(t) = My


vCγG (t)

iLλR (t)

vCγC (t)

iLλL (t)

 =


qCγG (t)

ϕLλR (t)

qCγC (t)

ϕLλL (t)

 (19b)

Mxẍ(t) = Mx

(
v̇CγM (t)

i̇LλM (t)

)
=

(
iCγM (t)

vLλM (t)

)
(19c)

Myÿ(t) = My


v̇CγG (t)

i̇LλR (t)

v̇CγC (t)

i̇LλL (t)

 =


iCγG (t)

vLλR (t)

iCγC (t)

vLλL (t)

 . (19d)

With these notations, the SEs (16) become(
Mxẋ(t)
Myẏ(t)

)
= −

(
H11 H12

H21 H22

)(
x(t)
y(t)

)
−

(
F(x(t) + xM (t0))

0

)
−
(

ux(t)
uy(t)

)
+

(
F(xM (t0))

0

)
+

(
Mxẋ(t0)
Myẏ(t0)

)
.

This is a system of nC +nL ODEs and the state vector in the
(ϕ, q)–domain is (x(t),y(t))T .

B. SEs of N in the (v, i)-domain

By time–differentiation of (20) the following system of
second-order ODEs are obtained (being ẋ(t) = ẋM (t))(

Mxẍ(t)
Myÿ(t)

)
= −

(
H11 H12

H21 H22

)(
ẋ(t)
ẏ(t)

)
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−
(
JF(xM (t))ẋ(t)

0

)
−
(
u̇x(t)
u̇y(t)

)
(20)

where JF(·) ∈ Rnx×nx is the Jacobian of F(·) (i.e., JF(·) is
defined by memristances and memconductances of the nx =
nM memristors). By (17), (18) and (19), these can be rewritten
as a systems of SEs in the (v, i)–domain as follows

ẋM (t) =

(
ϕ̇MγM

(t)

q̇MλM
(t)

)
=

(
vCγM (t)

iLλM (t)

)
(21a)

Mx

(
v̇CγM (t)

i̇LλM (t)

)
= −(H11 + JF(xM (t)))

(
vCγM (t)

iLλM (t)

)

−H12


vCγG (t)

iLλR (t)

vCγC (t)

iLλL (t)

− u̇x(t)

(21b)

My


v̇CγG (t)

i̇LλR (t)

v̇CγC (t)

i̇LλL (t)

 = −H21

(
vCγM (t)

iLλM (t)

)

−H22


vCγG (t)

iLλR (t)

vCγC (t)

iLλL (t)

− u̇y(t)

(21c)

for t ≥ t0. This is a system of (nx + n) = (nM + nC + nL)
ODEs and the state vector w(t) in the (v, i)–domain is

ϕMγM
(t)

qMλM
(t)

vCγM (t)

iLλM (t)

vCγG (t)

iLλR (t)

vCγC (t)

iLλL (t)


=

 xM (t)
ẋ(t)
ẏ(t)

 = w(t). (22)

IV. ANALYSIS OF MANIFOLDS

As shown in the previous section, under assumptions (A1)–
(A3), the large class of memristor circuits N = ND

⋃NR
admits of the SE representation (20) in the (ϕ, q)–domain.
The aim is to show that from (20) we are able to investigate
the existence of manifolds and the nonlinear dynamics on
manifolds for such class of memristor circuits.

To this end, it is convenient to use the following change of
variables in (20)

X(t) = x(t) + xM (t0) = xM (t) (23a)

Y(t) = y(t)−H−122 (H21xM (t0) + Myẏ(t0)) (23b)

which is well-defined under the additional assumption (named
Assumption 4, or (A4) for short; see also Appendix A).

(A4) Submatrix H22 is nonsingular, i.e., detH22 6= 0.
It follows from (23b) that Y(t) − Y(t0) = y(t) − y(t0)

with Y(t0) = −H−122 (H21xM (t0) + Myẏ(t0)) . Hence, the
change of variables (23) is also equivalent to the following

compact expressions X(t) − xM (t0) = x(t) and Y(t) −
Y(t0) = y(t), that permits to identify the relationship with
the circuit variables given in (17).

By (23) and (20) we can derive the following form of
the SEs in the (ϕ, q)–domain such that manifolds and the
dynamics of N with respect to manifolds can be grasped(

MxẊ(t)

MyẎ(t)

)
= −

(
H11 H12

H21 H22

)(
X(t)
Y(t)

)
−

(
F(X(t))

0

)
−
(

ux(t)
uy(t)

)
+

(
k0

0

)
(24)

where

k0 = S22xM (t0)+F(xM (t0))+Mxẋ(t0)−H12H
−1
22 Myẏ(t0)

(25)
and S22 = H/H22 = (H11 − H12H

−1
22 H21) is the Schur

complement of H22 in H. Note that k0 ∈ RnM depends upon
the ICs (xM (t0), ẋ(t0), ẏ(t0))T for the state variables in the
(v, i)–domain (see equation (22)). The SEs (24) make clear
that k0 plays a crucial role in the nonlinear dynamics and
bifurcation phenomena of N .8

In the following we investigate:
• geometric properties of manifolds, i.e., how the state

space in the (v, i)–domain can be decomposed into
manifolds with specific geometric properties;

• dynamic properties of manifolds, i.e., conditions under
which the manifolds are positively invariant or not for
the dynamics of N in the (v, i)-domain given by the SEs
(21). In the latter case the goal is to study how solutions
of (21) evolve in time through different manifolds.

