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Abstract 

Organic sheets and short fiber-reinforced composite materials as well as the components 
made of their combination, i.e., hybrid components, play a significant role in the automotive 
industry. Producing conventional thermoset-based composite materials have difficulties such as 
their improper automatic production procedure, major scrap rate, and high production price. The 
new generation of thermoplastic-based composites show advantages over thermoset-based 
composites such as their volume production capability, lower production prices, formability, and 
recyclability. Therefore, the thermoplastics seem to be a proper replacement for the conventional 
thermosets. Organic sheets made of glass fibers with a thermoplastic matrix and usually 
delivered as an unfinished production to exert final procedure such as thermoforming or over 
injection to achieve the final component. In addition to organic sheets, short fiber reinforced 
thermoplastics are increasingly used in automotive industry, mostly using mold flow process, 
which offers a high design freedom and faster volume production procedure. Combining short 
fiber reinforced composite materials and organic sheets reaches the hybrid components which 
show excellent mechanical performance in comparison to their remarkably lower weight. 

This research begins with the production of the hybrid composite component which is 
supposed to be used for the load-bearing parts in the light vehicles. The production procedure, as 
well as the constituents decompositions, are explained. Even though the hybrid components are 
made by two different technologies, i.e., back-injected and compression molding, but since our 
main objective is to simulate the injected elements, then the compression molding procedure will 
be skipped in the numerical simulations. In the next step, the 3-point bending experiments are 
performed on the hybrid component in both direction and different loading rates. The 
configuration of the test is explained in detail. The components demonstrate different response 
under different loading rates and various boundary conditions which is widely discussed in this 
work. 

According to the experimental results, the hybrid component under 3-point bending test does 
not show a high degree of nonlinearity before damage. Therefore, to simulate the back-injected 
hybrid component under bending, we introduce a linear elastic model including a damage model. 
The proposed model is described and a rate-sensitive damage model, as well as the integration 
schemes, are introduced for either of the implicit and explicit solvers.   



The torsion test is prepared for the back-injected-made hybrid component which from the 
very beginning demonstrates a high degree of nonlinearity. The nonlinear behavior of the 
component is related to its elasto-plastic response, and it is our main concern in the current 
research. The short fiber-reinforced composites can be considered as transversely-isotropic 
materials. Thus, to catch the plasticity induced nonlinearity, we introduce an elastic-plastic 
model and the post-plasticity damage model. The model is founded on the representation theory 
of the basic invariants of the anisotropic materials. The associated constitutive equations for 
transversely isotropic materials are proposed. This work comprises the representation of the 
general constitutive equations, an introduction to the representation theory and the elastic 
constitutive equations for transversely isotropic materials. Since we deal with the non-metallic 
materials, then the elasto-plastic model must be non-associated which requires a potential 
function be defined besides of a yield function. These requirements, as well as the proper 
invariants for the transversely isotropic materials, are discussed and introduced.  

Having defined the basic requirements of an elasto-plasticity model, we introduce the elasto-
plasticity model. Since the numerical integration scheme requires a general definition of the 
model, then it is formulated in a general continuum mechanics fashion. Also, to deal with the 
rate-dependent behavior of the hybrid component under bending, a simple model is introduced. 
A Continuum Damage Model (CDM) is proposed for the post elasticity damage phenomenon. A 
damage model for degradation of the transversely isotropic material after reaching the saturation 
stress is developed based on the CDM concept. The so-called non-local damage model is 
described as well. The numerical implementation and the integration schemes are discussed 
which include the description of the backward Euler and the explicit integration algorithms.  

In the last step, the numerical and experimental results are given and discussed. The bending 
test for the hybrid components are performed under quasi-static and the velocity of 127 mm/sec 
loading conditions. Other than ambient condition, the quasi-static bending experiment is 
performed for the components preheated by 90 degree Celsius, and the results are available.  The 
numerical results for the quasi-static and dynamic 3-point bending are given, respectively. The 
elasto-plasticity plus the damage after plasticity models’ numerical results are presented and 

validated by the results taken from [1] for the basic tensile and compression test results of 
PA6GF60. The numerical and experimental results for the back-injected-made hybrid component 
under torsion are presented. 
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Chapter 1 

1 Introduction  

1.1 Motivation  

Nowadays for both technical and economic concerns use of plastic materials 
in industries are inevitable, but the following issues must be considered:    

1. The environmental issues including the energy consumption to 
manufacture a certain volume of a component, recyclability, etc.  

2. The costs 
3. The manufacturability  
4. The functionalities 
5. The characteristics such as specific weight, strength, and stiffness to 

weight, etc. 

Organic sheets and short fiber reinforced composite materials, in addition to 
the components made of their combination, so-called hybrid components, are 
having a major role in the automotive industry. Producing conventional 
thermoset-based composite materials have difficulties such as their non-proper 
automatic production procedure, major scrap rate, besides high production price. 
Considering the benefits of the new generation of thermoplastic-based composite 
materials including their volume production capability, lower production prices, 
formability, and recyclability, seems to be a proper replacement for the 
conventional ones.   
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Organic sheets made of glass fibers with a thermoplastic matrix and usually 
delivered as an unfished production to exert final procedure such as 
thermoforming or over injection to achieve a final component. In addition to 
organic sheets, short fiber reinforced thermoplastics are increasingly used in 
automotive industry, mostly using mold flow process, which offers a high design 
freedom and faster volume production procedure. Combining short fiber 
reinforced composite materials and organic sheets reaches the hybrid components 
which show excellent mechanical performance in comparison to their extremely 
lower weight. 

In this study, a hybrid component made of an organic sheet as an open section 
reinforced by a back injection of short fiber glass is investigated. The 3-point 
bending with different velocities and quasi-static torsion test have been 
conducted. Other than whole hybrid component, the organic sheet and short fiber 
have been experimented separately such as size effect phenomenon of the opened-
hole organic sheet.  

To manufacture the hybrid component the organic sheet is heated by certain 
temperature applying infrared radiation; then it is formed to the favorite shape and 
consummated by the injection of the reinforcing short fiber-thermoplastic on the 
open section organic sheet.  

Besides the advantages of using thermoplastics, there are several 
disadvantages of them, especially for low price thermoplastics such as Polyamides 
(PA), which should be noted here such as their low-temperature resistance and 
humidity sensitivity which can extremely affect their application. 

To have an acceptable desing, a proper mechanical behavior prediction is 
needed. These responses might include the elastic behavior, the failure strength 
and also sensitivity to load rate. An acceptable prediction of the material response 
depends on an appropriate definition of their constitutive equations which must 
relate the strain states to the stress states. Considering the short fiber reinforced 
thermoplastic directional and completely nonlinear behavior defining the 
constitutive equations might be totally different from the conventional metallic 
materials.  

Comparing to the conventional materials such as steels, the thermoplastics 
have a higher strength to weight ratio, but lower stiffness to weight ratio which 
leads them to the buckling phenomenon so that their design is more affected by 
stiffness than by strength. 
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Considering thermoplastics three significant advantages including higher 

toughness, formability, low specific gravities, low energy demand for 
manufacturing, low fabrication cost and their capability to be manufactured by an 
automated production procedure comparing to thermosets, this research has been 
dedicated to investigate on their mechanical behavior including plastic and 
damage behavior under quasi-static and high rate velocities. 

 Industrial and economic-oriented comparison between 1.1.1
polymers and traditional materials 

Based on the data are available in [2] the annual consumption of plastics is 
about a sixth of the consumption of  steel and six times of aluminum in term of 
weight, and slightly higher than steel, roughly 1.4 times of the consumption of 
steel, but 15 times of the consumption of aluminum in term of volume. In term of 
equal rigidity, the consumption of plastics is about 1% of steel and almost half of 
aluminum. Another concern is the annual growth rate of their consumption which, 
considering the years at Table 1-1, over the past 35 five years the average growth 
of plastics and steel were 5.1% and 1%, respectively. These growth rates had been 
confirmed in 15 years from 1985 to 2000 for both steel and plastics (Table 1-1). 
Other than plastics and steel, polymer composites show about two times of 
consumption rate growth, while aluminum indicates a smaller amount of increase 
comparing to the other material, but steel.  

Table 1-1 Growth of consumption rate of the conventional and plastic materials [2] 

Normalized on 100 for the reference year 1985 

Year Plastics Polymer 
composites Aluminium Steel 

1985 100 100 100 100 

1990 135 150 112 107 

1995 179 160 118 104 

2000 216 190 141 115 

2005(prediction) 265 200 165 130 
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 What is thermoplastics, reinforced thermoplastics, and 1.1.2
hybrid components? 

Thermoplastics chemically made of a simple structure of independent 
macromolecules which heating simply makes them melted, formed, re-shaped, 
welded and cooling causes their solidifications. Since heating and cooling process 
can be repeated several times without causing severe damages, thermoplastic can 
be reproduced, reshaped and recycled times and times in the manufacturing 
process [2]. Adding compatible additives or fillers, short, long, or continuous 
fibers, can improve thermoplastics properties, for instance, their durability, 
thermal and UV resistance, ultimate strengths, the module of elasticity and etc.  

 Thermoplastics mechanical properties  1.1.3

Despite thermosets, there are no crosslinks between individual molecules in 
thermoplastics, which means they are not chemically joined to each other Figure 
1-1 which means the weak intermolecular forces such as Van der Waals and 
hydrogen bonds. Under the heating process, the weak intermolecular bonds in 
thermoplastics allow them to be reconfigured, sub-structurally, and reshaped, at 
the continuum level, if the temperature is beyond its glass point. This heating and 
cooling process in thermoplastic can be accomplished as many times as desired 
[3].    

 

Figure 1-1  schematic representation of individual molecules in thermoplastic 
matrixes [3] 

Coming back to the mechanical level, the typical response of thermoplastic 
matrix in a simple unidirectional test can be found in Figure 1-2. The mechanical 
response of thermoplastics can be interpreted according to the individual 
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molecules relative movements against each other. In the elastic zone, the whole 
deformation is reversible, and it means that removing the load, the entire 
movement of the substructure will go back to the original place, which  is 
illustrated in the orange line. 

 

Figure 1-2 typical behavior of thermoplastic matrix under uniaxial tension [3] 

 If the loading is kept continued, then the thermoplastic will arrive at the next 
level of elasticity, but removing the load, the material will need some time to 
restore its initial position. This nonlinear elasticity is shown in blue line in Figure 
1-2 typical behavior of thermoplastic matrix under uniaxial tension [3] and 
machromechanically called nonlinear viscoelasticity. Continuing loading 
procedure, after nonlinear viscoelasticity, the material will change the phase and 
the substructure, the molecular chains, is started to be reshaped, and yielding will 
occur. From this point, part of the deformation is irreversible, and unloading will 
not cause a complete restore of the deformation. As mentioned by [1] there is no 
an exact point on the displacement-force or stress-strain curves to be pointed out 
as a yield point, and the yield initiation can be considered as a region. While the 
yielding is initiated, the cross-links are gradually broken, and the molecular chains 
are inclined towards loading direction. This phenomenon, which called softening, 
yields a considerable reduction in the amount of the stress that the material 
demands for the continuation of the yielding process and in the meantime it will 
experience the necking phenomenon(green line in Figure 1-2 typical behavior of 
thermoplastic matrix under uniaxial tension [3]. After necking the plastic 
deformation will occurs just in the necking zone. Hardening will be the next 
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phenomenon, and it can be explained by the complete reorientation of the 
molecular substructure of the thermoplastics so that the majority of the individual 
molecules are fully stretched and inclined towards loading direction, and there is 
no more re-orientation.  Plasticity and hardening in thermoplastic materials can 
happen in both compression and tension and will differ from each other even the 
direction of loading might strongly affect the results. In the other word, 
thermoplastic materials are pressure dependent, and the yielding component is 
governed by dominant stress state. The reason relies on the fact that the individual 
molecules illustrate different deformation mechanism under different loading 
condition so that undergoing tension, as mentioned before, are reoriented and 
aligned with the loading direction, but under compression the are compacted 
which leads different hardening and plastic behaviors. Another phenomenon 
which can be observed in the thermoplastics is the change in the volumetric 
plastics strains, unlike metals which in classical plasticity it is supposed to be 
zero, in both tension and compression and which can be observed in the change of 
the Poisson ratio. The contractility can be observed while the thermoplastic is 
subjected to the compression and dilatancy occurs under tension. 

For load-bearing application both strength to weight and stiffness to weight, 
ratios must be considered. Since the thermoplastics have a higher strength to 
weight ratio than steel and aluminum, but lower stiffness to weight ratio (Table 
1-2), their design is more influenced by the stiffness than the strengths [4].    

Table 1-2 Mechanical properties of plastic and non-plastic materials [4] 
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Aluminium 2.7 71 26 80 30 

Brass (70Cu/30Zn) 8.5 100 12 550 65 
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Mild steel 7.86 210 27 460 59 

Polyamide 66 1.14 3 2.6 80 70 

Polycarbonate 1.24 2.3 1.9 60 48 

Polyamide 66/30% glass 1.38 8 5.8 160 116 

Some general advantages and disadvantages of thermoplastics are listed 
below [2]: 

Advantages: 

o Heating allows thermoplastics to be welded or shaped by 
thermoforming process 

o Not having the chemical reaction f crosslinking, the processing cycles 
are very short 

o Having just physical transformation, the manufacturing process is easy 
to monitor  

o Reversible softening and melting allows recycling  
o If the dried semi-perfectly before manufacturing process, then gas or 

water vapor release might be negligible  

Disadvantages: 

o Rising the temperature decrease thermoplastics stiffness significantly 
and this is the result of the absence of the chemical links between 
macromolecules  

o The creep behavior is not as good as thermosets due to the same 
reason 

o Few thermoplastics are available to be used in the liquid state 

Also thermoplastics main families are classified here [2] 

o Engineering thermoplastics: PA, PC, PMMA, POM, PPE, PET, PBT 
o Engineering thermoplastics with slightly more specific performances: 

PSU, PEI, PPS 
o High technology performances: ETFE, PEEK 
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o High-tech thermoplastics with less consumption than the previous 
type: LCP, PTFE, PFA, FEP, PI 

o Ordinary applications: PE, PP, PVC, PS 

For more information about the different phenomenon can be observed in the 
thermoplastics, such as cazing and shear band formation and their characteristics 
and their behaviors in detail see [2, 5]. Hereafter, we will discuss the particle 
reinforced thermoplastics specifically and their mechanical behaviors and the 
methods of improving mechanical properties of the thermoplastics. 

 Methods of improving mechanical properties of 1.1.4
thermoplastics 

There are several mechanical and chemical methods to improve 
thermoplastics behavior for specific performances [4]. Here the main approaches 
are listed, and those details are not discussed, but additives or fillers: 

o Molecular architecture manipulation 
o Copolymerization; if the mixing of polymers is accomplished in the 

chemical rather than a mechanical level  
o Crystallinity; to reach higher temperature resistant and stiffer plastics 
o Crosslinking; one of the cheapest method to improve thermoplastics’ 

stiffness 
o Reinforcement; 

Here in this study will focus on the reinforcement category and the polymers 
which are reinforced by adding additives. 

 Reinforced plastics 1.1.5

Adding some particles such as ceramics, metallic or polymeric fibers into the 
resins results in a reinforced composite material. The new combination is easily 
achieved, and generally, the outcome might be cheaper than the plastic matrix 
itself with great advantages comparing to the basic constituents. In the other 
words, since the fibers are dramatically brittle and might not carry load alone, 
they are added to the matrix which is , in term of the thermoplastics, more ductile 
and might transfer the load so that it can be said that the reinforced composite 
inherited the high level of stiffness and the strength from the fillers and good 
shock and environmental resistance of the resin.  As a material with an acceptable 
range of creep, strength, and stiffness, the fiber reinforced composites might 
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compete with the well-known traditional materials in various applications, such as 
vehicle and aerospace industries [4]. Since this research is dedicated to the 
automotive industry, introducing some example about the application of the 
thermoplastic in this industry might be helpful to have a primary idea that how 
widely they spread in this specific field ( to see more examples one can refer to 
[2]).  

Table 1-3 Various industrial application for thermoplastics 

Application Type of thermoplastic 

Air and water filter elements PA 

Airbag cover PEBA 

Airbag covers, steering wheels… COPE 

Bobbins for electronically controlled automatic 
transmissions for trucks, solenoid coils in control 
modules for five-speed automatic truck transmissions: 
aromatic 

PA 

Air intake manifolds for top-of-the-range cars PPA 

Airbag canister PA 

Engine covers PA 

Engine covers are generally made out of glass-
reinforced polyamide PA PA 

Bearing retainers in engine compartments, gears, 
pivots… Aromatic PA PA 

Airbag covers, armrests, upholster TPO 

Airbag covers, armrests, upholster TPS 
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Airbrake hose and tubing PEBA 

Airbrake tubing COPE 

Apparel and automotive mats and carpets: Sorona® 

biopolymer Bioplastics 

Automobile parts: BIOFRONT (stereocomplex PLA) Bioplastics 

Automotive parts and other products: Sorona® EP Bioplastics 

However, the strengthening procedure depends on the filler’s type which 

might be categorized according to their geometries. The particle type additives 
have no long dimensions, and since they cannot resist against an initial crack 
growth, except for the rubber-like substance, and consequently are not able to 
improve the fracture toughness of brittle matrixes, therefore they might not be 
used in such a matrix. The introduced exception particulate filler offers a high 
level of toughening for brittle matrixes, and it is a typical way to improve 
thermoplastics behavior for impact condition where the toughness plays a 
significant role. As an example of this type of thermoplastics, we can mention 
high-impact polystyrene and ABS. Also, a particulate reinforced improves the 
stiffness of the matrix, but might not improve, always, strengthen. The reason 
might be related to the level of load sharing with the matrix, which for particulate 
fillers is lesser extent than fibrously reinforces. Another important point about the 
hard particle reinforces is a localized stress concentration which will be occurred 
when they are incorporated into the brittle matrixes and will reduce the impact 
strength of the composite. Generally speaking, the particulate additives might 
improve the following aspects of a matrix: 

o High-temperature performance 
o Reduction in frictions 
o wear resistance  
o Machinability  
o Shrinkage reduction 

Since the particle reinforcers sometimes just are added to the matrixes to 
reduce the cost, and in this case, they cannot be considered as the reinforcement 
which is not the case of this work.  
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1.2 Introducing the case study 

The primary object of this study is dedicated to a hybrid composite part which 
is manufactured by FCA and combined a thermoformed organic sheet and a 
reinforcer internal part made of a back injection process. Here, we will introduce 
the main component which forms the backbone of the current study in the sense 
that we are supposed to introduce a material model to numerically simulate the 
component under different loading conditions. Since, the approach, to simulate 
the component, has been chosen is macromechanical-based. Therefore, we will 
not deeply discuss the substructure of the constituent of the component and just 
will give a concise description of them and also the manufacturing process. The 
main component made of two different composites including a thermoformed 
open section organic composite sheet and injected reinforcer. The thermoforming 
and the injection processes are accomplished simultaneously when the organic 
sheet is heated by an infrared and molded, the particle glass fiber reinforced 
polyamide is injected over the molded organic sheet. Then applying the cooling to 
the mold, after a certain span of time the component can be removed.  

 

Figure 1-3. The component called PROVETTONE 

 Manufacturing in detail  1.2.1

In this section, we describe the manufacturing process of the main hybrid 
component (the case study) as well as the compositions of the constituents. The 
molded part is made of an organo-sheet which consists of a thermoplastic 
(Polyamide 66) as a matrix and 63% plain weave glass fiber as reinforcement. 
Injected part is made of the combination of Polyamide 66 as its matrix and 30% of 
short glass fiber as reinforcement.  

The manufacturing process begins with forming of the organo-sheet which 
must be heated up to 300°C. Afterwards, it is inserted into the mold and mold is 
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closed. In order to achieve a more uniform heat distribution all over the sheet, this 
process is performed by infrared technology. Molding process does not take more 
than 4 seconds. After completion of organo-sheet shaping process, the injection 
process is performed with two distinct phases, without extracting the part from the 
mold. The melted short fiber composite is injected over the molded sheet at 320°C 
temperature within 3 seconds. Then, to compensate the volume reduction during 
the cooling phase, injection process must be continued which the so-called 
packing phase. The volume reduction is the result of mold cooling, at the mean 
temperature of 70°C and it approximately equals 5% of total injected material 
volume. The packing phase takes about 10 seconds and then the final cooling 
phase, which lasts 60 seconds, is started. After cooling phase, by which the mean 
temperature of the injected material is reduced to about 90°C, the final product is 
ejected in 3 seconds. It should be noted that a mean temperature of 90°C seems to 
be quite enough to prevent the final shape of the component from distortion and 
deformation after ejection. The whole production process is continuous because 
during the cooling phase of the process there is enough time to refill the injector 
with short fiber composite granules and melting them [6]. The final shape of the 
hybrid component is illustrated in Figure 1-3 and its cross-section in Figure 1-4. 

 

 

Figure 1-4 Hybrid component: cross-section and upper view [6] 

The injection gates are indicated in Figure 1-5 in order to show the flow 
directions which strongly affect the substructure of the internal constituent 
substructures. The knowledge about the flow directions can help to make a 
reasonable decision about the structural tensor (see sections 1.3.2 and 2.1.1 in 
order to have a clear idea about the structural tensor functions in the simulation 
process and their application). 
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Figure 1-5 The injection gates positions 

The Figure 1-6 shows the distributions of the short glass fibers in the two area 
near the injection gates, and clearly, we can observe the accumulation of the 
fibers. In Figure 1-6  the red arrow shows the injection direction. 

 

 

(a) (b) 
Figure 1-6 Short fiber orientation in injected constituent; picture (a) shows the 

material orientation at the injection gate area and picture (b) at one of the randomly 
selected zones which both taken from damaged zones [6] 

Figure 1-7 clearly shows the distribution of the fibers in the ribs is random. 
Comparing two figures (Figure 1-6 and Figure 1-7) signifies that the fiber 
orientation patterns are completely different in the zones near the gates and those 
located far from the direct flow stream.  

 



14 Introduction 
 

 

 

 

(a) (b) 
Figure 1-7 Short fiber orientation in injected constituent; pictures (a) and (b) 

show glass fibers distribution and orientation on the surface of two randomly chosen 
areas [6] 

1.3 Literature review  

In this section, we briefly present the literature of the current work and 
especially will focus on the major parameter which will affect the performance of 
short fiber reinforced thermoplastics (SFRTs) and post plasticity damage concept. 

