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Cognitive Radio Algorithms Coexisting in a
Network: Performance and Parameter Sensitivity

Andrea Hess, Francesco Malandrino, Nicholas Kaminski, Member, IEEE, Tri Kurniawan Wijaya,
Luiz A. DaSilva, Fellow, IEEE

Abstract—This paper studies the performance of cognitive
radios in a scenario where different pairs of radios adopt different
cognition/decision making approaches. We want to assess (i) if
there is a category of cognitive radio algorithms that consis-
tently outperforms the others, and (ii) how sensitive different
algorithms are to suboptimal parameter setting. Our approach
is to take a representative set of well-known classes of cognitive
radio algorithms, mix and match them throughout thousands of
simulations, and determine which seem to perform better. We
find that choosing a cognitive radio algorithm means finding a
balance between the best-case performance obtained by optimally
setting all parameters, and the behavior in uncontrolled, unknown
environments, where sub-optimal decisions are likely to be made.
The approaches we consider, namely reinforcement learning,
optimization metaheuristics, multi-armed bandit solutions, and
supervised learning, greatly differ in their performance. For
example, schemes that are able to achieve a high throughput
in our simulation study are more sensitive to suboptimally-set
parameters.

I. INTRODUCTION

Although the concept of cognitive radio has been around
for almost two decades, real deployments are still scarce. Part
of the problem is the perceived complexity in the operation
and parameter setting (as well as the certification process)
for such radios. Upon deciding to embrace cognitive radios,
adopters would be faced with several important choices, from
the cognition algorithm to use to the selection of its parameters.

Each of these choices is critical for network performance,
and each requires a deep knowledge of cognitive radios and
cognitive networks. Indeed, the plethora of proposed alterna-
tives in the cognitive radio literature, along with the fact that
some of them differ in but nuances and details, makes plug-
and-play alternatives such as Wi-Fi or ZigBee more appealing.

In this paper, we compare four approaches to cognition
found in the literature, namely, reinforcement learning, opti-
mization metaheuristics (represented by genetic algorithms),
multi-armed bandit solutions, and supervised learning (repre-
sented by support vector machines). We discuss which classes
of cognitive radio algorithms appear to offer the best perfor-
mance, and how to set the main parameters of each class. At
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Fig. 1. We compare different classes of cognitive radio algorithms and,
for each algorithm, a variety of possible parameter settings. A first question
we ask is whether there is an approach that is consistently more effective
than alternative ones. We are also interested in studying how sensitive each
approach is to errors in setting its parameters. Indeed, some approaches (the
blue one in the figure) can perform very well if their parameters are set
optimally, and not so well otherwise. In many real-world cases, when setting
the parameters optimally is very difficult or even impossible, we may prefer
another approach (such as the yellow one) whose performance is lower on
average but more consistent. Finally, we are concerned about the “tail” of
scenarios where nodes, no matter the algorithm they use and the parameters
thereof, always have very poor performance: we wish to characterize these
scenarios, and assess how frequently they occur.

the same time, we investigate where the performance differ-
ence comes from, i.e., which decisions – channel selection,
sensing interval – good algorithms take more effectively than
bad ones.

We should note that we are not proposing a new cognitive
radio algorithm. Rather, we survey the literature and identify
main categories of algorithms, and the most relevant parame-
ters of each one. Then, we perform a large set of simulations,
where algorithms and parameter settings are compared with
one another in a variety of medium- to large-scale scenarios.
Finally, we examine the simulation results, mining them for
generalizable conclusions on the efficiency of different algo-
rithm types.

One may wonder why a new set of simulations are needed
in the first place, when virtually all papers proposing a new
cognitive radio algorithm come with their own extensive set
of simulations. A first reason is that we need to study all
algorithms under the same conditions. Another one is scale: as
discussed in Sec. VI, many cognitive research papers focus on



validating their solution concept, which is best done within
small-scale scenarios. Our focus, on the other hand, is on
how suitable different solutions are for large-scale scenarios.
Finally, our simulations enable us to study how different
cognitive radio algorithms, and indeed different approaches for
cognition, can coexist in the same network.

We will find out which type of algorithms tend to perform
better than others; which are highly sensitive to suboptimal
parameter settings and which are more of a safe bet; and which
parameters warrant care and extensive experimentation before
they are set. These goals are summarized in Fig. 1.

Our performance evaluation differs from traditional cogni-
tive networking papers in both the reference scenario and the
way different approaches are compared. We study a set of
large-scale scenarios, covering an area of one square kilometer
and including tens of source/destination pairs, whose position
is chosen at random. We argue that using such scenarios makes
our evaluation more realistic than only considering special,
hand-picked network topologies (e.g., a line or butterfly topol-
ogy).

Similarly, most cognitive radio papers evaluate the algo-
rithms they present in homogeneous settings, exhaustively
studying all possible parameter settings to find the best one.
In contrast, we randomly assign a parameter setting (which
we call a firmware) to each transmitted/receiver pair on our
topology, and perform a statistical study of the performance
associated to each approach. While this unavoidably means
that some position/setting combinations will not be taken into
account, it also has two important advantages: first, it allows
us to study which approaches are more resilient to subopti-
mal parameter settings, which are very likely in real-world
cases; second, we can explore the interaction between multiple
independent secondary users, using different algorithms and
technologies, all competing for the same channel. Furthermore,
we note that this approach to the batch analysis of parameter
settings provides a useful foundation for the operation of meta-
learning approaches for cognitive radio systems, as examplified
in [1] and [2]. We note that most meta-learning work tends
to focus on the operation of an individual radio or network
changing over time, rather than the aggregate investigation of
radio operation in heterogeneous environments as presented
here.

The remainder of this paper is organized as follows. We
present the classes of cognitive algorithms we examine, as well
as their parameters, in Sec. II. Then, in Sec. III, we present
the details of the scenarios we use to test those algorithms.
In Sec. IV we discuss how we perform our simulations, and
process the resulting data. Our results are summarized and
discussed in Sec. V. After reviewing related work in Sec. VI,
we conclude the paper in Sec. VII.

II. ALGORITHMS

In dynamic spectrum access (DSA), the most common
application of cognitive radios, secondary users must find a
balance between supporting their own communications and
avoiding interference with those of more privileged users.
Typically this involves selection of a channel, power level,

and modulation and coding scheme (MCS). Actions by a
cognitive engine may then be divided into two categories:
impactive actions and non-impactive actions. Impactive means
in this context that an action has an impact from the viewpoint
of the primary user, which might be the case for actions
adapting bandwidth, frequency, or power level. Actions that
have no visible impact to the primary user, e.g., those linked
to the modulation scheme, are categorized as non-impactive.
Cognitive radios may also make exploratory actions, e.g.,
in the form of sensing, which typically do not affect other
users, but provide situational awareness. The operation of a
cognitive radio may then be described as the selection of an
action to balance the impact of the first category (impactive
actions) against the requirements of the second category (non-
impactive actions), based on information gained with the third
category (exploratory actions). That is, the cognitive radio
must make decisions by jointly considering its own needs
and the requirements of more privileged users, based on the
information it has the ability to collect.

We examine the factors that underpin an algorithm’s ability
to balance the two categories of DSA actions. To this end, each
algorithm is presented with the same goals of achieving high
throughput communication while avoiding interference with
other users. At each decision point, secondary users may select
to sense or transmit. If sensing, radios receive an estimate of
received power for each channel. If transmitting, radios must
also select the channel and the MCS to employ, as summarized
in Sec. III. These choices – sensing or transmitting, and if
transmitting on which channel, with which MCS and at which
power level – represent the core of DSA, and these are the
choices all algorithms are faced with.

The algorithms run within the receiver of a pair of secondary
radios. Receivers can direct the actions of transmitters, e.g.,
through the use of cyclostationary signatures, as presented
in [3]. Cyclostationary signatures consist of an identifier,
unique to a secondary user pair, and an action code, which
indicates the channel and MCS to be used for the next
transmission. Transmitters simply scan for cyclostationary
signatures and send packets in response to requests. This
organization alleviates problems related to the need to share
channel information and is in line with the suggestions of [4].

The operation of each algorithm can be separated into
two functions: decision and feedback. The decision function
determines the next action to be taken. The feedback function
tallies information regarding the performance of this action for
later use. Each algorithm maintains its own persistent memory
during the course of simulation.

