
10 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

ReDO: Cross-Layer Multi-Objective Design-Exploration Framework for Efficient Soft Error Resilient Systems / Savino,
Alessandro; Vallero, Alessandro; Di Carlo, Stefano. - In: IEEE TRANSACTIONS ON COMPUTERS. - ISSN 0018-9340. -
STAMPA. - 67:10(2018), pp. 1462-1477. [10.1109/TC.2018.2818735]

Original

ReDO: Cross-Layer Multi-Objective Design-Exploration Framework for Efficient Soft Error Resilient
Systems

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TC.2018.2818735

Terms of use:

Publisher copyright

©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2704265 since: 2019-07-16T15:31:11Z

IEEE Computer Society



1

ReDO: Cross-Layer Multi-Objective
Design-Exploration Framework for Efficient Soft

Error Resilient Systems
Alessandro Savino, Member, IEEE, Alessandro Vallero, Member, IEEE, and Stefano Di Carlo Senior

Member, IEEE

Abstract—Designing soft errors resilient systems is a complex engineering task, which nowadays follows a cross-layer approach. It
requires a careful planning for different fault-tolerance mechanisms at different system’s layers: starting from the technology up to the
software domain. While these design decisions have a positive effect on the reliability of the system, they usually have a detrimental
effect on its size, power consumption, performance and cost. Design space exploration for cross-layer reliability is therefore a
multi-objective search problem in which reliability must be traded-off with other design dimensions. This paper proposes a cross-layer
multi-objective design space exploration algorithm developed to help designers when building soft error resilient electronic systems.
The algorithm exploits a system-level Bayesian reliability estimation model to analyze the effect of different cross-layer combinations of
protection mechanisms on the reliability of the full system. A new heuristic based on the extremal optimization theory is used to
efficiently explore the design space. Two exploration strategies are proposed. The first strategy aims at optimizing the reliability of the
system alone. It is suited in those cases in which reaching a given reliability target is the sole goal. It focuses on finding a reduced set
of system’s components that, when protected, allow the designer to reach the desired reliability level. As a positive effect, by reducing
the number of protected components, the overhead introduced by the fault tolerance techniques is reduced as well. The second
strategy jointly considers the effect that the introduced fault-tolerance mechanisms have on the execution time, power, hardware area
and software size. This strategy supports the exploration of the design space setting multiple objectives on different design dimensions.
An extended set of simulations shows the capability of this framework when applied both to benchmark applications and realistic
systems, providing optimized systems that outperform those obtained by applying state-of-the-art cross-layer reliability techniques.

Index Terms—Cross-layer Reliability, extremal optimization, multi-objective optimization, soft errors

F

1 INTRODUCTION

IN highly integrated systems, process innovations and
miniaturization have led to higher vulnerability to faults,

and in particular to soft errors [1], [2]. Soft errors are tran-
sient faults that manifest as bit flips in a hardware structure.
They can be caused by either internal or external sources
such as high energy particle strikes [3]. The effect of soft
errors may impact the correctness of the computation [4].

Unavoidably, designers devote significant resources (i.e.,
effort, budget, circuit area and computation time) to ensure
sufficient resiliency to soft errors before a computing system
is released to market. This activity is supported by a reach
literature on soft error resilience techniques, many of which
span multiple abstraction layers. A comprehensive survey
of different reliability threats and single and cross-layer
dependability approaches can be found in [5].

In a cross-layer soft error resilient system, soft error
management (i.e., detection, diagnosis, reconfiguration, re-
covery and adaptation) is performed by a combination of
hardware and software protection techniques implemented
at different layers of the system stack [6], [7], [8], [9].

In this context, reliability related design decisions re-
garding the target hardware architecture, running software
and their related fault-tolerance mechanisms are always

• A. Savino, A. Vallero and S. Di Carlo are with the Department of Control
and Computer Engineering, Politecnico di Torino, Torino, Italy, 10129.
E-mail: name.surname@polito.it

translated into performance, area and power overheads [10].
This motivates the need to perform Design-Space Explo-
ration (DSE) in order to take design decisions driven by
a multi-objective optimization goal, in which reliability is
traded-off with other design dimensions [10]. However, the
number of constraints and parameters to consider when
performing this task is rapidly growing to a level that
cannot be handled anymore by system designers without
the support of proper automatic DSE tools.

The literature presenting automatic multi-objective DSE
techniques for cross-layer soft error resilience systems is
rapidly growing, with several research groups addressing
the problem from different perspectives (see section 2 for a
survey of relevant works).

This paper proposes ReDO (Reliability Design Opti-
mizer), a DSE framework to build soft error resilient com-
puting systems. ReDO is designed to support the early
phase of the design of a computing system. It evaluates
the application of selected classes of cross-layer soft error
protection techniques taking into account multiple design
objectives. Exploiting this framework during the design
phase, reliability can be traded-off with other design con-
straints, i.e., hardware area, software size, performance and
power consumption.

ReDo internally models the target system resorting to
an extended version of the reliability model proposed by
Vallero at al. in [9]. This model provides a very compact



2

component based representation of the system stack (from
the fabrication technology up to the software layer) based
on a Bayesian model. The model is designed to analyze the
resiliency of the system to soft errors according to different
reliability metrics. More importantly, it enables to estimate
the impact of a design decision (i.e., application of a selected
protection mechanism to a selected component) on the relia-
bility of the global system. It represents a good compromise
between the accuracy of the evaluated reliability metrics and
the complexity of the analysis, which is a challenging task
when considering cross-layer reliability techniques.

On top of the reliability model of the system, ReDO
introduces a new exploration heuristic, based on the ex-
tremal optimization (EO) theory [11]. The heuristic is able
to efficiently explore the design space composed of different
combinations of cross-layer protection mechanisms applied
to the components of the system. The goal of the EO is
to optimize a global variable by improving local variables
that involve coevolutionary avalanches. This is interesting
in a cross-layer reliability scenario in which we want to
evaluate how the application of different combinations of
local protection mechanisms in selected components of the
system (improvements of local variables) affect the global
characteristics of the system in terms of reliability combined
with power, area and performance (global variable). The
characteristics that make an EO based heuristic particularly
suited for the specific DSE problem described in this paper
will be analyzed in detail in section 4.1.

The combination of the proposed reliability model with
the DSE heuristic supports the analysis of a complex sys-
tem in a limited computation time. This makes ReDO an
interesting option to support designers in the early phases
of the design cycle, when strategic decisions must be taken
to design highly optimized systems.

A large campaign of experiments is reported to demon-
strate the capability of the proposed framework. Experi-
ments aim at the optimization of a set of systems based
on realistic microprocessor models and running a set of
software benchmarks and real applications.

To perform DSE we choose from the literature a library
of protection techniques at different layers and we use it to
generate a large set of design options. Since we focus on the
early phase of the design, the criterion used to build this
library is based on the possibility of modeling the impact of
the technique on the considered design parameters without
a complete implementation of the technique itself. It is
important to remark that the aim of the experiments is not
to demonstrate which technique or which combination of
techniques is superior. The considered techniques are not an
exhaustive selection of protection mechanisms. They must
be considered as a set of inputs used to show the capability
of the implemented DSE engine.

To show the advantages of exploiting the proposed
cross-layer and multi-objective DSE framework, the charac-
teristics of the optimized systems are then compared with
those of the same systems protected with state-of-the-art
cross-layer approaches.

The remaining of this paper is organized as follows:
section 2 shortly overviews related works while section 3
presents the formalism used to model the target system
during DSE. Section 4 overviews the DSE strategy and

section 5 reports and discusses the results of the performed
experimental campaign. Finally section 6 summarizes the
main contributions and concludes the paper.

2 RELATED WORK

In the reliability domain, DSE has been approached from
different perspectives, both considering single-layer and
cross-layer approaches. This section overviews a set of rele-
vant publications in this domain.

2.1 Single-layer approaches
Coit at al. [10] and Xing et al. [12] review a set of techniques
to solve the redundancy allocation problem that somehow
can be considered as a DSE approach. Most of the analyzed
solutions are based on genetic algorithms and all start from
the assumption that data redundancy is the only design
option to increase the fault-tolerance of the system. The
intrinsic resilience of the system to selected hardware faults
is not taken into account during DSE. The only goal is to
optimize the amount of redundancy with respect to area
constraints.

Shafique et al. propose a reliability oriented DSE frame-
work focusing on the software layer [13]. The technique
incrementally protects selected instructions until the target
reliability is achieved or, at worst, all unprotected instruc-
tions are protected. The hardware is only considered as a
source of faults and its architecture is not considered in the
exploration process.

The same research group also exploited the idea of
carefully scheduling the instruction execution to optimize
reliability and other design constraints [14], [15], [16]. Even
if a cross-layer model of the system is considered when
evaluating the reliability, the design space exploration is still
limited to the software layer.

2.2 Cross-layer approaches
One of the first attempts to perform cross-layer DSE is
proposed by Wattanapongsakorn and Levitan in [17]. They
use simulated annealing to evaluate random configurations
of all available components, selecting at each iteration the
best identified combination. The considered cost function
is simply the sum of the cost of each component. The opti-
mization ends when the best solution does not improve for a
pre-defined number of iterations. Although the technique is
interesting, the exploited reliability model is oversimplified.
It considers a single failure probability for each component
without accounting for the effect of the interaction between
components. Moreover, the trade-off between reliability and
other design dimensions is not considered.