A. Geometric Properties

Using the expression of k0 in (25), let us introduce:
• the function K(·) : R(nM+nC+nL) → RnM of the state

vector w = (xM , ẋ, ẏ) in the (v, i)–domain9

K(xM , ẋ, ẏ) = S22xM+F(xM )+Mxẋ−H12H
−1
22 Myẏ

(26)
• for any vector k ∈ RnM , the level set M(k) ⊂

R(nM+nC+nL) of K(xM , ẋ, ẏ), which is defined as

M(k) = {w = (xM , ẋ, ẏ) ∈ RnM+nC+nL : K(w) = k}.
(27)

Theorem 1: If (A1)–(A4) are satisfied by N , then the
following geometric properties hold:

1) for any k ∈ RnM ,M(k) defines a nonempty, nonplanar,
(nC + nL)–dimensional manifold in the state space in
the (v, i)–domain;

8Note that k0 depends also on circuit parameters and memristor nonlin-
earities (through the vector F(·) and the submatrices of H and M). In this
manuscript the chief interest is on the dependency on ICs in order to highlight
the concept of bifurcation without parameters, whereas standard bifurcations
due to the change of circuit parameters and memristor nonlinearities are not
considered.

9In this section, the explicit time–dependency of vectors is omitted in order
to highlight the geometric features of the state space in the (v, i)-domain.



7

2) for any k1 6= k2 ∈ RnM , we have M(k2) =M(k1) +
M−1x (k2−k1), i.e., M(k2) can be obtained via a rigid
translation of M(k1), and conversely;

3) there are ∞nM nonintersecting manifolds, obtained by
varying k in RnM , which span the whole (nM + nC +
nL)–dimensional state space in the (v, i)–domain.

Proof: See Appendix B.

B. Dynamic Properties

The dynamic properties of manifolds can be inferred from
the time evolution of the solutions of the SEs (21) through
the (nM + nC + nL)–dimensional state space. Given w0 ∈
R(nM+nC+nL), let w(t; t0,w0) = (xM (t), ẋ(t), ẏ(t)) be the
solution with ICs w0 at t = t0 of the SEs (21) of N in the
(v, i)-domain. Using (26) and (27), if we let

k(t; t0,w0) = K(w(t; t0,w0)), ∀t ≥ t0 (28)

then we have

w(t; t0,w0) ∈M(k(t; t0,w0)), ∀t ≥ t0. (29)

In particular, w0 = (xM (t0), ẋ(t0), ẏ(t0)) ∈ M(k0), where
k0 = K(xM (t0), ẋ(t0), ẏ(t0)) is given in (25).

The next property permits to study the link between the
solution w(t; t0,w0) at any instant t ≥ t0 and its associated
manifold defined in (29).

Property 1: Suppose that (A1)–(A4) are satisfied by N .
Then, the time derivative of k(t; t0,w0) in (28) is given by

k̇(t; t0,w0) = H12H
−1
22 u̇y(t)− u̇x(t) (30)

for any w0 ∈ Rn and t ≥ t0.
Proof: See Appendix C.

The expression (30) can be rewritten to highlight how we
can drive solutions through different manifolds by suitable
independent voltage and/or current sources

k̇(t; t0,w0) = H12H
−1
22 (B21e(t) + B22a(t))

− (B11e(t) + B12a(t)) (31)

from which, by integrating between t0 and t ≥ t0 we have

k(t; t0,w0)− k0 = H12H
−1
22 (B21ϕe(t; t0) + B22qa(t; t0))

− (B11ϕe(t; t0) + B12qa(t; t0)). (32)

The next theorem summarizes the dynamic properties of
manifolds proved so far.

Theorem 2: Suppose that (A1)–(A4) are satisfied by N .
Then, for any w0 ∈ R(nM+nC+nL) we have

w(t; t0,w0) ∈M(k(t; t0,w0)), ∀t ≥ t0
where k(t; t0,w0) is a term depending on the external inde-
pendent sources in N given by

k(t; t0,w0) = H12H
−1
22 (B21ϕe(t; t0) + B22qa(t; t0))

− (B11ϕe(t; t0) + B12qa(t; t0))) + k0 (33)

for any t ≥ t0, and k0 is as in (25).
Given any ICs w0 ∈ R(nM+nC+nL), Theorem 2 permits to

find instant by instant the manifold M(k(t; t0,w0)) contain-
ing the solution w(t; t0,w0) as a linear function of the fluxes
ϕe(t; t0), charges qa(t; t0) and parameters of NR and ND.

In the next section, the r.h.s. of (31) (or equivalently (32))
is specified by voltage and/or current sources exploited in
practical applications of memristor circuits.

C. Manifolds in a Relevant Class of Memristor Circuits

The results derived so far can be rewritten in a simplified
form for the relevant class (see Section VI-B) of memristor
circuits N = ND

⋃NR having a capacitor in parallel to any
flux–controlled memristor and/or an inductor in series with any
charge–controlled memristor. This means that ND has only
elements DϕM and DqM , i.e., γG = γC = λR = λL = µF =
µQ = ρG = ρR = 0. It follows that ny = 0 and that (A2),
(A3) are satisfied. Note that H coincides with H11, hence also
(A4) is satisfied. In addition, Mx = M and ux(t) = u(t) =
B11ϕe(t; t0) + B12qa(t; t0).