The reader can refer to Tab. I for a summary of the algorithm
classes we examine in our paper, and the parameters of each
class. It is important to stress that for each of the classes we
consider, to ensure generality of the comparison, we take the
classic version of the algorithm without any modifications or
optimizations. This approach is consistent with our goal of
obtaining high-level information about the behavior of different
classes of algorithms – e.g., what happens if parameters are
set suboptimally – as opposed to the performance of individual
algorithms. Thus, we describe the general principles of each
algorithm in the following subsections.
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A. Reinforcement Learning Algorithm
The first class of algorithms we examine is a straightforward

implementation of Reinforcement Learning (RL) [5]. This
particular class of algorithms has been applied to a range of
cognitive radio problems [6]–[9] and the version implemented
here is a basic instantiation tailored for use in DSA.

As is typical for reinforcement learning, this algorithm is
based on keeping track of rewards and punishments. Here,
we maintain a reward value for each transmit action, which
indicates the learned usefulness of the action. These transmit
actions, consisting of all combinations of a channel, transmit
power, and MCS scheme, form the action space available
to the reinforcement learning algorithm. The reinforcement
learning algorithm tracks the utility of these actions through
environment states defined by the power levels on all avail-
able channels that result from the aggregate operation of all
radios, whether primary or secondary. All transmit actions
are initialized to zero and updated after each action. If the
action results in a successful transmission, the usefulness is
incremented; otherwise, it is decremented. After each update,
usefulness values step toward zero with a step size given by
the forgetfulness factor parameter (forget factor). Keeping
track of these usefulness values allows the algorithm to learn
the best actions based on past experience.

The central challenge of reinforcement learning is to exploit
successful actions while keeping usefulness information about
all actions up to date. Here we address this exploitation
versus exploration dilemma through sensing. Upon sensing,
the algorithm updates usefulness values for all actions based
on their estimated performance given current power levels in
each channel. Usefulness values determined through sensing
are weighted according to the sense weight parameter and com-
bined with previously learned usefulness values. Secondary
users running the reinforcement learning algorithm sense with
a probability given by the sense probability parameter.

Algorithm 1 Reinforcement Learning Decision
1: if ROLL DICE()  sense probability then
2: action ( sense action
3: else
4: action ( GET BEST()
5: end if
6: return action

The reinforcement learning decision function is shown in
Alg. 1. The first operation, on Line 1, is the determination of
whether sensing should occur based on a random value in the
interval [0, 1] as returned by the ROLL DICE() subroutine.
If the sensing check fails the function simply returns the
current best actions, as given by the GET BEST subroutine.
The GET BEST subroutine simply provides the action with
the highest usefulness at the time of calling. In the event that
the action with the highest usefulness is not unique, a single
action is randomly selected from those with the highest current
usefulness value.

As noted above, the primary operation of reinforcement
learning is maintaining a performance record for each action.

Algorithm 2 Reinforcement Learning Feedback
1: for action in possible actions do
2: if action usefulness < 0 then
3: action usefulness += forget factor
4: else
5: action usefulness –= forget factor
6: end if
7: if last action is sense action then
8: if action power > required power then
9: usefulness update ( action bits

10: else
11: usefulness update ( -3 ⇥ action power
12: end if
13: action usefulness ( (1 – sense weight) ⇥

action usefulness + sense weight ⇥
usefulness update

14: end if
15: end for
16: if last action is not sense action then
17: if last action throughput > 0 then
18: last action usefulness ( last action usefulness +

last action throughput
19: else
20: last action usefulness ( last action usefulness –

3 ⇥ last action power
21: end if
22: end if

This record-keeping is the focus of the feedback function for
the reinforcement learning algorithm. The first task of record-
keeping is the forgetting of stale information, in Line 2 through
Line 6 in Alg. 2. At this point usefulness values for each
action progress toward zero with a step size given by the forget
factor parameter. If the last action was sensing, usefulness
values for each action are updated in Line 8 through Line 14.
Line 8 compares the action’s power to the power required to
successfully transmit data in the current radio environment, in
order to calculate an appropriate usefulness update. In the case
of success for a given action, the usefulness update is directly
the number of bits which could be successfully transmitted as a
result of that action, as in Line 9. Alternatively, the usefulness
update for unsuccessful actions is provided by negative three
times the power that would be used in the failed effort, as
in Line 11. This usefulness update is then combined to the
prior value of the action usefulness in a weighted average
using the sensing weight, which is shown in Line 13. If
the calculated usefulness results from experience, rather than
sensor based estimates, usefulness is updated in a similar
manner. Specifically, if an action successfully transmits data,
its usefulness is additively updated with the throughput for
successful actions, as in Line 18. Alternatively, three times
the power used by the failed action is subtracted from the
usefulness, as in Line 20.
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B. Genetic Algorithm

Our Genetic Algorithm (GA) provides a basic version of
the classic technique that has long been studied for cognitive
radios [10]–[13].

The GA generates a population of candidate actions, referred
to as chromosomes and evolves them based on a fitness
function. This fitness function assigns a fitness value based
on the expected performance of the chromosome. Evolution
occurs through the recombining of chromosomes by crossover,
random changing of chromosome elements through mutation,
and seeding of new populations with high fitness individuals.
Crossover and mutation, or the probability with which they
occur, determine the manner in which the GA searches through
the parameter space for a solution. This searching process
continues until a viable solution is found. The details of the
process are discussed below. The algorithm returns the highest
fitness chromosome as the action to be taken.

Sensing in our GA occurs periodically to maintain a current
understanding of the environment. Here, sensing information
consists of the power at the receiver of a given pair on each of
the channels. This information is used directly as an estimate
of the interference on that channel when calculating the
fitness of various actions during the running of the GA. This
configuration provides the most direct connection between
information available to the genetic algorithm and a selected
action, but also means that the GA makes decisions on the
basis of out-dated information in scenarios where sensing
occurs infrequently. A separate fitness value is maintained for
sensing; it is incremented by the sense fitness step parameter
after each sensing action. The sensing action is then compared
to the chromosome resulting from the standard evolution
process. The sensing fitness is reset to zero once a sensing
action has been taken. Thus the sense fitness step controls the
degree of situational awareness for the GA.

Within the GA, most of the operation occurs as part of the
decision function, as shown in Alg. 3. Initialization, Line 1,
consists of generating a pre-defined number of randomly
selected tuples of a channel and MCS. These chromosomes
are then evolved for no more than 20 generations. Within each
generation, each pair of chromosomes is selected for crossover
with a probability given by the crossover probability parameter.
The CROSSOVER subroutine, in Line 6, simply trades the
channel selection between the selected chromosomes. Af-
ter crossover, chromosomes are selected for mutation. The
MUTATE subroutine, in Line 11, randomly alters either the
channel or the MCS of the given chromosome. Once these
evolution processes are complete, the best chromosome is
determined by calculating a fitness for each chromosome and
selecting the highest fitness individual. The fitness value is
simply the estimated number of bits that a chromosome would
send without interference, based on the most recent sensor
information. A single best individual is selected randomly from
the top performing chromosomes, should multiple chromo-
some share the best fitness value. If the fitness value of the best
individual is equivalent to the maximum number of bits that
any MCS can transmit or the maximum number of generations
is reached, evolution is ended. Otherwise, the best individual

Algorithm 3 Genetic Algorithm Decision
1: INITIALIZE(population[i]) 8i : 1  i  N

2: while number generations  20 do
3: pairs ( FIND PAIRS(population)
4: for pair in pairs do
5: if ROLL DICE()  crossover probability then
6: CROSSOVER(pair)
7: end if
8: end for
9: for chromosome in population do

10: if ROLL DICE()  mutation probability then
11: MUTATE(chromosome)
12: end if
13: end for
14: best chromosome ( DETERMINE BEST(population)

15: if CALCULATE FITNESS(best chromosome) is max-
imum fitness then

16: exit while loop
17: else
18: SEED POPULATION(best chromosome)
19: end if
20: end while
21: if CALCULATE FITNESS(best chromosome)

 sense fitness then
22: best chromosome ( sense action
23: end if
24: return best chromosome

is used to seed a new population, in Line 18. One half of a
seeded population shares the channel selected by the seed and
the other half shares the MCS of the seed, with other values
being randomly selected. After evolution, the fitness of the
final best individual is compared to the fitness of sensing to
determine the overall best action to return.