Cotofana et al. [18] propose a cross-layer DSE framework
that focuses on the lower layers of the system starting
from the technology up to the hardware architecture. The
paper proposes a cell based design in which reliability can
be tuned playing on different combinations of cells. The
software layer is however not taken into account.

More recently, Henkel et al. [7] show how the design
flow of a generic electronic system can be improved to
implement what they call multi-layer dependability. This
approach analyzes the system hierarchically following the



3

way faults propagate from the bottom layer (devices and
circuits) up to the application layer. At each layer DSE is
used to select a set of protection mechanisms to cover faults
that escaped the protection mechanisms implemented in the
lower hierarchical level. The approach is biased toward low-
level protection mechanisms that are applied first during
DSE. Therefore, it does not allow to fully explore the space
of possible design options.

Cheng et al. [8], [19] for the first time propose an impres-
sive and massive simulation campaign showing how com-
binations of different protection techniques overall work
together across different hardware designs (two processors
SPARC Leon3 and Alpha IVM), different software bench-
marks and hundreds of cross-layer combinations of protec-
tion techniques. In order to do so, the authors injected 9 mil-
lion flip-flop soft errors into the RTL of the processor designs
using three BEE3 FPGA emulation systems and also using
mixed-mode simulations on the Stampede supercomputer.
This has a very high value to give a generic picture of how
cross-layer reliability techniques can work, providing results
based on very accurate simulations. However, performing
the same simulation campaign for every new product in
the early stages of the design might not be affordable. In
these stages, design decisions should be taken based on
reasonably accurate models but still consuming affordable
computing resources. The goal is to support the designers
in these early decisions, demanding the final accurate as-
sessment of the reliability of the system to the late stages of
the design.

3 SYSTEM LEVEL MODELING

In this paper, the system under analysis is modeled using
a component-based Bayesian reliability model. Section 3.1
introduces the basic characteristics of the model that was
first introduced and validated in [9]. This information is
required to understand this paper (the reader may refer to
[9] for additional details). Section 3.2 instead focuses on the
extensions of the model introduced in this work to enable
its use in the proposed DSE framework.

3.1 Reliability modeling
Fig. 1-A shows an example of system modeling. The system,
denoted with S, is modeled using an extended Bayesian
network defined as:

S = (N,E,Θ, P ) (1)

where:

• N = {n1, n2, · · · , nm} is the set of network nodes.
Each node models a software/hardware component
of the system. Each node is associated with a set of
states indicating error or error-free conditions for the
node (e.g., the L1 cache can be error free, it can be
affected by a single bit-flip or by a double bit-flip).

• E = {(ni, nj) ∈ N × N} is the set of arcs. Each
arch defines a temporal or physical relation between
two components (e.g., a failure of a component may
influence the state of other components).

• Θ = {θ1, θ2, · · · , θm} is a set of Conditional Proba-
bility Tables (CPT), one table for each node. The CPT

θi of node ni defines the probability of ni to be in
a given state, conditioned on the state of its parent
nodes.

• P = {p1, p2, · · · , pm} is a set of optional tables of
generic parameters. These parameters can be associ-
ated with each node of the network to characterize
the related component (e.g., area, power consump-
tion, etc.). Any parameter that can influence the
design decisions can be included in this table as far
as it can be measured for each component.

Following a cross-layer reliability design, the model is hi-
erarchically organized by grouping nodes into four stacked
domains.

The technology domain (TD) models the physical layer of
the system. Nodes in this domain model how soft errors
distribute to the different components of the system. This is
a function of the hardware fabrication technology used to
build each component, which affects its soft error rate (e.g.,
16nm Bulk CMOS SRAM, 16nm FinFET SRAM, etc.).

The hardware domain (HwD) models the hardware ar-
chitecture of the system. Nodes in this domain represent
the hardware blocks used to build the system (e.g., CPUs,
GPUs, memories, accelerators, custom IP cores, etc.). The
granularity of the hardware description depends on both the
level of detail the designers need for the reliability analysis
and the degree of freedom in selecting the components.
Complex components, such as microprocessors, can be ei-
ther modeled as a single node or split into clusters of nodes
modeling the different subcomponents (e.g., register files,
processing units, etc.).

The software domain (SwD) models the software architec-
ture in terms of software modules. The interface between
the HwD and the SwD is modeled by a set of special
nodes called Software Fault Models (SFMs). The SFMs, first
introduced in [20], model the effect of a hardware fault
on the execution of an instruction of the Instruction Set
Architecture (ISA).

The system domain (SD) finally defines the observation
points where the behavior of the system in the presence of
faults can be evaluated and properly classified.

As explained in [9], the partitioning of the model into
different domains is mainly required for an efficient compu-
tation of the CPTs characterizing each node of the model.
This activity is a time consuming task of the modeling
phase. The analysis of each layer can therefore focus on
the peculiarity of the layer itself, thus using dedicated and
optimized tools. Details on the tools exploited in this work
to perform experiments are provided in section 5.

The proposed model allows us to compute different sys-
tem level reliability metrics such as the Architecture Vulner-
ability Factor (AVF), the Failures in Time (FIT) and the Mean
Time Between Failures (MTBF). In this paper, we exploit the
AVF as preferred reliability metric. The AVF first introduced
in [21] is the probability that a fault in a hardware structure
will result in a visible error in a program’s final output. The
AVF is a cross-layer metric that looks at how the software
reacts to hardware faults. In a complex system the different
domains contribute in a different way to the global AVF.
The goal of the reliability model exploited in this paper
is to model how the different components of the system



4

Fig. 1. System modeling. (A) Bayesian model of the systems: nodes are organized into domains and each node is characterized by a Conditional
Probability Table (CPT) plus a set of optional parameters (e.g., area, size, power, performance) that can be used during the DSE process, (B)
design alternatives: for each component (node) or cluster of components different implementations are defined, thus forming a library of design
alternatives, (C) component replacement : showing how a component can be replaced with a different implementation in the model.

contribute to the overall AVF in order to quantify this
contribution. In particular, the use of a Bayesian model is
powerful to express how faulty conditions cross between the
different components and layers. The AVF can be estimated
by computing the belief of the output nodes to be in a failure
state using Bayesian inference [22]. Moreover, the analysis of
the beliefs on the state of each node can be used during the
DSE to identify weak components to be protected as will be
described later in the paper.

3.2 System modeling for optimization

The model proposed in section 3.1 is powerful when it is
time to analyze the reliability of a single system. However,
it lacks the possibility to express a list of design options for
each component that can be evaluated in a DSE process.

This paper therefore proposes to enhance the model pre-
sented in section 3.1 with the definition of a component library
(CL) including different implementations or configurations
of the components of the target system (see section 1-B).
Each element in this library must be fully characterized with
its CPT and parameters.

The way the CL is populated depends on the target
application domain and impacts the DSE process. In custom
embedded applications, the designer has usually access to
the design of the hardware architecture and the dedicated
software applications that are executed. In this scenario,
a large set of custom hardware and software components
implementing different fault-tolerance techniques can be
included in the library and analyzed as potential design

options. Differently, in general purpose systems, in which
the hardware architecture is designed to accommodate sev-
eral software applications, the number of design options for
the hardware domain is more limited. Nevertheless, gen-
eral purpose hardware, such as complex microprocessors,
usually offer several configuration knobs to play at run-
time. These knobs enable the activation or deactivation of
a set of built-in fault-tolerance mechanisms (e.g., ECC for
memory structures), thus enabling run-time adaptation to
different software requirements. These knobs can therefore
be exploited to generate different elements to include in the
CL, which is then used to perform DSE for different software
applications.

To support the optimization process, components of the
system (i.e., nodes) are organized into a k-levels hierarchy
of clusters, following the hierarchical architecture of the real
system.
Def. 1. A cluster node at the hierarchical level k of the CL

is a component that can be split into a group of sub-
components at level k + 1 representing a fine-grained
representation of that node.

As an example, Fig. 1-A defines a 2-level hierarchy that
includes at the first level two clusters: the first labeled as uPC
Cluster grouping all nodes modeling the components of
the microprocessor, the second named OS Cluster group-
ing all nodes modeling the operating system functions and
modules used by the application software. Different im-
plementations of each cluster are available to the designer
as reported in section 1-B and can be considered during



5

the DSE process. Using the concept of clusters, multiple
levels of hierarchy can be defined. At the bottom of this
hierarchy, different implementations of single components
are defined in the library. For example, section 1-B defines
three implementations of the L1 instruction cache in the
x86 cluster: the basic implementation without any fault
tolerance mechanism and two implementations of the same
hardware component supporting different fault tolerance
mechanisms.

For simplicity, hereinafter, we will use the generic term
cluster to identify any generic node of the CL even if this
node is a leaf of the hierarchy and is not further split into
sub-nodes.

Using the proposed system model and the related li-
brary of components, the DSE framework presented in this
paper is able to automatically analyze different versions
of a target system. Each version is created starting from a
reference implementation and replacing single components
or clusters of components with alternative implementations
available in the CL. The goal of this process is to efficiently
explore the design space trying to identify architectures that
optimize multiple design parameters, including reliability,
performance, hardware/software resources and power. The
process to replace a cluster or a component with an alterna-
tive implementation is graphically depicted in section 1-C.
The enhanced model defines for each cluster a set of labelled
input and output connectors. The labels are used to define
how a cluster can be connected to the remaining portions of
the model.