A Short Fiber Reinforced Polymer is employed for a type of composite 
materials which the polymer matrix dominate the fibers which are relatively short 
with variable length, imperfectly aligned and randomly distributed. The fibers are 
mostly glass, as it is used in the current work, carbon, graphite, and natural fibers. 
Major parameters which affect the SFRT’s mechanical properties include fibers 
and matrix’s individual properties, fiber-matrix interface characteristics, fibers’ 

aspect ratio, the volume fraction of the fillers and the orientation and length 
distribution. [7]. Knowing that one of the major advantages of the SFRT’s over 

the long fiber reinforced plastics is the injectability and  therefore, the mechanical 
behavior of a SFRT will not be fully predictable, unless having complete data of 
the orientation and accumulation of the short fibers in the matrix and the 
interconnection between individual filler and the dominant resin. According to the 
major effective factors on the mechanical properties of the SFRPs, the research 
from the mechanical point of view have been reclined towards the following 
categories: 

o Measurement of the fiber length distribution (FLD) 
o Detection of the fiber orientation distribution (FOD) 



Literature review 15 
 
o Predicting the final production SFRP’s effective properties, considering 

the constituents characterizations (Micromechanical or multiscale 
approach); a most conventional model in this category is the so-called 
mixture rule. 

o Predicting the SFRP’s behavior by introducing a constitutive equation for 

entire media, considering the entire media as a specific anisotropic 
material and incorporating the major effective parameters into the 
governing equations (Macromecanical approach) 

A short introduction is presented here for the first category, but we will skip 
the multiscale and micromechanical approaches as they are not in this researche 
scope, but we will mostly focus on the second and further on the fourth category 
as the backbone of the current study found by these two categories.  

 Fiber length measurement 1.3.1

Mechanical properties of a SFRT, including their stiffness, yield strength, and 
the energy release rates, severely depend on the Fiber’s Lengths Distribution 

(FLD). This concept might be practically achieved by burning off a SFRT 
specimen whom the matrix will almost disappear, and the fibers will last. This 
method is accomplished by many researchers due to the simplicity [8]. Number of 
investigations can be found in the composites’ micromechanics literature, so that 
tried to define this phenomenon at the micromechanical level using a probability 
function [9-11], but according to the author’s knowledge they have the same 
effect as fiber weight or volume fractions and probably because of this, even in 
the micromechanics approach, has not become as popular as the volume fraction 
or weight fraction concepts. Macroscopically, the FOD might be a representative 
of a material symmetry, but it seems the FLD does not represent any special 
mechanical aspect. 

 Fiber orientation in SFRPs 1.3.2

SFRPs conventionally are fabricated using injection molding, and due to their 
advantages, broad studies have been done by many researchers on different 
aspects of this composites, for example, see( [12-18]). Fibers orientations in 
SFRPs is one of the interesting parts of this class which has persuaded many 
researchers to perform experiments and propose many theories to detect this 
phenomenon, express the SFRPs’ anisotropy and predict the mechanical 
behaviors. Such a strong influence of the fiber orientation distribution on the 
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forming of the material properties of SFRPs, demands a broad investigation in this 
matter and many researchers have been done. For instance [19-23] demonstrated 
that the distributions of the fibers, due to the injection process, is quite complex 
and not only vary from point to point along the SFRP molding but also through 
the thickness. From the micromechanical point of view the SFRPs are supposed to 
act as orthotropic materials due to the misalignment, but instead, a Representative 
Volume Element (RVE) also can be considered as a transversely isotropic 
material if someone ignores the misalignment. This can be extended to the 
macromechanical scale and if the fibers are aligned in a certain direction, for 
example, mold flow direction, then again it can be considered as a transversely 
isotropic material [1]. This study is accomplished in the framework of the latter 
assumption. However, the orientation of the short fibers in a SFRP is strongly 
influenced by processing conditions and mold geometry and hence the specimen 
geometry itself[7]. The so-called skin-core-skin is typical through the thickness 
pattern of FODs for the large injection molded, which the two skins contain the 
flow direction oriented fibers and instead, the core includes the fibers that aligned 
mostly in the transversely with respect to the flow direction [7, 19, 22, 24-26]. On 
the contrary, the small specimens with narrower cross sections do not follow this 
pattern, and presumably, the core part is eliminated from the pattern so that the 
fibers prefer to be aligned with the mold flow direction [7, 27-29].  

Either non-destructive and destructive techniques might be used to capture the 
FODs. In the destructive method, a piece is cut off from the sample’s section 

using microtome, and the fibers’ elliptical footprints are analyses using an image 

analyzing software[30]. Despite its main drawback of uncertainty, especially due 
to the difficulties of extracting the volume properties from the information of area 
measurement, it is still used widely just because of the simplicity and low cost 
[19, 30]. The limitation might be overcome using a technique called successive 
sectioning which instead of physical sectioning employs confocal scanning laser 
microscopy to focus successive sections parallel to each other [30, 31]. On the 
other hand, conventional non-destructive technique is conducted using X-ray to 
capture a projection of the fibers as an image. Therefore, it cannot obtain a 3-D-
form FOD, and the given data remain 2-D, but to overcome this problem a 
technique named computed micro-tomography ,which uses a rotating X-ray 
sources, is employed[32]. 
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 Macromechanical approach 1.3.3

Introducing a constitutive equation for a material will be possible if its 
behavior under different kind of loading and boundary conditions are observed 
and are quantitated conducting the proper experiments. Generally, the quantity 
which is intended to be measured is deformation under certain field such as 
external or body forces, the temperature gradient, magnetic field and etc. from all 
the possible field, here, it is focused on the external forces, therefore the required 
constitutive equation must define relation between force and displacement or 
alternatively stress versus strain [33]. However, to obtain the knowledge about 
SFRPs’ mechanical responses, they have been broadly experimented by many 

researchers and for many motivations. For example, an experimental study has 
been conducted to improve the knowledge about the failure mechanisms of 
injection molding polyamide reinforced by the inclusions of either glass and 
carbon fibers [15]. They recognized that the thermoplastic matrix failure 
mechanism occurs in a brittle fashion, even though the unfilled matrix behaves in 
a ductile way, and the total failure of the SFRP was referred to the progression of 
the cracks is the matrix at the end of fibers, but beyond any interpretation of 
failure mechanisms, they have obtained a nonlinear behavior for SFRPs.  

 

Figure 1-8 skin-core-skin pattern [25] 

 Damage  1.3.4

Among the several methods to model fracture and damage in solid mechanics, 
continuum damage mechanics (CDM) approaches have become more popular due 
to the convenience of their implementation in general purpose finite element 
software [34]. First successful application of the softening theory was in concrete 
structures to model the global load redistribution as a result of the development of 
the damage zone, without the need for complex modelling of detailed progressive 
damage mechanisms [35-37]. Continuum Damage Mechanics (CDM) approach 
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deals with material damage based on stiffness component degradation[38]. Also, 
CDM method which incorporates damage in the material response functions 
might be introduced as a set of internal vector field variables [39]. To define a 
damage model based on CDM approach, a constitutive model including damage 
variables must be presented. Generally, a constitutive model relates stresses to 
strains components using a fourth order stiffness tensor. To incorporate damage 
variables in constitutive equations, a reasonable way is redefining the stiffness 
tensor by implementing damage variables. The redefined stiffness tensor called 
degraded stiffness tensor. To achieve a physical base damage model and extract 
the constitutive equations, thermodynamic laws are considered which needs to 
define Helmholtz free energy [40]. To detect a specific damage mode activation a 
failure criterion, which represent the damaged surface in stress or strain space, 
must be defined. The damage envelope might be in a separated form such as 
Hashin-Rotem criterion for unidirectional composite plies[41]. In this type of 
failure criterion for each mode of damage, in longitudinal and transverse direction 
and under compression and tension, damage surfaces defined by different 
formulas. Later, Puck and Schurman based on Hashin and Rotem’s hypothesis 

formulated another separated form of failure criterion which deals with inter-fiber 
failures and has a capability of detection of crack direction [42]. Even though 
based on World Wide Failure Exercise (WWFE) [43] Puck’s failure theory 

showed the best agreement with experimental results, but there are some non-
physically based parameters in this theory which make its application hard for 
users. To overcome this difficulty, Davila and Camanho developed a failure 
criterion based on Hashin and Puck theories, where no nonphysical parameters are 
needed[44]. Formerly, Chang and Chang suggested a separated form of failure 
criterion for notched laminated composites with consideration of material 
nonlinearity [45]. In addition to the separated type of failure criteria, one can 
implement an integrated type in CDM which are mostly the generalized form of 
Hill’s criterion for orthotropic materials [46].   

To deal with a progressive damage modeling, in addition to a failure criterion, 
a damage propagation law must be defined to govern the growth of existing 
damage. Lemaitre et al. formulated an anisotropic damage law in the framework 
of equivalent strain which the evolution of damage variables governed by plastic 
strains [47]. Maimi et al. suggested a general exponential form of damage law 
which used to represent the cohesive response of all the failure modes of the ply, 
except for the longitudinal tension damage [48]. For simulation of delamination in 
composite materials, Camanho and Davila proposed a new decohesion element 
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with the mix-mode capability and for applying the softening law, they used a 
displacement-based damage parameter to track the damage state of interface [49].  

Finding a proper failure criterion to active the initial damage, and a 
constitutive equation to govern stress-strain relation before and after damage, and 
also defining sufficient numbers of damage variables, are just the beginning of 
adamage problem modelling difficulties. Mesh sensitivity and convergence come 
out during the numerical solution of damage problem which severely affects the 
results. Lapczyk and Hurtado proposed an orthotropic damage model for pre and 
post damage in brittle laminated composites [50]. In this model LaRC04 failure 
criterion which proposed by Davila and Camanho [44] is used to predict the onset 
of damage. In LarC04 is same as Hashin’s failure criterion, but stresses replaced 

by effective stress components. Also for damage evolution, they generalized 
Camanho and Davila method for delamination [49] and used specified fracture 
energy. Also to alleviate mesh dependency in numerical implementation they used 
crack band model which had been already proposed by Bazant and Oh[37] and to 
overcome convergence difficulties by following the Duvaut and Lions 
regularization method [51], instead of direct use of damage variables, a set of 
regularized form of damage variables are utilized .  

On the other hand, mechanical properties of reinforced polymeric composite 
materials including unidirectional, short fiber and woven reinforcement are 
drastically rate-dependent [52].In unidirectional composite materials, the module 
of elasticity in fiber direction is not rate-dependent as much as material tensile 
strengths at fiber direction [53]. Also, it has been shown that the module of 
elasticity and material strength in transverse directions are rate-dependent[54]. 
Also, it has been shown that woven fabric composites with a different pattern, 
laminated sequence and material are rate dependent [55, 56].  

Considering the manufacturing process, see the section 1.2.1, the internal part 
made of short fiber composite material, it might be assumed that the constituent is 
governed entirely by the matrix and the open section is made of a fabric 
composite which is supposed to be dominated by fibers. Since from the beginning 
the main concern was about the bending respone of the hybrid component. 
Therefore, the plastic response of the material was a lateral concern due to the fact 
that in 3-point bending the component response might be assuemd. For the 
pointed out the reason, at the first step we assume the damage is initiated right 
after the elastic response of the material ends for both internal and external part of 
the cases tudy. To predict damage initiation of the internal part, the second part of 
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Hashin-Rotem’s which is dealing with matrix damage initiation has been chosen. 

For the external part by considering the same reason, maximum stress theory is 
chosen which is dealing with fibers damage failure. Based on two failure criteria 
two different kinds of damage propagation models have been developed and 
implemented in ABAQUS using subroutines so-called VUMAT. Also, since the 
components have been shown rate dependent behavior, another model is 
suggested and developed to dealing with this kind of behavior and implemented in 
another VUMAT to investigate the rate-dependent behavior of the component. It 
should be noted that this rate dependency is just assigned to the internal part 
which is entirely dominated by the matrix. The model is developed assuming that 
plastic strain in these composite material is negligible, and also strain and stress 
are evenly distributed through an element. CDM approach has been followed to 
correlate damage variables determined using Lapczyk-Hurtado’s model[50] and 
their effects upon stiffness matrix and consequently stress-strain relationship. The 
rate-dependent response is incorporated into modules of elasticity and strength of 
reinforcing constituent, using a logarithmic function and following Daniel and 
Wei et al.’s works [57, 58]. Also, mesh dependency problem has been alleviated 
following Lapczyk-Hurtado’s model which strains are replaced by characteristic 

length and displacements of damage variables. Convergence problem has been 
solved following Duvaut and Lions regularization method [51] which instead of 
direct use of damage variables, a set of the regularized form of damage variables 
are utilized. In the next section, elasto-damage response of the material will be 
descussed and formulated for the 2-D case. 

In the recent decades, CDM approaches for damage simulation in composite 
structures have received notable attention. For example, the NASA/Boeing-lead 
programme for Advanced Technology Composite Aircraft Structure (ATCAS) in 
collaboration with the University of British Columbia provided the first 
comprehensive experimental and strain-softening based modelling framework to 
simulate damage and failure in laminated composites[59-64]. 

1.4 Framework and objectives 

This research begins with the production of the hybrid composite component 
which is supposed to be used in load-bearing part of the light vehicles. The 
production procedure as well as the constituents decompositions are explained in 
section 1.2. Due to confidentiality reasons, some of the information including the 
duration of each process and some of the precise temperatures are not given. Even 
though the hybrid components are made by two different technologies, i.e., back-
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injected and compression molding, but since our main object is to simulate the 
injected components, then the compression molding procedure will be skipped in 
the numerical simulations. 

In the next step, the 3-point bending experiments are performed on the hybrid 
component in both direction and different loading rates. The configuration of the 
test is explained in section 5.1 with details. The component demonstrates different 
response under different loading rates and different boundary conditions which is 
widely discussed in chapter 5 and more specifically in section 5.1. 

According to the experimental results, the hybrid component under 3-point 
bending test does not show a high degree of nonlinearity before damage. 
Therefore, to simulate the back-injected hybrid component under bending, we 
introduce a linear elastic model including a damage model. The introduced model 
is described in section 4.4.1 as well as a rate-sensitive damage model which can 
be found in section 4.3. The model's integration scheme is broadly discussed in 
section 4.5 for either of the implicit and explicit solvers.   

Also, the torsion test is prepared for the back-injected-made hybrid 
component which from the very beginning demonstrates a high degree of 
nonlinearity (see section 5.5). The nonlinear behavior of the component is related 
to its elasto-plastic response, and it is our main concern in the current research. 
The short fiber-reinforced composites can be considered as transversely-isotropic 
materials. Thus, to catch the plasticity induced nonlinearity, we introduce an 
elastic-plastic model and the post plasticity damage model. The entire models are 
founded on the representation theory of the basic invariants of the anisotropic 
materials. The associated constitutive equations for transversely isotropic 
materials are introduced in chapter 2. The chapter comprises the representation of 
the general constitutive equations (see section 2.1), an introduction to the 
representation theory in section 2.4 and the elastic constitutive equations for 
transversely isotropic materials in section 2.5. Since we deal with the non-metallic 
materials, then the elasto-plastic model must be non-associated which requires a 
potential function be defined besides of a yield function. These requirements as 
well as the proper invariants for the transversely isotropic materials are discussed 
and introduced in chapter 3.  

Having defined the basic requirements of an elasto-plasticity model in 
chapters 2 and 3, we introduce the elasto-plasticity model in chapter 4. Since the 
numerical integration scheme requires a general definition of the model, then it is 
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formulated in a general continuum mechanics fashion in section 4.2. Also, to deal 
with the rate-dependent behavior of the hybrid component under bending, a 
simple model is introduced in section 4.3. A Continuum Damage Model (CDM) is 
introduced in section 4.4.1 for the post elasticity damage phenomenon. A damage 
model for degradation of the transversely isotropic material after reaching the 
saturation stress is developed based on the CDM concept in section 4.4.1.1. The 
so-called non-local damage model is described in section Error! Reference 
source not found. as well. The numerical implementation and the integration 
schemes are discussed in section 4.5 which includes the description of the 
backward Euler and the explicit integration algorithms in subsection 4.5.1 and 
4.5.2, respectively.  

In the last step, the numerical and experimental results are given and 
discussed in chapter 5. The bending test for the hybrid components are performed 
under quasi-static and the velocity of 127 mm/sec loading conditions. Other than 
ambient condition, the quasi-static bending experiment is performed for the 
components preheated by 90 degree Celsius and the results are available in section 
5.1.  The numerical results for the quasi-static and dynamic 3-point bending are 
given in sections 5.2 and 5.3, respectively. The elasto-plasticity plus the damage 
after plasticity models’ numerical results are presented in section 5.4 and 
validated by the results taken from [1] for the basic tensile and compression test 
results of PA6GF60. The numerical and experimental results for the back-
injected-made hybrid component under torsion are presented in section 5.5.  
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Chapter2 

2 Invariants theory for 
transversely isotropic materials 

In the ongoing chapter, the invariant theory and its application to establish 
coordinate-free constitutive equations are addressed. The major portion of the 
basic formulations are grounded on the outstanding works of [65] on the 
application of tensor functions in solid mechanics, and also [66] which is 
dedicated to the continuum theory of short fiber-reinforced material. Besides these 
classical textbooks, the framework of this chapter follows the structure of [1]’s 

dissertation which categorized the invariant theory and its application for 
anisotropic materials in an admirable way.  

2.1 Constitutive equations in a general view 

In the Newtonian world, the cause and effect rule is confirmed so that any 
events might have a cause and the event and causes might be related using an 
equation or number of equations which called constitutive equations. In solid 
mechanics, which the main concern is to find the relation between displacement 
and force, and consequently their tonsorial representatives namely strain and 
stress tensors, respectively, the constitutive equation might be presented in the 
general form of: 

σ = σ
⌢
(ε, ai) (2-1) 

The agent ai called the structural tensor and represents the symmetries of the 
material either locally or globally. It means the material could be considered as a 
continuum which for instance is symmetric with respect to the x-direction, or the 
symmetry might be locally observed, and the entire continuum cannot be 
addressed as a material having a unique symmetry. The reinforced composites 
with randomly distributed short fiber might be an excellent example of the latter 
argument and in this case the agent ai is a function of position [66]. Since the 
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main topic of this research is about the so-called anisotropic materials, especially 
transversely isotropic materials, let’s define the anisotropy and the transversely 

isotropic phenomena. Materials called anisotropic if their behaviors vary from 
direction to another one, in other words these materials behave direction-
dependently. since the main concern in solid mechanic is a stress-strain 
relationship, then material anisotropy also means that the principal strains and 
stresses do not coincide (see Figure 2-1), on the contrary, a material called 
isotropic if its principal stresses and strains for an arbitrary deformation filed 
coincide.    

   

Initial configuration 
of the material Strain agency Material response in 

the stress form 

In general:(ε1, ε2) ≠ (e1, e2) 

Figure 2-1 Difference between the principal directions of the input agency and 
the response of an anisotropic material [65] 

Mathematically, isotropic material means that applying an arbitrary rotation 
on the constitutive equation of equation (2-1) causes no change in the results 

σ = σ̂(ε, ai) = σ̂(ε, Q(a ⊗ a)iQ
T)       ∀Q ∈ Ơ(V) (2-2) 

The symbol ⊗ implies the dyadic product and the index i is intentionally 
bolded just to signify that the outcome of the term a ⊗ a is the structural tensor. 
The determination and importance of the structural tensor is discussed in section 
2.1.1.  The mathematical meaning of the orthogonal  transformation tensor could 
be explained as 

Qu. Qv = u. v (2-3) 
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Which means that the orthogonal transformation tensor is orthogonal if it can 

preserve the inner product of the vector basis of a set of vectors, regarding that u, 
v ∈ V and Q ∈ L(V).  

Before going through the rest of the subject let’s have a distinct definition of 

orthogonal transformation groups which might help to have a clear understanding 
of the symmetry groups in terms of orthotropic or transversely isotropic symmetry 
and so on. The orthogonal transformation in three-dimensional space includes 
rotations and reflections. A rotation θ about an axis which defined by a unit vector 
v̂1with the components vi

(1)might be characterized employing the following 

matrix; note that M̂θ = Mij
(θ): 

Mij
(θ)

= δijcos(θ) + eijkvk
(1)sin(θ) + (1 − cos(θ))vi

(1)vj
(1) (2-4) 

Which 

eijk = {
1   if    ijk = 123,231,312; 
−1 if   ijk = 132,321,213;

0

 (2-5) 

If v̂1 coincides with the basic Cartesian space vector  ê1, then the following 
matrix represents an orthogonal transformation in the rectangular Cartesian space 
Ox1x2x3: 

M̂θ = [
1 0 0
0 cos(θ) sin(θ)

0 −sin(θ) cos(θ)
] (2-6) 

And the reflection for an example in the plane with the normal v̂1 can be 
characterized such as: 

Rij
(1) = δij − 2vi

(1)vj
(1) (2-7) 

Defining R̂1 = Rij
(1)

, Again for the particular case of the coincidence between 
v̂1 and ê1, the following reflection transformation matrix is valid: 

R̂1 = [
−1 0 0
0 1 0
0 0 1

] (2-8) 
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  To whom looks for more details about the orthogonal symmetry concept and 
its application in invariant theory in anisotropic material might refer to [67]. 
However, some features of the orthogonal transformation tensors are needed in 
this research  and listed below 

QT = Q−1

Q2 = 1

|det(Q)| = 1
|Q. v| = |v|

θ(Q. u, Q. v) = θ(u, v)

 (2-9) 

The two latter properties even prove that the orthogonal transformation can 
reserve the norm and the angle between two vectors [65].  