The GA feedback function in Alg. 4 simply updates in-
formation related to sensing. In case the most recent action
was sensing, information used for fitness estimation is updated,
Line 2, and sense fitness is reset to zero, Line 3. Otherwise,
sense fitness is incremented according the sense fitness step
parameter.

Algorithm 4 Genetic Algorithm Feedback
1: if last action is sensing then
2: UPDATE SENSED INFORMATION()
3: sense fitness ( 0

4: else
5: sense fitness ( sense fitness + sense fitness step
6: end if

C. Multi-armed Bandit
Our Multi-Armed Bandit (MAB) algorithm interacts with a

virtual slot machine of DSA in manner based on the influential
work of Jouini et al. [14]. As such, this algorithm captures the
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TABLE I. A SUMMARY OF THE CLASSES OF ALGORITHMS WE CONSIDER AND THE PARAMETERS THEREOF.

Class Parameter Name Parameter Description Parameter Values

Reinforcement Learning
forget factor The amount of usefulness that is forgotten about each action in each time slot. It gives the

size of the step toward the initial usefulness value.
10 / 20 / 30 / 40 / 50

sense weight The degree to which current sensed information is preferred over past experience. The value
is used as the weight of sensor information during the calculation of the weighted average.

0.05 / 0.25 / 0.5 / 0.75 / 1

sense probability The likelihood that sensing is selected instead of relying on past experience. 0.01 / 0.05 / 0.15 / 0.25 / 0.5

Genetic Algorithm
crossover probability The chance that any single pair of chromosomes will be submitted to the crossover process.

This parameter controls the degree to which the parameter space region containing the current
population of chromosomes is explored.

0.05 / 0.25 / 0.5 / 0.75 / 1

mutation probability The probability that any single chromosome undergoes mutation. This parameter affects the
degree to which the parameter space region under review is expanded.

0.05 / 0.25 / 0.5 / 0.75 / 1

sense fitness step The amount by which the sensing fitness is incremented after each non-sensing action. This
parameter has the effect of determining how often the sensor information used to estimate
fitness is updated.

1 / 5 / 10 / 20 / 50

Multi-Armed Bandit
⇣ Exploration coefficient to balance exploitation and exploration. 1 / 2.5 / 5 / 10 / 20
c Exploration coefficient to balance exploitation and exploration. 0.1 / 0.5 / 1 / 2.5 / 5
power multiplier The amount of reward for one dBm of avoided interference, relative to 1 bit of transmitted

data.
0 / 1 / 2 / 5 / 10

Support Vector Machines
sense probability The likelihood that sensing is selected instead of relying on past experience. 0.01 / 0.05 / 0.15 / 0.25 / 0.5
c The cost parameter: penalty of the error term. 0.1 / 1 / 5 / 10 / 20
� The kernel coefficient. 0.001 / 0.01 / 0.1 / 1 / 10

fundamental approach to a widely used family of solutions to
the DSA problem.

Fundamentally, this algorithm allows each node to select an
action on the basis of an associated indexing value. Specifi-
cally, each node running the MAB algorithm will select one
action from a list composed of all combinations of channel,
transmit power, and MCS scheme (paralleling the transmit
actions employed by the reinforcement learning algorithm) as
well as a sensing action. Each of these actions is considered as
a potential arm of a slot machine that represents the scenario at
large, including the aggregate operation of all radios. At each
time step, the MAB is asked to select a single action to use, or
play, based upon the utility that the algorithm associates with
that action. These utilities are encoded into action index values,
which simplifies action selection to finding the maximum index
value. This simplifies the decision function to that shown in
Alg. 5. In the event that the maximum index value is not
unique, the final action is selected randomly from those with
the maximum index value.

Algorithm 5 Multi-Armed Bandit Decision
1: selected action ( FIND MAX INDEX(records)

In contrast to the operation of the GA, the operation of
the MAB primarily occurs within the feedback function, as
shown in Alg. 6. The first task of the algorithm is to update the
index for the most recently selected action. This task, which
is accomplished by the UPDATE ACTION INDEX subrou-
tine, directly follows the iterative calculation of the upper
confidence bound (UCBV ) based coefficients proposed for
cognitive radio use in [14]. The parameters ⇣ and c influence
the index calculations. Full details regarding index calculation,
including an analysis of regret and an iterative algorithm, are
provided in [14]. The remainder of the algorithm focuses on
determining the reward for the most recently selected action. If
the most recent action was a sensing action, the reward update
represents the opportunity cost of sensing. Specifically, Line 6
subtracts the number of bits for all actions that would have
resulted in successful transmission from the reward update

value. Meanwhile, Line 8 adds the scaled interference power
of would-be unsuccessful actions avoided by sensing to the
reward update. Alternatively, if the most recent action was a
transmission, the reward update is set directly as the number of
successfully transmitted bits. The reward update is then added
to the reward value of the most recent action.

Algorithm 6 Multi-Armed Bandit Feedback
1: UPDATE ACTION INDEX(selected action)
2: reward update ( 0
3: if selected action = sensing then
4: for action in available actions do
5: if action power < required power then
6: reward update ( reward update - action bits
7: else
8: reward update ( reward update +

power multiplier ⇥ action power
9: end if

10: end for
11: else
12: reward update ( number received bits
13: end if
14: selected action reward ( selected action reward +

reward update

The MAB algorithm is controlled through a set of pa-
rameters. The first two of these parameters ⇣ and c directly
influence the coefficient calculation by altering the balance
of exploitation and exploration; for further details see [15].
The authors of [15] show that an optimal setting for these
parameters exists in the region ⇣ � 1, c = 1 and the authors
of [14] extend this region to 3 ⇣ c > 1. The final parameter
in our algorithm, the power multiplier, provides the reward
per one dBm of avoided interference power. Together these
parameters guide the operation of the MAB algorithm.

D. Support Vector Machines
Support Vector Machines (SVMs) [16] are supervised learn-

ing models that have been applied to a range of problems
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in cognitive radio networks (e.g., see [17], [18]). Given a
training set, including values for both independent and de-
pendent variables, the objective is to predict the value of the
dependent variable for new sets of independent variables. If the
dependent variable is discrete, such as class label, we speak
of classification; otherwise, we speak of regression.

In our scenario, we have a regression task, where the depen-
dent variable is the number of bytes that can be successfully
transferred. The independent variables, also called features,
include both the outside conditions, e.g., the power sensed on
each channel, and the decision each node could make, e.g.,
which channel to select. Intuitively, we want to learn such
relationships as:

• if the power sensed on channel 1 is very low and I choose
to transmit on channel 1, I will transmit many bytes;

• if the power sensed on channel 1 is average and I choose
to transmit on channel 1, I will transmit a few bytes
using robust MCS schemes and no bytes at all using
other ones;

• if the power sensed on channel 1 is high, I will transmit
no byte under any conditions.

More formally, the feature vectors x 2 X are composed
by 2C + M + 1 elements, where C and M are the number of
existing channels and MCS schemes:

• C elements report the power levels last sensed on each
of the C channels;

• C elements model the channel chosen by the node, with
a one-hot encoding;

• M elements similarly model the MCS choice;

• the last element is the chosen transmission power level.

The output variables y are the number of bits successfully
transmitted in each case.

The feature vectors corresponding to possible decisions are
built in a similar way: the first C elements are the same for all
vectors, while the others reflect the possible channel, MCS and
power choices. Nodes will enact the decision that is expected
to result in the highest number of transmitted bytes.

SVM algorithms support multiple kernels, i.e., functions
used to transform the non-linear input space into a high-
dimensional feature space to efficiently perform the regression
task into. In this paper, we adopt the widely used Radial Basis
Functions (RBF) kernel. We have three important parameters.
The first parameter is the sense probability parameter, which
determines the likelihood of a node sensing the environment.
The next two parameters are c (the cost parameter) and �

(kernel coefficient), which are useful in tuning the SVM

learning algorithm.1 It has to be mentioned that c and � are
closely related to one another and the configuration of a single
parameter cannot be directly mapped to the throughput of
a node. The influence of parameter values on throughput is
discussed in Sec. V, while their influence on the classification
error is illustrated in Tab. VII in the appendix.