4 DESIGN SPACE EXPLORATION METHODOLOGY

The proposed DSE heuristic is based on an extension of the
extremal optimization theory [11].

4.1 Extremal optimization theory

The extremal optimization (EO) theory is a generic optimiza-
tion theory inspired by nature’s self-organizing processes.
It is well suited to solve multi-objective optimization prob-
lems. In its basic formulation, the EO enables to explore a
multi-variate search space. It tries to optimize a global ob-
jective function making local changes to selected local vari-
ables of the system that involve coevolutionary avalanches
on the global objective function. It explores the search space
trying to avoid sub-optimal solutions, thus driving the
optimization towards real local-optima, as demonstrated in
several publications [23], [24], [25], [26], [27].

The EO is an interesting candidate to build a multi-
objective DSE heuristic for cross-layer reliability. In fact,
in particular in the early phases of the design, designers
need support to evaluate how the application of differ-
ent combinations of local protection techniques in selected
components of the system (modifications of local variables)
affect the global characteristics of the system (the effect
of the local modifications on a global system level cost
function). The performance of EO based heuristics overcome
the efficiency of classical simulated annealing and genetic
algorithms providing competitive accuracy [11], [28].

Another important characteristic that makes EO inter-
esting in the cross-layer reliability domain is that, unlike

genetic algorithms [29], which work with a population of
candidate solutions, EO evolves a single solution and makes
local modifications to the worst components of the solution.
This is an important characteristic when considering the
complexity of the Bayesian model presented in section 3.1.
The reliability model of a real system may include thou-
sands of nodes with their related CPTs. Working on big
populations of such models can rapidly become computa-
tionally and memory expensive. Another interesting feature
is that the EO process highly resembles the approach expert
designers would use in manual DSE. Improvements to the
characteristics of the system are in general implemented
by selectively identifying critical components and replacing
them with selected alternatives representing potential im-
provements toward the local-optimum. This is very different
from other evolutionary techniques that look at combining
“good” solutions in the attempt of improving the quality
of the population. Moreover, EO is well suited for the
optimization of multi-objective cost functions [24], [30],
[31]. This is important in our case, since the DSE process
must take into account several design parameters such as
reliability, area, power, performance, etc.

Finally, the EO is particularly effective in solving op-
timization problems, where near-optimum solutions are
widely dispersed and separated by barriers in the search
space [27]. This is a typical case of the particular DSE
problem we are facing. Macro changes in the design (i.e.,
replacements of full clusters of components) introduce high
diversity in the generated systems that translates into a very
sparse search space.

The main limitation of the basic formulation of the EO
theory is that it is not intended to deal with a hierarchical
organization of the search space as the one introduced
in section 3.1. Therefore, the DSE algorithm proposed in
this paper, described in section 4.3, takes advantage of the
basic principles of this theory, but extends it to analyze a
hierarchically organized search space in which both single
variables and clusters of variables can be modified at the
same time during the exploration process.

4.2 Definitions and notation
This section introduces some basic definitions and notations
required to describe the proposed DSE strategy.
Def. 2. The design space Ω = {S0, S1, · · · , Sh} is the set of all

possible system’s implementations of the target design.
Every implementation is a system description defined
according to (1).

S0 represents the reference implementation, i.e., the initial
design of the system that must be optimized (usually it does
not include any fault tolerance mechanism). Starting from
this implementation, the DSE strategy generates new imple-
mentations by selectively replacing worst clusters (nodes or
groups of nodes) based on the alternatives available in the
CL.

The hierarchical organization of the CL allows us to
introduce a hierarchical concept of distance between system
implementations.
Def. 3. The k-level neighborhood of a system implementa-

tion S ∈ Ω, denoted as Nk(S), is the set of implemen-
tations that can be created from S by replacing a single



6

cluster of the system placed at the kth hierarchical level
of the CL.

The k-level neighborhood hierarchically partitions the
design space and therefore the DSE process. Informally, in
a 2-level CL as the one reported in Fig. 1-B, we can identify
two search levels. At a high level, we have different imple-
mentations that differ for macro changes of the system due
to replacements of clusters of components (e.g., changing
the full microprocessor architecture, or the full operating
system architecture). At a fine grained level, selected nodes
inside the clusters can be replaced based on the available
alternatives to fine tuning the optimization of the system.
Managing a hierarchical exploration is one of the main
contributions of the DSE algorithm described in section 4.3.
The starting hierarchical level can be freely selected and the
algorithm is able to move up and down in the hierarchy
during the design exploration trying to find the best solution
(see section 5 for experimental result showing the impact of
the initial hierarchical level on the optimization process).

Two different types of cost functions must be defined to
implement the proposed DSE strategy.
Def. 4. The global cost function C(S) with S ∈ Ω is any

generic function defined on any variable of S (i.e., N ,
E, Θ, P in (1)) that allows for comparing two different
implementations of the same system.

This function is used to monitor the progress of the DSE
process. In general, the proposed algorithm supports any
generic cost function defined over any variable in S. The
AVF of the system introduced in section 3 is an example of
cost function that can be exploited whenever reliability is the
only factor to consider during DSE. More complex functions
are instead required for multi-objective DSE. A description
of the cost functions implemented for this paper is reported
in the next section together with a detailed description of
the optimization algorithm.
Def. 5. The fitness of a cluster (cls) of a system S, denoted

as λ(cls, S), (with cls ⊆ N ) is any generic function that
permits to measure the contribution of that component
to the global cost function C(S).

The fitness of a component is the criterion used during
the DSE to select the components or the clusters of compo-
nents to replace.

4.3 Optimization algorithm
Alg. 1 describes the proposed DSE algorithm. The main
inputs of the algorithm are: the reference implementation of
the system (S0), the available component library (CL) and
the level of the CL at which starting the design exploration
(startlevel). The algorithm returns an improved implemen-
tation Sbest and its related cost C(Sbest).

The DSE process is an iterative process (lines 5-21). At a
high-level of abstraction, at each iteration a new implemen-
tation of the system is generated by replacing one of the
clusters of the current implementation of S with an alterna-
tive version from CL. The cost of this new implementation
is evaluated to understand whether the introduced change
leads toward a better implementation of the system or not.
This iterative exploration process stops according to two
different conditions (line 21):

Algorithm 1 Cross-Layer multi-objective DSE algorithm
Input: S0, CL, MAX ITER, stop(·), startlevel (default k)
Output: Sbest, C(Sbest)

1: lev = startlevel;
2: iter no = 0
3: S = S0

4: Sbest = S0

5: repeat
6: λw=1;
7: clsw = ∅
8: for each cluster cls at level lev do
9: if λ(cls, S) ≤ λw then

10: λw = λ(cls, S)
11: clsw = cls
12: end if
13: end for
14: Generate S′ ∈ Nk(S) by selecting an alternative

implementation of clsw ∈ CL
15: if C(S′) < C(Sbest) then
16: Sbest = S′;
17: end if
18: lev = nextLevel(lev, S′, Sbest)
19: S = S′

20: iter1 no = iter1 no + 1;
21: until iter no < MAX ITER and stop(Sbest) not true
22: return Sbest and Ck(Sbest)

1) the number of iterations (iter no) reaches a maxi-
mum limit (MAX ITER),

2) a contract on the identified implementation of the
system is satisfied.

The contract is provided as an input to Alg. 1 in the form
of a generic stop(·) function. In our implementation, we have
defined a stop function that terminates the simulation when
the estimated AVF of the system is lower than a user defined
threshold (i.e., the system has reached the target reliability
constraint), but other conditions can be easily defined. The
first stop condition allows to bound the duration of the DSE
process, whereas the second allows to define the goal of the
exploration.

Lines 6-13 describe the process used by the algorithm to
identify the cluster to replace at each iteration. To under-
stand how this process works, it is important to recall that
the system is organized into a k-level hierarchy of clusters
(see Fig. 1). At a given iteration the optimization process
works at one of these k hierarchical levels. The hierarchical
level sets the granularity of the replacement process. Let
us consider the example of Fig. 1. If the algorithm works
at level 1, replacements of clusters take place at this level
of the CL. In the example of Fig. 1, this means that the
algorithm can try to replace the uPC Cluster or the OS
Cluster in the design. If the algorithm works at level 2,
components composing the level-1 clusters can be replaced,
e.g., L1 Instruction cache. Alg. 1 sets the initial level at line
1. If not specified by the user, the initial level is set to k. The
idea behind this choice is that we want to investigate first if
local modifications to the design allow to reach the selected
goal. This is motivated by the fact that we believe designers
would privilege solutions with reduced modifications to the



7

original design. Nevertheless, this option is not mandatory.
By changing the starting level, the designer can privilege
the modification of bigger clusters of components (e.g., use
a completely different microprocessor model rather than
trying to optimize the single parts of a microprocessor).

In lines 6-13 the fitness of every cluster belonging to
the selected hierarchical level is evaluated for the current
system implementation S in order to identify the cluster
with the worst fitness. A new implementation of the system
S′ is then generated by replacing the cluster with the worst
fitness with a random alternative implementation from CL
(line 14). If the cost of this new implementation (C(S′)) is
lower than the one of the best implementation (C(Sbest)),
then the new version of the system is selected as current best
architecture C(Sbest). Regardless the fact that S′ improves
the best architecture or not, line 19 updates the current
solution to make sure the search process will move on
evaluating a new alternative.