If (A1) is met, the SEs in the (ϕ, q)–domain (24) reduce to

MẊ(t) = −HX(t)− F(X(t))− u(t) + k0 (34a)
k0 = F(xM (t0)) + Mẋ(t0) + HxM (t0) (34b)

and those in the (v, i)–domain to

ẋM (t) =

(
ϕ̇γM (t)
q̇λM (t)

)
=

(
vCγM (t)

iLλM (t)

)
(35a)

M

(
v̇CγM (t)

i̇LλM (t)

)
= −(H + JF(xM (t)))

(
vCγM (t)

iLλM (t)

)
− u̇(t) (35b)

whereas (26) simplifies to K(xM , ẋ) = HxM+F(xM )+Mẋ
and (30) in Property 1 becomes

k̇(t; t0,w0) = −u̇(t) = − (B11e(t) + B12a(t)) (36)

for any t ≥ t0. We have k(t; t0,w0) =
− (B11ϕe(t; t0) + B12qa(t; t0)) + k0 for any t ≥ t0,
yielding the manifold M(k(t; t0,w0)) as in (29) and a result
analogous to Theorem 2 is obtained, then.

V. PROGRAMMING MEMRISTOR CIRCUITS WITH PULSES
AND TIME-VARYING INPUTS

Theorems 1 and 2 permit to investigate the dynamic prop-
erties of autonomous and nonautonomous memristor circuits
N = ND

⋃NR by studying how the independent sources
drive solutions w(t; t0,w0) of N through different manifolds
in the (nM + nC + nL)–dimensional state space in the (v, i)-
domain. In practical applications, the following main types of
independent sources can be considered with regard to (31):
• memristor circuits N with no external sources, i.e.,

e(t) = a(t) = 0 for any t ≥ t0;
• memristor circuits N subject to external pulses with

finite time duration, i.e., voltage e(t) and current a(t)
sources vary over a finite time interval [t0, t1] with
0 < t1 − t0 = ∆ <∞. The external sources are zero for
any t ≥ t1. This class of pulses10 defines ϕe(t; t0) and
qa(t; t0) as sources with “constant momentum” in the

10For simplicity, impulsive voltage and current sources instantaneously
applied at t0 can be considered by including their effects in the ICs.



8

(ϕ, q)–domain for t ≥ t1 (following the nomenclature
introduced in [20]) and it is widely used in the exper-
imental characterization of memristor devices and the
programming of memristor–based neuromorphic systems;

• memristor circuits N with voltage sources e(t) and/or
current sources a(t) varying over the infinite time in-
terval [t0,+∞), i.e., N has sources with “time–varying
momentum” in the (ϕ, q)–domain. Typical examples used
in several applications are:

– the class of sinusoidal voltage e(t) and/or current
a(t) generators (usually considered in memristor–
based filters), giving sources ϕe(t; t0) and qa(t; t0)
with sinusoidal momentum in the (ϕ, q)–domain;

– the class of constant voltage e(t) and/or current a(t),
providing sources ϕe(t; t0) and qa(t; t0) with linear
time–varying momentum in the (ϕ, q)–domain.

A. Memristor Circuits with no External Sources

Let us consider memristor circuits N = ND
⋃NR satisfy-

ing (A1)–(A4) with no voltage and/or current sources, that is
N is an autonomous memristor circuit with e(t) = a(t) = 0
for any t ≥ t0. It turns out that ϕe(t; t0) = 0 and qa(t; t0) = 0
in the (ϕ, q)–domain as well. Hence, u̇x(t; t0) = 0 and
u̇y(t; t0) = 0 and (30) becomes k̇(t; t0,w0) = 0 for any
w0 ∈ Rn and t ≥ t0, i.e., K(xM , ẋ, ẏ) in (26) is an invariant
of motion for N in the (v, i)–domain.

The following property summarizes the dynamics on man-
ifolds of autonomous memristor circuits.

Property 2: Let us consider a memristor circuit N with no
external sources satisfying (A1)–(A4). Then, for any w0 ∈
R(nM+nC+nL) we have w(t; t0,w0) ∈ M(k0), ∀t ≥ t0,
where k0 is given in (25). Moreover, the reduced–order
dynamics on M(k0) for any t ≥ t0 is described in the
(ϕ, q)-domain by the SEs (24). Finally, for any k ∈ RnM ,
the manifold M(k) defined in (27) is positively invariant for
the dynamics of N in the (v, i)–domain.

B. Memristor Circuits Subject to Pulses

Let us consider memristor circuits N = ND
⋃NR satisfy-

ing (A1)–(A4) and subject to sources with constant momentum
in the (ϕ, q)–domain for t ≥ t1. We have

ϕe(t; t0) = ϕe(t1; t0) =

∫ t1

t0

e(τ)dτ = ē∆,∀t ≥ t1

qa(t; t0) = qa(t1; t0) =

∫ t1

t0

a(τ)dτ = ā∆,∀t ≥ t1

where ē and ā are the mean values of e(t) and a(t) over
[t0, t1], respectively. Using these expressions, (32) becomes

k(t1; t0,w0) = k1 = k0 + ku (38)

where

ku = H12H
−1
22 (B21ē + B22ā)∆− (B11ē + B12ā)∆ (39)

takes into account the effect of the external pulses on the initial
manifold M(k0).

Given the initial manifold M(k0), (38) and (39) permit to
design the external pulses of e(t) and/or a(t) such that the
dynamics of N evolves on an assigned manifold M(k1) =
M(k0 + ku) for any t ≥ t1. Also note that the dynamics of
N is governed by the nonautonomous ODEs (24) with

ux(t) = B11

∫ t

t0

e(τ)dτ + B12

∫ t

t0

a(τ)dτ (40a)

uy(t) = B21

∫ t

t0

e(τ)dτ + B22

∫ t

t0

a(τ)dτ (40b)

for any t ∈ [t0, t1). Point 3) in Theorem 1 ensures that the
effect of ux(t) and uy(t) is to drive the solution w(t; t0,w0)
from manifold M(k0) to M(k1), i.e., for any t ∈ [t0, t1) the
dynamics of N is continuously embedded inM(k(t, t0,w0))
– see (28) – where M(k0) and M(k1) represent the “initial”
and “final” manifolds, respectively.