Algorithm 7 SVM Decision
1: train decisions.PUSH(last decision)
2: train outcomes.PUSH(last tx)
3: if random number<sense prob then
4: return SENSE
5: end if
6: if LENGTH(train data)<min train then
7: return TRANSMIT(random configuration)
8: end if
9: TRAIN SVM(train decisions,train outcomes)

10: expected tx ( PREDICT SVM(possible decisions)
11: return arg maxpossible decisions expected tx

Alg. 7 details how an SVM node operates. The node
is given the decision made at the previous time step
(last_decision) and the amount of transmitted data it
resulted in (last_tx). First of all, this information is added to
the training set (variables train decisions and train outcomes).

With probability sense_prob, the node decides to sense
in this frame. Otherwise, if the training set is smaller than
min_train2, then a random decision is made in Line 7.
Otherwise, an SVM regression model is trained based on past
information (Line 9) and used, in Line 10, to foresee the
outcome (i.e., the expected number of transmitted bytes) of
all possible decisions. The decision expected to produce the
best result is finally returned in Line 11.

It is important to point out that SVM nodes behave, con-
ceptually, in the same way of other nodes. The firmware
parameters are static (e.g., we do not change sense_prob
over time), but the model itself is able to learn from new
information as it becomes available.

III. REFERENCE SCENARIOS

In order to develop a good understanding of the factors most
important to the success of cognitive radio, we focus on a
common structure for the DSA problem. This structure places
both primary and secondary users in a common environment,

1There are also other kernels such as linear, polynomial, and sigmoid
kernels. We choose RBF since it is capable to model a non-linear relationship
between the features and output variables, is generally fast, and it provides
reasonably good prediction. An interested reader can also run similar exper-
iments using the different kernels; however, the average training time of the
learning algorithm is particularly important here since we aim to run a large-
scale experiment involving thousands of simulations, hundreds of nodes, each
with up to 1000 decisions to be made. To illustrate this, in the appendix, we
provide the average learning time of a node using RBF and the linear kernel.
Additionally, we note that different kernel choices might also need different
set of parameters to tune their accuracy. For example, the polynomial kernel
requires the degree parameter, whereas the linear kernel does not require the
� parameter.

2The parameter min train has been set to 150 in the simulation experiments.

6



with each attempting to communicate in a shared set of
channels. Primary users have privileged access to the channels
such that they need not consider the actions of secondary
users when accessing spectrum. Secondary users, on the other
hand, are obliged to avoid interfering with primary users and
other secondary users. It is worth noting that there is no
coordination taking place between secondary users. For the
sake of tractability, time is considered in terms of discrete
rounds. In each time interval, users may employ one of several
possible actions, to be discussed below. This scenario provides
the basis for several investigations of DSA [19]–[21], as a
tractable way to consider the application of various cognitive
radio techniques and algorithms.

Furthermore, this scenario fits current regulatory trends
for the use of cognitive radio. The licensed shared access
(LSA) [22] and President’s council of advisors on science and
technology (PCAST) [23] frameworks both fit this general
model. Within the LSA framework, secondary users may
hold additional privileges in terms of access to spectrum
and are bound to specific requirements in terms of avoiding
interference with primary user operation. Furthermore, the
licensed status of secondary users supports the application of
some degree of synchronicity between primary and secondary
users, whether through a database or other means. The PCAST
framework largely mirrors the LSA framework, with the addi-
tion of a third tier of opportunistic unlicensed access. While
this open-tier more closely matches much of the discussion in
the cognitive radio literature, it poses greater challenges due
to the reduced coordination between primary and secondary
users. In regard to this open-tier, the synchronicity assumption
of the assumed model would need to be relaxed, but the model
remains applicable. Thus, our reference scenarios fit the current
regulatory frameworks.

Fig. 2. Illustration of a sample network topology for a heterogeneous
cognitive radio scenario spanning 1 km2 such as studied in our evaluation.
The topology comprises one primary user located in the center and nodes
running GA, RL, MAB, or SVM mechanisms acting as secondary users.

TABLE II. AVAILABLE OPTIONS FOR THE CHOICE OF CHANNEL AND
MCS BY EACH SECONDARY USER.

Decision Options
Channel Eight available channels, numbered

from 1 to 8
MCS 1/4 rate coding BPSK, 1/3 rate coding

BPSK, 1/2 rate coding BPSK, 1/2 rate
coding QPSK

For this study we examine a network realization wherein all
nodes are placed within a 1,000⇥1,000 m2 area. The primary
user transmitter is located in the center of this area, such as
illustrated in Fig. 2. The pairs of secondary users that will
communicate with one another are uniformly distributed with a
maximum distance of 200 m between transmitter and receiver.
Tab. II summarizes the decisions secondary users have to make,
and the available options for each of them. There are eight
channels given (indexed as 1 through 8) and four modulation
schemes. The transmission power is fixed at 12.5 dBm. At the
start of each time slot each node determines an action to be
applied for that slot. All node actions are then simulated and
feedback is returned to the nodes.

A. Channel Utilization Patterns of Primary Users
In the basic channel utilization model, a communication

pattern is randomly assigned to each channel, or primary user
respectively, which is followed by the primary user over the
whole simulation duration. Tab. III gives an overview of the
input parameters of the channel utilization model. In every
inactive time slot each primary user decides whether to start a
new transmission or not based on its activation probability.
Once a transmission procedure is started, the primary user
either transmits data until the communication length is reached
or gives up after a certain number of time slots (give-up length)
with unsuccessful communication attempts. Upon completion
of a transmission procedure or giving up, the primary user
changes into the inactive state again. It is worth mentioning
that the secondary users do not explicitly collect information
about the primary user behavior, but instead learn which
throughput can be achieved on which channel by using which
MCS.

TABLE III. PARAMETERS OF THE CHANNEL UTILIZATION MODEL
DETERMINING EACH PRIMARY USER’S CHANNEL USAGE PATTERN.

Parameter Name Parameter Values
Activation probability 0 / 0.125 / 0.25 / 0.375 / 0.5 / 0.625 / 0.75 / 0.875
Communication length 1 / 5 / 10
Give-up length 1 / 5 / 10
Switching probability qs 0 / 0.125 / 0.25 / 0.375 / 0.5 / 0.625 / 0.75 / 0.875 / 1

For the dynamic version of the channel utilization model
we introduce a switching probability parameter (qs), which
determines if and how frequently a primary user changes its
communication pattern. For example, with qs set to 0, the PU
does not change its behavior, while with qs = 1 the primary
user decides in each inactive time slot about changing the
parameter setting of its channel utilization model. Regarding
the MCS, the primary user always uses the most reliable
option, i.e., 1/4 rate coding BPSK.
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For the experiments described in the following section, we
first use the basic channel model and later compare the per-
formance results to those of the dynamic version in Sec. V-F.

IV. SIMULATION AND DATA PROCESSING

In this section, we describe how we perform our simulations
and process the resulting logs. Neither task is exceptionally
complex in itself, but both require care and deserve an expla-
nation. Fig. 3 depicts the sequence of sub-steps in both tasks:
for setting up the simulation, each node needs to be assigned
a firmware (step 1) and a location within the simulation area
(step 2) prior to executing each simulation run (step 3). During
the data processing task, the relevant metrics are extracted (step
4), aggregated (step 5), and finally, visualized (step 6).

A. Simulation Setup
As discussed earlier and as summarized in Tab. I, we

consider:
• four classes of algorithms, RL, GA, MAB, and SVM;
• for each class, three parameters;
• for each parameter, five values.
As a control case for our simulation study we implemented

the Toy Algorithm. This algorithm randomly selects an action
regardless of the actions of other users. Each action in the pool
of possibilities is assigned equal probability and a new action is
selected at each decision point with no memory. Therefore the
decision function simply consists of a random action selection
and the feedback function is empty.