At the end of each iteration, the algorithm evaluates
whether the exploration must continue at the current hier-
archical level or it must move up or down. This decision is
taken at line 18 by the nextLevel function whose implemen-
tation is reported in Alg. 2.

The function computes the next level by analyzing, for
each hierarchical level, the number of iterations that have
not produced improvements to the system. This is imple-
mented using a set of counters (count worst[k]). In case the
new generated system implementation S′ has introduced an
improvement (δ ≤ 0 - line 1), the hierarchical level remains
the same and the counter for the level is reset (line 13).
Otherwise, the algorithm analyzes the counter of the layer
(lines 3-11). If it is higher than a user defined threshold T
(lines 4-5), it means we are not able to improve the system at
the current level and therefore the algorithm moves up to a
higher level. Otherwise (lines 7-10), the counter of the level
is incremented and the algorithm tries to move down in the
hierarchy to search if local changes can further improve the
current solution. As explained before, the idea behind this
strategy is to privilege the lower levels of the hierarchy that
correspond to small changes in the system moving up only
when really required.

Algorithm 2 nextLevel function
Input: k, S′, Sbest

Output: next k
1: δ = C(S′)− C(Sbest)
2: if δ > 0 then
3: if count worst[k] > T then
4: count worst[k]=0
5: k = k - 1
6: else
7: count worst[k]++
8: if k < CL LEVELS then
9: k = k +1

10: end if
11: end if
12: else
13: count worst[k]=0
14: end if
15: return k

The current implementation of Alg. 1 comes with two
different exploration strategies characterized by different
cost and fitness functions. In details, these strategies are
suitable for both reliability only optimization and multi-
objective optimization and they are described in the next
section.

4.3.1 DSE for best reliability
The design space is explored to identify architectures that
maximize the reliability without taking into account other
design parameters such as hardware area, software size,
execution time, power consumption, etc. In this case the
cost function is defined as the AVF of the system, i.e., the
probability of a system failure given a hardware fault.

When using this cost function, it is important to point
that, in principle the optimization of the system is not
bound. It is always possible to add additional protections
mechanisms obtaining a system with higher resilience to er-
rors. This can continue up to a level at which all components
are protected. Nevertheless, when the DSE aims at reaching
a target reliability level, this simple cost function enables
to stop adding new protections as soon as the target AVF
is reached, limiting the number of protected components.
This simplifies the design even when when other design
dimensions are not relevant to the designer.

Resorting to the Bayesian model defined in section 3.1,
the hypothesis that a fault enters the system is emulated
by propagating the information about fault causes (i.e.,
the failure rates of TD nodes) through the whole Bayesian
model. The AVF is computed as the posterior probability
that at least one of the nodes of SD is in a failure state, using
the Bayesian inference theory [22].

In a similar way, the fitness of a component can be
computed by conditioning the Bayesian model with the
hypothesis that the component is in a failure state and
computing the posterior probability that the system fails
given this event (i.e., at least one of the nodes of SD is in a
failure state). When working with a cluster this probability
is computed separately for each component of the cluster
and the fitness is computed as the average probability over
all components of the cluster. This approach considers that
all elements of the cluster equally contribute to the fitness.
This is not always the case especially when the usage fre-
quencies of the different elements is significantly different.
If this information is available from simulations profiling the
application, it can be used to weight the average obtaining
a more precise fitness.

4.3.2 DSE for multiple objectives
The design space is explored to identify architectures that
optimize different design dimensions. For this work we se-
lected the following five design dimension, however others
can be easily considered:

• AVF
• hardware area,
• software size,
• execution time,
• power consumption.

To compute the cost function, together with the AVF of
the system, computed using the same approach described in



8

section 4.3.1, the percentage increment of the remaining four
parameters w.r.t. S0 is computed. Particular attention is paid
when replacing a component, since each change may affect
the behavior of other components. For example, if the re-
placement of a hardware component introduces some extra
execution time, the execution time of all software compo-
nents executed on top of that specific hardware component
must be modified accordingly. The five contributions are
then combined with a simple weighted sum. The designer
is free to assign the weights of each contribution depending
on the DSE goals. The weighted sum allows to account
for all parameters during the exploration. In this way, the
algorithm can identify design options that globally improve
not only the reliability but also other design dimensions.

Similarly to the global cost function, the fitness function
performs the same weighted sum but only considering
percentage increases of the nodes of the considered cluster.

5 EXPERIMENTAL RESULTS

This section reports results obtained by the application of a
C++ implementation of the proposed DSE algorithm to a set
of realistic electronic systems.

5.1 Experimental setup
Experiments were conducted by performing DSE for a set
of microprocessor based systems running software appli-
cations on top of the Linux operating system. The DSE
focused on the analysis of different hardware and software
architectures of the system, i.e., hardened technologies were
not considered as viable design options. We considered two
real microprocessor architectures:

1) ARM Cortex R©-A15 (ARM): a high-performance
ARMv7-A processor used in a variety of premium
mobile and infrastructure applications.

2) Intel-like i7 R© skylake architecture (SKYLAKE): a 64-
bit microarchitecture that brings high performance
and reduced power consumption.

Based on this hardware architecture, we analyzed 10
different systems, each running a different software appli-
cation taken from the MiBench suite [32]. MiBench applica-
tions have been widely used in reliability studies [20], [33],
[34], [35], [36], [37], [38], [39]. They combine a wide range
of common workloads/algorithms with relatively small
datasets, which effectively translate to small execution time.
The following applications were selected: (1) Susan Smooth
(susan s), (2) Susan Edges (susan e), (3) Susan Corners
(susan c), (4) Quick sort (QSort), (5) String search (ssearch),
(6) Secure Hash Algorithm (SHA), (7) JPEG decode (DJPEG),
(8) JPEG encode (CJPEG), (9) AES decode (AES), and (10)
Fast Fourier Transformation (FFT).

Every system was modeled as described in section 3.1.
In order to build the model and to compute the CPTs of
the different nodes we resorted to the tool-suite proposed
in [9], whose main concepts are summarized in Fig. 2. To
characterize the CPTs of the hardware domain for the tar-
get microprocessors, we resorted to microarchitecture-level
fault injection through the GeFIN tool [40], which is based
on the Gem5 micro-architectural model [41]. Using this tool
we were able to analyze the effect of soft errors in five

of the main memory arrays of the microprocessor, whose
characteristics are summarized in Table 1. For every simu-
lation, we tracked the propagation of an error in a selected
structure to another one, or its propagation to the software
domain consisting in the commit of an instruction affected
by the fault to the architectural state (i.e., a visible SFM was
detected). Results of this fault injection campaign were used
to build the different CPTs of the HwD nodes. A similar
approach was used to build the CPTs of the software domain
focusing on how the occurrence of a SFMs in a given func-
tion affected the behavior of the software. To perform this
analysis, we performed SFMs injection experiments through
the LIFILL tool presented in [9]. LIFILL injects SFMs into
a LLVM (Low Level Virtual Machine) compiled version of
the target application. The LLVM instruction set is indepen-
dent of the target machine and allowed us to analyze the
application independently of the target hardware. Results
from this analysis were used to build both the architecture
of the software domain (by automatically extracting the
function call graph of the application), and the related CPTs.
Interested readers may refer to [9] for a detailed description
of the toolchain. The model and the tools were validated
comparing the obtained AVF estimations for the reference
implementation of all benchmarks with those computed
with full fault injection campaigns on micro-architectural
models of the considered microprocessor, which are often
used for reliability analysis in the early design phases of a
system. On average we obtained differences in the order of
one percentage point. In both cases the software application
was exercised with a relevant workload. For each node of
the model, we performed about 2000 injection campaigns
corresponding to 2.88% error margin and 99% confidence
level [42]. It is worth to stress here that other toolchains
modeling the hardware/software architecture at different
abstraction levels can be used as well to fill the CPTs of
the proposed model.

The effects of the protection techniques on the other
design parameters are instead represented in the component
library as variations with respect to the reference imple-
mentation. This is a simplified model that provides to the
DSE engine qualitative information regarding the impact
of a protection technique requiring low computational re-
sources. Nevertheless, if efficient models with higher accu-
racy are available, they can be plugged in the DSE engine
with low effort, thus improving the accuracy of the obtained
results.

Fig. 2. High-level view of the toolchain used to build the reliability models
of the target systems.

The CL was organized in two hierarchical levels. The
first level consisted of the two microprocessor clusters, each
comprising the five memory arrays considered in the study.



9

TABLE 1
Hardware parameters for the target microprocessors

ARM SKYLAKE
L1 Instruction Cache 32KByte 32KByte
L1 Data Cache 32KByte 32KByte
L2 cache 1MByte 1MByte
physical registers 128 32-bit registers 168 64-bit registers
Load/Store Queue 16 32-bit entries 72 64-bit entries

The second hierarchical level implemented various state-of-
the-art fault tolerance mechanisms that can be applied to
hardware or software components.