The following property summarizes the dynamics on man-
ifolds for memristor circuits subject to pulses with constant
momentum for t ≥ t1.

Property 3: Let us consider a memristor circuit N
satisfying (A1)–(A4) and with constant momentum
sources (37) in the (ϕ, q)–domain for t ≥ t1.
Then, for any w0 ∈ R(nM+nC+nL) we have
w(t; t0,w0) ∈ M(k1), ∀t ≥ t1, where k1 = k0 + ku,
k0 is given in (25) and ku in (39) describes the effect of
constant momentum sources. The reduced-order dynamics
on M(k1) are described in the (ϕ, q)-domain by the SEs
(24) with k0 replaced by k1, ux(t) by (B11ē + B12ā)∆ and
uy(t) by (B21ē + B22ā)∆, for any t ≥ t1.

Remark 2: Constant voltage and current momentum
sources for t ≥ t1 in (37) can be obtained by means of
voltage e(t) and/or current a(t) sources with different pulse
duration and amplitude, that is, only the area (i.e., the
momentum) of the waveforms e(t) and/or a(t) over different
finite time intervals is important to set the manifold M(k1)
on which the dynamics of N takes place once all the pulses
are over. This result agrees with the experimental results
available in literature that show how memristors can be
programmed (almost) in the same way by using triangular or
squared pulses or finite impulse trains.

C. Memristor Circuits with Time–varying Sources

Let us consider memristor circuits N with voltage sources
e(t) and/or current source a(t) varying over the infinite time
interval [t0,+∞), i.e., N has sources with “time–varying
momentum” in the (ϕ, q)–domain. In this case the dynamics of
N for any t ≥ t0 is governed by the nonautonomous ODEs
(24) with input ux(t) and uy(t) given by (40). Hence, any
solution w(t; t0,w0) of N is embedded into the (continuous)
family of manifolds parametrized by time t ∈ [t0,+∞) (see
(32) and Theorem 2) M(k0 + H12H

−1
22 uy(t)− ux(t)).

Although the solution of N is instant by instant on a
known manifold, complex dynamic behavior and bifurcation
phenomena can emerge due to the effect of the external sources
with time–varying momentum in the (ϕ, q)–domain.
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Figure 3: Memristor Chaotic Circuit (MCC) N with sources
qa(t; t0) and ϕe(t; t0). The matrix H corresponds to the hybrid
representation of the three–port linear network NR connected to the
elements DϕM , DϕC and DqL (note that λG = λR = 0).

The next section presents selected examples for a thorough
illustration of the explicit form of the SEs of memristor circuits
N = ND

⋃NR and their programming by tuning invariant
manifolds via suitable external sources.

VI. EXAMPLES

A. Memristor Chaotic Circuit

Consider the Memristor Chaotic Circuit (MCC) N obtained
from that in [2, Fig. 18] by connecting sources qa(t; t0) and
ϕe(t; t0) as in Fig. 3. The only non—zero parameters that give
the number of elements Dϕ and Dq are: γM = 1, γC = 1 and
λL = 1. Hence, nC = 2, nL = 1 and then nM = nx = 1,
ny = 2. A simple circuit analysis permits to prove that MCC
satisfies (A1)–(A3) and derive H and B in (16) (being G = 0
since there are no negative resistors, and nE = nA = 1)

H11 =
1

R
, H12 =

(
− 1
R 0

)
= HT

21 (41a)

H21 =

(
− 1
R

0

)
, H22 =

(
1
R −1
1 r

)
(41b)

B11 = − 1

R
, B12 = −1 (41c)

B21 =

(
1
R
1

)
, B22 =

(
1
−r

)
. (41d)

Since detH22 6= 0, (A4) holds and MCC is described
by the SEs (20) in the (ϕ, q)–domain where (see Fig. 3)
xM (t) = ϕMγM

(t) = ϕγM (t; t0) + ϕMγM
(t0) = ϕM (t),

(with ϕMγM
(t0) = ϕM0 ), x(t) = ϕγM (t; t0) = ϕC1(t; t0),

y(t) = (ϕγC (t; t0), qλL(t; t0))T = (ϕC2
(t; t0), qL(t; t0))T ,

ux(t) = − 1

R
ϕe(t; t0)− qa(t; t0)

= B11ϕe(t; t0) + B12qa(t; t0) (42a)

uy(t) =

(
1
R
1

)
ϕe(t; t0) +

(
1
−r

)
qa(t; t0)

= B21ϕe(t; t0) + B22qa(t; t0). (42b)

Hence, w = (xM , ẋ, ẏ) = (ϕM , vC1
, vC2

, iL)T in the
(v, i)–domain and function K(ϕM , vC1 , vC2 , iL) and the as-
sociated manifolds M(k) (see (26)–(27)) are

K(ϕM , vC1 , vC2 , iL) =
1

r +R
ϕM + f(ϕM )

+ C1vC1
+

rC2

r +R
vC2

+
L

r +R
iL

(43a)

M(k) = {w ∈ R4 : K(ϕM , vC1
, vC2

, iL) = k},∀k ∈ R.
(43b)

Note thatM(k) coincides with the expression in [2, eqs. (27)–
(28)]. The 4–dimensional state space (ϕM , vC1

, vC2
, iL) in the

(v, i)-domain is completely spanned by the∞1 3–dimensional
manifolds M(k) by varying k in R.