This gives a total of 4 ·53
= 500 combinations for GA, RL,

MAB, and SVM nodes and 501 when including the ToyNode,
which has no parameters. Choosing the right combination
of class and parameters is the choice that awaits cognitive
radio adopters. We refer to such combinations as firmwares,
as represented in step 1 of Fig. 3: adopters have to select
one of 501 possible firmwares to load into their devices. It
is worth stressing that all algorithms remain cognitive, in that
they adapt their decision to the surrounding environment and
the decisions of other nodes. Firmwares merely determine how
this adaptation takes place. For the supervised learning scheme
SVM it has to be noted that, every time the classifier cannot
be trained, the node takes a random decision. This can be the
case, for example, if the training dataset is too small or if
the training or test set contain a faulty value that cannot be
handled by the classifier – which is likely to happen as well
in real-world deployments.

We also generate a total of 3,000 topologies (step 2 in
Fig. 3). There is an equal number of nodes running a certain
class of algorithm in each topology. Each topology has 24,
60, 96, or 132 transmitter-receiver pairs, randomly scattered
throughout a 1,000⇥1,000 m2 area, as described in Sec. III.
Nodes belonging to the same source/destination pair are guar-
anteed to run an algorithm of the same class. We simulate each
topology for a time of 1,000 seconds.

All told, we simulate 3, 000 · 24+60+96+132
4 · 2 = 468, 000

nodes. To each of these nodes, we assign a randomly chosen
firmware, as shown in Fig. 3; on average, each firmware

appears about 750 times3, in a variety of situations and
scenarios. What we evaluate is the performance, i.e., the total
amount of successfully transmitted data, throughout all the
simulation logs (step 3 in Fig. 3).

Notice that we do not prevent the same firmware from
appearing more than once in the same simulation. Similarly, we
do not impose that each firmware, or a certain number of nodes
of each class, appear a minimum number of times in each
simulation. Instead, our purpose is to observe how cognitive
radios behave in larger-scale and less predictable environments
– one may say, in the wild.

B. Data Processing
Three thousand log files, whose size is around ten megabytes

each, represent a sizeable amount of data. These log files are
needed since most metrics require to be computed locally first
and aggregated globally later – see, e.g., the metric could do
better. In order to process this data efficiently, we adopt a
map-reduce approach, as outlined in steps 4-5 of Fig. 3.

In the map step, individual log files are processed to extract
the relevant metrics. As an example, from each simulation
we may want to know the total amount of data transmitted
with each firmware, and the number of nodes using it. Files
are processed in parallel, so we can have as many map tasks
running as there are available cores. It is important, in this
step, to reduce the size of data as much as possible; in the
previous example, a 10-megabyte file is reduced to some tens
of lines, one for each firmware.

In the reduce step, we combine the values resulting from
map tasks, computing the global totals – in our example, the
average per-firmware performance. Roughly speaking, there is
one reduce task per metric to compute, and these tasks can
run in parallel. In general, reduce tasks lend themselves to
parallelization to a lesser extent than map ones – to generate
our results, we needed but eight parallel reduce tasks. On the
other hand, they tend to be substantially faster, as they work
on smaller amounts of input data.

Through our map-reduce approach, we are able to process
all our logs in around half an hour, using a 16-core machine.
In addition to making the analysis we present in Sec. V a
lot easier to carry out, this means that we are able to process
even larger-scale simulation logs with the same approach and,
indeed, the same code. Furthermore, our map-reduce approach
is readily deployable on a cluster, real or virtual, if need be.

V. PERFORMANCE EVALUATION

As mentioned in Sec. I, we use our simulation results to
investigate the effectiveness of different classes of cognitive
algorithms, and the sensitivity of each to parameter settings.
We also are interested in how effective each algorithm is at
making the decisions summarized in Tab. II, and in assessing
whether there are nodes whose performance can be improved
by a careful choice of the cognitive algorithm to adopt.

3Note that the ToyNode firmware appears on one fifth of the nodes, while
the remaining 500 firmwares are distributed across 374,400 nodes.
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TABLE I
A SUMMARY OF THE CLASSES OF ALGORITMS WE CONSIDER AND THE PARAMETERS THEREOF.

Class Parameter Name Paremeter Description

Reinforcement Learning
forget factor The amount of usefulness that is forgotten about each action in each time slot. It gives the size of

the step toward the initial usefulness value.
sense weight The degree to which current sensed information is prefered over past experience. The value is used

as a the weight of sensor information during the weight average that occurs after sensing.
sense probability The likelihood that sensing is selected instead of relying on past experience.

Genetic Algorithm
crossover probability The chance that any single pair of chromosomes will be submitted to the crossover process.

This parameter controls the degree to which the region in parameter space containing the current
population of chromosomes is explored.

mutation probability The probability that any single chromosome undergoes mutation. This parameter affects the degree
to which the region of parameter space under review is expanded.

sense fitness step The amount by which the sensing fitness is incremented after each non-sensing action. This parameter
has the effect of determining how often the sensor information used to estimate fitness is updated.

This gives a total of 2 · 3

3
= 54 combinations (55 if we also

consider ToyNode, which has no parameters). Choosing the
right combination of class and parameters is the choice that
awaits cognitive radio adopters. We refer to such combinations
as firmwares, as represented in step 1 of Fig. 2: adopters
have to select one of 55 possible firmwares to load into their
devices before they sell them. It is worth stressing that all
algorithms remain cognitive, in that they adapt their decision to
the surrounding environment and the decisions of other nodes.
Firmwares merely determine how this adaptation takes place.

We also generate a total of 10, 000 topologies (step 2 in
Fig. 2). Each topology has 20, 40 or 60 transmitter-receiver
pairs, randomly scattered throughout a 1000 ⇥ 1000m

2 area,
as described in Sec. III. We simulate each topology for a time
of 1000 seconds.

All told, we simulate 10, 000 · 20+40+60
3 = 400, 000

nodes. To each of these nodes, we assign a randomly chosen
firmware, as shown in Fig. 2; on average, each firmware
appears over 7, 000 times, in a variety of situations and
scenarios. What we evaluate is the performance, i.e., the total
amount of successfully transmitted data, throughout all the
simulation logs (step 3 in Fig. 2).

Notice that we do not prevent the same firmware from
appearing more than once in the same simulation (indeed, for
the 60-nodes scenarios it would be impossible). Similarly, we
do not that impose each firmware, or a certain number of
nodes of each class, appear a minimum number of times in
each simulation.

It follows that we are not guaranteed to observe any specific
situation, e.g., all nodes placed on a grid or lattice. Indeed, our
purpose is to observe how cognitive radios behave in larger-
scale and less predictable environments – one may say, into
the wild.

B. Data processing
Ten thousand log files, whose size is around ten megabytes

each, are a lot of data. Not necessarily “big data” that require
a cluster to be processed, but a sizable amount nonetheless. In
order to process this data efficiently, we adopt a map-reduce
approach, as outlined in steps 4-5 of Fig. 2.

In the map step, individual log files are processed, in order
to extract the relevant metrics. As an example, from each
simulation we may want to know the total amount of data
transmitted with each firmware, and the number of nodes using
it. Files are processed in parallel, so we can have as many map
tasks running as there are available cores. It is important, in
this step, to reduce the size of data as much as possible; in
the previous example, a 10-megabyte file is reduced to some
tens of lines, one for each firmware.

In the reduce step, we combine the figures resulting from
map tasks, computing the global totals – in our example, the
average per-firmware performance. Roughly speaking, there
is one reduce task per metric to compute, and these tasks can
run in parallel. In general, reduce tasks lend themselves to
parallelization to a lesser extent than map ones – to generate
our results, we needed but eight parallel reduce tasks. On the
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Fig. 2. Where our results come from. We begin by firmwares (1), i.e., parameter settings, and network topologies (2). Each node in each topology is randomly
assigned a firmware, as explained in Sec. IV-A, and the resulting networks are simulated. The resulting simulation logs (3) are processed in a map-reduce
fashion, as explained in Sec. IV-B: in the map step, each log file is individually processed (4), and the relevant metrics are extracted; in the reduce step (5),
individual outputs are aggregated to obtain the final results (6).

5

Fig. 3. Where our results come from. We begin with firmwares (step 1), i.e., parameter settings, and network topologies (step 2). Each node in each topology
is randomly assigned a firmware, as explained in Sec. IV-A, and the resulting networks are simulated. The resulting simulation logs (step 3) are processed in
a map-reduce fashion, as explained in Sec. IV-B: in the map step, each log file is individually processed (step 4), and the relevant metrics are extracted; in the
reduce step, individual outputs are aggregated (step 5) to obtain the final results (step 6).