When selecting the set of protection techniques used to
show the capability of the proposed DSE technique, it is im-
portant to remark that the main driver was the availability in
the literature of an estimation of the following parameters:
(1) soft error masking probability, (2) hardware area over-
head, (3) software size overhead, (4) software execution time
overhead, (5) power consumption overhead. Moreover, we
searched for techniques ready to apply to single components
in isolation. Table 2 summarizes the selected hardware fault-
tolerance techniques. Overall, they improve tolerance to soft
errors by: (i) modifying the circuit (LEAP, DICE and LEAP-
DICE) [43], (ii) monitoring the data (SA-RDC) [44], or (iii)
adding error correction codes (all ECC and Self-Immunity1)
[45]. A total of 8 techniques were selected. In a similar
way, Table 3 reports the selected software implemented fault
tolerance techniques. We selected 16 different techniques.
Most of them (VARx techniques) are different combinations
of variable duplication and cross checking validation tech-
niques [46]. We also included a fault tolerance technique
based on control and data flow assertions [47].

We would like to remark again that all data provided
in Table 2 and Table 3 are not intended to compare the
different techniques in order to identify which is superior.
The experimental setup of the different publications is dif-
ferent thus preventing this type of comparison. Differently,
they represent a set of realistic inputs for our DSE engine
exploited to drive the exploration process.

As reference implementation we considered systems
based on the SKYLAKE microprocessor not implementing
any fault tolerance mechanisms. Both DSE strategies de-
scribed in section 4.3 were tested.

For each considered system the DSE algorithm was
executed with a limit of 500 iterations without setting any
stop condition based on the AVF of the system. This long
simulation allowed us to clearly understand the dynamics of
the optimization and to stress the limits of the optimization
process. To deal with the stochasticity of the optimization
process, every experiment was repeated 30 times selecting
the best implementation over the 30 repetitions.

The characteristics of the systems optimized using the
proposed DSE methodology were compared with those ob-
tained by implementing three state-of the art solutions avail-
able in our library. More specifically, we considered: LEAP-
DICE [43], the most effective hardware protection technique
of the library, VAR1 [46], the most effective software pro-
tection mechanism of the library, and the combination of

1. Being the numbers provided in [45] application dependent, we
used here average results provided in the paper.

LEAP-DICE+SIFT (the LEAP-DICE technique for hardware
components and the SIFT technique for software compo-
nents) that was identified in [8] as one of the most promising
cross-layer combinations of protection techniques.

5.2 Results and discussion

Table 4 compares the AVF of the reference implementa-
tion of the considered systems (AVF BASE) with the AVF
obtained by adding protection mechanisms according to
different approaches.

The AVF REL ONLY column shows the capability of
the proposed DSE for best reliability to identify cross-layer
combinations of protection mechanisms able to significantly
increase the reliability of the target system, i.e., to decrease
its AVF. Looking at the obtained results, one can see that the
AVF is always decreased by several orders of magnitude.
This result is not surprising. When optimizing for best
reliability, it is always possible to add additional protection
techniques obtaining a system with higher resilience to
errors. Nevertheless, as will be discussed in Fig. 3, the
gained protection is obtained working on a limited number
of components, thus gaining on the global characteristics of
the design.

It is also interesting to report that, in 7 out of the 10
benchmarks (DJPEG, FFT, QSORT, SHA, SUSAN E, SU-
SAN C, SUSAN S), the DSE algorithm identified the ARM
architecture as the better microprocessor option with respect
to the SKYLAKE architecture that was used as reference
implementation. This suggests that, for these specific ap-
plications, the ARM architecture is inherently more resilient
to soft errors, enabling to reach high protection with lower
effort. This is not an indication that the ARM architecture
is superior to the SKYLAKE architecture. The results are
application dependent and show how different applications
may benefit from the characteristics of different hardware
architectures, thus motivating the use of an automatic DSE
algorithm such as the one presented in this paper.

When comparing the results obtained with the DSE for
best reliability with those obtained applying state-of-the-art
cross-layer reliability techniques, in most of the cases the
architectures identified by our algorithm provide a lower
AVF, i.e., better reliability. In only two cases (SHA and
SUSAN E) LEAP-DICE+SIFT provides a lower AVF. This
is probably due to the size of the search space that makes
DSE complex for some benchmarks and probably requires
more iterations. Nevertheless, as will be discussed later,
architectures obtained with the proposed DSE strategies
apply fault tolerance techniques to just a subset of the
system components, thus minimizing the impact on other
design dimensions.

Looking at Table 4, it is also interesting to note that
when the DSE algorithm is executed considering the multi-
objective optimization (Table 4, column AVF MULTI-OBJ),
we still see significant improvements in the reliability of
the system. In detail, AVF MULTI-OBJ is characterized
by lower values with respect to LEAP-DICE and VAR1
(with the exception of SUSAN S), similar results to LEAP-
DICE+SIFT in some cases, but higher AVF if compared to
DSE for best reliability. This trend is due to the fact that this
strategy tries to properly weight the reliability improvement



10

TABLE 2
Hardware fault tolerance techniques

Technique Description Reliability Extra Extra Power Extra
Improvement Time Consumption Hardware

(%) (%) (%) Area (%) Ref.
4 ECC ECC applied to 4 registers over 32 +40% +6% +1% +15% [45]
16 ECC ECC applied to 16 registers over 32 +91% +8% +2% +22% [45]
FULL ECC ECC applied to all registers +100% +9% +3% +28% [45]
Self-Immunity Parity code for portion of registers +91% +4% +0.20% +11% [45]
SA-RDC Self-Adaptive caches using monitoring features +99.98% +7.40% +43% +0.39% [44]
LEAP Flip-Flop layout technique 30% 10% 10% 10% [43]
DICE Flip-Flop layout technique 90% 0% 60% 100% [43]
LEAP-DICE Flip-Flop layout technique 100% 2% 63% 100% [43]

TABLE 3
Software implemented fault tolerance techniques

Technique Description Reliability Extra Extra Power Extra
Improvement Time Consumption Software

(%) (%) (%) Size (%) Ref.
VAR1 Variable Duplication and Cross-check mechanisms +95% +70% +66% +66% [46]
VAR1+ Variable Duplication and Cross-check mechanisms +95% +66% +64% +64% [46]
VAR1++ Variable Duplication and Cross-check mechanisms +94% +70% +60% +60% [46]
VAR2 Variable Duplication and Cross-check mechanisms +95% +77% +74% +74% [46]
VAR2+ Variable Duplication and Cross-check mechanisms +95% +73% +70% +70% [46]
VAR2++ Variable Duplication and Cross-check mechanisms +94% +68% +65% +65% [46]
VAR3 Variable Duplication and Cross-check mechanisms +94% +42% +45% +45% [46]
VAR3+ Variable Duplication and Cross-check mechanisms +94% +37% +41% +41% [46]
VAR3++ Variable Duplication and Cross-check mechanisms +93% +32% +36% +35% [46]
VAR4 Variable Duplication and Cross-check mechanisms +91% +32% +36% +36% [46]
VAR4+ Variable Duplication and Cross-check mechanisms +91% +27% +33% +33% [46]
VAR4++ Variable Duplication and Cross-check mechanisms +90% +21% +27% +27% [46]
VAR5 Variable Duplication and Cross-check mechanisms +87% +27% +28% +28% [46]
VAR5+ Variable Duplication and Cross-check mechanisms +84% +24% +25% +25% [46]
VAR5++ Variable Duplication and Cross-check mechanisms +78% +17% +20% +20% [46]
SIFT Fault Tolerance via control and data flow assertions +95% +40% +20% +20% [47]

TABLE 4
AVF Comparison across state-of-the-art reliability techniques and optimization strategies

AVF AVF AVF AVF AVF AVF
BASE LEAP-DICE VAR1 LEAP-DICE+SIFT REL ONLY MULTI-OBJ

AES 8.62E-02 8.62E-05 3.94E-04 3.90E-07 3.36E-09 1.58E-05
CJPEG 1.10E-01 1.10E-04 9.74E-02 9.73E-05 2.45E-06 2.75E-06
DJPEG 6.71E-02 6.25E-05 5.28E-02 5.30E-05 4.61E-07 1.16E-06

FFT 1.48E-01 1.31E-04 3.07E-02 3.07E-05 1.16E-06 1.14E-05
QSORT 6.99E-02 2.05E-05 5.78E-03 5.78E-06 4.78E-07 1.34E-06

SHA 7.52E-02 6.92E-05 6.43E-06 6.00E-09 8.09E-07 8.09E-06
SSEARCH 5.48E-02 5.48E-05 4.09E-04 4.10E-07 5.78E-09 2.13E-06
SUSAN C 8.60E-02 7.66E-05 3.61E-05 4.00E-08 1.83E-08 4.37E-06
SUSAN E 3.10E-02 2.92E-05 4.48E-06 4.00E-09 4.15E-07 1.39E-05
SUSAN S 3.14E-02 2.69E-05 1.84E-05 2.00E-08 7.03E-09 5.44E-05

with the overhead introduced by the use of different fault
tolerance mechanisms, as described in section 4.3.2. The
multi-objective cost function used in this experiment (see
section 4.3.2) weights the reliability as the 10% of the total
value of the cost function, while the remaining 90% is
equally shared among the other four design dimensions.

As discussed before, improving the reliability of a system
always comes at a price. Fig. 3 gives a quantitative represen-
tation of the overhead for different design dimensions (i.e.,
execution time, power consumption, hardware area and
software size overheads) when comparing different system
implementations with the base implementation.