A simple calculation based on Property 1 and (31) yields

k̇(t; t0,w0) = a(t)

because H12H
−1
22 B21 = B11 and H12H

−1
22 B22 = 0. Then,

the solution of the SEs (21) in the (v, i)–domain, with H and
B in (41), and ICs w0 = (ϕM (t0), vC1(t0), vC2(t0), iL(t0))T

• evolves on the invariant manifold M(k0) for any t ≥ t0,
being k0 = K(w0), when qa(t; t0) = 0 for any t ≥ t0
(cf. Property 2)

• evolves on the invariant manifold M(k1) for t ≥ t1,
being k1 = k0 + ā∆, when qa(t; t0) is a constant
momentum source for t ≥ t1 as in (37) (e.g., qa(t; t0)
in Fig. 4)

• explores the manifolds M(k0 + a(t)) when qa(t; t0) is a
time–varying momentum source.

The analysis makes also clear that the external source
ϕe(t; t0) plays no role in the bifurcation phenomena of MCC.
Numerical simulations confirm such qualitative analysis.

1) Numerical simulations: The nonlinear dynamic behavior
of MCC in Fig. 3 is simulated for any t ≥ t0 = 0 by using the
SEs (24) in the (ϕ, q)–domain and (42). Noting that Mx =
C1, My = diag(C2, L) and introducing the dimensionless
variables z1(τ) = X(τ), z2(τ) = Y1(τ), z3(τ) = RY2(τ) by
means of (23) (see also the derivation of (25) from (22) and
Table I in [2]), the following normalized equations are derived
(n(·) = Rf(·), R = 1 kΩ, r = 0)

d z1(τ)

d τ
= α [−z1(τ) + z2(τ)− n(z1(τ))− w1(τ) + k0]

(44a)
d z2(τ)

d τ
= z1(τ)− z2(τ) + z3(τ)− w2(τ) (44b)

d z3(τ)

d τ
= −βz2(τ)− w3(τ) (44c)

z1(0) = ϕM (0)

z2(0) = −LiL(0)

z3(0) = −ϕM (0) + C2vC2(0)− LiL(0)

where w1(τ) = −ϕe(τ ; τ0) − qa(τ ; τ0) = −w2(τ), w3(τ) =
ϕe(τ ; τ0), Y(0) = −H−122 (H21ϕM (0) + Myẏ(0)), the CR of
the memristor is n(z1) = −m0z1 +m1z

3
1 with m0 = 8/7 and

m1 = 4/63, τ = t/(RC2) is the normalized time (in [µs]),
α = C2/C1, β = (R2C2)/L = C2/L.
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Let us consider ϕe(τ ; τ0) = 0 (i.e., w3(τ) = 0, ∀τ ≥ 0) and
the constant momentum source ux(τ) = −qa(τ ; 0) = w1(τ)
(cf. (42)) shown in Fig. 4, which is defined by rectangular
pulses a(τ) with finite time duration ∆ = 10 and amplitude
A 6= 0 between the instants T0 = 300 and T1 = T0 + ∆ =
310 (normalized time units). Given the ICs in the (v, i)-
domain w0 = (ϕM (0), vC1

(0), vC2
(0), iL(0))T , the SEs (44)

describe the dynamics of MCC on the manifold M(k0) with
k0 = ϕM (0) + n(ϕM (0)) + C1vC1(0) + LiL(0) (see (25)
with the normalized values R = 1 and r = 0) as long as
the constant momentum source qa(τ ; 0) is zero, i.e., for all
τ ∈ [0, T0]. As shown in [2, Fig. 21(a)], MCC exhibits a
double–scroll when the ICs w0 are such that k0 = 0. Let
us assume k0 = 0 and show that the nonlinear dynamics
of MCC can be programmed by means of suitable pulses
a(·) with finite time duration as those in Fig. 4. Due to
the pulse, the dynamics evolves from the manifold M(k0)
onto a different manifold M(k1) for τ > T1, where k1
is given by (38), i.e., k1 = ku = A∆. Suppose we first
choose A = −0.00281. In this case it is apparent that the
dynamics for τ > T1 on the manifold M(−0.0281) results
to be the spiral chaotic attractor shown in [2, Fig. 21(c)].
Fig. 5 shows how the pulse with A = −0.00281 in Fig. 4
induces a bifurcation of the chaotic attractor in MCC of Fig.
3 with fixed circuit parameters α = 9.5 and β = 15. Such
results are also shown in Fig. 5b where the whole waveforms
of X(τ), Y1(τ) and Y2(τ) are reported for τ ∈ [0, 1000]. It
is seen that the double–scroll chaotic attractor (blue curve)
for k0 = 0 (i.e., for 0 ≤ τ ≤ T0) turns into a spiral chaotic
attractor (green curve) for k1 = −0.0281 (i.e., for τ ≥ T1).
When the pulse in Fig. 4 is applied (i.e., T0 ≤ τ ≤ T1) the
dynamics (red curve in Fig. 5a) evolves from the manifold
M(k0 = 0) to M(k1 = 0.0281), i.e., from the double–
scroll to the spiral chaotic attractor. Similar results have been
obtained if the rectangular pulses in Fig. 4 are replaced by
triangular pulses or pulses with arbitrary waveforms, provided
their charge momentum is equal to −0.0281.