 Structural tensor for short fiber reinforced 2.1.1
thermoplastics  

Structural tensors or internal variables or tonsorial internal variables in 
conjunction with the so-called representation theorems are used in order to 
provide macromechanical explicit formulation to predict the rotation of the initial 
symmetry groups under any type of loading which leads the change in the primary 
symmetry groups such as off-axis tensile loading [68-71]. The short fiber 
reinforced composites mechanical responses are dominated by the fibers 
distribution pattern[72]. We presented the fiber orientation and distribution 
literature in the section 1.3.2 and do not intend to reiterate it. Since our intention is 
to simulate the nonlinear behavior of the SFRPs which are assumed to be 
transversely isotropic materials, then we just present a concise description of the 
sub-structural origin of the structural tensor. But the general meaning and 
mathematical concept of the structural tensor will be discussed in section 2.2. 
Following [72] we assume that the fibers as rigid cylinders which are uniform in 
length and diameter. The distribution of fiber orientation can be prescribed with a 
probability distribution function ψ. The number of the fibers per unit is also 
assumed to be constant. Then according to [72] we might construct the probability 
distribution function ψ in the polar coordinate system which is illustrated at 
Figure 2-2. Having mentioned assumptions, the orientation of s single fiber is 
determined using just a pair of angles (θ,ϕ) in the polar coordinate system. The 
orientation state can be described by a probability distribution function, ψ(θ, ϕ). 
The definition of the function is so that it is supposed to determine the probability 
of existence of a fiber in the spans of [θ1, θ1 + dθ] and [ϕ1, ϕ1 + dϕ] [1, 72]: 
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P(θ1 ≤ θ ≤ θ1 + dθ, ϕ1 ≤ ϕ ≤ ϕ1 + dϕ)
= ψ(θ1, ϕ1) sin θ1dθdϕ (2-10) 

 

Figure 2-2 Polar coordinate system definition for a single cylindrical fiber   

An alternative way to prescribe a probability distribution function as ψ(p) 
where p might be written in a vector shape: 

p = [
sin θ cosϕ
sin θ sinϕ

cos θ

] (2-11) 

Since the length of the fiber is fixed, then the components of the vector p are 
interrelated, and the following relationship can be written: 

pipi = 1 (2-12) 

The set of all possible directions of p corresponds to the unit sphere, and the 
integration over the surface of the sphere is: 

∮dp = ∫ ∫ sin θ
π

θ=0

2π

ϕ=0

dθ dϕ  (2-13) 

the function ψ is symmetric and periodic, therefore: 

ψ(θ,ϕ) = ψ(π − θ, π − ϕ) (2-14) 

or 

ψ(p) = ψ(−p) (2-15) 

Also, the function ψ must be normalized which means that its integration over 
the unit surface must be equal to one [72]: 
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∮ψ(p)dp = ∫ ∫ ψ(θ,ϕ) sin θ
π

θ=0

2π

ϕ=0

dθ dϕ =  1 (2-16) 

Here we do not intend to discuss the continuity condition which describes the 
change in ψ over time while fibers are changing the orientation under flow 
conditions. Therefore, the orientation distribution function is a function of two 
variables describe the orientation of a single fiber (θ and ϕ or the pi’s) as well as 
its position within a physical structure [72]. According to [1, 72] the numerical 
calculation of the probability distribution function (2-16) is expensive and 
cumbersome. Also, one set of the function can be constructed based on the dyadic 
multiplication of the vector p, and since the distribution function is even then only 
the even-order tensors are admissible, and all odd-order tensors are zero. 
Therefore, the fiber orientation tensor can be defined using a second order tensor 
as suggested by [72] as follows: 

A = aij = ∮ψ(p)pipjdp (2-17) 

Which is an integral over all p weighted by ψ(p). As it is pointed out by [72], 
there is an infinite number of even-order tensors which can be used to describe the 
fiber orientations, but we limit our discussion to the second-order one. The 
second-order tensor in a discrete way, where it is intended to be written for a finite 
number (n) of fibers, can be written as: 

aij =
1

n
∑aij

k

n

k=1

=
1

n
(∑pi

k

n

k=1

pj
k) = [

a11 a12 a13

a21 a22 a23

a31 a32 a33

] (2-18) 

This tensor has the capability of defining the orientation of a single fiber in a 
given point of the continuum. The orientation tensor is symmetric, and the 
diagonal components can hold the values between 0 and 1. Also, due to the 
normalization condition, the summation of the diagonal components becomes one 
(a11 + a22 + a33 = 1). Hence, the orientation tensor has five independent 
components which can fully describes the distribution and orientation of the fibers 
at one point in the space [1]. The off-diagonal components of the orientation 
tensor represent the amount of the fiber misalignments from the principal 
directions, and they are zero if the fiber aligns with the principal directions [73].   

Commonly the structural tensor is applied using its eigenvalues which can be 
derived solving the characteristic equation. The eigenvectors are the 
representatives of the principal directions of the fiber orientation, and the 
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corresponding eigenvalues represent the statistical distribution of the fibers. 
Therefore, it would be better to define the structural tensor (2-18) with the 
corresponding eigenvalues and eigenvectors[73]: 

aij ⇒ [

λ1 0 0
0 λ2 0
0 0 λ3

] . [e1, e2, e3] (2-19) 

To have a visual perspective of the eigenvectors and eigenvalues for a single 
fiber, an ellipsoidal fiber is represented in the Eigen-space and can be seen in  
Figure 2-3.   

 

Figure 2-3 The illustration of a single ellipsoidal fiber and the corresponding 
eigenvectors and eigenvalues.  

The first eigenvector represents the direction in which the fibers are mostly 
aligned, and the corresponding eigenvalue shows the probability in the direction 
which the fibers are aligned [73].  

2.2 Physical and mathematical concept of space isotropy  

The physical meaning of isotopy of apace is that applying an arbitrary 
transformation Q of the orthogonal group Ơ on both the agency, here is strain, and 
the material, read the material intrinsic property A = a ⊗ a, causes in the same 
transformation of the material response. A straightforward explanation for this 
phenomena might be that the orientation of the space does not affect the 
constitutive equation of its own [65] which can be found in Figure 2-4. 
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Qv 
  

Figure 2-4 Principal of the isotropy of space [65] 

Considering the physical meaning of the isotropy space concept and regarding 
the results have been achieved by that, which the transformation of the body, 
which is represented by the structural tensor, and transformation of the agency, 
read strain, causes the same transformation of the response (stress) reaches: 

∀Q ∈ Ơ: σ(QεQT, QAQT) = Qσ(ε, A)QT (2-20) 

Then the function stress which can be any material response might be called 
Therefore, the constitutive function, which here is the stress function, but in 
general can be any material response, is isotropic with respect to the central 
agencies strain and structural tensor A [65].  
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2.3 Isotropic functions 

If ϕ, h and S are the scalar-valued, vector-valued and tensor-valued functions 
which are defined on the space ×V×L(V) and is the real number field, V 
represents a vector space and L(V) shows a space made of the second-order 
tensors on V, then the following function shall be scalar, vector or tensor-valued 
isotropic functions [1]: 

ϕ(s, Qv, QAQT) = ϕ(s, v, A) ∀Q ∈ Ơ(V)                                  
Where s ∈ ,v∈ V, A ∈
L(V) 

 

( 2-21) 
h(s, Qv, QAQT) = Qh(s, v, A) 

S(s, Qv, QAQT) = QS(s, v, A)QT 

2.4 Representation for polynomial scalar and tensor 
functions 

To start with the representation theory it is necessary to assume that the 
function ϕ and the components are polynomials in a reference frame of the 
function S. Thus, the values A and S are polynomial invariants under the 
introduced orthogonal group[65]. The representation problem for the scalar valued 
function ϕ is to calculate  a basic set of polynomial scalar invariants (I1, I2, … , In) 
such that an arbitrary polynomial scalar invariant of the same arguments can be 
explained as a polynomial in the basic invariants. The mentioned set of invariants 
called “integrity basis” for the considered list of arguments such as those can be 

found in the equation ( 2-21). One of the important concepts in the representative 
problem is the term so-called “irreducible integrity basis” which demonstrates that 
none of its subsets constitutes a compete for representation of itself [65].  

The problem of representation for the tensor-valued function S is to find a 
generating set of tensors, so that the symmetric second-order tensors which are 
invariant under the group Ơ, thus the represented tensor might be determined as a 
linear combination of the generating set’s arguments. The same concept is 
applicable for the vectors, so that under the representation problem, following 
relations might be written: 

ϕ = ϕs(ϒs) 
(2-22) h = ∑ ϕa(ϒs)

ua∈ϒv

ua 
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S = ∑ ϕb(ϒs)

ua∈ϒt

Tb 

Which ϒs, ϒvand ϒt are sets of scalar, vector and tensor invariants, 
respectively, while ϕs, ϕa and ϕb are arbitrary polynomial functions of the 
invariants of the integrity basis of ϒs [65]. It is shown that representation for 
polynomial cases establishes a complete representation for non-polynomial cases 
as well [65, 74, 75]. Then, the coefficient ϕx might be non-polynomial, but for the 
non-polynomial cases, the representations might not be “irreducible” in general 
[76, 77]. It should be noted that ϒs is called the basic invariants, while ϒv and ϒt 
are generating stes for isotropic vector and tensor functions, respectively [1]. 
Another point which is should be noted here is the definition of so-called 
“irreducible” concept which means that the basic invariants elements, 
functionally,  are not related to each other and also the generating set’s elements 

are linearly independent concerning isotropic functions. If a set of basic invariants 
or a  generating set are irreducible, it is called functional basis. However, for the 
fundamental works on the integrity basis and the generating tensor concepts one 
can refer to [33, 65-67, 78].  

Here we present the integrity bases for the scalar function ϕ which in the 
following sections is typically appeared with the symbol f which are established 
by [79] and generating sets for tensor function S are presented which are 
established in [76]. 

 Representation for anisotropic scalar- and tensor-valued 2.4.1
functions 

If an anisotropic material possesses a specific symmetry group which might 
be defined in the form of a symmetric line or plane or a specific direction, then 
those symmetric groups could be defined using some unit vectors m =

(m1, . . . , ma) or a set of tensors M = (M1, . . . , Ma) such as following group which 
we assume the characterizes of the material are preserved: 

ɠ = {Q ∈ Ơ,Qm = m,QMQT = M} (2-23) 

Having defined the anisotropic symmetry group ɠ, let's define the so-called 
“isotropicization theorem”[1] which explains that if f(v, A) be a scalar-, vector- or 
tensor-valued function and ɠ is the group which is defined above, then the 
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function f is invariant in this specific group if and only if it can be written in the 
following form: 

f(v, A) = f̂(v, A,m,M) (2-24) 

The function f̂ in Ơ. The latter equation illustrates that the anisotropic 
invariants might be transformed to the isotropic ones if the arguments are 
extended by adding the structural tensors which are invariants to the 
transformation of the material symmetries.  

2.5 Elasticity 

Elastic behavior characterized by two conditions: 

1. The mechanical response of the material (stress) is a unique function of 
the strain 

2. Removing the complete loading causes its return to the primary state (its 
natural shape without loading)  

The elastic behavior might be linear or nonlinear which is illustrated in the 
figure below. 

   

(a) linear elastic (b) non-linear 
elastic (c) inelastic  

Figure 2-5 uniaxial loading-unloading stress-strain curves [80] 

Symbolically, the most general constitutive equation for elastic behavior 
might be written in the following form [80]: 

σ = G(ε) (2-25) 
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Where G is a symmetric tensor-valued function and ε might be any of strain 
tensors which can be found in the literature, but in the present text, it is assumed 
that the stress in a linear function of strain in relation (2-25). Besides, it is 
assumed that, in the deformed material, the displacement gradients are small , 
compare to unity. Thus, the Lagrangian and Eulerian description of the material 
can be considered as the same concept. Considering the assumptions, the 
infinitesimal strain tensor might be: 

εij =
1

2
(
∂ui

∂Xj
+

∂uj

∂Xi
)= 1

2
(
∂ui

∂xj
+

∂uj

∂xi
)= 

1

2
(ui,j + uj,i) (2-26) 

Where u is the displacement field and the X… represents the material labels in 
its Lagrangian format, while x… illustrates the material’s deformed configuration 

and called the Eulerian description of deformation. The Later equation in its rate 
form can be found in the equation (2-73) as well as brief descriptions of 
Lagrangian and Eulerian approaches are presented in section2.5.3. considering the 
above assumptions, the general constitutive equation for elastic material can be 
written as: 

σij = Cijklεkl or σ = C: ε (2-27) 

This equation called “Hook’s law”. The elastic tensor coefficients, in general, 
has 34 = 81 components which due to the symmetry of the stress and strain 
tensors drops to 36 distinct coefficients by the following descriptions: 

Cijkl = Cjikl = Cijlk (2-28) 

Also for certain purposes is convenient to write the fourth-order coefficient 
tensor in a matrix form using two subscript and stress and stress tensors by one 
subscript which called “Voigt notation” as follows: 

σα = Cαβεβ (2-29) 

The Voigt notations have to be written in the following pattern: 

σ11 = σ1 σ22 = σ2 σ33 = σ3 (2-30) 
σ12 = σ21 = σ4 σ13 = σ31 = σ5 σ23 = σ23 = σ6 

And for the strain component: 

ε11 = ε1 ε22 = ε2 ε33 = ε3 (2-31) 
2ε12 = 2ε21 = ε4 2ε13 = 2ε31 = ε5 2ε23 = 2ε23 = ε6 
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Combining the equations  to (2-29) to (2-31) the matrix form of Hook’s law 

can be written as follows: 

[
 
 
 
 
 
σ11

σ22
σ33

σ12

σ13

σ23]
 
 
 
 
 

=

[
 
 
 
 
 
C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C52 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66]
 
 
 
 
 

[
 
 
 
 
 
ε11
ε22
ε33
ε12
ε13
ε23]

 
 
 
 
 

 (2-32) 

Since this text is addressed to the elastic and inelastic mechanical response of 
transversely isotropic material, thus the material symmetry group including three 
mutually perpendicular planes in the Cartesian configuration as well as one of the 
main directions, here e3, causes the reduction of the number of material constants 
to five and the general equation (2-41) might be rewritten as: 

[
 
 
 
 
 
σ11

σ22
σ33

σ12

σ13

σ23]
 
 
 
 
 

=

[
 
 
 
 
 
 
 
C11 C12 C13 0 0 0

C22 C23 0 0 0

C33 0 0 0

C44 0 0

Symmetric C44 0
1

2
(C11 − C12)]

 
 
 
 
 
 
 

[
 
 
 
 
 
ε11
ε22
ε33
ε12
ε13
ε23]

 
 
 
 
 

 

(2-33) 

The material stiffness tensor for the transversely isotropic material is 
presented in the next sub-section which is based on invariant theory, 
hyperelasticity assumption for the material response and free strain energy 
function. 
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Figure 2-6 A typical substructure of a short fiber reinforced composite and 
transversely isotropic materials. The direction 𝐞𝟑  indicates the isotopy plane 

normal 

 Transversely isotropic elasticity 2.5.1

In this section, following the representation approach, the elastic response of 
materials with transversely isotropic symmetries are presented. For 
complementary information about the elastic response of the materials with 
different symmetry groups and by using the representation theory, one can refer to 
[33, 65, 66]. 

 Scalar- and tensor-valued isotopic functions for 2.5.2
transversely isotropic materials 

According to the representation theory and considering equation (2-22) 
construction of a constitutive equation for an anisotropic material needs its 
relevant arguments’ generators and integrity bases to be defined. Since the topic is 
addressed to transversely isotropic materials and the relevant symmetry group, 
then here we focus on the irreducible representations, read generators and 
integrity bases. Since the vector invariants and their integrity bases and generators 
do not play a role in the current research activity, then only scalar- and tensor-
valued function are intended to be constructed based on the representation theory. 
Let’s start with the definition of the transversely isotropic material. Material is 
transversely isotropic if we could find a privileged direction 𝑎 which the material 
is symmetric about this axis. The constitutive equations for transversely isotropic 
materials are invariant under rotation about the preferred direction a under the 
orthogonal rotation tensor (2-6) [67].  

𝑒3 

𝑒2 

𝑒1 
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A transversely isotropic material is symmetric with respect to the preferred 

direction a which is the normal of the isotopy plane. Then the constitutive 
equation restriction becomes the invariance of the equations under rotation about 
the direction a. The symmetry transformation group can be easily defined based 
on the orthogonal rotation tensor and reflection tensor which might be a particular 
case of the rotation about the preferred direction a such as follows: 

ɠ12 = {Q ∈ M̂θ which 0<θ<2π, R̂1, ±I} (2-34) 

Which I is the identity tensor. According to the hexagonal symmetry group in 
(2-25) which proposed by  [81], the relative structural tensor reads: 

A = a ⊗ a (2-35) 

In fact, this structural tensor is one of the possibilities for the transversely 
isotropic symmetry, and also the introduced symmetry group in (2-25) is one of 
the five options which is given in [81], but the other four are a subgroup of this 
symmetry group. This new argument, e.g., structural tensor, which represents the 
symmetry of the material has to be invariant under an arbitrary rotation in  (2-25), 
thus: 

QAQT              ∀Q ∈ ɠ12  (2-36) 

Then, we have a new argument as well as the strain tensor ε. Therefore, there 
are two arguments to construct the invariant scalar- and tensor-valued functions to 
explain the transversely isotropic material response so that the general 
representation of transverse isotropy reads: 

Φ = Φ̂(ε, A)               (2-37) 
σ = σ̂(ε, A) 

Where Φ̂ is an isotropic scalar-valued function and σ̂ is an isotropic tensor-
valued function which both functions are isotropic with respect to two strain 
tensor and structural tensor arguments. Comparing the relations (2-22) and (2-28) 
illustrates that the main procedure to convert this two general equation to two 
specific equations which might characterize the transversely isotropic material 
behaviors in linear and nonlinear states is to find the sets of generators and 
integrity basis under symmetric group of ɠ12. The irreducible sets of generators 
and integrity bases for isotropic functions with respect to the entire arguments 
including the structural tensor can be found in Table 2-1. Note that the generators 
and the integrity bases are transversely isotropic with respect to the agents, but are 
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generators or integrity of isotropic functions if structural tensor is taken into 
account. 

Table 2-1 Irreducible representations for transversely isotropic functions with one 
and two arguments [82] 

Variables Generators for polynomial 
functions Integrity bases 

 1 , A - 

D D, AD + DA,  D2, AD2 + D2A trD,trD2, trD3, trAD, trAD2 

D1, D2 
AD1D2 + D1D2A, 

AD2D1 + D1D2A , AD1
2D2 +

D2D1
2A , AD1D2

2 + D2
2D1A 

trD1D2, 
trAD1D2,trD1

2D2, trD1D2
2,

 trD1
2D2

2, trAD1
2D2, trAD1D2

2 

If the strain tensor is considered as the main variable and assuming a linear 
dependency of the material response, read the stress tensor, to the strain tensor, 
then the cubic term trD3 must be dropped from the integrity bases and the new set 
of integrity bases might be written as: 

Υs: trε, trε
2, trAε, trAε2 (2-38) 

This set represents the reduced integrity bases and incorporating it into the 
equation (2-37) gives: 

Φ = Φ̂(trε, trε2, trAε, trAε2)               (2-39) 

Before constructing the tensor-valued isotropic function of transversely 
isotropic materials, it should be noted that the second order identity matrix and the 
structural tensor itself are involved in all generator sets with any number of 
variables. Again considering a linear response of the material, the set of 
generators is reduced to:  

ϒt: 1, A, ε, Aε + εA  (2-40) 

Where 1 represents the second order identity tensor. Thus, the tensor-valued 
isotropic function might be constructed such as following: 

σ = σ̂(1 , A, ε, Aε + εA)               (2-41) 
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Incorporating the equation (2-41) into the (2-22) the second order tensor-

valued isotropic function can be written in the below format: 

σ = σ̂(ε, A) = ∑ ϕb(ϒs)ua∈ϒt
Tb = α11 + α2A + α3ε + α4(Aε +

εA)               
(2-42) 

Where the coefficients of α as mentioned before are the polynomials 
employing the introduced integrity bases elements. To determine the coefficient, it 
is necessary to apply the material restrictions and also taking into account the 
primary assumptions such as the linearity. The presumption of linear behavior of 
the material leads that the coefficient α3 and α4 must be constant and the α1and 
α2 have to have a linearly dependent relation with the strain tensor with respect to 
the linear arguments of the given integrity bases in (2-29) which reads: 

α1 = α11 + α12trε + α13trAε 

(2-43) α2 = α21 + α22trε + α23trAε 
α3 = α31 
α4 = α41 

One the very natural restriction which can be applied to the equation set 
(2-43) in the free stress field for the understored continuum which means ε = 0 
causes σ = 0 which lead to α11 = α21 = 0 and furthermore applying on the 
equation (2-42) leads [1]: 

σ = σ̂(ε = 0, A) = α11 + α2A ⩮ 0               (2-44) 

Inserting (2-43) into (2-44) and considering that the constants became zero by 
applying the assumptions yields to: 

σ = (α12trε + α13trAε )1 + (α22trε + α23trAε)A + α31ε
+ α41(Aε + εA) (2-45) 

By now the transversely isotropic material elastic constitutive equation has six 
constants to be defined which according to the relation (2-35) five constants left 
independent. To achieve a complete set of independent material constants for 
transversely isotropic material its strain energy in the framework of a scalar-
valued function might be defined: 

Ψ = Ψ̂(trε, trε2, trAε, trAε2)               (2-46) 

And it is known from the classic elasticity theories, which by assuming 
hyperelastic behavior for the material under an infinitesimal deformation, the first 
order partial derivative of the strain energy with respect to the strain tensor ε shall 
define the mechanical response of the material σ. Therefore, it can be written: 
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σ =
∂Ψ

∂ε
 (2-47) 

assuming linear elasticity lead to the assumption of the free energy function Ψ̂ 
which is quadratic in terms of strains [1]. Again the derivative of this free energy 
(Ψ), (2-37), with respect to the strain tensor ε can give the material response to 
stress: 

σ =
∂Ψ

∂ε
=

∂Ψ

∂trε

∂trε

∂ε
+

∂Ψ

∂trε2
∂trε2

∂ε
+

∂Ψ

∂trAε

∂trAε

∂ε

+
∂Ψ

∂trAε2
∂trAε2

∂ε
     

=
∂Ψ

∂trε
1 +

∂Ψ

∂trε2
A +

∂Ψ

∂trAε
2ε +

∂Ψ

∂trAε2
(Aε + εA) 

(2-48) 

Then the comparison between the coefficients of two equation of (2-36) and 
(2-48) yields: 

∂Ψ

∂trε
= α12trε + α13trAε 

(2-49) 

∂Ψ

∂trε2
= α22trε + α23trAε 

∂Ψ

∂trAε
=

1

2
α31 

∂Ψ

∂trAε2
= α41 

and since the function Ψ has to satisfy the integrability condition then: 

∂

∂trε
(

∂Ψ

∂trAε
) =

∂

∂trAε
(
∂Ψ

∂trε
) (2-50) 

 And the last relation results in the following conditions: 

α13 = α22 (2-51) 

Hence, just five independent material constants remained to describe 
transversely isotropic material mechanical response subjected to infinitesimal and 
linear deformations. Integration of the partial derivative of the stress function 
gives free energy function and conventionally for any common material symmetry 
the specific notations are used for introducing the constants [83]. However, the 
free energy for transversely isotropic material with symbolic notation might be 
written in the following form : 
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Ψ̂(ε, A) =
1

2
λ(trε)2 + μTtr(ε)

2 + α(aεa)trε + 2(μL − μT)(aε
2a)

+
1

2
β(aεa)2 

(2-52) 

where all constants λ, μT, α, μLand β are the transversely isotropic elastic 
constants. In the present text if an index notation of a formula could assist its 
clarification it will be used. For the same reason the index notation of the free 
energy equation (2-52) is rewritten: 

Ψ̂(ε, A) =
1

2
λ(εii)

2 + μTεijεij + αaiεijajεkk

+ 2(μL − μT)aiεijεjkak +
1

2
β(aiεijaj)

2
 

(2-53) 

Accordingly, if the hyperelasticity condition is assumed to be preserved, then 
the equation  (2-38) can be used, and the stress tensor can be derived by taking the 
first partial derivative of the elastic free energy density function with respect to 
the strain tensor: 

σ = ∂εΨ̂(ε, A) = λ(trε)1 + 2μTε + α(aεa1 + trεA) + 2(μL

− μT)(Aε − εA) + β(aεa)A (2-54) 

Although, care must be taken that the dot product of two second-order tensor 
is given without “.” Symbol, therefore, the term Aε = A. ε = Aimεmj. 
Consequently, the second partial derivative of the elastic free energy function with 
respect to the strain tensor gives the fourth-order material’s stiffness tensor: 