Fig. 4. CDF of the performance for different classes of algorithms. A curve
represents the total amount of data transmitted by each of the 93,600 nodes
deployed per algorithm.

A. Classes of Algorithms

The first aspect we are concerned with has to do with the
classes of algorithms we discussed in Sec. II: can we expect
nodes adopting algorithm A to perform better than nodes
adopting algorithm B? Fig. 4 shows that there is indeed a
clear difference in performance.

The highest performance is achieved by 24% of MAB
nodes, which transmit more than about 99,600 bytes. The
remainder of MAB nodes experience lower throughput than
most RL, GA, and SVM nodes. The largest fraction of highly
performing nodes can be found for RL, since 40% of the nodes
are able to transmit more than 84,000 bytes. The curve for
SVM shows a similar pattern as the one for RL, with the
best performing 40% transmitting more than 65,000 bytes. On
the other hand, the curves for RL and GA cross around 0.37

and the ones for SVM and GA around 0.56: we can see that
the most disadvantageously configured 36% of RL nodes and
55% of SVM nodes, respectively, would be better off with
GA. Moreover, 99% of the GA nodes experience a higher
throughput than the worst performing 50% MAB nodes.

B. Firmware Choice

We now look at the problem from a different angle, and
examine, for each class of algorithm, how important it is to
correctly set the parameters, i.e., using the terminology in
Sec. IV, to select the right firmware. This aspect is important
for potential adopters of cognitive radios, since it is important
that cognition algorithms be robust to a sub-optimal parameter
setting.

Fig. 5 shows the distribution of the performance of the
best, median, and worst firmwares for each algorithm. The
difference between the algorithm classes becomes here more
clear. Fig. 5(a) and Fig. 5(c) show that with GA and MAB,
we can expect more or less the same performance no matter
the firmware we select, i.e., no matter how effective we are
at setting the parameters. RL and SVM, as we can see from
Fig. 5(b) and Fig. 5(d), behave in a substantially different way:
the best firmware has much better performance than the median
one, which is still much better than the worst one. Choosing
the right firmware, i.e., setting the parameters correctly, is of
paramount importance here.

Fig. 6 provides us with an even more clear view of the
issue. If we select the best possible firmware for each algorithm
class, i.e., if we can select each parameter to its optimal value,
then we can expect from RL almost twice the performance
of GA and MAB. As our ability to pick the right firmware
decreases, the difference in performance decreases. If we are
particularly unlucky – or inexperienced – and pick one of
the 8 worst-performing firmwares, then GA and MAB offer a
better performance than RL. Going from the best to the worst
firmware means losing 67% performance with RL and 76%

with SVM, but barely 3% with GA and MAB.
The implications for cognitive radio adopters is now very

clear: if they can afford to carefully experiment with the
parameters and find the ones that best suit their scenario,
then RL is the best choice. On the other hand, if such
experimentation would be too difficult or time consuming –
or, simply, if they want their product to work out-of-the-box
in a variety of different scenarios –, then consistent algorithms
will be a more reliable, if less performing, alternative.
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(a) (b)

(c) (d)

Fig. 5. CDF of the performance for the best, median and worst firmware, for (a) GA, (b) RL, (c) MAB, and (d) SVM algorithms. Note that subfigure (a) has
been zoomed-in to make the differences between the firmware categories visible.

Fig. 6. Average performance of each algorithm’s firmwares, which are ranked
according to the total number of bytes transmitted on average per node in
descending order.

C. Individual Parameters

We have learned that RL and SVM algorithms are more sen-
sitive than GA and MAB algorithms to suboptimal parameter
settings. In the following, we assess which parameters have

the highest impact on node performance.
We begin with GA parameters, summarized in Fig. 7.

Unsurprisingly, we can see that none of the parameters has a
major impact on the total performance. Note that the subfigures
are zoomed-in to a small range of throughput values to make
the slight differences visible. Setting the crossover probability
(Fig. 7(a)) to 0.05, for example, is from the performance
viewpoint the same as setting it to 0.5; similarly, multiplying
or dividing the fitness step makes almost no difference. The
only visible variation is exhibited by the mutation probability
parameter, differing by about 1,000 bytes in successfully
transmitted data between a very low and the highest possible
input parameter value. The insignificant variation observed is
a very remarkable, and indeed desirable, property. Intuitively,
it is connected with the way genetic algorithms operate, trying
out several options and eventually sticking to the best one.
It also suggests that the time required to reach convergence is
substantially shorter than our simulation time, for all parameter
settings.

Fig. 8, devoted to RL parameters, shows a different situation:
parameters have various degrees of influence over the overall
performance, and said influence is sometimes very strong.
Forget factor values (Fig. 8(a)) below 30 impair the perfor-
mance, while the performance is better for higher values, with
stable median and inter-quartile range. Similar results apply to
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(a) (b) (c)

Fig. 7. GA nodes: performance associated to different values of (a) crossover probability, (b) mutation probability, and (c) sense fitness step. The box includes
the upper and lower quartiles, with the red line marking the average. The whiskers correspond to the 10th and 90th percentiles.

(a) (b) (c)

Fig. 8. RL nodes: performance associated to different values of (a) forget factor, (b) sense weight, and (c) sense probability. The box includes the upper and
lower quartiles, with the red line marking the average. The whiskers correspond to the 10th and 90th percentiles.

(a) (b) (c)

Fig. 9. MAB nodes: performance associated to different values of the exploration coefficients (a) c and (b) ⇣, and (c) power multiplier. The box includes the
upper and lower quartiles, with the red line marking the average. The whiskers correspond to the 10th and 90th percentiles.

sense weight (Fig. 8(b)): low values degrade the throughput,
while medium or high ones are equally good. As we can see
from Fig. 8(c), the sense probability is the parameter with
the strongest influence: the lower its value, the better the
performance. While the throughput is quite constant among
all nodes in settings with sense probability values of 0.25 and
higher, there is a greater performance range for nodes with
low performance, i.e., the whiskers below the boxes.

The results for MAB parameters are summarized in Fig. 9.
The results for the exploration coefficients c (Fig. 9(a)) and ⇣

(Fig. 9(b)) do not reveal a clear tendency for optimally setting
these parameter values. It can be merely stated that the box

plots suggest combining c = 1 with ⇣ = 10 yields the highest
throughput. Moreover, adopters of MAB will have to take a
closer look at the interplay of those two coefficients. The power
multiplier (Fig. 9(c)) exhibits a clearer pattern, showing a better
performance with higher values.

Fig. 10 depicts the performance results for the value varia-
tions of SVM parameters. The strongest influence of parame-
terization can be found for the sense probability (Fig. 10(a))
and the � value of the RBF kernel (Fig. 10(b)). The lower
the sense probability the higher the throughput of a firmware,
which is in line with the sense probability results for RL
(see Fig. 8(c)). The boxes for � suggest that this parameter
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(a) (b) (c)

Fig. 10. SVM nodes: performance associated to different values of (a) sense probability, (b) �, and (c) C. The box includes the upper and lower quartiles,
with the red line marking the average. The whiskers correspond to the 10th and 90th percentiles.

should not be assigned a too small value (<0.01), neither
values of 1.0 or above. Although the selection of parameter c
influenced the classification success in the training experiment
reported in the appendix, its effect on the transmit performance
seems negligible from the figure. However, as discussed in
Sec. II-D, � and c are closely related and their influence on the
throughput can therefore hardly be interpreted independently.

To quantify the sensitivity of performance results to pa-
rameter selection, we calculate a sensitivity factor SP [24]
for two of the aggregate measures visualized by the boxplots
in Fig. 7 to Fig. 10, namely median (m) and interquartile
range (IQR). Let SP be defined as the ratio of the relative
deviation, by which the values of an output parameter Y

depart from a certain state y

⇤ (the minimum value) to the
relative deviation of the set of parameter values P . Note that
Y = {y0, y1, ..., yn} contains the performance results for all
n topologies and P = {p0, p1, ..., pk}, where k is the number
of different values per parameter. Furthermore, A denotes the
aggregate measure selected for the calculation:

SP (A, Y, P ) =

�{A(y0), A(y1), ..., A(yn)}
min{A(y0), A(y1), ..., A(yn)}

.
�(P )

min(P )

,

where �{U} = max(U) � min(U).