Looking at DSE for best reliability (REL ONLY), relia-
bility improvements have a significant impact on the other
design dimensions. This confirms that, performing DSE
using a single objective is feasible, but probably it is not
the best option. Fig. 3 also gives an indication on how

the improvement is achieved. The HW area and SW size
overheads clearly indicate that in all cases the best reliability
is achieved by a combination of hardware and software
fault tolerance mechanisms, thus confirming the benefit of
applying cross-layer techniques to design reliable systems.

Fig. 3 shows that, despite the DSE for multiple objectives
(MULTI-OBJ) is unable to reach the same reliability level of
the REL ONLY approach, it is able to significantly minimize
the impact of the introduced fault-tolerance mechanisms
on the other design dimensions. The overheads of the
execution time, power consumption, hardware area and
software size are significantly reduced if compared to the
other approaches. In detail, looking at the average on all
benchmarks, the overhead on all considered dimensions is
always lower than 25%. This result shows that, thanks to
a careful analysis, systems can reach high reliability levels
without significantly penalizing the other aspects of the



11

design. Moreover, specific optimization goals (e.g., low area
or low power) can be achieved by modifying the weights of
the cost function.

When comparing the proposed DSE techniques with
LEAP-DICE+SIFT (yellow squares), Fig. 3 shows that LEAP-
DICE+SIFT always introduces a higher overhead in terms
of HW area because it is not applied selectively to the
most critical hardware components. The figure highlights
that in most of the cases the REL ONLY DSE (blue bullets)
privileges SW protection mechanisms, which lead to a lower
power consumption (see Table 2 and Table 3) even if they
increase the size of the software. Looking a the execution
time overhead, the two techniques are close. Even more
interesting is the set of overheads provided by the MULTI-
OBJ DSE approach (red bullets). Looking at Fig. 3, the
overheads for this technique are far better then any other
presented solution.

When analyzing the capability of DSE heuristics such as
the one proposed in this paper, it is important to evaluate the
impact of different parameters on the result of the algorithm.

To show the impact on the DSE of the characteristics of
the reference implementation of the system (i.e., the starting
point of the DSE process), we performed ten experiments
on the FFT benchmark starting the DSE process from sys-
tems with increasing number of protected components. The
starting systems were taken from the intermediate steps of
the REL ONLY DSE process performed on the unprotected
version of the system. The results presented in Table 5 for
REL ONLY DSE show that, on average, the target AVF is not
influenced by the selected initial system. What is instead
influenced is the number of iterations required to identify
the optimized system. The negative value is expected since,
by design, the considered systems start from an increased
number of protected component. Therefore, the DSE pro-
cess becomes increasingly simple. Results for MULTI-OBJ
DSE are instead more difficult to read. The most important
result is that the cost function (C(S) column) shows small
variations confirming that the DSE algorithm always moves
toward an optimized solution. The AVF that represents a
significant contribution to the cost function also shows small
variations. Regarding the remaining parameters, that are
equally accounted in the cost function, we see higher fluc-
tuations (some positive and some negatives). Nevertheless,
this is not a negative result. It simply shows that there
are several solutions that overall have a similar cost but
may privilege in some cases one of the parameters against
another. In this case, overall the DSE process requires more
steps since the starting systems have increased reliability
but not necessarily optimize the other design constraints.

Another important parameter affecting the behavior of
the proposed DSE algorithm is the startlevel (line 1 of
Alg. 1). To analyze its impact on the DSE process, we
performed DSE for all benchmarks starting with the two
possible values of the proposed experimental setup (i.e.,
startlevel∈ 0, 1). Table 6 shows how the different parameters
change by modifying the value of startlevel. As for the
previous case, it is important to highlight that the AVF for
REL ONLY DSE, and C(S) and AVF for MULTY-OBJ DSE
remain almost constant. This again confirms the capability
of the algorithm to move toward a good solution regardless
the starting condition. In MULTI-OBJ DSE, since multiple

architectures can lead to similar costs, the remaining design
parameter show higher variability with particular regard to
the number of iterations required to reach the optimized
system.

To improve the analysis of the capability of the pre-
sented DSE algorithm, we improved the library of available
hardware level protection techniques with the possibility of
applying Triple Module Redundancy (TMR) at the full mi-
croprocessor level. TMR is a very well established protection
technique exploited in several safety critical applications
that however incurs in significant design overhead.

Results obtained by introducing this additional tech-
nique are interesting. When performing REL ONLY DSE
this technique is always selected in the optimized system
given its strong protection capability. It is selected as first
option when starting with startlevel=0, while it is selected
at the first change of level when starting with startlevel=1.
Interestingly, given its high overhead, this technique is never
selected in the optimized system when performing MULTI
OBJ DSE. In some cases, when starting with startlevel=0, it
may be selected during the search process but is is always
discarded due to its cost.

To conclude, it is important to remark that, since relia-
bility has been evaluated through the AVF of the system, it
only considers the resiliency of the system to a soft error.
It does not take into account the additional number of soft
errors affecting the system in case of increased computa-
tion time and the different soft error rates of the different
technology nodes. Different reliability metrics such as the
FIT rate that are related to the AVF but also account for the
soft error rate of the system can be however used to build
different cost functions taking into account these effects.

5.3 Computation time
Fig.4 reports the average number of iterations required by
both DSE strategies to reach a significant design improve-
ment. The figure shows that, when optimizing for best
reliability, a higher number of iterations is required before
reaching the optimum compared to the multi-objective opti-
mization strategy. This can be ascribed to the fact that, when
optimizing for multi-objectives, the multiple constraints in-
troduced in the design reduce the degree of freedom in
finding an optimal solution, while optimizing for a single
parameter relaxes this constraint.

The figure also shows the computation time required to
build the model of the reference implementation and the
time required to perform the DSE process. Results are pro-
vided in hours of computation on a high-end workstation
(Intel(R) Core(TM) i7-4771 CPU @ 3.50GHz, RAM 16 GB)
running Linux Ubuntu 14.04TLS. The construction of the
initial model is of course the most time intensive task. Once
this is accomplished the DSE process can work in a faster
way exploiting the capability of the Bayesian model used
to represent the system. The current implementation of the
application is single threaded. Significant improvement is
expected from a multi-threaded implementation in which
several design options are evaluated in parallel.

5.4 From benchmarks to real applications
The analysis conducted so far considers realistic hardware
architecture but is limited to simple software applications.



12

Fig. 3. Overhead comparison between the proposed DSE strategies and state-of-the-art reliability techniques protecting all portions of the system.
The selected stare-of-the-art techniques are: (1) LEAP-DICE protecting the hardware layer only, (2) VAR1 protecting the software layer only and,
(3) LEAP-DICE+SIFT proposing a cross layer protection of the system.

TABLE 5
Impact of the characteristics of the reference implementation on the DSE process for the FFT benchmark. Results show the average variation of

the different parameters with respect to the ones obtained starting the DSE process with an unprotected system.

∆ Step ∆AVF(%) ∆C(S) ∆Ex. Time(%) ∆Power(%) ∆HW area(%) ∆SW size(%)
REL avg -206.25 9.10E-06

ONLY stdev 115.43 2.61E-05
MULTI- avg 120.50 3.77E-06 5.24E-3 16.03 -5.12 -16.76 8.46

OBJ stdev 158.80 2.76E-05 1.94E-2 8.53 -6.6.28 8.19 4.06

To show the DSE algorithm at work on a real case we
performed an additional experiment on a system running
a real HPC application. We selected the Sierpinski frame-
work2, an open-source HPC application for the solution
of hyperbolic partial differential equations used in several
fluid dynamics simulators. The software application is very
complex and its Bayesian model accounts for more than
800 nodes, thus representing a good candidate to stress the
capability of the algorithm. The application is not designed
for low-end microprocessors such as the ARM Cortex A15,

2. https://www5.in.tum.de/sierpinski/

therefore the optimization was performed considering a
single microprocessor architecture (SKYLAKE).

Fig. 5 and Fig. 6 show how the AVF of the system
improves during the different iterations of the optimization
process using the two considered optimization strategies.
In this experiment, given the complexity of the system,
the optimization was limited to 250 iterations. The red line
shows the trajectory of the best implementation while blue
dots represent the AVF of all evaluated systems. Looking
at the figure, it is interesting to report that, in this case,
the reference implementation started from a significantly
high AVF and thanks to the optimization process we were



13

TABLE 6
Impact of startlevel on the DSE process. Results show the variation for the different parameters executing Alg. 1 with startlevel equal to 0 or 1.

REL ONLY MULTI-OBJ
∆Step ∆AVF ∆Step ∆AVF ∆C(S) ∆Ex Time ∆Power ∆HW Area ∆SW Size

AES 130 -2.96E-07 89 1.25E-04 0.005 -0.41 -0.50 0.56 2.10
CJPEG -60 9.90E-06 -371 -4.30E-06 0.008 4.53 6.13 -16.80 10.00
DJPEG -95 -5.00E-07 -48 -3.90E-06 -0.006 0.00 -3.70 5.56 -5.00
FFT -56 -2.23E-05 75 -5.70E-06 0.002 -2.15 1.47 2.80 -1.00
QSORT -16 4.50E-07 -206 -1.65E-06 -0.014 -10.87 1.70 7.16 -5.00
SHA -61 7.25E-06 29 3.24E-04 -0.005 -12.55 -4.13 18.30 -6.36
SSEARCH -60 0.00E+00 -151 -6.60E-08 0.015 11.33 3.83 -21.20 13.33
SUSAN C 129 3.30E-06 -5 -8.15E-06 -0.040 -9.08 -3.46 -2.80 -4.57
SUSAN E 30 2.00E-07 -3 -6.72E-05 -0.013 -10.90 6.81 1.50 -2.88
SUSAN S 36 2.18E-07 -64 -6.60E-06 -0.046 -12.56 -12.20 11.20 -9.13

Fig. 4. Number of iterations before best solutions (500 iterations were simulated) and hours required to generate the model of the initial solution
and to perform the DSE process. DSE for best reliability (yellow bars) vs. DSE for multiple objectives (dark blue bars).

able to significantly decrease the AVF and therefore increase
the final reliability of the system. This is evident when
looking at Fig.7 that shows the overhead with respect to
the reference implementation for the 5 considered design
parameters considering the two optimization strategies.