C = ∂εε
2 Ψ̂(ε, A)

= λ1 ⊗ 1 + 2μT + α(A ⊗ 1 + 1 ⊗ A) + 2(μL − μT) A + βA
⊗ A 

(2-55) 

The hollow symbols illustrate fourth-order tensors and their equivalent matrix 
form in VOIGT notation. The stiffness tensor can be written in index notation as 
follows: 

Cijkl = λδijδkl + 2μTIijkl + α(aiajδkl + δijakal)

+ 2(μL − μT)(IA)ijkl + βaiajakal 
(2-56) 

Where 

Iijkl =
1

2
(δikδjl + δilδjk) (2-57) 

And 
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(IA)ijkl = AimIjmkl + AjmImikl (2-58) 

Where 1 = δij defines the Kronecker delta so that 

δij = {
1      for i = j
0     for i ≠ j

 (2-59) 

If e1 = [1,0,0] considered as the material’s privileged direction (see Figure 
2-6) then the material’s stiffness matrix in the Voigt notation reads: 

C

=

[
 
 
 
 
 
 
λ + 2α + β + 4μL − 2μT λ + α λ + α 0 0 0

λ + 2μT λ 0 0 0

λ + 2μT 0 0 0

μL 0 0

Sym μL 0

μT]
 
 
 
 
 
 

 (2-60) 

The important matter after the construction of the stiffness tensor is the limits 
of elasticity constants which means that the constants cannot hold the arbitrary 
values. The product of a stress and corresponding strain shows work done by the 
stress. Hence, to avoid the creation of energy the sum of the work done by all 
stresses must be positive. The later condition provides a “thermodynamic 

constraint” on the material’s elastic constants[84, 85]. Assuming the free energy 
potential Ψ and the complimentary free energy Ψ̃ by the following definition: 

Ψ =
1

2
ε: C: ε 

(2-61) 
Ψ̃ =

1

2
σ: C−1: σ 

where C−1 is the elasticity compliance tensor which for the convenience 
consider it is written in the Voigt notation as well as the other arguments 
including stress and strain tensors. Since both free energies carry the positive 
values and both right hands of the equations in (2-61) includes the quadratic terms 
of strain and stress tensors’ components, then the elasticity tensor C and the elastic 
compliance tensor must be positive definite for arbitrary strains and stresses, 
respectively[1]. A symmetric tensor called “positive/negative definite” matrix if 
all its eigenvalues are positive/negative [80]. Such a tensor contains special 
features such that its diagonal entities, which has by definition the real numbers, 
as well as its determinant,  must be positive [86, 87]. It might be convenient using 
the engineering constants instead of the tensor-oriented constants so that the 
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compliance elastic constants tensor in Voigt notation which is appeared in 
equation (2-61) can be translated to: 

C−1=

[
 
 
 
 
 
 
 
 
 
 
 

1 
E11

−
ν12

E22
−

ν12

E22
0 0 0

−
ν21

E11

1 
E22

−
ν23

E22
0 0 0

−
ν21

E11
−

ν23

E22

1 
E22

0 0 0

0 0 0
1 

G12
0 0

0 0 0 0
1 

G12
0

0 0 0 0 0
1 

G23]
 
 
 
 
 
 
 
 
 
 
 

 (2-62) 

Considering the symmetry of the matrix leads: 

−
ν21

E11
= −

ν12

E22
            ⇝           ν21 =

E11

E22
ν12 (2-63) 

C−1(4,4) = 2(C−1(3,3) − C−1(2,3))            ⇝     G23 =
E33

2(1+ν23)
  

According to the positive definite of compliance matrix yields: 

C−1(1,1), C−1(3,3), C−1(4,4), C−1(6,6) > 0 (2-64) 

Therefore 

E11, E22, G12 and G23 > 0 (2-65) 

must be regarded. Inversion of the compliance matrix gives the elasticity 
constants matrix: 

C=

[
 
 
 
 
 
 
 

1−ν23
2  

Det
E11

ν21+ν21ν23

Det
E22

ν21+ν21ν23

Det
E22 0 0 0

ν12+ν12ν23

Det
E11

1−ν12ν21

Det
E22

ν23+ν12ν21

Det
E11 0 0 0

ν12+ν12ν23

Det
E11

ν23+ν12ν21

Det
E22

1−ν12ν21

Det
E22 0 0 0

0 0 0 G12 0 0
0 0 0 0 G12 0
0 0 0 0 0 G23]

 
 
 
 
 
 
 

  

(2-66)  

where Det = 1 − 2ν12ν21(1 + ν23) − ν23
2 . Since the compliance matrix is 

needed as well must be considered positive infinite, therefore the diagonal must 
be positive: 
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C(1,1) > 0                  ⇝         1 − ν23
2 > 0           ⇝   |ν23| < 1 

(2-67) 
C(3,3) > 0 ⇝ 1 − ν12ν21 > 0 ⇝ |ν12| < √

E22

E11
 and|ν21| < √

E11

E22
 

At the same time the term Det must be greater than zero which results: 

|ν12| < √
(1−ν23)E22

2E11
   and   ν23 < 1 − 2ν12

2 E11

E22
 (2-68) 

The restrictions must be taken into account, especially, for the coding 
procedure to be implemented into the Finite Element solver and have to be 
applied putting the “exit/break conditions”.  

However, elastic response of different symmetry groups such as isotropic, 
transversely isotropic, orthotropic and monoclinic materials are well established 
so far, and they can be found in many textbooks [33, 66, 85, 88, 89]. In the next 
section, we talk about the kinematic constraints and their effects on the 
mechanical response of the transversely isotropic material and this concise 
introduction of kinematic constraints may explain the necessity of the current 
research. 

 Kinematic constraints 2.5.3

Here we describe two common kinematic constraints which in many branches 
of continuum mechanics can be found. The first and most important one might be 
“incompressibility” which means that the material’s volume remains constant 
subjected to a specific range of deformations. Another example of the kinematic 
constraints is “inextensibility” condition in a specified direction. Clearly, in some 
particular type of fiber reinforced composites, such as unidirectional composites, 
the material shows a significant level of resistance to extension in a specific 
direction. Evidently, the high level of resistance to an extension is defined 
comparing the deformation of the material in other directions such as transverse 
direction or shear condition. This approximation might leads a proper analysis 
with a reduction in the level of complexity of the problem[83].  

To have a concise explanation of the effect of the kinematic constraints on the 
constitutive equations the two mentioned kinematic constraints are considered. 
let’s suppose the primary configuration system is a fixed Cartesian one, and a 
material point P introduces a representative position of the material in its free 
state, and the current deformation might be: 
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x0
p
= x(X0, t = 0) ⇒ xi

p
= xi(XR, t = τ) (2-69) 

For readability, consider xi
p
= xi, therefore the deformation can be described 

by the dependency of x on X and time. The deformation gradient in its notation 
form reads: 

FiR =
∂xi

∂XR
 (2-70) 

The finite strain tensors C and  , consequently, are employed, where 

C = FTF and B̂ = FFT (2-71) 

And the infinitesimal strain tensor can be defined such as following: 

ℇ =
1

2
(F + FT) − 1 (2-72) 

All symbols in bold letters illustrate second-order tensors unless otherwise 
stated. The rate of deformation might be introduced as the symmetric part of 
spatial velocity gradient: 

Dij =
1

2
(
∂vi

∂xj
+

∂vi

∂xj
) (2-73) 

Having defined the deformation gradient and finite strain tensors, the 
incompressibility condition for all possible deformations might read: 

detF = 1 , or detC = 1, or detF = 1 (2-74) 

Considering each of the circumstances  causes the following constraint for 
incompressible materials under infinitesimal deformation condition: 

trε = 0 infinitesimal deformation;    trD = 0 finite deformation (2-75) 

The large deformations are not the main concern of the study. Thus, the strain 
tensor ε is taken into account instead of the deformation rate tensor D. 

The inextensibility constraints might be achieved by introducing the unit 
vector for the preferred direction in the un-deformed (reference) configuration a0 
and a in a deformed configuration which might be related considering the 
deformation gradient tensor F and a scalar-valued stretch of the line element(λ): 

λa = Fa0 or λai = aR
(0)

FiR (2-76) 
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Inserting the definition of the deformation gradient from equation (2-70) into 
(2-76) the following relation can be constructed: 

λ2 = aR
(0)

aS
(0) ∂xi

∂XR

∂xi

∂XS
= a. C. a (2-77) 

If the material is inextensible in the preferred direction, then λ = 1and, 
therefore, the following relation might be written: 

a. C. a = 1 (2-78) 

And for infinitesimal deformation it might be read: 

a. ε. a = 1 (2-79) 

Having determined two kinematic constraints now their effect, which is to 
produce a reaction stress, on the mechanical response of the material might be 
investigated. Thus a stress state (T) can be divided into two distinct portions of 
reaction and extra-stresses, so that 

T = S + R (2-80) 

Where for an incompressible material the reaction can be an arbitrary 
hydrostatic stress[83]: 

R = −p1 (2-81) 

p is a scalar and define the magnitude of the hydrostatic pressure. The 
reaction portion of the total stress can be defined as the projection of the total 
stress on to the preferred direction a: 

R = Taa⨂a (2-82) 

Then, applying the yield stress condition, the unknown values of p and 
reaction stress tensor Tamight be determined[1, 65]. The reaction pressure p and 
Ta are arbitrary values in the sense that they are determined based on the 
equilibrium or momentum equations and the boundary conditions and not the 
given constitutive equation. It can be easily seen that a material with 
incompressible constraint requires that trS = 0 and with inextensible constraints 
in the privileged direction a needs that a. S. a = 0 ,and consequently, the 
remainder of the extra-stress to be determined requires the constitutive equation. 
The entire later arguments about the kinematic constraint concept and its effect on 
the mechanical response of the material prove that by increasing the number of 
kinematic constraints, the constitutive equation itself becomes less significant. 
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Probably the rigid body motion could help to have a better understanding of the 
latter expression which the constitutive equation has no role in the determination 
of the stresses since the total stress is an indeterminate reaction stress[83]. Thus, 
such presumptions which cause the kinematic constraints and decrease the level of 
involvement of the relevant constitutive equation in governing the mechanical 
response of the material have to be avoided as much as possible. It might be even 
useful to examine the effect of the mentioned constraints on the free energy 
function.  

3. If the material is incompressible, then trε = 0 and free energy can be 
explained such as: 

Ψ̂(ε, A) = μTtr(ε)
2 + 2(μL − μT)(aε

2a) +
1

2
β(aεa)2 (2-83) 

And as it can be seen here, incompressible transversely isotropic material 
elastic behavior can be described using just 3 independent constants μT, μLand β. 

4. If the material is inextensible in the preferred direction a, then the 
assumption leads aεa = 0, and consequently free energy function reads: 

Ψ̂(ε, A) =
1

2
λ(trε)2 + μTtr(ε)

2 + 2(μL − μT)(aε
2a) (2-84) 

Then, having three independent constants λ, μTand μL, one can 
completely characterize the elastic response of inextensible transversely 
isotropic materials. 

5. Having both constraints of incompressibility and inextensibility in the 
fiber direction, the elastic response of the transversely isotropic material 
reaches: 

Ψ̂(ε, A) = μTtr(ε)
2 + 2(μL − μT)(aε

2a) (2-85) 

The above formulation can be interpreted such that the transversely isotropic 
material with both incompressibility in fiber direction and incompressibility 
constraints can be specified only by material’s shear moduli  μTand μL 
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Chapter 3 

3 Transversely isotropic yield 
function and plastic flow potential 

The key point of introducing a yield function in the theory of plasticity for the 
anisotropic material is to transform the anisotropic function into the isotropy 
space. As the basic rules of the invariant theory are introduced in section 2.2, by 
following the rules in the framework of invariant theory, this main object might be 
achieved. Assume that there is a scalar-valued function, for instance the strain 
energy function or yield function, which are anisotropic with respect to the strain 
or the stress arguments, respectively. The invariant theory states that adding an 
internal variable, which the material inherited its anisotropy and symmetry groups 
from it, an isotopic function might be constructed. In other words, the embedded 
internal variable undertakes the local coordinate systems role in the isotopic 
function. The details of plastic yield criterion and the potential function based on 
the invariant theory can be found in [33, 65, 66]. 

3.1 Foundation of plasticity theory  

Assume that a non-fragile material is subjected to a certain stress state and the 
combination of the stress components grow, gradually. For any type of ductile 
material, a material which the yield and rupture points are different,  there is a 
certain value when the combination of the stress tensor elements surpasses, the 
material behavior begins to be different than this specific critical point. The term 
“different” may be interpreted from different point of views so that one can say 

that the material stiffness matrix changes or the entire strain energy is not 
recoverable anymore or the material’s behavior is not independent of the strain 
and it means that the material’s response depends on the history of strain and so 
on. All the definition may be true, and a relationship may define this critical point 
called “yield criterion”. The Von Mises yield criterion is one of the initial yield 
function and probably the most famous one which is presented for the isotropic 
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materials. The Von Mises and in general any yield criterion for isotropic materials 
have some the following restrictions[90]: 

o Yielding is practically unaffected by the hydrostatic stress  
o Yield criterion is a function of the invariants of the deviatoric stress tensor 
o The so-called Bauschinger is neglected 

Considering the second restriction, it is quite reasonable to present the 
deviatoric stress tensor invariants: 

σ′3 − J2σ
′ − J3 = 0 (3-1) 

Which its first invariant is J1 = σii
′ = 0. since we are not looking for the 

formulation of isotopic material yield criterion, then in this part the formulas are 
selected according to their relevance to the topic. Thus, the  invariant J3 is 
skipped, but the second invariant can be written as: 

J2 =
1

6
[(σ11 − σ22)

2 + (σ22 − σ33)
2 + (σ33 − σ11)

2] + σ12
2

+ σ13
2 + σ23

2  
(3-2) 

Von Mises suggested that yielding occurs when J2 reaches a certain value in 
the following form: 

f(σ) = J2 − k2 (3-3) 

so that the yield locus is a circle of radius √2k . More detail about Von Mises 
yield criterion and other criteria for isotropic material can be found in[90]. As it 
can be easily recognized by equation (3-3) that any change over the indices does 
not affect the yield function.  

For isotropic materials the isotopic yield function can be established just 
based on the stress components and there is no need for a complementary agent 
such as the structural tensor.  Unlike the isotropic materials, for anisotropic 
materials the similar isotropic function may not be constructed by a single 
argument (stress tensor) and the internal variables which identifies the symmetry 
of the material must be added to the stress tensor to build up the respective 
isotopic function. This argument is established, theoretically, in the section 2.5.2 
and is discussed with the relevant invariants for transversely isotropic materials in 
detail.  
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3.2 Invariants of transversely isotropic symmetry group  

 As it is mentioned earlier the construction of a scalar-valued isotopic function 
for an anisotropic material needs the material’s intrinsic internal variables; here, it 
may be the material’s symmetry, to be added to the basic arguments which are 
needed to be considered for isotropic materials. According to the Von Mises yield 
criterion which is an isotopic yield function in equation (3-3) the yield function 
for isotopic materials might be introduced in its general form as: 

f = f(σ) ≤ 0 (3-4) 

To introduce a transversely isotopic yield function which is a scalar-valued 
isotopic function, the transversely isotropic symmetry group argument must be 
added to the set of arguments. The transversely isotopic symmetry might be 
represented by the structural tensor A = a ⊗ a is shown in equation (2-35) and 
means a dyadic product of the preferred direction by itself, and the general 
isotopic yield function might be introduced as: 

f = f(σ, A) ≤ 0 (3-5) 

where the stress tensor itself, due to applying the isotopic hardening rule, 
depends on the scalar-valued argument of equivalent plastic strain ε̅p. According 
to the equation (2-22) which represents the basic theorem of the representation 
theory, the next step is to find the integrity bases for the arguments σ and A. The 
integrity bases are available for two arguments including an arbitrary second-
order tensor D and the structural tensor A in Table 2-1 so that the associated 
integrity bases might reads[1, 65]: 

tr[σ], tr[σ2], tr[σ3], tr[Aσ] and tr[Aσ2] (3-6) 

According to [1], having defined the integrity bases, the relevant yield 
function might be constructed without violating the basic principles of the 
representation theory is established in [33, 65, 66, 79]. The deviatoric stress might 
be substituted with the stress tensor itself in the integrity bases introduced in(3-6) 
and may build up a new set of integrity bases without undermining the basis of 
representation theory [1]: 

tr[σ′2], tr[σ′3], tr[Aσ′] and tr[Aσ′2] (3-7) 

  The term tr[σ′] is dropped just because of the deviatoric stress tensor 
definition[1]: 
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σ′ =  σ −
1

3
tr(σ)1 (3-8) 

Which mean that tr[σ′] = 0. Each linear independent combination of the 
given invariants in the equations (3-6) and (3-7) represent equivalent invariant 
bases [1]. This result might be achieved directly from the equation (2-22) which 
says that any linear and independent combination of the integrity bases might be a 
new scalar-valued function which here can be interpreted as a new invariant. 
However, adding tr[σ] to the equations (3-7) might represent an equivalent 
invariant set to the basis(3-6) [1]. 

Some of the invariants which are built using this method contain interesting 
properties such as  

o Decoupling of the stress states; and 
o Consideration of a specific physical meaning 

Decoupling the stress states causes to connect a certain loading condition, 
which generally appears in the mechanical tests such as tensile, shear and 
compression, to its associated mathematical expression which appears in the 
constitutive equations. Since according to the first line of equation (2-22), there 
are undetermined parameters in the scalar-valued isotropic function, then having 
decoupled stress states might ease their identification procedure. In other words, 
instead of dealing with a system of equations it might be possible to address 
separated equations.  

Since the primary objective of the current research is to formulate the non-
linear behavior of short fiber reinforced composite thermoplastics, in terms of 
plastic deformation as well as elastic and elasto-plastic damage, then the primary 
assumptions must be carefully chosen. As it is shown earlier in the section 2.5.3, 
the kinematic constraints as the primary assumptions, significantly affect the 
functionality of the constitutive equations. Thus, since it is known that the short 
fiber reinforced thermoplastics drastically extends even in the direction of that the 
major alignment of the fibers can be observed and show non-linear response under 
tension and compression, it would be acceptable if the “inextensibility” 
assumption disregarded from the very beginning[1]. Through this effort to 
establish the constitutive equation the framework is considered to be the invariant 
theory. However, disregarding the inextensibility presumption raises some 
difficulty so that the division of the total stress into two distinct “reaction 

response” and “extra stress”, according to the equation (2-80), would be pointless 
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due to the fact that to determine the scalar-valued part of both extra stress (p) and 
reaction stress (Ta) it must be two linearly independent equations. These two 
equations as mentioned in [1, 65] raise from the following stress-oriented 
assumptions: 

o Yielding is independent of the hydrostatic pressure  
o Yielding is independent of the projection of the stress tensor onto the 

preferred direction 𝐚 (inextensibility conditions) 

 And a strain oriented presumption: 

Yielding occurs without volumetric plastic strain (incompressibility) 

Employing the deviatoric stress instead of the stress itself automatically 
satisfies the first stress-oriented condition and the strain-oriented assumption can 
be achieved using a proper flow rule. The second stress-oriented presumption is 
valid for the unidirectional composite materials, but short fiber reinforced 
composites.  

To introduce a proper invariant set to construct an appropriate yield criterion 
in the framework of the invariant theory which, especially, meets the decoupling 
condition, it might be useful, to begin with the simple loading conditions and see 
each of the primary invariants of equations (3-6) and (3-7)’s response. The motive 
to start with the simple experiments pattern is that their unknown parameter 
identification procedure, finally, must be accomplished under the simple loading 
conditions. To avoid repeating the different loading condition in the text we prefer 
to assign a number to each as are illustrated in Table 3-1. 

Table 3-1 loading conditions 

No. Loading conditions Visual expression Associated stress 
tenor 

1 Tension the 
preferred direction 

 

σ = [
Y1T 0 0
0 0 0
0 0 0

] 
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2 Compression the 
preferred direction 

 

σ = [
Y1C 0 0
0 0 0
0 0 0

] 

3 
Tension 

perpendicular to the 
preferred direction 

 

σ = [
0 0 0
0 Y2T 0
0 0 0

] 

4 
Compression 

perpendicular to the 
preferred direction 

 

σ = [
0 0 0
0 Y2C 0
0 0 0

] 

5 In-plane shear 

 

σ = [
0 YIP 0
YIP 0 0
0 0 0

] 

6 Transverse shear 

 

σ = [
0 0 0
0 0 YTR

0 YTR 0
] 

And accordingly the value of each basic invariant of equations(3-6) and (3-7) 
under the various simple loading of Table 3-1 is determined and can be found in 
Table 3-2. From parameter identification point of view the Table 3-2 reveals 
valuable data, for an instance in this matter (parameter identification) there is no 
difference between tr[σ2] and tr[σ′2] where both invariants have values for all 
loading conditions, and we intend to call those: “passive invariants” which means 
that they do not manifest a specific physical condition. So in this matter, we 
recognize three “neutral invariant” including tr[σ2], tr[σ′2] and tr[Aσ′2] and in 
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the matter of decoupling there, is no difference between them and each of them 
might be replaced by another. On the other hand, there are some basic invariants 
which do not show any specific physical or loading conditions which we call 
“semi-active”, for example, tr[Aσ2] which is the projection of the tensor σ2 =

σimσmj onto the preferred direction 𝑎 = [1,0,0]. Since the latter invariant is not 
involved in transverse direction loadings and also transverse shear while it 
manages the loading in the longitudinal direction as well as in-plane shear, then its 
role in the introduction of the combined invariants is quite unique. In fact, the 
manifestation of the in-plane shear without the transverse shear may cause shear 
decoupling by subtraction between the “semi-active” invariant  and one of the 
“passives”. This is the method which introduced by [65] and even used by [1], but 
using the total stress which is the combination  of the reaction stress and extra 
stress as in equation (2-80).  

Table 3-2 The values of basic invariants under different loading conditions 

Lo
ad

in
g 

co
nd

iti
on

 

tr[σ2] tr[σ′2] tr[Aσ] tr[Aσ′] tr[Aσ2] tr[σ] tr[Aσ′2] 

1 Y1T
2  (2 3⁄ )Y1T

2  Y1T (2 3⁄ )Y1T Y1T
2  Y1T (4 9⁄ )Y1T

2  

2 Y1C
2  (2 3⁄ )Y1C

2  −Y1C -
(2 3⁄ )Y1C Y1C

2  −Y1C (4 9⁄ )Y1C
2  

3 Y2T
2  (2 3⁄ )Y2T

2  0 -
(1 3⁄ )Y2T 0 Y2T (1 9⁄ )Y2T

2  

4 Y2C
2  (2 3⁄ )Y2C

2  0 (1 3⁄ )Y2C 0 −Y2C (1 9⁄ )Y2C
2  

5 2YIP
2  2YIP

2  0 0 YIP
2  0 YIP

2  

6 2YTR
2  2YTR

2  0 0 0 0 YTR
2  

Here, to introduce the combined decoupling invariants, we start with the 
following invariants: 
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I1 =
1

2
tr[σ2] − tr[Aσ2] (3-9) 

Which is the combination of the passive and semi-active basic invariants and 
results in a complete decoupling of the in-plane and transverse shear. The 
invariant I1 is activated by transverse shear, but under transverse shear becomes 

zero. According to Table 3-2, within the basic invariants other than passive 

invariants and tr[Aσ2] the shear components are not involved in the basic 
invariants under simple loading conditions. Thus, to have the in-plane shear be 
activated the only possible option is tr[Aσ2] itself, otherwise any subtraction with 
any of the passive basic invariant causes loss of in-plane shear involvement. 
Therefore, the second invariant may be introduced as: 

I2 = tr[Aσ2] (3-10) 

According to Each invariant responses to different loadings are given in Table 
3-3. 