In Tab. IV the parameters are ranked according to the sensi-
tivity of each algorithm. The results suggest that especially the
parameter space for the Reinforcement Learning parameters
sense probability and forget factor have to be chosen carefully.
The power multiplier also shows high sensitivity according to
the factor SP (m). However, it can be found at the bottom of
the ranking – similar to the other MAB parameters – when
relying on the SP (IQR) since this algorithm shows generally
large IQRs in the performance. Other parameters exhibiting
higher sensitivity than the majority are the sense probability
of SVM (ranked 5 and 4) and the sense weight of RL (ranked
6 and 3).

In addition to providing some insight on how individual
algorithms work, these results provide valuable guidance for
cognitive radio adopters. They should adopt GA or MAB if
they cannot afford to experiment with parameter values, and
RL or SVM if they can. Special attention should be devoted to

TABLE IV. SENSITIVITY RANKING ACCORDING TO THE FACTORS
SP (m) AND SP (IQR) BASED ON MEDIAN AND INTERQUARTILE RANGE.

COLUMNS Rm AND RIQR GIVE THE RANK ACCORDING TO SP (m) OR
SP (IQR), RESPECTIVELY.

Rm RIQR Parameter Name Class SP (m) Sp(IQR)

1 1 Sense probability RL 0.09089 0.20151
2 2 Forget factor RL 0.05747 0.12652
3 12 Power multiplier MAB 0.04194 0
4 10 ⇣ MAB 0.02667 0.00004
5 4 Sense probability SVM 0.01703 0.01480
6 3 Sense weight RL 0.01333 0.02514
7 11 c MAB 0.01036 0.00002
8 6 � SVM 0.00525 0.00836
9 9 c SVM 0.00137 0.00240

10 7 Mutation probability GA 0.00038 0.00602
11 5 Crossover probability GA 0.00013 0.01007
12 8 Sense fitness step GA 0.00009 0.00538

setting the right value for parameters to which the algorithms
exhibit high sensitivity.

D. Quality of Decisions
Cognitive radio algorithms make decisions. So far, our focus

has been on the overall effectiveness of these decisions, i.e.,
on network performance. In the following, we give a closer
look to how good each algorithm is at making the decisions
discussed in Sec. II.

There are essentially two decisions these algorithms have
to make: the channel to transmit on, and the modulation and
coding scheme (MCS) to use. In the following, we look at
how good GA, RL, MAB, and SVM algorithms are at making
these decisions, and how the situation improves if we restrict
our attention to the best firmwares of each class. We compare
the actual decisions the algorithms make against the ideal ones,
i.e., the one they would have made if they knew how all other
nodes on the topology, primary and secondary alike, would
have behaved. Of course, the better an algorithm, the more
likely that the decisions it makes coincide with the ideal ones.

Fig. 11 shows, for each class of algorithms, the number of
simulation time slots used for successful transmissions where
the best possible MCS had been employed, transmissions that
were successful but could have used a higher performing
MCS and failed attempts that would have been successful if
a different MCS had been used. Intuitively, we would like to
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(a) (b)

Fig. 11. Choice of the MCS: number of time slots used by entirely successful transmissions, transmissions that could have used a higher performing MCS,
and failures hat could have been avoided by selecting a different MCS, (a) for all firmwares and (b) for the best five firmwares of each class.

(a) (b)

Fig. 12. Choice of the channel: number of time slots used by successful transmissions and failures that could have been avoided by selecting a different
channel, (a) for all firmwares and (b) for the best five firmwares of each class.

have the latter two groups of bars as low as possible, as they
correspond to wasted opportunities to transmit (more) data.

Consistently with what we might expect, Fig. 11(a) shows
that RL is associated to more successful transmissions than all
the other algorithms. Less obviously, it tends to have fewer
successful transmissions where a better MCS could have been
used, and considerably more avoidable failures. Intuitively, RL
tends to take more risks, daring to select higher order MCS
and oftentimes transmitting more data. Despite the similarities
SVM has with RL, it is slightly less successful in transmitting
high amounts of data; even when not considering 150 time
slots belonging to the initial training phase, SVM seems to
choose a too low order MCS in some cases.

Moving to Fig. 11(b), where only the best performing
firmwares are considered, we can observe no big change for
GA and MAB – which is consistent with Fig. 6, showing that
all GA and MAB firmwares have a similar average perfor-
mance. Good RL firmwares have more entirely successful and
partially successful transmissions: consistently with Fig. 8(c),
they invest fewer time slots in sensing.

Fig. 12 shows the number of time slots in which nodes
perform successful transmissions and transmissions that would

have been successful if a different channel – a channel with
less interference – were used. Fig. 12(a) shows that RL and
SVM have a substantially higher number of avoidable failures,
i.e., they are not as effective as GA and MAB in choosing the
right channel to transmit on. Also notice that the number of
successful transmissions is higher for GA and MAB than for
RL and SVM; the latter is able to transmit more data in each
successful transmission due to its effectiveness in choosing the
MCS, as shown in Fig. 11.

Moving to the best-performing firmwares in Fig. 12(b),
we observe again no difference for GA and MAB, but more
successful transmissions for RL and SVM. Consistently with
Fig. 11(b), SVM and RL also have more avoidable failures; re-
call that a good RL or SVM firmware is essentially a firmware
that makes more transmission attempts, both successful and
unsuccessful.

E. Performance over Time
One critical factor for the real-world deployment of cogni-

tive radio algorithms is the time it takes until an algorithm
converges. Fig. 13 shows how the average fraction of trans-
mitted data per transmission evolves over the entire simulation

13



time of 1,000 seconds. Note that the average throughput per
transmission has been computed over all firmwares of a class
and is given as a fraction of the maximum possible throughput
for one node per timeslot. GA and MAB need little time to
converge, which is reflected by a constant average right from
the beginning. RL exhibits a longer learning phase, reaching a
steady average of around 0.7 after 130 seconds. SVM exhibits
a similar behavior as RL after building up a first training set.
Recall that the minimum size of the training set has been
configured to be 150 in our simulation experiment, while prior
to reaching this number the algorithm takes random decisions
to collect training instances. It has to be pointed out that the
average throughput achieved is still gradually increasing at
the end of the simulation time, when it yields around 0.61.
Particularly in the long run, when the initial training time plays
a lesser role, it might thus be beneficial to deploy SVM.

Fig. 13. Evolution of average throughput per transmission over the simulation
time.

F. Channel Model with Primary Users Switching Patterns
To evaluate how well the algorithms cope with changing

communication patterns of primary users, we also run the
simulation experiment containing 3,000 topologies with the
dynamic variant of the channel utilization model detailed in
Sec. III-A. Tab. V summarizes the differences in the perfor-
mance results, between the basic channel model (qs = 0)
and the dynamic channel model (0  qs  1) for the best
performing firmwares of each algorithm, by giving the quartile
values for both versions. In the dynamic model, a value for
the switching probability qs is drawn for each primary user
from a uniform distribution at the beginning of a simulation
run. The results reveal that the performance differences are not
significant in our simulation setting for GA, RL, and MAB,
as they lie within 0.1%. However, for SVM we can observe a
difference of 4.2% on average, which suggests a slight impact
of the time required to update the training set.

VI. RELATED WORK

There are very few examples in the literature of works
that examine the factors that underpin success for cognitive

TABLE V. 1ST, 2ND, AND 3RD QUARTILE FOR THE PERFORMANCE
RESULTS OF THE BEST FIRMWARES FOR TWO VERSIONS OF THE CHANNEL

UTILIZATION MODEL: (I) SWITCHING PROBABILITY qs DRAWN FROM A
UNIFORM DISTRIBUTION AND (II) qs = 0.