Interestingly, in this complex application, the multiple-
objectives DSE was able to obtain high reliability by protect-
ing a few key software functions. This further confirms and
motivates the benefit of an automatic DSE framework such
as the one presented in this paper.

Thanks to the proposed DSE strategies, we were able
to obtain almost the same reliability level of the LEAP-
DICE+SIFT implementation, but with significant overhead
reductions in all other design dimensions.

For a complex application like the Sierpinski framework,
the construction of the model required about 172 hours of
simulation. Nevertheless, after building the initial model the
DSE process required about 10 hours to complete. In this
case, the availability of a single microprocessor architecture
reduced the size of search space compensating for the com-
plexity of the model.

As demonstrated in this section, the application of the
proposed DSE engine is not limited to cases in which all
layers of the design can be freely modified. It can be also
exploited to optimize systems in which a full layer (e.g.,
the full hardware architecture) or portions of a layer (e.g.,
portions of already verified legacy code, a predefined mi-

croprocessor architecture) are fixed and cannot be modified.
Working with a fixed portion of the system has the effect of
restricting the design space. This on the one end simplifies
the life of the DSE heuristic since less design alternatives
must be considered. However, it limits the number of avail-
able options potentially impacting the characteristics of the
generated design. There is no way to quantify how this will
affect the optimized systems since this is strictly application
dependent. Nevertheless, the DSE engine guarantees that
the space of the available design options will be properly
explored.

6 CONCLUSIONS

This paper presented a cross-layer multi-objective DSE al-
gorithm for complex soft error resilient electronic systems.
The DSE engine is based on an extension of the extremal
optimization theory to deal with a hierarchical organization
of the search space in conjunction with a model able to
analyze the resiliency of the system to soft errors.

The proposed framework allows the designers to eval-
uate the effect that different HW/SW architectures and
different protection techniques have on the system design
parameters such as reliability, execution time, power, hard-
ware area and software size. The DSE can be driven by a
generic cost function in order to give the final user freedom
to setup its specific optimization goals. Two DSE strategies,



14

Fig. 5. AVF trajectory when performing DSE for the Sierpinski framework for best reliability.

Fig. 6. AVF trajectory when performing DSE for the Sierpinski framework for multiple objectives.

one for best reliability and one for multiple objectives were
presented in this study.

The algorithm was tested on a set of systems based on
realistic hardware models. For the software we considered
both benchmark applications and a very complex open-
source HPC application. In all cases the algorithm demon-
strated its capability of optimizing the system.

While the presented technique demonstrated a good
potential, it is open to future improvements. Currently, the
proposed DSE engine works with an orthogonal library of
protection techniques. This actually means that we do not
represent compatibility/incompatibility relations between
the techniques. Expressing these relations when modeling
the different design options will be an important step for-
ward to express additional constraints during the DSE and
to generate systems that better fit the requirements of the
designer. Some of these constraints could be for instance
modeled in the cost function, giving higher scores to solu-
tions that concurrently use selected combinations of nodes.

ACKNOWLEDGMENT

This paper is part of the results of a three year Ph.D. research
project on cross-layer reliability analysis [48]. The research
has been supported by the 7th Framework Program of the

European Union through the CLERECO Project, under Grant
Agreement 611404.

REFERENCES

[1] A. Messer, P. Bernadat, G. Fu, D. Chen, Z. Dimitrijevic, D. Lie,
D. D. Mannaru, A. Riska, and D. Milojicic, “Susceptibility of
commodity systems and software to memory soft errors,” IEEE
Transactions on Computers, vol. 53, no. 12, pp. 1557–1568, Dec 2004.

[2] M. Riera, R. Canal, J. Abella, and A. Gonzalez, “A detailed
methodology to compute soft error rates in advanced technolo-
gies,” in 2016 Design, Automation Test in Europe Conference Exhibi-
tion (DATE), March 2016, pp. 217–222.

[3] R. Baumann, “Soft errors in advanced computer systems,” IEEE
Design Test of Computers, vol. 22, no. 3, pp. 258–266, May 2005.

[4] A. Savino, S. D. Carlo, G. Politano, A. Benso, A. Bosio, and G. D.
Natale, “Statistical reliability estimation of microprocessor-based
systems,” IEEE Transactions on Computers, vol. 61, no. 11, pp. 1521–
1534, Nov 2012.

[5] J. Henkel, L. Bauer, N. Dutt, P. Gupta, S. Nassif, M. Shafique,
M. Tahoori, and N. Wehn, “Reliable on-chip systems in the
nano-era: Lessons learnt and future trends,” in 2013 50th
ACM/EDAC/IEEE Design Automation Conference (DAC), May 2013,
pp. 1–10.

[6] A. DeHon, N. Carter, and H. Quinn, “Final report
for ccc cross-layer reliability visioning study,” March
2011. [Online]. Available: http://www.relxlayer.org/FinalReport?
action=AttachFile&do=get&target=final report.pdf



15

Fig. 7. Percentage improvement for all design dimensions when performing DSE for the Sierpinski framework using the two DSE strategies.

[7] J. Henkel, L. Bauer, H. Zhang, S. Rehman, and M. Shafique,
“Multi-layer dependability: From microarchitecture to application
level,” in 2014 51st ACM/EDAC/IEEE Design Automation Conference
(DAC), June 2014, pp. 1–6.

[8] E. Cheng, S. Mirkhani, L. G. Szafaryn, C. Y. Cher, H. Cho,
K. Skadron, M. R. Stan, K. Lilja, J. A. Abraham, P. Bose, and
S. Mitra, “Clear: Cross-layer exploration for architecting resilience:
Combining hardware and software techniques to tolerate soft
errors in processor cores,” in 2016 53nd ACM/EDAC/IEEE Design
Automation Conference (DAC), June 2016, pp. 1–6.

[9] A. Vallero, A. Savino, G. Politano, S. Di Carlo, A. Chatzidimitriou,
S. Tselonis, M. Kaliorakis, D. Gizopoulos, M. Riera, R. Canal,
A. Gonzalez, M. Kooli, A. Bosio, and G. Di Natale, “Cross-layer
system reliability assessment framework for hardware faults,” in
2016 IEEE International Test Conference (ITC), Nov 2016, pp. 1–10.

[10] D. Coit, T. Jin, and H. Tekiner, “Review and comparison of
system reliability optimization algorithms considering reliability
estimation uncertainty,” in Reliability, Maintainability and Safety,
2009. ICRMS 2009. 8th International Conference on, July 2009, pp.
49–53.

[11] S. Boettcher and A. Percus, “Nature’s way of optimizing,” Artificial
Intelligence, vol. 119, pp. 275 – 286, 2000.

[12] B. Xing, W.-J. Gao, and T. Marwla, “The applications of compu-
tational intelligence in system reliability optimization,” in Com-
putational Intelligence for Engineering Solutions (CIES), 2013 IEEE
Symposium on, April 2013, pp. 7–14.

[13] M. Shafique, S. Rehman, P. V. Aceituno, and J. Henkel, “Exploiting
program-level masking and error propagation for constrained
reliability optimization,” in 2013 50th ACM/EDAC/IEEE Design
Automation Conference (DAC), May 2013, pp. 1–9.

[14] S. Rehman, M. Shafique, F. Kriebel, and J. Henkel, “Reliable soft-
ware for unreliable hardware: embedded code generation aiming
at reliability.” in CODES+ISSS, R. P. Dick and J. Madsen, Eds.
ACM, 2011, pp. 237–246.

[15] S. Rehman, M. Shafique, and J. Henkel, “Instruction scheduling for
reliability-aware compilation.” in DAC, P. Groeneveld, D. Sciuto,
and S. Hassoun, Eds. ACM, 2012, pp. 1292–1300.

[16] S. Rehman, K.-H. Chen, F. Kriebel, A. Toma, M. Shafique, J.-
J. Chen, and J. Henkel, “Cross-layer software dependability on
unreliable hardware.” IEEE Trans. Computers, vol. 65, no. 1, pp.
80–94, 2016.

[17] N. Wattanapongsakorn and S. Levitan, “Reliability optimization
models for embedded systems with multiple applications,” Relia-
bility, IEEE Transactions on, vol. 53, no. 3, pp. 406–416, Sept 2004.

[18] S. Cotofana, A. Schmid, Y. Leblebici, A. Ionescu, O. Soffke, P. Zipf,
M. Glesner, and A. Rubio, “Conan - a design exploration frame-
work for reliable nano-electronics architectures,” in 2005 IEEE
International Conference on Application-Specific Systems, Architecture
Processors (ASAP’05), July 2005, pp. 260–267.