Fig. 6 shows how the pulse with A = 0.00781 in Fig. 4
induces a different bifurcation. With reference to Fig. 6, the
blue curve is the dynamics for 0 ≤ τ ≤ 300, (i.e., when the
pulse has not yet been applied), the red curve is the dynamics
for 300 ≤ τ ≤ 310 (i.e., when the pulse is applied) and the
green curve is the dynamics for τ ≥ 310 (i.e., when the pulse is
over). It is apparent that in this case the double–scroll chaotic
attractor turns into a period-three limit cycle (black curve in
Fig. 6) due to the pulse.

Several other Pulse–Induced Bifurcations (PiB) have been
observed in other memristor circuits N = NR

⋃ND (sim-
ulations are not reported here for the lack of space). Such
numerical simulations allow us to draw the important con-
clusion that the nonlinear dynamics of memristor circuits
can be programmed via pulse with finite time duration (i.e.,
constant momentum sources in the (ϕ, q)–domain) and the
analysis through manifolds in the (ϕ, q)–domain permits to
effectively design the required pulse parameters (i.e., duration
and amplitude).
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0 x 10 3

a(
 )
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 )
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A= 0.00281

A=0.00781

A = 0.0281

A =0.0781

Figure 4: The current source a(t) is a rectangular pulse with finite
time duration such that qa(t; t0) in Fig. 3 represents a constant
momentum source. The pulses have amplitude A 6= 0 only between
T0 = 300 and T1 = 310 (i.e., ∆ = 10 in normalized time units); we
have A = −0.00281 (upper part) and A = 0.00781 (bottom part).

B. Memristor Star–CNNs
In this short section we discuss potential applications of

the flux–charge analysis method and pulse programming of
nonlinear dynamics on manifolds in large memristor circuits.

Let us consider neural networks with a star topology and
a large number N of cells, where each cell is represented
by an element Dϕ with a capacitor and a flux–controlled
memristor in parallel. Neural networks with a star topology
are also referred to as Star–CNNs ([25], [26]). Hereinafter,
the studied Star–CNNs with memristors are named Memristor
Star–CNNs (MS–CNNs). It is apparent that MS–CNNs fall
into the class of memristor circuits described in Section IV-C.
To simplify the notation, time is not explicitly reported, we
let t0 = 0 and denote ϕ(i)

γM = ϕi, q
(i)
γM = qi, ϕ

(i)
M (0) = ϕM0i

and G =
∑N
j=1Gj (see Fig. 7). The vectors of fluxes

ϕ = (ϕ1, . . . , ϕN )T , charges q = (q1, . . . , qN )T , ϕM0
=

(ϕM01
, . . . , ϕM0N

)T and ϕe = (ϕe1 , . . . , ϕeN )T permit to
write via Millmann’s theorem the SEs of MS–CNNs in the
(ϕ, q)–domain in the compact form (see also (34))

Mϕ̇ = −Hϕ− F (ϕ + ϕM0
) + k0 − u (45a)

k0 = F (ϕM0
) + Mϕ̇M0

+ HϕM0
(45b)

ϕ(0) = ϕM0

where u = Hϕe + B12qa, the entry (i, j) of B11 (for 1 ≤
i ≤ N and 1 ≤ j ≤ N ) is [B11]ij = −GiGj/G, H =
diag(G1, . . . , GN ) + B11, B12 = (−G1/G, . . . ,−GN/G)T

and M = diag(C1, . . . , CN ).
If u is constant, the number and stability properties of

equilibrium points in the MS-CNNs described by (45) depend
on k0 and u. In particular, bifurcations of such equilibria can
be induced by applying pulses with finite time duration by
means of ϕe and qa, which cause a change of k0 into k0+ku
with ku given in (39). No further analysis is presented for the
lack of space. A detailed investigation of MS-CNNs will be
reported in a further work.

VII. CONCLUSION

The paper has provided an explicit general form for the
SEs of a broad class of memristor circuits with an arbitrary
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Figure 5: Pulse-induced Bifurcations of the chaotic attractor in MCC
of Fig. 3 with fixed circuit parameters α = 9.5 and β = 15. The
double–scroll chaotic attractor (blue curve) for k0 = 0 (i.e., for 0 ≤
τ ≤ T0) turns into a spiral chaotic attractor (green curve) for k1 =
−0.0281 (i.e., for τ ≥ T1). When the pulse in Fig. 4 is applied
(i.e., T0 ≤ τ ≤ T1) the dynamics (red curve) evolves from manifold
M(k0 = 0) to manifold M(k1 = 0.0281), i.e., from the manifold
with a double–scroll chaotic attractor to a manifold with a spiral
chaotic attractor.
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Figure 6: Bifurcation induced by the pulse in Fig. 4 with A =
0.00781. The double–scroll chaotic attractor turns into a period-three
limit cycle. The black curve represents the period-three limit cycle
when τ ∈ [900, 1000].

number of inductors, capacitors and flux– or charge–controlled
memristors. In the spirit of [21], conditions for the existence
of the SEs are couched in graph–theoretic terms and as such
they can be checked by inspection on the circuit topology.
On the basis of the SEs it is shown that the state space in the
(v, i)–domain can be decomposed in infinitely many manifolds
and that, in the autonomous case, each manifold is positively
invariant for the dynamics and is characterized by a reduced–
order dynamics and attractors in the (ϕ, q)–domain. The chief

Dϕ
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q1

ϕ1
G1

ϕe1

Dϕ
M2

q2

ϕ2
G2

ϕe2

Dϕ
MN

qN

ϕN
GN

ϕeN

qa

NR

2

Figure 7: Memristor Star–CNNs. Each cell is represented by an
element DϕM with a capacitor and a flux–controlled memristor in
parallel. The matrix H corresponds to the hybrid representation of
the N–port linear network NR.

results in the paper concern the non–autonomous case where
time–varying independent sources are present. In such a case,
general explicit formulas are obtained for designing pulses
with finite time-duration in order to program the different
nonlinear dynamics that can be displayed by the memristor
circuits, i.e., to drive at one will solutions between different
manifolds, reduced dynamics and attractors. This gives a sound
theoretical foundation to a common practice for changing the
dynamics in memristor circuits that has been so far mainly
based on experimental trials and/or heuristic means.