Table 3-3 the invariant I2 is the only activated one, thus by introducing two 
first invariants the in-plane and transverse shear are decoupled. Therefore, in the 
parameter identification process, they are two separated equations instead of a 
system of equations. 

Having decoupled two different shear states, now it is essential to choose and 
combine the basic invariants, according to the Table 3-2, so that other loading 
situations are decoupled as much as possible. Some of the basic invariants might 
be called “active” in the sense that they carry physical meaning in some certain 
loading conditions. For example, tr[Aσ] ,as it represents the projection of the total 
stress tensor onto the preferred direction a, is active just under tension and 
compression in the longitudinal direction. Therefore it seems to be a perfect 
choice for the next invariant: 

I3 = tr[Aσ] (3-11) 

Now we probably could search for the last invariant to describe the tensile 
and compression in the transverse direction. Considering the Table 3-2 the 
following combination may provide the requested invariant with the mentioned 
features: 

I4 = tr[σ] − tr[Aσ] (3-12) 

Each invariant responses to different loadings are given in Table 3-3. 
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Table 3-3 the combined invariants based on the basic invariants 

Loading condition I1 I2 I3 I4 

1 −(1 2⁄ )Y1T
2  Y1T

2  Y1T 0 

2 −(1 ⁄ 2)Y1C
2  Y1C

2  −Y1C 0 

3 (1 2⁄ )Y2T
2  0 0 Y2T 

4 (1 2⁄ )Y2C
2  0 0 −Y2C 

5 0 YIP
2  0 0 

6 YTR
2  0 0 0 

It is more convenient to gather all the invariants from equation (3-9) to (3-12) 
in one set: 

I1 =
1

2
tr[σ2] − tr[Aσ2] 

(3-13) I2 = tr[Aσ2] 
I3 = tr[Aσ] 
I4 = tr[σ] − tr[Aσ] 

The required set of invariants are provided to construct the yield criterion and 
also the potential function. As pointed out and applied by [1] just the linear and 
quadratic terms are picked from the basic invariants of the equations (3-6) and 
(3-7) and the cubic invariants are discarded. The reason as , again, notified in the 
same reference is to avoid the complication of integration algorithm due to the 
fact that the derivative of the cubic term with respect to the stress tensor would 
not be constant so that the integration algorithm introduced by [1] cannot be 
employed anymore.  The next section is devoted to the formulation of the yield 
and potential function using invariant theory by considering the introduced set of 
invariants in (3-13). 
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 Formulation of yield surface for short fiber reinforced 3.2.1
thermoplastics 

Having introduced the required set of invariants in the equation (3-13) which 
are decoupled and also considering the equations (2-22) and (3-5) the following 
yield criterion can be represented: 

f = f̂(σ, ε̅p, A) = α1I1 + α2I2 + α3I3 + α32I3
2 + α4I4 + α42I4

2 − 1 (3-14) 

Where the coefficients αnmare not constants and may carry the hardening of 
the material under plastic flow. The coefficients are functions of the equivalent 
plastic strain ε̅p: 

αnm = α̂nm( ε̅p) (3-15) 

The definition of the equivalent plastic strain is given in equation (4-5). The 
hardening rule can be isotropic, kinematic, combined hardening and isotopic or 
even distortional. in the next chapter while we introduce the non-associated plastic 
theory the different kind of strain hardenings are discussed. For now, since we 
intend to choose the simplest version of the strain hardening rule, e.g., isotropic 
hardening, then let’s have a geometrical definition of the isotropic hardening (see 
Figure 3-1) in the stress state which the yield envelope itself is defined in. for a 
material with isotropic hardening, the yield locus is expanded while the material is 
under plastic deformation[90]. For the sake of clarification, it should be noted that 
the kinematic hardening in the short fiber reinforced thermoplastics is studied and 
observed, but the data are available for some specific materials, and there are not a 
complete set of data to be used in the constitutive equation [91-93]. Thus, the 
isotopic rule is chosen and applied to the introduced non-linear constitutive 
equation.  
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Figure 3-1 Schematic isotropic hardening including primary(blue) and 
subsequent yield surfaces [94] 

Each of the invariants in the yield surface as explained in the previous section 
governs one of the major yielding modes.  Considering the equation (3-13), and 
since we do not employ the stress tensor division into two parts of  reaction and 
extra stresses (see equation (2-80)), then one specific invariant does not 

characterize a specific loading condition alone, in general, except for transverse 

and in-plane shear loadings which characterized by I1 and I2, respectively. 

According to Table 3-3, the least involvement of the combined invariants is 

related to the loading conditions 5 and 6 (transverse and in-plane shears) while for 

three of them including I1, I2 and I3 participate in loading conditions 1 and 2,i.e., 

tensile and compression in the longitudinal direction, respectively. For the loading 

conditions 3 and 4,i.e., tension and compression in transverse direction, 

respectively, only two of the invariants including I1 and  I4 are active. Evidently, 

the maximum participation is related to the first invariant (I1) which involves in 5 

out of six loading conditions and the least is related to I3 and  I4which are 

categorized as “active invariants”. In the results and discussions sections, they 

will be discussed widely with numbers and in details for the short fiber reinforced 

polyamide PA6GF60.   

 Yield function’s parameter determination  3.2.2

In this section, we determine the hardening parameters of the introduced yield 
criterion in equation (3-14) according to the simple loading conditions illustrated 
in Table 3-1. According to Table 3-3, and considering the involvement degree of 
the invariant in the yield function under each loading condition, we start with 
transverse shear and substituting the associated invariants values into the yield 
function (3-14) reads: 

α1YTR
2 − 1 = 0 (3-16) 

And directly the parameter α1can be extracted: 

α1 = 1/YTR
2  (3-17) 

Accordingly, for the in-plane stress, the yield stress is: 

α2YIP
2 − 1 = 0 (3-18) 
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Which leads: 

α2 = 1/YIP
2  (3-19) 

Substitution of the invariants of the longitudinal tension and compression 
from Each invariant responses to different loadings are given in Table 3-3. 

Table 3-3 into the yield function (3-14) causes the following linear system of 
equation: 

{
−(1 2⁄ )Y1T

2 α1 + Y1T
2 α2 + Y1Tα3 + Y1T

2 α32 = 1

−(1 2⁄ )Y1C
2 α1 + Y1C

2 α2 − Y1Cα3 + Y1C
2 α32 = 1

 (3-20) 

Simultaneously solving the two equations results: 

α32 =

1
Y1C

+
1

Y1T
+ (

1
2  α1 − α2) (Y1T + Y1C)

Y1T + Y1C
 

(3-21) 

α3 =
1

Y1T
+ Y1T (

1

2
 α1 − α2 − α32) 

  Following the same procedure for the transverse direction and by 
substituting the associated invariants from the Each invariant responses to 
different loadings are given in Table 3-3. 

Table 3-3 into the yield criterion results in: 

{
−(1 2⁄ )Y2T

2 α1 + Y2Tα4 + Y2T
2 α42 = 1

−(1 2⁄ )Y2C
2 α1 − Y2Cα4 + Y2C

2 α42 = 1
 (3-22) 

And, consequently, solving the system of the equation gives: 

α42 =

1
Y2C

+
1

Y2T
−

1
2  α1(Y2T + Y2C)

Y2T + Y2C
 

(3-23) 

α4 =
1

Y2T 
− Y2T (

1

2
 α1 + α42) 

By now the entire hardening parameters αnm of the yield criterion are known. 
For the sake of convenience, we gather all the determined parameters in Table 
3-4. 
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Table 3-4 The introduced yield criterion’s parameters 

Stress state Parameter 

Transverse shear No.6 α1 = 1/YTR
2  

In-plane shear No.5 α2 = 1/YIP
2  

Longitudinal tension and 
compression No.s 1,2 

α32 =

1
Y1C

+
1

Y1T
+ (

1
2  α1 − α2) (Y1T + Y1C)

Y1T + Y1C
 

α3 =
1

Y1T
+ Y1T (

1

2
 α1 − α2 − α32) 

Transverse tension and 
compression No.s 1,2 

 

α42 =

1
Y2C

+
1

Y2T
−

1
2  α1(Y2T + Y2C)

Y2T + Y2C
 

α4 =
1

Y2T 
− Y2T (

1

2
 α1 + α42) 

The identified parameters of the introduced yield functions can evolve 
regarding their relationship with the different modes yield strengths. It means that 
each of the yield strengths including Y1T, Y1C, Y2T, Y2C, YTR, YIP evolves 

according to its special Y(ε̅p) versus ε̅pcurves which obtain from the associated 
experiments (see Figure 3-2 ). These data are available from the relevant test such 
as uniaxial tensile test, but if not, for example, due to technical difficulties, they 
have to be prescribed using hardening rule which the part of the process, in this 
case, is based on admissible guesses which have to be accomplished carefully and 
by considering all consequences. However, it must be taken into account that this 
hardening curves must be prepared as an input for the finite element analysis 
either as a tabulated data which the provided code must be able to look up in the 
given data and find the proper strength for a certain equivalent strain or  such an 
isotopic hardening formula where the only variable is the equivalent strain, and 
the relevant function is the associated yield strength. 
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Figure 3-2 Schematic curve of yield strength versus equivalent strain  

Having obtained the current yield strengths, the yield function parameters can 
be updated via given formula in Table 3-4. 

 Plastic flow potential function for short fiber reinforced 3.2.3
thermoplastics 

According to the fact that beyond the yield point the linear relation between 
stress and strain is not valid anymore and the component of the stiffness matrix 
shrink so that for a given strain increment the stress tensor components increases 
less comparing to the same inelastic region. However, in the plastic region, the 
relation between stress and strain is not straightforward such as the elastic 
response and might be calculated by adding some phenomenon such as plastic 
flow rule which requires a scalar-valued function to be defined. This phenomenon 
is described and formulated in the next chapter in elasto-plasticity constitutive 
equations. But what important is in this section to find the plastic flow rule’s 

corresponding potential function. To deal with the plastic flow potential function 
in the plasticity theory, there are two different approaches: 

o Associated flow rule 
o Non-associated flow rule 

In associated flow rule the flow potential function and the yield function are 
the same and as the plastic strain tensor direction is defined by the gradient of the 
flow potential function (see equation (4-20)), then the direction of the yield 
function expansion in the stress state is normal to the yield envelope (see Figure 
3-3).  
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Figure 3-3 schematic description of associated and non-associated flow rules 

Associated flow rule and associated plasticity, in general, fails to describe the 
non-metallic materials plastic behaviors [95]. The reason for the failure is due to 
that an accurate prediction of the plastic Poisson coefficient and also the 
volumetric plastic strains cannot be obtained using the associated flow rule[1]. 
The solution is to define an independent flow potential function which allows 
controlling the plastic strain independent from the yield criterion. However, two 
main concepts dominate the representation of the flow potential functions: 

o The experimental observation  
o Expected application of the model 
o The algorithm applied to the numerical solution  

Taking into account these points we introduce the following potential flow 
function, and later the issues will be discussed: 

g = ĝ(σ, A) = β1I1 + β2I2 + β32I3
2 + β42I4

2 − 1 (3-24) 

According to the invariant set in equation (3-13), the introduced potential 
function is a quadratic function with respect to the stress tensor due to that the 
invariants I1and I2 are linear with respect to the stress tensor while the other two 

I3and I4are linear. The reason why only the quadratic terms are incorporated into 

the flow potential function returns to the selection of the numerical algorithm 

which is discussed in section 4.2. If the exact representation of the volumetric 

plastic strain is required, then the introduced flow potential function’s coefficients 

must be able to evolve unless they might be constants and hold the initial values 
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of the yield criterion’s coefficient (αmn at t = 0 and ε̅p = 0). Also, the particular 

application and the degree of freedom strongly affect the dilatation so that for 

example in the uniaxial tensile due to that the material can freely deform in the 

lateral directions. Thus, the plastic potential function’s parameters are not that 

much sensitive and consequently the plastic Poisson ratios. Besides, the short 

fiber reinforced thermoplastic PA6GF60 does not exhibit dilatation which the 

assumption of constant parameters for the flow potential function might be 

admissible [1].  
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Chapter 5 

4 Elasto-plasticity model 

In the current section, we intend to describe the non-associated elastio-
plasticity constitutive equation based on the introduced yield function and flow 
potential function. The corresponding formulas, based on the introduced yield and 
flow potential functions, are derived specifically for the introduced model in 
section 4.1 and generalized version in section 4.2.  the generalized configuration 
of the elsto-plastic constitutive equation is more conveniently can be implemented 
into the numerical solution. The model is incorporated into either implicit or 
explicit finite element method which is described in the last section of this 
chapter. 

4.1 Elasto-plasticity continuum  

The elastic constitutive equation for the transversely isotropic material is 
established in the section 2.5.1. Assuming the infinitesimal and hyperplastic 
deformation the elastic constitutive equation in the rate form can be written as 
follow: 

σ̇ = : ε̇e (4-1) 

 

Figure 4-1 schematic elastic, plastic and damage response of the material [1] 
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Using the rate form of the constitutive equation can provide a possibility to 

incorporate the plastic response into the material response where reads: 

ε̇ = ε̇e + ε̇p (4-2) 

Then, substituting the elastic portion of the strain tensor rate from the 
equation (4-2) into the equation (4-1) reads: 

σ̇ = : ε̇e = : (ε̇ − ε̇p) (4-3) 

According to the above general elasto-plastic constitutive equation, the only 
unknown argument is the plastic strain portion which has to be defined. 
According to non-associated elasto-plasticity flow rule which has been chosen for 
the short fiber reinforced material (see section 3.2.3), it is necessary to use the 
introduced flow potential function’s (equation (3-24) ) gradient to define the 
direction of plastic flow: 

ng = ∂σg(σ, A) (4-4) 

where ng is the vector which is normal to the potential flow function ,which 
does not have any physical meaning, in the stress space. Accordingly, the plastic 
strain rate can be defined multiplying the plastic flow direction (ng) by a scalar 
value (γ) as follows: 

ε̇p = γng (4-5) 

where γ called the “consistency parameter”. The consistency parameter is the 
key ingredient of the plasticity theory which beyond the elastic region guarantees 
the presence of the stress state on the yield function [95]. This parameter can be 
achieved by applying the consistency condition (ḟ = 0) on the introduced yield 
function (equation (3-14)): 

ḟ =
∂f

∂σ
: σ̇ +

∂f

∂ε̅p
ε̇̅p = 0 (4-6) 

Since the structural tensor does not depend on the history of the strain, or 
loading, then it does not appear in the consistency condition. According to the 
equation (4-6), to complete the elasto-plastic theory, the gradient of the yield 
function as well as the derivative of the yield function with respect to the 
equivalent plastic strain are required. Therefore, first of all, a definition of the 
equivalent plastic strain is needed which normally performed using the plastic 
strain itself definition such as follows: 
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ε̇̅p = √
2

3
‖ε̇p‖=√2

3
γ‖ng‖ (4-7) 

where the consistency parameter holds a positive value. Having defined the 
equivalent plastic strain, the different derivatives of the consistency condition ( 
equation (4-6) ) can be determined. The first term in the right hand of the 
consistency equation is the gradient of the yield function and can be derived by 
taking the derivative of the equation (3-14) with respect to the stress tensor: 

nf =
∂f

∂σ
= ∂Ii

f ∂σIi (4-8) 

Where 

∂I1
∂σ

= σ − Aσ − σA 

(4-9) 

∂I2
∂σ

= Aσ + σA 

∂I3
∂σ

= A 

∂I4
∂σ

= 1 − A 

Inserting the derivatives of the invariants with respect to the stress tensor in 
equation (4-8) reads: 

nf =
∂f

∂σ
 

= α1(σ − Aσ − σA) + α2(Aσ + σA) + α3A + 2α32tr[Aσ]A
+ α4(1 − A) + 2α42(tr[σ] − tr[Aσ])(1 − A) 

(4-10) 

Having determined the gradient of the yield function based on the primary 
arguments stress and structural tensors as well as the hardening parameters, the 
next step would be the determination of the derivative of the yield function with 
respect to the equivalent plastic strain. Assuming that the plastic strain history is 
carried by the hardening parameters (equation (3-14)), the following equation 
shall be valid: 

∂f

∂ε̅p
=

∂f

∂αi

∂αi

∂ε̅p
= I1

∂α1

ε̅p
+ I2

∂α2

ε̅p
+ I3

∂α3

ε̅p
+ I3

2
∂α32

ε̅p
+ I4

∂α4

ε̅p

+ I4
2
∂α42

ε̅p
 

(4-11) 

where considering the Table 3-4, the hardening parameters can be achieved 
by the following equation: 



Elasto-plasticity continuum 67 
 

∂α1

∂ε̅p
=

∂α1

∂YTR

∂YTR

∂ε̅p
= −

2

YTR
3

∂YTR

∂ε̅p
 

(4-12) 
∂α2

∂ε̅p
=

∂α2

∂YIP

∂YIP

∂ε̅p
= −

2

YIP
3

∂YIP

∂ε̅p
 

Deriving the rest of the hardening coefficients derivative with respect to the 
equivalent plastic strain needs some assumptions for readability concern then let’s 

assume: 

NUα32 =
1

Y1C
+

1

Y1T
+ (

1

2
 α1 − α2) (Y1T + Y1C) (4-13) 

DNα32 = Y1T + Y1C 
NU is the abbreviation of “numerator” and DN points to “denominator” of the 

associated hardening parameter and then the derivative of the α32 with respect to 

the equivalent plastic strain reads: 

∂α32

∂ε̅p
= [(−

1

Y1T
2 +

α1

2
− α2)DNα32 − NUα32]

1

DNα32
2

∂Y1T

∂ε̅p

+ [(−
1

Y1C
2 +

α1

2
− α2)DNα32

− NUα32]
1

DNα32
2

∂Y1C

∂ε̅p
+

1

2

∂α1

∂ε̅p
−

∂α2

∂ε̅p
 

(4-14) 

Having determined the ∂α32

∂ε̅p
 the derivative of the α3 with respect to the 

equivalent strain can be determined: 

∂α3

∂ε̅p
= (−

1

Y1T
2 +

α1

2
− α2 − α32)

∂Y1T

∂ε̅p

+ Y1T (
1

2

∂α1

∂ε̅p
−

∂α2

∂ε̅p
−

∂α32

∂ε̅p
) 

(4-15) 

To calculate the derivative of the last hardening parameter with respect to the 
equivalent plastic strain and again for the readability reason we define its 
associated denominator and numerator as below: 

NUα42 =
1

Y2C
+

1

Y2T
−

1

2
 α1(Y2T + Y2C) (4-16) 

DNα42 = Y2T + Y2C 
Consequently, it can be written: 
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∂α42

∂ε̅p
= [−(

1

Y2T
2 +

α1

2
)DNα42 − NUα42]

1

DNα42
2

∂Y2T

∂ε̅p

− [(
1

Y2C
2 +

α1

2
)DNα32 + NUα32]

1

DNα42
2

∂Y2C

∂ε̅p

−
1

2

∂α1

∂ε̅p
 

(4-17) 

And  

∂α4

∂ε̅p
= −(

1

Y2T
2 +

α1

2
+ α42)

∂Y2T

∂ε̅p
− Y2T (

1

2

∂α1

∂ε̅p
+

∂α42

∂ε̅p
) (4-18) 

Having determined all the parameters of the consistency condition based on 
the primary arguments, now the consistency parameter can be achieved by 
inserting the equivalent plastic strain definition from the equation (4-7) into the 
consistency condition relation (equation (4-6)): 

ḟ = nf: : (ε̇ − γng) +
∂f

∂ε̅p
√
1

2
‖ng‖γ = 0 (4-19) 

The final stage to have the consistency parameter fully defined is to determine 
the gradient of the flow potential function which appears in the consistency 
parameter’s denominator. Considering the flow potential function definition in the 

equation and its gradient definition in the equation (4-4) it can be written: 

ng =
∂g

∂σ
= ∂Ii

g ∂σIi (4-20) 

Inserting the derivatives of the invariants with respect to the stress tensor from 
the equation (4-9) into the above equation gives the gradient of the flow potential 
function’s gradient in the stress state: 

ng =
∂g

∂σ
 = α1(σ − Aσ − σA) + α2(Aσ + σA) + 2α32tr[Aσ]A

+ 2α42(tr[σ] − tr[Aσ])(1 − A) 
(4-21) 

Therefore the consistency parameter can be derived: 

γ =
nf: : ε̇

nf: : ng −
∂f
∂ε̅p

√1
2‖ng‖

 (4-22) 
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According to the one-dimensional schematic stress-strain curve which is 

depicted in the Figure 4-1it can be deduced that the current version of the 
material’s stiffness shall be less than the virgin one, i.e., the material’s current 

constantone of s are kind of degraded or softened comparing to the original one. It 
is not intended to undermine the hardening concept while we are talking about the 
current stress status on the yield surface while we are not talking about the 
unloading condition. The current material tangent must be defined, since it will be 
needed for the implicit finite element method which is one of our main concern in 
this research. However, to have the elasto-plastic continuum tangent or the current 
tangent, the elasticity constitutive equation must be reshaped and rewritten so that 
the elastic constitutive equation be converted to elato-plastic one. This can be 
accomplished by incorporating the consistency parameter from the equation 
(4-22) into the plastic strain tensor definition which is given in the equation (4-5) 
such as follows: 

σ̇ = : (ε̇ −
nf: : ε̇

nf: : ng −
∂f
∂ε̅p

√1
2‖ng‖

ng) (4-23) 

   By reordering the equation as below 

σ̇ = ( −
: nf ⊗ ng:

nf: e: ng −
∂f
∂ε̅p

√1
2‖ng‖

): ε̇ (4-24) 

One can say the elasto-plastic continuum tangent might be: 

=
∂σ

∂ε
=ep −

: nf ⊗ ng:

nf: e: ng −
∂f
∂εp

1
2

ng

 
(4-25) 

A brief version of the elasto-plasticity constitutive equation is presented in the 
table: 

Table 4-1 Elasto-plasticity constitutive equation’s overview [1] 

Order Explanation Formula 

1 kinematic ε̇ = ε̇e + ε̇p 
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2 Elastic constitutive 
equation σ̇ = : ε̇e 