[19] E. Cheng, S. Mirkhani, L. G. Szafaryn, C. Y. Cher, H. Cho,
K. Skadron, M. R. Stan, K. Lilja, J. A. Abraham, P. Bose, and S. Mi-
tra, “Tolerating soft errors in processor cores using clear (cross-
layer exploration for architecting resilience),” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. PP,
no. 99, pp. 1–1, 2017.

[20] A. Vallero, S. Tselonis, N. Foutris, M. Kaliorakis, M. Kooli,
A. Savino, G. Politano, A. Bosio, G. Di Natale, D. Gizopoulos,
and S. Di Carlo, “Cross-layer reliability evaluation, moving from
the hardware architecture to the system level: A CLERECO EU
project overview,” Microprocessors and Microsystems, vol. 39, no. 8,
pp. 1204 – 1214, 2015.

[21] S. S. Mukherjee, C. T. Weaver, J. Emer, S. K. Reinhardt, and
T. Austin, “Measuring architectural vulnerability factors,” IEEE
Micro, vol. 23, no. 6, pp. 70–75, Nov 2003.

[22] G. E. Box and G. C. Tiao, Bayesian inference in statistical analysis.
John Wiley & Sons, 2011, vol. 40.

[23] S. Boettcher, “Extremal optimization: heuristics via coevolutionary
avalanches,” Computing in Science Engineering, vol. 2, no. 6, pp. 75–
82, Nov 2000.

[24] I. De Falco, A. Della Cioppa, D. Maisto, U. Scafuri, and
E. Tarantino, “A multiobjective extremal optimization algorithm
for efficient mapping in grids,” in Applications of Soft Computing.
Springer, 2009, pp. 367–377.

[25] A. Nakada, K. Tamura, and H. Kitakami, “Optimal protein struc-
ture alignment using modified extremal optimization,” in Systems,
Man, and Cybernetics (SMC), 2012 IEEE International Conference on,
Oct 2012, pp. 697–702.

[26] S. Khan, “Application of extremal optimization algorithm to multi-
objective topology design of enterprise networks,” in Computer,
Control, Informatics and Its Applications (IC3INA), 2013 International
Conference on, Nov 2013, pp. 135–140.

[27] J. Chen, G.-Q. Zeng, K.-D. Lu, W.-W. Peng, Z.-J. Zhang, and Y.-
X. Dai, “Extremal optimization algorithm with adaptive constants
dealing techniques for constrained optimization problems,” in
Industrial Electronics and Applications (ICIEA), 2014 IEEE 9th Con-
ference on, June 2014, pp. 1745–1750.

[28] J. Duch and A. Arenas, “Community detection in complex net-
works using extremal optimization,” Phys. Rev. E, vol. 72, p.
027104, Aug 2005.

[29] D. G. Bounds, “New optimization methods from physics and
biology,” Nature, vol. 329, pp. 215–219, 1987.

[30] M.-R. Chen and Y.-Z. Lu, “A novel elitist multiobjective optimiza-
tion algorithm: Multiobjective extremal optimization,” European
Journal of Operational Research, vol. 188, no. 3, pp. 637–651, 2008.

[31] M.-R. Chen, J. Weng, and X. Li, “Multiobjective extremal optimiza-
tion for portfolio optimization problem,” in Intelligent Computing
and Intelligent Systems, 2009. ICIS 2009. IEEE International Confer-
ence on, vol. 1, Nov 2009, pp. 552–556.



16

[32] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown, “Mibench: A free, commercially representative
embedded benchmark suite,” in Proceedings of the Fourth Annual
IEEE International Workshop on Workload Characterization. WWC-4
(Cat. No.01EX538), Dec 2001, pp. 3–14.

[33] J. F. Ziegler, H. W. Curtis, H. P. Muhlfeld, C. J. Montrose, B. Chin,
M. Nicewicz, C. Russell, W. Y. Wang, L. B. Freeman, P. Hosier
et al., “Ibm experiments in soft fails in computer electronics (1978–
1994),” IBM journal of research and development, vol. 40, no. 1, pp.
3–18, 1996.

[34] A. Chatzidimitriou and D. Gizopoulos, “Anatomy of
microarchitecture-level reliability assessment: Throughput
and accuracy,” in Performance Analysis of Systems and Software
(ISPASS), 2016 IEEE International Symposium on. IEEE, 2016, pp.
69–78.

[35] M. Ebrahimi, N. Sayed, M. Rashvand, and M. B. Tahoori, “Fault
injection acceleration by architectural importance sampling,” in
Proceedings of the 10th International Conference on Hardware/Software
Codesign and System Synthesis. IEEE Press, 2015, pp. 212–219.

[36] S. Raasch, A. Biswas, J. Stephan, P. Racunas, and J. Emer, “A fast
and accurate analytical technique to compute the avf of sequential
bits in a processor,” in Proceedings of the 48th International Sympo-
sium on Microarchitecture. ACM, 2015, pp. 738–749.

[37] M. Ebrahimi, L. Chen, H. Asadi, and M. B. Tahoori, “Class:
Combined logic and architectural soft error sensitivity analysis,”
in Design Automation Conference (ASP-DAC), 2013 18th Asia and
South Pacific. IEEE, 2013, pp. 601–607.

[38] N. J. George, C. R. Elks, B. W. Johnson, and J. Lach, “Transient fault
models and avf estimation revisited,” in Dependable Systems and
Networks (DSN), 2010 IEEE/IFIP International Conference on. IEEE,
2010, pp. 477–486.

[39] G. S. Rodrigues and F. L. Kastensmidt, “Soft error analysis at
sequential and parallel applications in arm cortex-a9 dual-core,”
in Test Symposium (LATS), 2016 17th Latin-American. IEEE, 2016,
pp. 179–179.

[40] M. Kaliorakis, S. Tselonis, A. Chatzidimitriou, N. Foutris, and
D. Gizopoulos, “Differential fault injection on microarchitectural
simulators,” in 2015 IEEE International Symposium on Workload
Characterization, Oct 2015, pp. 172–182.

[41] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen,
K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The
Gem5 simulator,” SIGARCH Comput. Archit. News, vol. 39, no. 2,
pp. 1–7, Aug. 2011.

[42] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert, “Statistical
fault injection: Quantified error and confidence,” in 2009 Design,
Automation Test in Europe Conference Exhibition, April 2009, pp. 502–
506.

[43] K. Lilja, M. Bounasser, S.-J. Wen, R. Wong, J. Holst, N. Gaspard,
S. Jagannathan, D. Loveless, and B. Bhuva, “Single-event per-
formance and layout optimization of flip-flops in a 28-nm bulk
technology,” IEEE Transactions on Nuclear Science, vol. 60, no. 4,
pp. 2782–2788, 2013.

[44] S. Wang, J. Hu, and S. G. Ziavras, “Self-adaptive data caches for
soft-error reliability,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 27, no. 8, pp. 1503–1507, 2008.

[45] H. Amrouch and J. Henkel, “Self-immunity technique to improve
register file integrity against soft errors,” in VLSI Design (VLSI
Design), 2011 24th International Conference on. IEEE, 2011, pp. 189–
194.

[46] E. Chielle, F. L. Kastensmidt, and S. Cuenca-Asensi, “Tuning
software-based fault-tolerance techniques for power optimiza-
tion,” in Power and Timing Modeling, Optimization and Simulation
(PATMOS), 2014 24th International Workshop on. IEEE, 2014, pp.
1–7.

[47] L. Xiong and Q. Tan, “A configurable approach to tolerate soft
errors via partial software protection,” in Parallel and Distributed
Processing with Applications Workshops (ISPAW), 2011 Ninth IEEE
International Symposium on. IEEE, 2011, pp. 260–265.

[48] A. Vallero, “Cross layer reliability estimation for digital systems,”
Ph.D. dissertation, Politecnico di Torino, 2017. [Online]. Available:
http://porto.polito.it/2673865/

Alessandro Savino (M’14) received a Ph.D. in
information technologies and a M.Sc. degree in
computer engineering from Politecnico di Torino,
Italy, where he is currently an Assistant Profes-
sor with the Department of Control and Com-
puter Engineering. His main research topics are
microprocessor test and software-based self-
test as well as bioinformatics and image pro-
cessing.

Alessandro Vallero (S’15) received a Ph.D. in
computer engineering from Politecnico di Torino
in Italy and a M.Sc. degree in electronic engi-
neering from the University of Illinois at Chicago,
US, and Politecnico di Torino, Italy. Currently he
is a postdoc at the Department of Control and
Computer Engineering of Politecnico di Torino
in Italy. His research interests focus on system
level reliability and reliable reconfigurable sys-
tems.

Stefano Di Carlo (SM’00-M’03-SM’11) received
a M.Sc. degree in computer engineering and a
Ph.D. degree in information technologies from
Politecnico di Torino, Italy, where he is a tenured
Associate professor. His research interests in-
clude DFT, BIST, and dependability. He has
coordinated the EU-FP7 CLERECO on Cross-
Layer Early Reliability Estimation for the Com-
puting cOntinuum. Di Carlo has published more
than 150 papers in peer reviewed IEEE and ACM
journals and conferences. He regularly serves

on the Organizing and Program Committees of major IEEE and ACM
conferences. He is a golden core member of the IEEE Computer Society
and a senior member of the IEEE.