GA RL
qs = U(0, 1) qs = 0 qs = U(0, 1) qs = 0

Q1 51414.8 51434.0 93807.5 93900.0
Q2 52001.0 52027.0 94550.0 94599.0
Q3 52632.8 52662.0 95100.0 95199.0

MAB SVM
qs = U(0, 1) qs = 0 qs = U(0, 1) qs = 0

Q1 32992.0 32992.0 85319.3 88494.0
Q2 49958.0 49958.0 87053.0 91386.0
Q3 99858.0 99858.0 87992.0 91837.0

radio algorithms. Most of the available work in this area
overlaps with performance evaluation for cognitive radio, often
examining single applications of the cognitive radio concept
and typically focusing on DSA. Each work applies a different
methodology for determining the characteristics of cognitive
radios and identifying factors that lead to their success.
Zhao [25] provides a report card-like system which allows
some comparison between DSA techniques. Dietrich [26] con-
structs a cognitive model by probing a DSA CR with a psycho-
metric approach. Thompson [27] eschews detailed modeling
of internal operation in favor of decoding the operation purely
from observation of DSA CR behavior. Giorgetti [28] directly
compares three paradigms for DSA, interwave, underlay, and
overlay sharing, with the goal of developing an understanding
of CR operation under these paradigms. In each of these
works the authors attempt to characterize the operation of a
CR system interacting with some primary system. We extend
these efforts by examining the interaction between CR systems
attempting to dynamically utilize spectrum.

The second category of related work focuses on the devel-
opment of solutions to the DSA problem. While this area is not
the central focus of our work, this literature is pertinent here
in establishing the key approaches for DSA cognitive radios.
Here we provide a brief and broad categorization of the various
approaches to the DSA problem represented in literature; read-
ers are directed to [29]–[32] for more complete discussions of
these notions. Specifically we limit our discussion to machine
learning, reinforcement learning, Markovian, and evolutionary
algorithms for addressing the DSA problem.

Machine learning based approaches focus on imbuing radios
with the ability to learn the patterns of incumbent users,
subsequently enabling opportunistic spectrum use. Several
individual techniques fall into this broad category, including
neural network based approaches [33], [34], nearest neighbor
clustering analysis [35], Bayesian reasoning approaches [36],
and kernel based statistic analysis [17]. Each technique within
this category attempts to distill experience into a form that
provides useful guidance for future decision making. Specifi-
cally, the methodologies within this group rely on training sets
or decision thresholds for decision making. These training sets
can be either provided externally or collected in-mission. This
category is represented by the SVM algorithm in our analysis.

Reinforcement learning echoes the goals of the machine
learning category, albeit through a different philosophy of
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operation. Broadly, reinforcement learning relies on organized
book-keeping to realize the potential utility of past experience.
As such, this technique does not directly rely on a training set
for operation and rather simply accrues knowledge in the form
of weighted rewards on the basis of a provided definition for
goodness [37]. While variations on this theme certainly exist,
such as q-learning [38] or temporal-difference learning [39],
the base approach remains the same. The authors of [5] provide
a thorough examination of learning techniques for CR, with an
emphasis on reinforcement learning. Herein, we examine the
fundamentals of this category directly with our reinforcement
learning algorithm.

Markovian techniques support opportunistic spectrum use
by capturing the behavior of a system in terms of transitions
between various states. Within this category, which is occasion-
ally viewed as a sub-category to machine learning, the system
at hand is assumed to operate as a finite state machine, where
each state influences the decisions made within a system dif-
ferently. Techniques within this category attempt to build and
apply knowledge of the probabilities of the system transition-
ing between various states. This may be accomplished through
direct examination of Markov decision processes [40], [41] or
obscured examinations of the same in the form of partially
observable Markov decision processes [42], [43]. Alternatively
the multi-armed bandit approach provides a slightly different
formulation of the problem that simply examines interacting
with a Markovian system. This approach has gained particular
popularity in the context of the DSA problem [14], [44], [45].
Herein we examine the MAB approach within this category.

Evolutionary algorithms address the DSA problem in a
manner inspired by the biological process of evolution and
provide our final category. Algorithms within this category
model various aspects of the evolutionary process to find
opportunities for spectrum utilization. While several variations
of this theme exist, genetic algorithms are by far the most
well known and widely applied [10]–[13], [46]. The features
of fast convergence (for properly bounded situations) and
broad applicability to multi-objective problems allow genetic
algorithms to dominate this category of techniques for the
DSA problem. Naturally, we examine a basic GA within this
category.

While these categories capture some of the techniques most
widely applied to the DSA, they represent only a brief and
broad overview. Additional techniques such as game theoretic
approaches [47], [48] or signal processing schemes [49] are
certainly available and impactful, but fall outside of the scope
of the investigation herein.

A final category of related work focuses on the selection of
optimal parameters for a given algorithm approach. This area,
termed meta-cognition, employs optimization to automatically
tune the operation of the CR. As such, the work in this
area considers methods to determine the impact of various
parameters on CR operation. Largely started with the work of
Gadhiok [1], this area has seen little take-up, although some
recent work, e.g., that of Asadi [2], indicates a growing inter-
est in the systematic determination of appropriate parameter
setting for CR systems. Note that work in this area focuses on
optimization of parameter settings rather than their analysis.

VII. CONCLUSION

We studied a representative set of four cognitive radio
algorithms of different classes – namely reinforcement learning
schemes, genetic algorithms, multi-armed bandit approaches,
and supervised learning schemes – comparing them across
three thousand simulations. To ensure generality of the study,
we applied the original versions of the algorithms, as we want
to evaluate their fundamental attributes. To the best of our
knowledge, our work is the first within the cognitive radio
community to promote the comparison of different types of
algorithms in a large-scale scenario, considering that pairs of
cognitive radios in the same network may employ different
decision making approaches.

The results show that some approaches provide better perfor-
mance with an optimal parameter setting while others provide
consistent performance, i.e., are less sensitive to sub-optimally
set parameters. Although high and consistent performance are
desirable, our study suggests that there is a tradeoff between
performance and consistency. We believe that our evaluation
concept will foster future work within the cognitive radio
community to identify algorithms and parameter spaces that
offer the full range of desired features.
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APPENDIX A
SVM DECISION TIME AND CLASSIFICATION ERROR

Tab. VI summarizes the average execution times for different
configurations of SVM kernels. The linear kernel is controlled
over the parameter c, the RBF kernel over c and �. While
the RBF kernel makes a decision in less than 0.01 seconds
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regardless of the parameter value, the linear kernel shows
significant variations ranging from 3.6 s to 44.4 s for the c
values considered in the table below. Note that the SVM-based
algorithm as well as the three previously described algorithms
– GA, RL, and MAB – have been implemented in Python [50].

TABLE VI. AVERAGE EXECUTION TIMES FOR DIFFERENT PARAMETER
SETTINGS OF SVM WITH LINEAR AND RBF KERNEL.

Linear kernel RBF kernel
c � execution time [s] execution time [s]

0.1 0.001 3.6 <0.01
0.1 0.01 <0.01
0.1 0.1 <0.01
0.1 1 <0.01
0.1 10 <0.01
1 0.001 7.2 <0.01
1 0.01 <0.01
1 0.1 <0.01
1 1 <0.01
1 10 <0.01
5 0.001 36.4 <0.01
5 0.01 <0.01
5 0.1 <0.01
5 1 <0.01
5 10 <0.01
10 0.001 44.4 <0.01
10 0.01 <0.01
10 0.1 <0.01
10 1 <0.01
10 10 <0.01
20 0.001 35.4 <0.01
20 0.01 <0.01
20 0.1 <0.01
20 1 <0.01
20 10 <0.01

Tab. VII illustrates the classification accuracy of differ-
ent RBF kernel parameter settings by means of Root Mean
Squared Error (RMSE) and Mean Absolute Error (MAE).

TABLE VII. CLASSIFICATION ERROR FOR DIFFERENT PARAMETER
SETTINGS OF SVM WITH RBF KERNEL.

c � RMSE MAE
0.1 0.001 11.008 4.018
0.1 0.01 13.666 5.391
0.1 0.1 13.910 5.506
0.1 1 13.907 5.520
0.1 10 13.907 5.521
1 0.001 9.365 2.161
1 0.01 11.413 4.801
1 0.1 13.585 5.842
1 1 13.571 5.980
1 10 13.571 5.986
5 0.001 9.037 2.199
5 0.01 10.128 4.375
5 0.1 12.879 7.046
5 1 12.979 7.759
5 10 12.986 7.791

10 0.001 8.898 2.330
10 0.01 10.079 4.7394
10 0.1 12.858 7.973
10 1 13.442 9.527
10 10 13.473 9.591
20 0.001 8.818 2.479
20 0.01 10.159 5.060
20 0.1 12.937 8.698
20 1 14.243 11.129
20 10 14.322 11.259
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