APPENDIX A
NONSINGULARITY OF H22

We provide some brief considerations about assumption
(A4). Consider for simplicity a network N satisfying (A1)–
(A3) with only one flux–controlled memristor M in parallel
to C1. Also suppose that N has only positive resistors, i.e.,
γG = λR = ρG = ρR = 0. In this case, we can show that
(A4) is satisfied, i.e., detH22 6= 0, if and only if the next
topological assumption holds.

(A5) The network N has no cutsets made of capacitors
C2, . . . , CnC and/or charge sources and no loops made
of M , inductors L1, . . . , LnL and/or flux sources.

The proof, which is omitted due to space limitations, follows
by an argument for testing the nonsingularity of the hybrid
representation of NR as in Corollary 3 in [24].11 Furthermore,
if (A4) fails, then the state space in the (v, i)–domain can be
decomposed in ∞1 planar manifolds. To see this, note that,
since also (A5) fails, there exists for instance a loop made
by M,L1, . . . , LnL and/or flux sources. Suppose the loop is
made by M,L1, L2 and a flux source ϕe(t). Assuming a
positive sign before each voltage term, the Kirchhoff Voltage
Law yields d(ϕM (t) + L1iL1

(t) + L2iL2
(t))/dt = −e(t) for

11For example, it can be verified that the memristor chaotic circuit in Fig.
3 satisfies (A5), and indeed we have explicitly seen that detH22 6= 0.
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any t ≥ t0. Then, we can identify ∞1 manifolds M(k) =
{(ϕM , vC1 , . . . , vCnC , iL1 , . . . , iLnL )T ∈ RnC+nL+1 : ϕM +
L1iL1 + L2iL2 = k}, k ∈ R, spanning the state space, with
properties analogous to those found in Sections IV and V.
Each manifold is an (nC + nL)–dimensional plane.

In the more general case where N has also negative resis-
tors, we have been able so far to obtain only some preliminary
results. For example, it can be seen that (A5) is a necessary
but not sufficient condition for (A4). Also in this case, when
(A4) fails, it is possible to prove via algebraic arguments the
existence of ∞1 planar manifolds into which the state space
in the (v, i)–domain can be decomposed. However, it seems
difficult to find such manifolds via topological arguments.

APPENDIX B
PROOF OF THEOREM 1

1) Given any k ∈ RnM , it can be easily checked thatM(k)
contains at least the point w = (0,M−1x (k− F(0)), 0),
hence M(k) 6= ∅. The manifold M(k) is non-planar
due to the nonlinear function F(·). Finally, function
K(w) = k specifies nM constraints in the (nM +
nC + nL)-dimensional state space in the (v, i)-domain.
Hence, the dimension of M(k) is given by (nC + nL)
independent state variables in the (v, i)–domain.

2) Consider the following class of rigid translations: xM →
xM , ẋ → ẋ + ∆ẋ, ẏ → ẏ + ∆ẏ. Also consider the
equation Mx∆ẋ−H12H

−1
22 My∆ẏ = k2−k1, that has

a solution ∆ẋ = M−1x (k2 − k1), ∆ẏ = 0 and possibly
other solutions. We have K(w+(0, ∆ẋ, 0)) = K(w)+
k2 − k1. This means that, for any w ∈ M(k1), we
have w + (0, ∆ẋ, 0) ∈ M(k2). Conversely, for any
w ∈M(k2) we have w − (0, ∆ẋ, 0) ∈M(k1).

3) Manifolds are nonintersecting because if there exist w ∈
M(k1)

⋂M(k2), with k1 6= k2, then K(w) = k1 and
K(w) = k2, i.e., w is mapped by K(·) in two distinct
vectors k1 and k2, while K(·) in (26) is a (single–
valued) function. Since manifolds are parametrized by
the nM–dimensional vector k, we conclude that there
are∞nM nonintersecting manifolds. To see that they fill
the whole state space, it is enough to note that, given
any point w, we have w ∈M(K(w)).

APPENDIX C
PROOF OF PROPERTY 1

Due to (26), being ẋM (t) = ẋ(t), we have k̇(t; t0,w0) =
S22ẋ(t)+JF(xM (t))ẋ(t)+Mxẍ(t)−H12H

−1
22 Myÿ(t). Using

such equation, the expression in (30) is easily obtained by the
following relationships derived from (21)

JF(xM (t))ẋ(t) + Mxẍ(t) = −H11ẋ(t)−H12ẏ(t)− u̇x(t)

Myÿ(t) = −H21ẋ(t)−H22ẏ(t)− u̇y(t).

REFERENCES

[1] F. Corinto and M. Forti, “Memristor circuits: Flux–charge analysis
method,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 63, no. 11,
pp. 1997–2009, Nov. 2016, DOI: 10.1109/TCSI.2016.2590948.

[2] ——, “Memristor circuits: Bifurcations without parameters,” IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 64, 2017, published online.
DOI: 10.1109/TCSI.2016.2642112.

[3] M. Itoh and L. O. Chua, “Memristor oscillators,” Int. J. Bifurcation
Chaos, vol. 18, no. 11, pp. 3183–3206, 2008.