3 Yield function f = f̂(σ, ε̅p, A) ≤ 0 

4 Plastic potential 
function g = ĝ(σ) = 0 

5 Plastic strain tensor f = f̂(σ, ε̅p, A) 

6 Consistency condition ḟ = 0 

7 Consistency parameter γ =
nf: : ε̇

nf: : ng −
∂f
∂ε̅p

√1
2‖ng‖

 

8 Elastic-plastic 
continuum tangent 

=
∂σ

∂ε
=ep −

: nf ⊗ ng:

nf: e: ng −
∂f
∂εp

1
2 ng

 

 

4.2 Generalized elasto-plasticity model 

The generalized elasto-plasticity constitutive equation, especially, serves as 
the base for the construction of the numerical solution and makes the 
implementation more convenient. Since the isotropic yield function in equation 
(3-14) includes both first order and quadratic terms of the stress tensors, therefore 
it can be written as follows: 

f(σ, ε̅p) =
1

2
σ: : σ + L: σ − 1 (4-26) 

and L describe the fourth- and second-order tensors, respectively. It is quite 
clear that the fourth-order tensor  can be attained  by taking the second 
derivative of the “anisotropic yield function” in equation (4-26) with respect to the 
stress tensor: 

∂σf(σ, ε̅
p) = : σ + L (4-27) 
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∂σσf(σ, ε̅
p) =

∂2f(σ, ε̅p)

∂σ2
=  

  The fourth-order tensor  and the second order tensor L both depend on two 
arguments of equivalent plastic strain ε̅p and the structural tensor A so that  

= εp, A  (4-28) 
L = L(ε̅p, A)  

And these two tensor can be determined according to the introduced yield 
function of the equation (3-14) and taking its second derivative with respect to the 
stress tensor which gives: 

≔
∂2f

∂σ2
= α1( − A ∙ − ∙ A) + α2(A ∙ + ∙ A) + 2α32A ⊗ A

+ 2α42(1 − A)⨂(1 − A) 
(4-29) 

where = Iijkl =
∂σij

∂σkl
= δikδjl . Comparing the equations (4-10) and (4-29), 

simultaneously, to the equation (4-27), gives the second order tensor  : 

L = α3A + α4(1 − A) (4-30) 

It is evident that the linear part of the yield criterion only depends on the 
hardening parameters which means it depends upon the equivalent plastic strain 
ε̅p and the structural tensor. Having defined the general version of the yield 
criterin, now it is time to redefine the flow potential function in a general form. 
Regarding that, the introduced flow potential function is only composed of the 
quadratic stresses (see the equation (3-24)), its generalized version can be 
characterized in the following form: 

g(σ) =
1

2
σ: : σ − 1 (4-31) 

which means that the fourth-order tensor  might be determined by taking the 
second derivative of the flow potential function (equation (3-24)) 

∂σσg(σ) =  (4-32) 

Thus, having the first derivative of the flow potential function in equation 
(4-21) by taking its derivative with respect to the stress tensor the fourth-order 
tensor  can be formulated such as follows: 
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 = β1 − A ∙ − ∙ A + β2 A ∙ + ∙ A + 2β32A ⊗ A
+ 2β42 1 − A ⨂ 1 − A  (4-33) 

The only difference between two fourth-order tensors  and  is that the later 
one does not depend on the loading history and the equivalent plastic strain since 
the flow potential function parameters are not evolutionary. It must be kept in 
mind that the reason for the generalization is that the numerical treatment might 
be more convenient. According to the algorithm which is presented in [1] in the 
next section, the numerical approach for the introduced constitutive equation is 
described.  

4.3 Rate-dependent material behaviour 

In this section, we introduce a simple rate dependent model to deal with the rate 
sensitivity of the component under bending (see the rate dependent results in 
section 5.3). According to [96, 97] and [53, 98] strain rate affects material 
properties of glass-reinforced composite materials including module of elasticity, 
strengths and toughness energies. In this study following Daniel’s and later Wei et 
al. works [58, 99] , and for keeping the numerical implementation of the models 
simple, the effects of strain-rate have been applied on modules of elasticity and 
strengths of the material and rate dependent toughness energies are ignored. 
Following equations[6]: 

E11 = E11,qs [mf
E11log (

|ε̇11|

ε̇11,qs
) + 1]

2

 

(4-34) 
E22 = E22,qs [mf

E22log (
|ε̇22|

ε̇22,qs
) + 1]

2

 

G12 = G12,qs [mf
G12log (

|ε̇12|
ε̇12,qs

)+1]

2

 

 The abbreviation of ”qs” mentions to the amount of a specific value of a 

material constant under quasi-static condition. ε̇11,qs, ε̇22,qs and ε̇12,qs are reference 
values of strain rates in longitudinal normal, transverse normal and in-plane shear 
statuses. As Wei et al. [58] to assure the stability of the damage propagation 
model, it is assumed that all strain-rate dependence material properties have  a 
uniform  type of   governing equations. Therefore, for rate dependent strengths 
can be written as follows[6]:  
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XT = XT
qs

[mf
XTlog (

|ε̇11|

ε̇11,qs
) + 1]

2

 

(4-35) 

XC = XC
qs

[mf
XClog (

|ε̇11|

ε̇11,qs
) + 1]

2

 

YT = YT
qs

[mf
YTlog (

|ε̇22|

ε̇22,qs
) + 1]

2

 

YC = YC
qs

[mf
YClog (

|ε̇22|

ε̇22,qs
) + 1]

2

 

S12 = S12
qs

[mf
S12log (

|ε̇12|

ε̇12,qs
) + 1]

2

 

The constants  mf and all which shown by “qs” indices could vary even case 

by case, but here it is assumed that these constants become equals for all the 
cases. For an instance, here in this study for calculation of  XT, XC, YT and etc. the 
same value of mf are considered. To determine the constant of  mf for each 
different condition, one has to perform different sorts of basic material property 
characterization tests with some various loading speeds to compare that specific 
material constant to its quasi-static condition. Then by data fitting procedure with 
each set of experimental result, the related rate-dependency constant will be 
determined. In this study, the above mentioned rate-dependent material properties 
have been applied in the subroutines, but since the rate dependency experiments 
just have been performed for the whole component and have not conducted for 
constituents of the beam, then in order to determine the constant of mf the 
following equations have been suggested for this specific boundary conditions[6]: 

Eeq.
dy.Bend.

= Eeq.
QS.Bend. [meq.

Modulilog (
Vdynamic

Vqs
) + 1]

2

 (4-36) 

Eeq.
dy.Bend. and Eeq.

QS.Bend.indicate the equivalent stiffness of the beam subjected to 3-
point bending (Case1) under dynamic and quasi – static loadings, respectively. In 
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this study, the approximate slope of the force-displacement graphs of quasi-static 
and loading velocity of 127 mm/sec has been considered as Eeq.

QS.Bend. and 

Eeq.
dy.Bend., respectively. meq.

Moduli shows an effective coefficient of m for dealing 
with the total stiffness of the beam under this particular boundary and loading 
conditions, and Vdynamic and Vqs indicate puncher velocity for dynamic and quasi-
static cases, respectively. A similar formula is suggested to determine the rate-
dependent strength of the component as follows [6]: 

Xeq.
dy.

= Xeq.
QS.Bend. [meq.

Strength
log (

Vdynamic

Vqs
) + 1]

2

 (4-37) 

Xeq.
dy.Bend. and Xeq.

QS.Bend.indicate the equivalent strengths of the internal constituent 
material without considering material direction, for dynamic and quasi–static 
loadings, respectively. meq.

Strength demonstrates an effective coefficient of m to 
shift the results of material strength under quasi-static loading  to dynamic level. 
In this study, since the Eq. (12) which suggests a direct proportionality of quasi-
static and dynamic strengths of the material, then the maximum forces of force-
displacement graphs have been considered as representatives of the material 
strengths. 

4.4 Damage  

In this section, both elastic and elasto-plastic damages concepts are discussed, 
separately, but exploiting the same idea. First of all, the corresponding literature 
of the composite materials’ damage is reviewed, then the relevant formulation 
,which is used in the present text, are discussed in detail. The major portion of the 
literature review belongs to the work which is published in [6]. 

 Elastic damage 4.4.1

The component, i.e., the case study, showed a minimum level of non-linearity 
under 3-point bending test, which could be neglected. Therefore, we began with 
the elastic-response of the material, and the material degradation occurs right after 
the elastic response.  

4.4.1.1 Elastic damage based on Continuum Damage Mechanics (CDM) 

The elastic damage constitutive equations in the current study are built upon 
the Continuum Damage Mechanics (CDM) principals, so that employs the 



Damage 75 
 

damage variables to degrade the material stiffness matrix components as proposed 
by Matzenmiller et al. [38]. The damage initiation is detected based on Hashin 
and Rothem [41] failure criterion. It is well known that the Hashin and Rothem 
failure criterion has been developed for unidirectional reinforced laminates which 
are assumed, in general, as the transversely isotropic materials. Damage 
propagation is applied based Lapczyk-Hurtado’s model which damage 

propagation is governed by energy release rates, and strains are replaced by 
characteristic length Lc, and associated displacements to alleviate mesh sensitivity 
problem[50].  

 

 

Figure 4-2 Linear Damage evolution law 

The constitutive equation for the transversely isotopic material under certain 
assumptions, such as infinitesimal deformation and hyperelasticity, are presented 
for the 3D stress states in the equation (2-29) and the corresponding stiffness 
matrix in the equation (2-66). Since the modelling of the complex hybrid 
component as our case study in a 3D from is not numerically efficient, then we 
define the 2D stiffness matrix for the transversely isotropic materials. Thus,  
rewriting the transversely isotopic stiffness matrix for the planar stress state 
reaches: 

C =

[
 
 
 
 

E11

1 − ν12ν21

ν21E11

1 − ν12ν21
0

ν12E22

1 − ν12ν21

E22

1 − ν12ν21
0

0 0 G12]
 
 
 
 

 (4-38) 
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It should be noted that the restriction between longitudinal and transverse 
Poisson ration (ν21 =

E11

E22
ν12, also see the section 2.5.1) is still satisfied with the 

short fiber reinforced thermoplastics while they are independent of each other in 
the case of fabric thermoplastic based sheet. Inserting the diffirent modes damage 
variables into the original undamaged stiffness matrix (4-38) shall represent the 
degraded stiffness matrix in the following shape: 

CD

=
1

Ξ

[
 
 
 
 
 (1 − df)

E11

1 − ν12ν21

(1 − df)(1 − dm)
ν21E11

1 − ν12ν21
0

(1 − df)(1 − dm)
ν12E22

1 − ν12ν21

(1 − dm)
E22

1 − ν12ν21
0

0 0 (1 − ds)G12]
 
 
 
 
 

  

(4-39)  

where Ξ = 1 − (1 − df
t)(1 − df

c)(1 − dm
t )(1 − dm

c )ν12ν21, ds = 1 −

(1 − df
t)(1 − df

c)(1 − dm
t )(1 − dm

c ). df and dm indicate the material degradation 
in longitudinal and transverse direction, but we call them f and m while 
representing the fiber and matrix, respectively. The reason why we show 
longitudinal direction by f and the transverse direction by m lay in the tradition of 
the composite material when the most dominant composite types were 
unidirectional whose fiber direction is longitudinal, and the transverse direction is 
governed by the matrix [6].  

Damage initiation must be defined in one of the stress or strain state called 
failure criterion. Variety of failure criteria for composite materials have been 
proposed over the years. Some of them are more considered in real applications 
such as Maximum stress, Maximum strain, Hashin-Rotem, Chang-Chang, Puck 
and LaRC [41, 42, 44, 45]. But, as Hinton et al. mentioned in the conclusive 
evaluation of the results obtained with the World-Wide Failure Exercise (WWFE) 
[43], despite recent improvements of failure criteria for composite material, still 
the majority of researchers insist in using classic form such as Maximum stress or 
Maximum strain theory, Tsai-Wu and Hashin-Rotem criteria. In this paper, 
Hashin-Rotem criterion is used, by considering that the stress space is an effective 
one. This criterion has a separated type which presents a separated criterion for 
each mode of failure including matrix and fiber failure in tension and compression 
and it is illustrated at Table 4-2 for the short fiber reinforced thermoplastics [6]. 
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Table 4-2 Failure criterion for the internal part of the case study; σij are 
effective stress tensor components, XT XC, YT and YC are strengths of material. X 
and Y denote two perpendicular directions of the material. While T and C denote 
tension and compression, respectively. S12 and S21are longitudinal and transverse  

shear strengths [6]. 

Failure mode 2-D Hashin-Rotem (for matrix) 
Tensile Matrix in X direction 

(σ11 ≥ 0) FXT
H = (

σ11

XT
)
2

+ (
σ12

S12
)
2

= 1 

Compressive Matrix in X 
direction (σ11 < 0) FXC

H = (
σ11

2S21
)
2

+ [(
XC

2S21
)

2

−1]
σ11

|XC|
+ (

σ12

S12
)
2

= 1 

Tensile Matrix in Y direction 
(σ22 ≥ 0) FYT

H = (
σ22

YT
)
2

+ (
σ12

S12
)
2

= 1 

Compressive Matrix in Y 
direction (σ22 < 0) FYC

H = (
σ22

2S21
)
2

+ [(
YC

2S21
)

2

−1]
σ22

|YC|
+ (

σ12

S12
)
2

= 1 

The failure criterions for the fabric in different damage mechanisms are 
considered much more straightforward than those for short fiber reinforced 
thermoplastics. The corresponding damage initiation criterion is listed in Table 
4-3. 

Table 4-3 Failure criterion for the internal constituent of the hybrid component; σij 
are effective stress components, XT XC, YT and YC are strengths of material. X and Y 

denote warp and woof directions, respectively. While T and C denote tension and 
compression, respectively [6]. 

Failure mode Maximum stress theory 

Tensile in warp Direction   (σ11 ≥ 0) FXT
MS = (

σ11

XT
)
2

= 1 

Compressive  
in warp Direction(σ11 < 0) FXC

MS = (
σ11

XC
)
2

= 1 

Tensile in woof Direction (σ22 ≥ 0) FYT
MS = (

σ22

YT
)
2

= 1 

Compressive  
in woof Direction (σ22 < 0) FYC

MS = (
σ22

YC
)
2

= 1 
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4.4.1.2 Damage evolution law 

Once damage initiation criterion is satisfied in any of the damage modes, 
damage evolution law is activated, and any further loading will be caused 
degradation of stiffness matrix. The propagation of damaged governed by damage 
evolutions law which is based on damage variables varying between zero and one. 
Zero amount of damage variables indicates the virgin status of material, while the 
amount of one notes a fully damaged material point. There are two different 
approaches to represent a damage law to control damage evolution: ply-discount 
method and damage laws based on energy release rates. Ply-discount method is 
the simplest one and degrades material just is taken a value zero or one which 
zero one shows virgin material and value of one indicates again fully damaged the 
material. But, from a numerical point of view using the value of one for the 
thoroughly damaged material point is not reasonable because sometimes leads to a 
stiffness matrix with an entire zero row or columns. So, to implement a ply-
discount method to capture damage evolution instead of the value of one, one has 
to set a value such as 0.99 to avoid numerical instability. The second one is 
founded on energy release rate concept and leads a gradual degradation of 
material properties. This gradual release of energy could be governed by any 
equation, providing passes through points A and B and becomes strictly 
descending  according to  Figure 4-2. A strain-softening equation can have 
physical meaning or can be proposed considering a non-physical data fitting 
methods. Mainly this strain-softening equation is chosen linear as presented in 
[50, 100, 101] or could be exponential such as proposed in [102, 103]. In this 
study the linear damage law proposed in [50] which is governed by energy release 
rates, equivalent displacements and characteristic lengths of associated elements.  

Based on damage model proposed by Lapczyk-Hurtado which also used in this 
paper for a specific damage mode, a linear strain-softening leads [58]: 

GI,C =
1

2
σI,eq
0 δI,eq

f  (4-40) 
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Which σI,eq
0  is maximum achievable equivalent stress before damage initiation 

and δI,eq
f  is maximum equivalent displacement when the material point is failed, 

while index I indicate a specific damage mode. For an element which is subjected 
to damage and the damage can be total or partial, before damage the slope of 
equivalent stress-equivalent displacement is E/LC  (the segment line of OA in  

Figure 4-2), and after damage will be (E/LC)(1 − d) (the segment line of OB in  

Figure 4-2). Referring to the  

Figure 4-2, the area of the OAB triangle represents the amount of energy that has 
been released during damage process while the area of the OBC triangle 
represents the remaining deformation energy that can be released until the 
material is completely damaged[6]. 

Table 4-4 Equivalent values of displacements and stresses for different damage 
modes of fabric; the symbol 〈 〉indicates Macaulay operator which is defined as 

〈x〉 =
1

2
(x + |x|);  ∀x ∈ R 

Equivalent stresses and displacements for fabric outer shell 

Failure mode δeq σeq 

Tensile in warp Direction   (σ11 ≥ 0) Lc〈ε11〉 
Lc(〈σ11〉〈ε11〉)

δeq
Xt

 

Compressive  in warp Direction(σ11 < 0) Lc〈−ε11〉 
(Lc

〈−σ11〉〈−ε11〉)

δeq
Xc

 

Tensile in woof Direction  (σ22 ≥ 0) Lc〈ε22〉 
Lc(〈σ22〉〈ε22〉)

δeq
Yt

 

Compressive in woof Direction (σ22 < 0) Lc〈−ε22〉 
Lc(〈−σ22〉〈−ε22〉)

δeq
Yc

 

In this model, two main variables are equivalent displacement, and equivalent 
stresses calculated regards to the equations presented in Table 4-4. The 
characteristic length is related to the element geometry and formulation; it can be 
calculated by means of many different methods [37, 50]. The calculation of the 
characteristic length (Lc) is left to ABAQUS’s default which assumed to be equal 

to the length of a line across the element for a first-order element and half of that 
length for a second-order element. If one intends to apply a user-defined formula 
to calculate the characteristic length, it would be possible by coding in a 
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subroutine called VUCHARLENGTH. The damage for any of damage modes are 
calculated as follows: 

dI =
δI,eq
f (δeq − δI,eq

0 )

δeq(δI,eq
f − δI,eq

0 )
;    δI,eq

0 ≤ δeq ≤ δI,eq
f  (4-41) 

Which I indicate different modes of damage. while δI,eq
0  and δI,eq

f   describe 
equivalent displacement for dI = 0 (i.e. no damage) and dI = 1, (i.e., material 
complete failure), respectively. Equation (4-41) is a function which varies 
between zero and one in accordance with the eq interval of variation. According 
to the fact that the damage is irreversible, the function (4-41) must be strictly 
increasing in its domain. The value of δI,eq

f   can be calculated based on the critical 
energy release rate concept as follows: 

δI,eq
f = εeq

f Lc =
2GI,C

σI,eq
0  (4-42) 

where σI,eq
0  is the equivalent stress value at the damage initiation state as 

mentioned before. Considering the Hashin-Rothem failure criterion, Table 4-5 
summarizes the relationships to achieve equivalent stress and displacement in the 
different modes of damage. 

Table 4-5 Equivalent values of displacements and stresses for different damage 
modes of internal constituent; the symbol 〈 〉indicates Macaulay operator which 

is defined as 〈x〉 =
1

2
(x + |x|); ∀x ∈ R 

Equivalent stresses and displacements for internal part 

Failure mode δeq σeq 
Tensile Matrix in X direction 

(σ11 ≥ 0) Lc√〈ε11〉2 + ε12
2  

Lc(〈σ11〉〈ε11〉 +σ12ε12)

δeq
Xt

 

Compressive Matrix in X 
direction (σ11 < 0) Lc〈−ε11〉 

(Lc
〈−σ11〉〈−ε11〉)

δeq
Xc

 

Tensile Matrix in Y direction 
(σ22 ≥ 0) Lc√〈ε22〉2 + ε12

2  
Lc(〈σ22〉〈ε22〉 +σ12ε12)

δeq
Yt

 

Compressive Matrix in Y 
direction (σ22 < 0) Lc√〈−ε22〉2 + ε12

2  
Lc(〈−σ22〉〈−ε22〉+σ12ε12)

δeq
Yc
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Equivalent values of stress and displacement at the damage initiation point 

might be calculated as follows: 

δI,eq
0 = δI,eqfI

SC 
(4-43) 

σI,eq
0 = σI,eqfI

SC 

where the scaling factors fISCare adequately presented for different modes of 
damage in Table 4-6. 

Table 4-6 Scaling factors for different damage modes [50] 

Failure mode Scaling Factors (for 
fabric outer shell) 

Tensile Matrix in X direction (σ11 ≥ 0) 1 √FXT
MS.or.H

⁄  

Compressive Matrix in X direction (σ11 < 0) 1 √FXC
MS.or.H

⁄  

Tensile Matrix in Y direction (σ22 ≥ 0) 1 √FYT
MS.or.H

⁄  

Compressive Matrix in Y direction (σ22 < 0) 1 √FYC
MS.or.H

⁄  

Having defined the damage variables for each mode the degraded stiffness matrix 
can be constructed as mentioned in the equation (4-39) and replacing the original 
stiffens matrix by the degraded in the equation (4-1) reads: 

σ = CD: ε (4-44) 

Which implies the degradation of the stress array components.   

 Elasto-plastic damage modelling  4.4.1

Short fiber reinforced thermoplastics under a certain amount of displacement 
begin to yield, plastically, and continuing the loading the plasticity will be 
saturated, and under a certain amount of deformation the damage begins and 
progress until the material is ruptured (see the Figure 4-1 ). Since the material has 
been already experienced the maximum stress state and the damage initiation 
might not be detected accurately based on a stress-based failure criterion. Thus, 
mostly the damage variables are introduced according to the maximum 
experienced strain in a specific failure mode, and the scalar-valued damage 
variables are defined to degrade the stress tensor components [104, 105]. 
According to the continuum damage mechanic (CDM) approach and following 
[50],  as well as using equivalent displacements and characteristic lengths, an 
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elasto-plastic damage method is presented. For the elasto-plastic damage 
phenomenon, the original stiffness matrix components degradation can be 
accomplished as the elastic damage approach (see section 4.4.1.1). In addition to 
the later approach, the nonlocal damage method which is introduced by [104] is 
common while applying the damage by degrading the maximum stress vector, i.e., 
the saturated stress array’s components. Even though, the nonlocal damage 
approach is rather straightforward than the degradation of the stiffness matrix 
components in the elasto-plasticity damage concept, but, however looking at the 
schematic equivalent displacement-stress diagram (Figure 4-3) we recognize that 
the elastio-plastic damage phenomenon might be treated as the damaging 
phenomenon exactly as introduced for the brittle materials which is discussed 
earlier in the section 4.4.1.1.  
4.4.1.1 Elasto-Plastic Continuum Damage Mechanics (EPCDM) 

We start with the second method, using the CDM method for the elasto-
plasticity damage, and in this method the calculation of the equivalent plastic 

deformation (δI,eq
p

) plays the central mode. This value is approximate and not the 

exact for two reasons:  
o In the CDM method, the damage variables are needed to be defined in 

the equivalent one-dimensional equivalent deformation-equivalent 
deformation state.  

o The stress state in the saturation point is determined, approximately, 
according to the nonlinear plasticity solution. 