[4] R. Riaza and C. Tischendorf, “Semistate models of electrical circuits
including memristors,” Int. J. Circuit Theory Applicat., vol. 39, no. 6,
pp. 607–627, 2011.

[5] A. Ascoli, R. Tetzlaff, L. O. Chua, J. P. Strachan, and R. S. Williams,
“History erase effect in a non-volatile memristor,” IEEE Trans. Circuits
Syst. I: Reg. Papers, vol. 63, no. 3, pp. 389–400, 2016.

[6] A. Ascoli, F. Corinto, and R. Tetzlaff, “Generalized boundary condition
memristor model,” Int. J. Circuit Theory Appl., vol. 44, no. 1, pp. 60–84,
2016.

[7] A. Ascoli, S. Slesazeck, H. Mähne, R. Tetzlaff, and T. Mikolajick, “Non-
linear dynamics of a locally-active memristor,” IEEE Trans. Circuits
Syst. I: Reg. Papers, vol. 62, no. 4, pp. 1165–1174, 2015.

[8] J. Secco, F. Corinto, and A. Sebastian, “Flux–charge memristor model
for phase change memory,” IEEE Trans. Circuits Syst. II: Expr. Briefs,
2017.

[9] M. Orlowski, J. Secco, and F. Corinto, “Chua’s constitutive memristor
relations for physical phenomena at metal–oxide interfaces,” IEEE J.
Emerg. Selec. Topics Circuits Syst., vol. 5, no. 2, pp. 143–152, 2015.

[10] F. Corinto, P. P. Civalleri, and L. O. Chua, “A theoretical approach to
memristor devices,” IEEE J. Emerg. Selec. Topics Circuits Syst., vol. 5,
no. 2, pp. 123–132, 2015.

[11] J. Ma, F. Wu, G. Ren, and J. Tang, “A class of initials-dependent
dynamical systems,” Appl. Math. Comput., vol. 298, pp. 65–76, 2017.

[12] B. Bao, N. Wang, Q. Xu, H. Wu, and Y. Hu, “A simple third-order
memristive band pass filter chaotic circuit,” IEEE Trans. Circuits Syst. II:
Expr. Briefs, 2016, published online. DOI:10.1109/TCSII.2016.2641008.

[13] B. Bao, T. Jiang, Q. Xu, M. Chen, H. Wu, and Y. Hu, “Coexisting
infinitely many attractors in active band-pass filter-based memristive
circuit,” Nonlinear Dynamics, vol. 86, no. 3, pp. 1711–1723, 2016.

[14] A. Buscarino, C. Corradino, L. Fortuna, M. Frasca, and L. O. Chua,
“Turing patterns in memristive cellular nonlinear networks,” IEEE Trans.
Circuits Syst. I: Reg. Papers, vol. 63, no. 8, pp. 1222–1230, 2016.

[15] V.-T. Pham, S. Vaidyanathan, C. Volos, S. Jafari, N. Kuznetsov, and
T. Hoang, “A novel memristive time-delay chaotic system without
equilibrium points,” Eur. Phys. J.: Spec. Topics, vol. 225, no. 1, pp.
127–136, 2016.

[16] R. Riaza, “Manifolds of equilibria and bifurcations without parameters
in memristive circuits,” SIAM J. Appl. Math., vol. 72, no. 3, pp. 877–896,
2012.

[17] B. Bao, Z. Ma, J. Xu, Z. Liu, and Q. Xu, “A simple memristor chaotic
circuit with complex dynamics,” Int. J. Bifurc. Chaos, vol. 21, no. 9,
pp. 2629–2645, 2011.

[18] Q. Li, S. Hu, S. Tang, and G. Zeng, “Hyperchaos and horseshoe in a
4D memristive system with a line of equilibria and its implementation,”
Int. J. Circuit Theory Appl., vol. 42, no. 11, pp. 1172–1188, 2014.

[19] F. Corinto, A. Ascoli, and M. Gilli, “Analysis of current–voltage
characteristics for memristive elements in pattern recognition systems,”
Int. J. Circuit Theory Appl., vol. 40, no. 12, pp. 1277–1320, Dec. 2012.

[20] F. Corinto, P. P. Civalleri, and L. O. Chua, “A theoretical approach to
memristor devices,” IEEE J. Emerg. Select. Topics Circuits Syst., vol. 5,
no. 2, pp. 123–132, 2015.

[21] L. O. Chua, “Dynamic nonlinear networks: state-of-the-art,” IEEE Trans.
Circuits Syst., vol. 27, no. 11, pp. 1059–1087, 1980.

[22] M. Hasler, “State equations for active circuits with memristors,” in
Chaos, CNN, Memristors and Beyond: A Festschrift for Leon Chua.
World Scientific, 2013, pp. 518–528.

[23] W. K. Chen, Applied graph theory. Netherlands: North-Holland, 1976.
[24] H. C. So, “On the hybrid description of a linear n–port resulting from

the extraction of arbitrarily specified elements,” IEEE Trans. Circuit
Theory, vol. CT–12, no. 3, pp. 381–387, 1965.

[25] M. Itoh and L. O. Chua, “Star cellular neural networks for associative
and dynamic memories,” Int. J. Bifurc. Chaos, vol. 14, no. 05, pp. 1725–
1772, 2004.

[26] F. Corinto, M. Gilli, and T. Roska, “On full-connectivity properties of
locally connected oscillatory networks,” IEEE Trans. Circuits Syst. I:
Reg. Papers, vol. 58, no. 5, pp. 1063–1075, 2011.

[27] L. O. Chua, “Memristor-The missing circuit element,” IEEE Trans.
Circuit Theory, vol. 18, no. 5, pp. 507–519, 1971.