These two reasons cause the discontinuity problem in the two-dimensional 
function in the saturation point. It means that the stress which is produced in the 
saturation point by using the CDM method, sometimes, might not be equal to the 
stress in the very point calculated by the plasticity numerical algorithm. The stress 
can be determined by CDM method by replaying the corresponding strain in the 
equation (4-44) and reaches: 

σ = CD: εeff. (4-45) 

where εp is the corresponding plastic strain for δI,eq
p (see the Figure 4-3 ) and 

its determination is a critical point. The effective strain can be defined as follows 

εeff. =
δI,eq
sat.

δI,eq
0

(ε − εp) (4-46) 
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As mentioned before the plastic strain which can be easily achieved within the 
nonlinear numerical computation of the plasticity is not precise just because of the 
approximated nature of the numerical solution. Thus, the corresponding stress 
might exceed from the saturation point (the D point in Figure 4-3). To be sure that 
the stresses do not go beyond the saturation point, a correction factor is added to 
the equation (4-46) as  δI,eq

sat. δI,eq
0⁄ .  

 

Figure 4-3 Schematic elato-plastic damage in the equivalent displacement-stress 
state 

Since the manifestation of the damage is along with the dissipation  of the 

fracture energy of the corresponding damage mode; then a rational damage law 

might be written using these terms as presented by [49] for modeling the 

interlaminar delamination using cohesive element, then generalized by [50]. Also, 

if the corresponding  constitutive equations are written in the stress-strain form, as 

is typically in continuum mechanics,  leading to strain localization, a mesh 

dependency problem will be appeared [50]. To obviate this problem, the so-called 

crack band model proposed by  [106] is considered as a proper solution and 

utilized by [50]. To define the damage variables, the CDM approach can be 
applied by shifting the origin of the equivalent displacement axis from O to A (see 
the Figure 4-3). Having done this, the equation (4-40) can be rewritten for the 
Elasto-Plastic Continuum Damage Mechanics (EPCDM) as follows: 

GI,C =
1

2
σI,eq
0 (δI,eq

f − δI,eq
p

) (4-47) 

Such as [50]’s  assumption to preserve the value of energy release rate for a 

particular mode of damage, the value of the final equivalent displacement  

δI,eq
0   and the values of the initial equivalent stress σI,eq

0  and displacement δI,eq
0 are 



84 Elasto-plasticity model 
 

 

not kept fix. Dividing the corresponding strain by the characteristic length of the 

elements the corresponding equivalent displacements are achieved. The amount of 

maximum plastic strain for a certain type of damage (δI,eq
p

) is also a characteristic 

of the material and assumed to set to the corresponding maximum plastic strain of 

the relevant damage mode. Since the values of the initial equivalent stress and 

displacements are still unknowns; then the following formulation might be used to 

calculate these parameters [50]: 

σI,eq
0 = fI

SCσI,eq (4-48) 

where the fISC is the scaling factor which can be found in the The corresponding 
equivalent values can be found in Table 4-7.  

4.4.1.2 Non-local elasto-plastic damage 

Non-local damage approach as discussed in the section 4.4.1.1 degrades the 
saturated plastic stress (see the Figure 4-3). Since the non-local damage approach 
demands the damage variables to be defined, then the damage initiation and 
progression law must be established. The stress degradation can be written in the 
following mode: 

σD = σ(1 − di
nl) (4-52) 

The damage variable for each mode is different than those introduced in the 
equation (4-49) and we define them according to the work has accomplished by 
[107-109] and numerically developed and implemented into ABAQUS (see 
[110]). 

Table 4-7. The damage variables can be reproduced for EPCDM as CDM by the 
replacement of δI,eq

0  with  δI,eq
0 − δI,eq

p
 such as follows: 

dI =
(δI,eq

f − δI,eq
p

)(δI,eq − δI,eq
0 )

(δI,eq − δI,eq
p

) (δI,eq
f − δI,eq

0 )
 (4-49) 

where 

δI,eq
f = (εeq

f − εeq
p

)Lc =
2GI,C

σI,eq
0  (4-50) 

And finally 
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δI,eq
0 = fI

SCδI,eq (4-51) 

The corresponding equivalent values can be found in Table 4-7.  

4.4.1.3 Non-local elasto-plastic damage 

Non-local damage approach as discussed in the section 4.4.1.1 degrades the 
saturated plastic stress (see the Figure 4-3). Since the non-local damage approach 
demands the damage variables to be defined, then the damage initiation and 
progression law must be established. The stress degradation can be written in the 
following mode: 

σD = σ(1 − di
nl) (4-52) 

The damage variable for each mode is different than those introduced in the 
equation (4-49) and we define them according to the work has accomplished by 
[107-109] and numerically developed and implemented into ABAQUS (see 
[110]). 

Table 4-7 Damage parameters definition 

Loading 
condition 

Initial crack 
criterion Scaling Factor δeq σeq 

1 ε11 ≥ ε1T
p  (

ε1T
p

ε11
)

n

 Lc〈ε11 − ε1T
p 〉 〈σ11〉 

2 ε11 ≥ ε1C
p  (

ε1C
p

ε11
)

n

 Lc〈−(ε11 − ε1C
p

)〉 〈−σ11〉 

3 ε22 ≥ ε2T
p  (

ε2T
p

ε22
)

n

 Lc〈ε22 − ε2T
p 〉 〈σ22〉 

4 ε22 ≥ ε2C
p  (

ε2C
p

ε22
)

n

 Lc〈−(ε22 − ε2C
p

)〉 〈−σ22〉 

The CDM method, which is introduced in the later references, is redeveloped 
to be applied on the non-local method. The damage initiation in the fiber 
direction, a = [1,0,0], is identified by the strain-based failure criterion proposed 
by [107] as in Table 4-8. Consequently, the damage variables can be determined 
according to the failure criterion in Table 4-8 for the damage progression in the 
fiber direction, i.e., a = [1,0,0] direction,  as follows: 

df
nl = 1 −

ε1
sat.,t

ff,.
e(−C11ε1

sat.,t(ff,.−ε1
sat.,t)Lc Gf⁄ ) (4-53) 
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where according to the loading status, the compression or tension condition can be 
selected from the Table 4-8 and incorporated into the damage propagation 
equation (4-53) and the next one for the propagation of the damage in the 
transverse direction which reads: 

dm
nl = 1 −

ε2
sat.,t

fm,.
e(−C22ε2

sat.,t(fm,.−ε2
sat.,t)Lc Gm⁄ ) (4-54) 

The characteristic length Lc and the energy release rate Gm concepts are 
introduced earlier in the section 4.4.1.2.  

Table 4-8 Failure criteria for different damage modes for non-local elasto-plastic 
damage method 

Failure mode Failure criterion 

(σ11 ≥ 0) ff,t = √
ε1
sat.,t

ε1
sat.,c ε1

2 + (ε1
sat.,t −

(ε1
sat.,t)

2

ε1
sat.,c ) ε1 > ε1

sat.,t 

(σ11 < 0) ff,c = √
ε1
sat.,c

ε1
sat.,t ε1

2 + (ε1
sat.,c

−
(ε1

sat.,c)
2

ε1
sat.,t ) ε1 > ε1

sat.,c 

(σ22 ≥ 0) fm,t = √
ε2
sat.,t

ε2
sat.,c ε2

2 + (ε2
sat.,t

−
(ε2

sat.,t)
2

ε2
sat.,c ) ε2 +

ε2
sat.,t

ε4
sat. ε4

2 > ε2
sat.,t 

(σ22 < 0) fm,c = √
ε2
sat.,c

ε2
sat.,t ε2

2 + (ε2
sat.,c

−
(ε2

sat.,c)
2

ε2
sat.,t ) ε2 +

ε2
sat.,c

ε4
sat. ε4

2 > ε2
sat.,c 

Since the non-local approach degrades the stress array components instead of the 
stiffness matrix components, then it has a significant advantage over  the EPCDM 
method, in the sense that it is more convenient to be applied in the numerical 
coding ,while it implies less physical meaning. According to [1] using the non-
local damage fashion assists the reduction of mesh dependency in elasto-plasticity 
damage simulation. 

4.5 Numerical methods 

According to the introduced elasto-plasticity model it can be quickly realized 
that there is no an explicit solution for the presented constitutive equations due to 
that fact that the model is completed by the consistency parameter calculation, but 
the consistency parameter itself requires the gradient of the yield surface to be 
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determined while the gradient itself needs the hardening parameter themselves 
become identified and they themselves depend on the hardening parameters which 
are the functions of the equivalent plastic strain which is the function of the 
consistency parameter. This is a loop, and in this cases, the systems of the 
equations require a numerical solution which begins with a guess and the entire 
procedure is based on the try and error idea. In fact, the core equation must be 
solved is the consistency condition and in the plasticity theory, we try to find its 
root to guarantee that the stress state will be on the progressive yield surface 
beyond the primary yield surface. However, to solve the numerical problem and at 
the same time to implement the constitutive equation into the finite element 
solver, a proper numerical method must be chosen as well as a proper solver. In 
the current research to use Finite Element Method (FEM) the commercial FEM 
called “ABAQUS” is chosen which has both explicit and implicit FEM solver. 

Since the implicit method is an unconditionally stable method, then it is chosen as 
a benchmark, but also the model is solved using the explicit solver. However, both 
implicit and explicit methods are discussed in the next section in detail. An 
integration scheme must be chosen for the numerical plasticity, and here we 
follow the [111]’work such as [105].  

 Backward Euler integration algorithm 4.5.1

The generalized elasto-plastic model in section 4.2 has to be reformulated to 
be prepared to be implemented into the FEM model. Following [1, 105]’s works, 
we begin with the elastic strain definition in equation (4-5) and rewiring it a 
discrete fashion in the time interval Δt = tn+1 − tn : 

εn+1
p

= εn
p
+ Δtε̇n+1

p
= εn

p
+ Δγn+1(ng)n+1

 (4-55) 

Since the algorithm, conceptually, is based on try and error numerical method, 
then the first guess or trial does have a significant effect on the convergence issue. 
Since in a FEM we are numerically looking for the response of the material using 
a specific constitutive equation, then in a try and error concept, the element which 
might be used is the response argument (stress tensor). The most reasonable trial 
for the stress tensor in the plastic zone might be the stress calculated by the elastic 
constitutive equation (4-1) using the concept of the decomposition of the total 
strain to two elastic and plastic portion presented in equation (4-2) where the 
current step’s total strain, which is of course known as the input, minus the 

previous step’s plastic strain gives the elastic portion of the strain. According to 
the later explanation, it can be written: 
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εn+1
p

= εn
p
+ Δtε̇n+1

p
= εn

p
+ Δγn+1(ng)n+1

 (4-56) 

The elastic trial step can be attained considering the assumption of the additive 
strain (see equation (4-2)) and Hook’s law (equation (4-1)) such as follows: 

εn+1
tr : = εn+1 − εn

p
= εn+1

e + (εn+1
p

− εn
p
)

= −1: σn+1 + (ng)n+1
Δγn+1 (4-57) 

Then associated trial stress can be achieved: 

σn+1
tr = : εn+1

tr = σn+1 + Δγn+1 : (ng)n+1
 (4-58) 

Besides, considering the equation (4-32) the gradient of the flow potential 
function can be determined as follows based on the fourth-order tensor  : 

ng = :σ (4-59) 

Inserting equation (4-57) into the equation (4-58) yields: 

σn+1
tr = σn+1 + Δγn+1 : : σn+1 = ( + Δγn+1 : ): σn+1 (4-60) 

This equation is derived based on the most basic arguments of the plasticity 
constative equation including the fourth order identity tensor , the original 
stiffness tensor , the fourth-order tensor . the latter fourth-order tensor  is 
independent of the plastic history and in the scalar consistency parameter which is 
the only link between equation (4-60) and the plasticity constitutive equation. 
Since we are looking for the updated stress then reordering equation (4-60) gives 
the currents stress tensor beyond the yielding point: 

σn+1 = ( + Δγn+1 : )−1: σn+1
tr = :σn+1

tr  (4-61) 
= + Δγn+1 : −1 

Which means that the current stress in the plastic zone just depends on one 
updatable variable of the consistency parameter and the other arguments including 
the trial stress itself are constant in the local try and error procedure. Nevertheless, 
and having determined the trial strain and stress and the other engaged arguments, 
it seems the only parameter left undetermined is the consistency parameter and as 
it is discussed in the previous section, it can be achieved by applying the 
consistency condition which means the stress state must remain on the growing 
yield surface. Rewriting the general anisotropic yield function in a discrete 
method so that it can be employed in a numerical method, reaches: 
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fn+1
(k)

≡
1

2
σn+1
(k)

: (k): σn+1
(k)

+ L(k): σn+1
(k)

− 1 = 0 (4-62) 

 Where the yield function only depends on the consistency parameter and k 
represents the local iteration. Since the aim is to satisfy the consistency considtion 
and determine the consistency parameter, then a numerical solution such as 
Newton-Raphson can be employed to approximately satisfy the equation (4-62). 
The Newton-Raphson method needs a residual function to be defined such as 
follows: 

R|n+1
(k)

= fn+1 (σn+1
(k)

(Δγn+1
(k)

)) ≡ 0 (4-63) 

The linear approximation of the residual function based on Taylor series reads: 

fn+1
(k+1)

= fn+1
(k)

+
∂fn+1

(k)

∂Δγn+1
(k)

(Δγn+1
(k+1)

− Δγn+1
(k)

) ≈ 0 (4-64) 

Therefore, the consistency parameter at the end of the iteration can be determined, 
approximately, based on the current consistency parameter, the current value of 
the yield function and the current derivative of the yield function with respect to 
the current consistency parameter: 

Δγn+1
(k+1)

= Δγn+1
(k)

−
fn+1
(k)

∂fn+1
(k)

∂Δγn+1
(k)

 
(4-65) 

The term left undetermined is ∂fn+1
(k)

∂Δγn+1
(k)  which can be obtained using the chain rule 

such as follows: 

∂fn+1

∂Δγn+1
=

∂fn+1

∂σn+1
:
∂σn+1

∂Δγn+1
+

∂fn+1

∂ n+1
∙∙∙∙

∂ n+1

∂Δγn+1
  

+
∂fn+1

∂L n+1
:
∂L n+1

∂Δγn+1
 

(4-66) 

For the readability, the local iteration counter (k) is eliminated from the equations. 
The equation (4-49) contains five undetermined terms which have to be 
characterized. However, we begin with the derivative of the stress tensor with 
respect to the current consistency parameter. According to [1], since the trial 
stress remain unchanged in a local iteration procedure, then its derivative with 
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respect to the current consistency parameter must be zero (∂Δγn+1
σn+1
tr = 0), 

therefore inserting this circumstance into the equation (4-43) gives : 

∂σn+1

∂Δγn+1
= − n+1: ( : : σn+1 ) (4-67) 

Which the result is a second order tensor. According to the general definition of 
the yield function (see equation (4-26)), the derivative of the yield function with 
respect to the fourth-order tensor might be obtained without any difficulty: 

∂fn+1

∂ n+1
= σn+1 ⊗ σn+1 (4-68) 

The second order tensor L can be achieved as easy as its fellow: 

∂fn+1

∂L n+1
= σn+1 (4-69) 

Again using the chain rule, the derivative of the fourth-order tensor  with respect 
to the consistency parameter might be achieved: 

∂ n+1

∂ε̅n+1
p =

∂ n+1

∂αi
n+1

∂αi
n+1

∂ε̅n+1
p

= ( − A ∙ − ∙ A)
∂α1

n+1

∂ε̅n+1
p + (A ∙ + ∙ A)

∂α2
n+1

∂ε̅n+1
p

+ 2A ⊗ A
∂α32

n+1

∂ε̅n+1
p + 2(1 − A)⨂(1 − A)

∂α42
n+1

∂ε̅n+1
p  

(4-70) 

where the derivatives of the hardening parameters with respect to the equivalent 
plastic strains are available in the equations (3-12), (4-14), (4-17) and (4-18). The 
same procedure can be accomplished to determine the derivative of the second 
order tenor with respect to the equivalent plastic strain 

∂Ln+1

∂ε̅n+1
p =

∂Ln+1

∂αi
n+1

∂αi
n+1

∂ε̅n+1
p = A

∂α3
n+1

∂ε̅n+1
p + (1 − A)

∂α4
n+1

∂ε̅n+1
p  (4-71) 

where the derivative of the hardening parameters with respect to the equivalent 
plastic strain can be found in the equations (4-15) and (4-18). Having determined 
the last term of the equation (4-49), the consistency parameter can be updated (see 
equation (4-65)) through the local iteration and accordingly the stress tensor can 
be updated via equation (4-44).   
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4.5.1.1 Implicit solver requirements  

Here we discuss very briefly the implicit solver, especially implicit solver of 
ABAQUS, and its requirements, but it is not intended to be in detail. However, for 
more details, one can refer to the ABAQUS documentations which are available 
online [110]. Let’s begin with the basic discretized FEM equilibrium which is 
applicable for both explicit and implicit FEM solvers under certain circumstances: 

PN − IN = MNMüM (4-72) 

where PNis the external force vector and INrepresents the internal force vector 
which is created by the stress tensor in the elements and MNMüM characterizes the 
force vector owing to the material inertia. Also, MNM is the mass matrix and 
üMdescribes the acceleration vector. The internal forces can be obtained by: 

IN = ∫βN: σd

V

V (4-73) 

where V is the current volume of the model and β is defined as the transformation 
of the strain rate-displacement rate: 

ε̇ = βNu̇N (4-74) 

Having defined the elements of the basic FEM equilibrium, now it is possible to 
describe the major difference between two approaches. In dynamic equilibirium 
the d’Alembert forces (the right hand side of the equation (4-72)) is significant 
while the static equilibrium implies that the d’Alembert forces vary gradually, or 
are constants, over time which yields: 

MNMüM ≈ 0 (4-75) 

If the analysis (simulation) can be carried out in few time increments, then the 
implicit solution is effective. ABAQUS/Standard employs Newton’s method to 

solve the static equilibrium. An approximate solution of the equation (4-72) at 
iteration (i), i.e. ui

N, can be represented by the Taylor expansion as follows: 

PN − IN + (
∂PN

∂uM
−

∂IN

∂uM
) cM + ⋯ = 0 (4-76) 

which it can be written as: 

PN − IN = KNMcM (4-77) 

where 
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KNM =
∂IN

∂uM
−

∂PN

∂uM
 (4-78) 

And it is called the tangent stiffness or Jacobian Matrix and cNis the correction to 
the solution at the degree of freedom N. At the end, the incremental displacements 
are updated as follows: 

Δu(i+1)
N = Δu(i)

N + c(i)
N  (4-79) 

The system of equation is iterated until it gets converged [110]. 

4.5.1.2 Algorithmic tangent  

However, the intention to solve the FEM problem with ABAQUS/Standard solver 
which uses the implicit method requires the Jacobian matrix to be defined at 
Gauss-point level. In the stress-strain level, the Jacobian is the derivative of the 
stress with respect to the stress. In the computational elasto-plasticity the 
numerical tangent is called algorithmic consistent tangent operator since it must 
be consistent with the time integration [1, 105]. Since the theoretical Jacobian 
matrix, or material tangent, which appears in the equation (4-25) is not consistent 
with the time integration and the consistency parameter is an infinitesimal and not 
finite number. It is shown that if the time step tends to zero number, then the 
algorithmic tangent tends to the material tangent  [1, 112].  However, as it is 
required by the implicit solver the algorithmic consistent elasto-plastic tangent 

ep_alg =
dσn+1

dεn+1
 (4-80) 

In order to determine the algorithmic tangent in the equation (4-80), we refer to 
the equations (4-40) and (4-43) where it can be easily shown that an infinitesimal 
increment of the total stress reads: 

σn+1
tr = : (εn+1 − εn

p
) = n+1

−1 : σn+1 (4-81) 
dσn+1

tr = : dεn+1 = d n+1
−1 : σn+1 + n+1

−1 : dσn+1

= dΔγn+1 : : σn+1 + n+1
−1 : dσn+1  

dσn+1 = n+1: [ : dεn+1 − dΔγn+1 : : σn+1]  

And if the equation (4-80) is rearranged as follows: 

dσn+1 = ep_alg: dεn+1 (4-82) 

 And it means if we could find a link between the consistency parameter 
differential which appear in (4-81), then it would be possible to rearrange the 
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equation so that the algorithmic tangent might come out, automatically. If the 
consistency condition is applied to the equation (4-46), then its differential form 
reaches: 

dfn+1 =
∂f

∂σn+1
: dσn+1 +

∂f

∂Δγn+1
dΔγn+1 ≡ 0 (4-83) 

Inserting dσn+1from the equation (4-81) into the equation (4-83) gives: 

dΔγn+1 =

∂f
∂σn+1

: n+1: : dεn+1

∂f
∂σn+1

: n+1: : : σn+1 −
∂fn+1

∂Δγn+1

 (4-84) 

Substitution of the term ∂f

∂σn+1
 by its general form from the equation (4-27) and 

inserting the result into the equation (4-81) yields: 

dσn+1

= n+1: [

−
: : σn+1 ⊗ ( n+1: σn+1 + Ln+1): n+1:

( n+1: σn+1 + Ln+1): n+1: : : σn+1 +
∂fn+1

∂Δγn+1

] : dεn+1 

(4-85) 

And subsequently, the comparison between the equations (4-82) and (4-85), gives 
the algorithmic tangent such as follows: 

ep_alg

= n+1: [ −
: : σn+1 ⊗ ( n+1: σn+1 + Ln+1): n+1:

( n+1: σn+1 + Ln+1): n+1: : : σn+1 +
∂fn+1

∂Δγn+1

] (4-86) 

  Since all engaged terms are characterized, therefore the elasto-plastic algorithmic 
tangent is determined, and as it is shown in [1], it would be equal to the 
continuum tangent (see equation (4-25)) if the time step inclines to zero. The 
integration scheme for the local-plasticity is presented in the following table, but 
the complete elasto-plasticity implicit algorithm is presented in the next section.  
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Table 4-9 Overview of the plasticity algorithm [1] 

Order Explanation Formula 

1 
Inputs for the local 
plastic corrector at 
Gauss point level 

Total strain of the current step (εn+1), the 
plastic strain tensor and the equivalent 
plastic strain from the previous step εn

p
, ε̅n

p 

2 Elastic predictor 
Initial guesses including the trial strain 
tensor εn+1

tr : = εn+1 − εn
p and trial stress 

tensor σn+1
tr = : εn+1

tr  

3 

Local loop to correct the initial guess based on the plasticity 
algorithm. In this stage, we set the local loop counter k to zero 
(k=0) and the associated inputs to start the local numerical 
procedure to correct the initially guessed stress and the equivalent 
plastic strain σn+1

(k=0)
= σn+1

tr , (ε̅n+1
p

)
(k=0)

= ε̅n
p and the consistency 

parameter is set to zero ((Δγn+1)
(k=0) = 0)  

3.1 

The first step is to 
determine the  tensor 
using the initial guesses. 
Obviously, the 
consistency parameter is 
the only variable. 

n+1
(k)

= + Δγn+1 n+1
(k)

Δγn+1 :
−1

 

3.2 Then, the stress can 
be updated.  σn+1

(k)
= n+1

(k)
: σn+1

tr  

3.3 

The hardening 
parameters must be 
updated using the look-
up procedure or using the 
associated formula  

(ε̅n+1
p

)
(k=0)

⟹ Y(… )(ε̅n+1
p

) can be 
calculated form Y(… )-ε̅n+1

p curves 
⇒hardening parameters α(… ) (see Table 
3-4) 

3.4 
Calculate the yield 

function ( fn+1
(k) )value 

From the equation (4-62) 

3.5 Define a tolerance 
value to leave the local 

if fn+1
(k)

≤ TOL. goto (4) 
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loop 

3.6 
Update the consistency 

parameter from equation 
(4-65) 

Δγn+1
(k+1)

= Δγn+1
(k)

−
fn+1
(k)

∂fn+1
(k)

∂Δγn+1
(k)

 

3.7 Update the equivalent 
plastic strain 

(ε̅n+1
p

)
(k+1)

= (ε̅n+1
p

)
(k)

−
fn+1
(k)

∂fn+1
(k)

∂Δγn+1
(k)

‖ : σn+1
(k)

‖ 

4 Update the internal 
variables 

σn+1 = σn+1
(k) , ε̅n+1

p
= (ε̅n+1

p
)
(k)

and 
εn+1
p

= εn
p
+ Δγn+1

(k)
: σn+1

(k)  

5 Calculate the algorithmic 
tangent 

The algorithmic tangent can be 

determined using the equation (4-86) 

It should be noted that the entire plasticity model’s philosophy is constructed 

on the return algorithm and the schematic idea is illustrated in 2D stress space in 
Figure 4-4.  

 

Figure 4-4 Schematic return algorithm [95] 
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4.5.1.3 Implementation into ABAQUS (UMAT) 

For verification of the introduced model, it has to be incorporated into a FEM 
solver which might be implicit or explicit. ABAQUS/Standard ,which uses the 
Euler backward (implicit method) to deal with the FEM analysis (see section 
4.5.1), is more efficient for solving smooth nonlinear (e.g., quasi-static elasto-
plasticity) problems than explicit fashion. However, under certain circumstances 
such as complicated contacts or some convergence problem or even material 
complexities, where for example we need to delete the element from the 
computational calculation, ABAQUS/Explicit has some advantages over the 
ABAQUS/Implicit solver. In the current research the introduced model is coded in 
both fashion, but as mentioned before, the benchmark code is the one is 
programmed for ABAQUS/Implicit. ABAQUS/Implicit allows the user to define 
and implement her/his own material model in the form of a subroutine called 
UMAT into the software in the Gauss-point level. The subroutine is allowed to be 
written in FORTRAN, C and C++, but since the most available examples in the 
ABAQUS document are related to FORTRAN, then both implicit and explicit 
subroutines are written in FORTRAN environment. Here we intend to explain 
some important features of the UMAT subroutine, but for the details, one can 
refer to [110].  

User subroutine UMAT: 

o Is used to define the material behavior in the constitutive equation 
form 

o And called in each of the integration points 
o Must update the stress tensor (STRESS(NTENS))at the end of the 

increment; NTENS is the size of the stress or strain component array 
o Must provide the Jacobian matrix (DDSDDE(NTENS,NTENS)) 

ABAQUS uses the stress tensor as in the Voigt notation such as defined in the 
equation (2-30).  An overview of the user-defied UMAT flowchart is presented in  
Figure 4-6. ABAQUS itself, based on the boundary conditions, the material elastic 
constants, the associated time-step and etc., generates the initial strain increments 
components DSTRAN and sets the STRESS components  to zero at the beginning 
of the simulation when the total time is equal to zero (TIME(2)=0). These values 
are accumulated type and are updated during the FEM-analysis procedure while 
the associated Jacobin matrix components at the beginning of each time step are 
set to be zero and are not accumulated type. This latter explanation seems to be 
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quite proper since the nature of the Jacobian matrix is instantaneous so that  
DDSDDE(i,j) describes the change in the ith component of the stress at the end of 
the time increment caused by the infinitesimal perturbation of the jth component of 
the strain increment array. It must be beared in mind that  almost always the 
accuracy of the definition of the Jacobian matrix is the most crucial factor in the 
implicit FEM-analysis convergence. But, its definition does not affect the 
accuracy of the results; i.e., once the problem is converged then the results 
achieved by any definition of the Jacobian matrix will be the same. Nevertheless, 
the Jacobian matrix, as the derivative of the stress with respect to the strain, might 
be achieved numerically as well as the presented exact solutions. In this research, 
we use the forward difference differential scheme in order to obtain the Jacobian 
matrix as explained in [1], but to obtain higher convergence rate, the exact 
solution is considered, unless otherwise stated.  

Since the Jacobin matrix itself describes a system of ordinary differential 
equations, then it can be solved by a so-called perturbation method. Assume we 
have a stress function which each of the components just depends on the variation 
of the strain components. Also, we consider that we are in the plasticity zone due 
to the fact that our aim is to calculate the Jacobian matrix and in the elastic area 
the Jacobian is equal to the stiffness matrix.  It can be casted into the index 
notation: 

DDSDDE(i, j) =
Δσ(i)

Δε(j)
 (4-87) 

We know the stress array can be updated according to the locally defined iterative 
plasticity algorithm presented in Table 4-9, then the stress component are known, 
and it is evident that to build the Jacobian matrix we need to determine the 
variation of each of the stress components under perturbation of one of the strain 
components. As an example, assume that we add up a specific disturbance value 
εpert to the second component of the strain vector. The entire components of the 
stress vector are affected by the disturbance of the second component of the strain 
vector which can be presented as follows: 

ε2
pert.

 =

[
 
 
 
 
 

ε1
ε2 + εpert

ε3
ε4
ε5
ε6 ]

 
 
 
 
 

 (4-88) 
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where the perturbed strain tensor is constructed, and the disturbed stress can be 
calculated. Since, there are six disturbed strain arrays, for the 3D problem, then 
there will be six corresponding stress vectors, therefore, for the convenicence, we 
may costruct the disturbed stress matrix such as follows: 

σij
pert.

=

[
 
 
 
 
 
 
 σ11

pert.
σ12
pert.

σ13
pert.

σ14
pert.

σ15
pert.

σ16
pert.

σ21
pert.

σ22
pert.

σ23
pert.

σ24
pert.

σ25
pert.

σ26
pert.

σ23
pert.

σ32
pert.

σ33
pert.

σ34
pert.

σ35
pert.

σ36
pert.

σ24
pert.

σ42
pert.

σ43
pert.

σ44
pert.

σ45
pert.

σ46
pert.

σ25
pert.

σ52
pert.

σ53
pert.

σ54
pert.

σ55
pert.

σ56
pert.

σ26
pert.

σ62
pert.

σ63
pert.

σ64
pert.

σ65
pert.

σ66
pert.

]
 
 
 
 
 
 
 

 (4-89) 

Where the first column belongs to the stress vecor cause by the disturbance of the 
firs component of the strain component, the second column is the result of the 
disturbance of the second component of the strain vecor and so on. The entire 
procedure is ilustrated in Figure 4-5. 

     ε2
pert

 =

[
 
 
 
 
 

ε1
ε2 + εpert

ε3
ε4
ε5
ε6 ]

 
 
 
 
 

                                                        

              σij
dist. =

[
 
 
 
 
 
 
 
σ11
dist. σ12

dist. σ13
dist. σ14

dist. σ15
dist. σ16

dist.

σ21
dist. σ22

dist. σ23
dist. σ24

dist. σ25
dist. σ26

dist.

σ23
dist. σ32

dist. σ33
dist. σ34

dist. σ35
dist. σ36

dist.

σ24
dist. σ42

dist. σ43
dist. σ44

dist. σ45
dist. σ46

dist.

σ25
dist. σ52

dist. σ53
dist. σ54

dist. σ55
dist. σ56

dist.

σ26
dist. σ62

dist. σ63
dist. σ64

dist. σ65
dist. σ66

dist.]
 
 
 
 
 
 
 

 

 

When the disturbed stress matrix is constructed, then the following formula gives 
the corresponding Jacobian matrix as follows: 

DDSDDE(i, j) =
σij
dist. − σi

undist.

εj
pert.  (4-90) 

A corresponding developed subroutine based on the perturbation method is 
given in Appendix.2 with this explanation that the fourth-order tensor  which 

Local iterative plasticity loop 
(go to Table 4-9) 1 

1 

start 

start 

Figure 4-5 The iterative procedure to calculate the disturbed stress components 
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has to be determined by the equation (4-32), is calculated using the flow potential 
function which introduced by [105] and can be easily replaced by the introduced 

 in Appendix1.  

Having determined the initial elastic stress vector, where the stress tensor in 
converted to the Voigt form, and also the Jacobian matrix in the elastic zone, the 
user-defined subroutine checks if the plasticity, according to the corresponding 
yield function (equation (4-26)), occurs. If yes, the stress in the plastic state and 
according to the return backward Euler algorithm (see Table 4-9) can be 
determined and again the associated elasto-plastic Jacobian is determined. Having 
determined the stress and the Jacobian matrix the subroutine checks the damage. 
If the damage happens, even in one of the modes, then the subroutine will bypass 
the plasticity portion and jump from the elasticity governing constitutive 
equations to the damage. However, for each of the scenarios, the stress array, and 
the Jacobian matrix must be determined at the end of the increment and passed 
back to the ABAQUS implicit solver. Other than stress array and the Jacobian 
matrix which are mandatory to pass into the ABAQUS implicit solver, there are 
several variables which are accumulative and must be determined at the end of the 
current increment to be used at the beginning of the next increment as the old 
version of the accumulative variables which the provided solution-dependent 
variables used in the form of the array STATEV(NSTATV). The NSTATV 
indicated the number of the solution-dependent variables which has to be 
specified in the input file such as follows: 

*Material, name=DEFINE THE MATERIAL NAME 
*Depvar 
    NSTATV, 

The number of the solution dependent variables defined in the Depvar must 
be equal or “more than” the  STATEVs. It is important to be noted that since the 
Jacobian matrix is asymmetric, then to define the steps it is necessary to choose 
asymmetric solver such as follows: 

*Step, name=…, nlgeom=YES, extrapolation=NO, inc=…, solver=ITERATIVE, 
unsymm=YES  

Otherwise ABAQUS/Standard will use the symmetric part of the Jacobian 
matrix which calculated by taking one half the sum of the matrix and its transpose 
[110].  
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  𝜎𝑖
𝑛𝑒𝑤 ← 𝐶𝑖𝑗𝜀𝑗 

𝜀𝑖
𝑛𝑒𝑤 ← 𝜀𝑖

𝑜𝑙𝑑 + 𝑑𝜀𝑖
𝑛𝑒𝑤 

Calculation of virgin stiffness matrix 𝐶𝑖𝑗 

 
No 

Calculate stresses and Jacobian according to the Table 4-9 

 Yes 

Calculate the Jacobian matrix and 𝜎𝑖
𝑛𝑒𝑤 ← 𝐶𝑖𝑗

𝐷𝜎𝑗
𝑛𝑒𝑤 

    ABAQUS 

𝑑𝜀𝑖
𝑛𝑒𝑤, 𝜎𝑖

𝑜𝑙𝑑, 
𝜕𝜎𝑖

𝜕𝜀𝑗
= 𝟎 

Check if (2-36) yields 
(𝑓 ≥ 0) 

 

 Check damage initiation; if 
(𝐹𝑚 ≥ 1 or 𝐹𝑓 ≥ 1 ) 

 

Calculate the degraded stiffness tensor 𝐶𝐷 

 Yes 

Initialize the Jacobian matrix 
𝜕𝜎𝑖

𝜕𝜀𝑗
= 𝐶𝑖𝑗 

No 

Figure 4-6 implicit user-defined subroutine (UMAT ) algorithm  
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 Explicit subroutine (VUMAT) for CDM 4.5.2

Hereafter, we introduce the numerical procedure for the Continuum Damage 
Mechanics (CDM),e.g., elastic-damage, in an explicit fashion. The explicit 
method for the hybrid component is preferred due to the geometrical complexity 
of the case study as well as the self-contact issue. The introduced model in section 
4.4.1 is coded in both implicit and explicit manners, but the implicit one is just 
applied on the simple geometries. Here, we do not intend to reiterate the 
ABAQUS subroutine explanation which is explained earlier in  the previous 
section 4.5.1.3, but instead, we focus on some general differences between UMAT 
and VUMAT subroutines. The equilibrium equation for the explicit solver is the 
same as introduced in the equation (4-72) while the masa matrix MNMis not zero 
anymore. Contrasted with the unconditional stability of the implicit method, the 
explicit solver (Forward Euler integration method) has a stability limit as follows: 

|Δε| < Δεstab. (4-91) 

And it implies that the increment of the displacement and the time increment 
must be controlled [110]. In an explicitly written subroutine the Jacobian matrix is 
not needed to be updated, and it is the most important advantage of using 
VUMAT over UMAT (see also sections 4.5.1.1, 4.5.1.2 and 4.5.1.3) and the stress 
array is the only basic variable which must be updated in the Gaussian level as 
well as the Solution Dependent Variables (SDVs). The general VUMAT 
flowchart for the elastic damage model, presented in section 4.4.1.1, is illustrated 
in Figure 4-7. The strain, strain increment, old stress and old SDVs arrays are 
given at the beginning of the increment which have to be updated at the Gaussian 
level and then the updated values are passed in the ABAQUS’ explicit solver to be 

used at the beginning of the next increment as the old values. Since the entire 
procedure for the subroutine writing is discussed in section 4.5.1.3, then, to avoid 
repletion, we just mention some specific aspects of writing the VUMAT 
subroutines. Other than Jacobina matrix issue which is not needed to be defined in 
VUMAT, there is two major difference between VUMAT and UMAT 
subroutines: 

o In VUMAT the variables must be defined as VAR(nblock, dimension) 
while they are characterized as VAR(nblock, dimension) which the 
dimension indicates the size of the variable. If the variable is not an 
array, e.g., the variable is a scalar, then the dimension must be 
omitted. The nblock is a variable which is defined according to the 
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element type and signifies the number of material points to be 
processed in the call to VUMAT [110, 113].  

o Initial calculations and checks must be accomplished. In the data 
check phase of the analysis Abaqus/Explicit calls user subroutine 
VUMAT with a set of fictitious strains and a totalTime and stepTime 
both equal to 0.0. This is done as a check on the initial elastic 
constitutive relation and to calculate the equivalent initial material 
properties, based upon which the initial elastic wave speeds are 
computed[113]. The way to define the initial calculation is sometimes 
misunderstood and ,for the clarification, the piece of code of the 
VUMAT ,which characterizes the initial calculation, is given in 
Appendix.3.    

Since the case study is made of two different material, then it might be helpful 
if we introduce the way that more than one user-defined material can be 
implemented in VUMAT or UMAT as mentioned in ABAQUA manual [113] 
which is presented in Appendix.4. For further details about the writing, VUMAT 
see ABAQUA manual [113]. However, once the UMAT code is prepared, it can 
be easily converted to the VUMAT type by considering the points mentioned 
earlier.  
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  𝜎𝑖
𝑛𝑒𝑤 ← 𝐶𝑖𝑗𝜀𝑗 

𝜀𝑖
𝑛𝑒𝑤 ← 𝜀𝑖

𝑜𝑙𝑑 + 𝑑𝜀𝑖
𝑛𝑒𝑤 

Calculation of virgin stiffness matrix 𝐶𝑖𝑗 

𝜎𝑖
𝑛𝑒𝑤 ← 𝐶𝑖𝑗

𝐷𝜎𝑗
𝑛𝑒𝑤, 𝑆𝐷𝑉𝑖

𝑜𝑙𝑑 ← 𝑆𝐷𝑉𝑖
𝑛𝑒𝑤 

    ABAQUS 

𝑑𝜀𝑖
𝑛𝑒𝑤, 𝜎𝑖

𝑜𝑙𝑑, 𝑆𝐷𝑉𝑖
𝑜𝑙𝑑 

 Check damage initiation; if 
(𝐹𝑚 ≥ 1 or 𝐹𝑓 ≥ 1 ) 

 

Calculate the degraded stiffness tensor 𝐶𝐷 

 Yes 

No 

Figure 4-7 Explicit user-defined subroutine (VUMAT ) algorithm 
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Chapter 6 

5 Short fiber reinforced 
thermoplastics simulation  

In this chapter, the numerical simulations of the short fiber reinforced 
thermoplastics,which have been carried out using the introduced transversely 
isotopic model in chapter 4, are addressed. This is the model introduced for the 
nonlinear behavior of the short fiber reinforced thermoplastics, but also here in 
this section, we deal with the elastic-damage presented in section 4.4.1 as well as 
elasto-plastic damage model which introduced in section 4.4.1.1. The models are 
applied on a single element plus with a model with the same size, but with refine 
meshes. The hybrid component, which was the primary motive of this study, is 
simulated by both elastic damage and elasto-plastic damage models. In this 
chapter we will represent the computational and experimental results according to 
the time sequences, but hierarchically. It means, instead of presenting the results 
according to their mathematical and physical importance and positions, we prefer 
to characterize them based on their time of occurrence from the beginning of the 
project by now. The representation approach might show why and how we began 
from the linear damage model and, in the end, it is ended up the presentation of 
the new non-linear plasticity include damage model. Hence, in the first section, 
we open the discussion with the quasi static 3-points bending and continue the test 
by changing the loading rate. To simulate the rate dependent behavior of the 
hybrid component, in the beginning, it was more convenient to apply the rate 
effect on the material constants, explicitly.  

5.1 Hybrid component response under 3-point bending 
test 

The hybrid component is made by two different technologies: 

o Back injection molding 
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o Compression molding 

The 3-point bending test is carried out in two different sides as illustrated in 
Figure 5-1 and for the simplicity, we call them case1 and 2 to avoid repetition.  

 

 

(a) (b) 

Figure 5-1 Bending tests; (a) Case1 (b) Case2[6]  

The configuration of the 3-point bending test for the Case1 is illustrated in 
Figure 5-2 at the beginning and end of the experiment. The span (distance 
between two supports; e.g. A1A2

̅̅ ̅̅ ̅̅ ̅) is 338 mm, and it is constant during all the tests.  

  

(a) (b) 
Figure 5-2 Bending test configuration; (a) test starting point (b) ending point [6] 

The 3-point bending test is conducted for both categories, but since our main 
interest is about injected molding short fiber reinforced thermoplastics, then we 
focus on these experiments. However, the results for two differently manufactured 
hybrid components are illustrated to compare the responses. The experimental 
results of the bending test for three different components, which is shown by C1, 
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C2 and C3, are illustrated in Figure 5-3. As expressed in Figure 5-3, the 
components manufacture by compression molding technique in the ambient 
temperature and the tests are carried out under quasi-static conditions. The results 
for the components one and two are most similar, therefore, they will be 
considered as the representatives of the component with the mentioned features 
and under loading and boundary conditions in Figure 5-3. The representative 
results are compared to the representative results of the components manufactured 
by injection molding process which are illustrated in Figure 5-4.  

 

Figure 5-3 The 3-point bending; component type is Compression Molding 
(CM); The test is conducted in the ambient temperature (AM); Boundary condition: 

case1 

According to the Figure 5-4, the representative results can be achieved from the 
components number 3 or 4 while the second test is out of range and can be 
omitted. 

 

Figure 5-4 The 3-point bending; component type is Back-Injected (BI); The test 
is conducted in the ambient temperature (AM); Boundary condition: case1 
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The comparison between the results for the bending test for the components 
manufactured by compression molding and back-injected molding are presented 
in Figure 5-5. 

It has been reported by [114], conducting simple tensile tests on the injected 
and compression molded samples, that the compression molded samples show 
higher strength than the injection molded samples. The conducted bending tests in 
the current research demonstrate the same result (see Figure 5-8) , not for the neat 
thermoplastics, but for the hybrid component which is reinforced by the short 
fiber reinforced thermoplastics. This is compatible with the result for Case2 which 
the internal part plays the more significant role than Case1. For the Case1 the 
internal part either made by injected or compression molding techniques is mainly 
under pressure due to the interaction between the outer shell and the internal part 
while for the Case2 the bending phenomenon might be considered alone; i.e., with 
minimum interactions between the outer shell and the internal part. However, due 
to the lack of information about the comparison between compression molded and 
injected molded specimens under compression and according to the later 
interpretation for the Cas1 as well as the results of comparison between two cases 
at Figure 5-5, it can be said that the compression molding made components show 
higher strength than injected molded ones under compression.  

 

Figure 5-5 Comparison between the responses of the hybrid components 
manufactured by the back-injected and compression molding; temperature: 

Ambient (AM); Case1  

According to the results in Figure 5-5, it might be concluded that the hybrid 
material manufactured by the compression molding procedure bears higher force 
than its counterpart (~5.4 kN. vs. ~4.4 kN ). In term of the elastic stiffness, both 
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products show the same level of the rigidity snice the force versus displacement 
curves have coincided in the elastic zone (see Figure 5-5). Both components 
illustrate the negligible amount of nonlinearity before the occurrence of the main 
degradation. Hence it has been decided not to involve the plastic behavior of the 
material in the numerical solution. The material degradation which happens after 
the pick points are quasi similar. 

Revolving the component about the main longitudinal axis provides the 
second case. In Figure 5-6 the experimental results of the bending tests for two 
components manufactured by injection process are illustrated. The tests again are 
conducted under the same situation for the case1. The elastic zone is quite 
distinguishable from the damaged area since the damage is not the progressive 
one and it happens quasi suddenly. Even though, there is a minor damage in both 
components before the occurrence of the main rupture.  

 

Figure 5-6 The 3-point bending; component type is Back-Injected (BI); The test 
is conducted in the ambient temperature (AM); Boundary condition: case2 

The case2 test is also conducted for the material manufacture by the compression 
molding technology, and the experimental results are displayed in Figure 5-7. The 
results for three components were acceptable and are given here. In the main 
elastic zone, e.g., before the main failure, all components show couples of minor 
damages which result in the reduction of the rigidity. To compare the case2 results 
of compression molding and back-injected molding components the sample 
number one is chosen to be the representative of the set.  

The comparison between two manufacturing technology, for the second case 
which is shown in Figure 5-8, reveals that the hybrid component manufactured by 
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the compression molding reach a higher level of the force and might dissipate 
more energy than the component manufactured by the back-injection molding. 
The comparison between two manufacturing technology, for the case2, reveals 
that the hybrid component manufactured by the compression molding reach the 
higher level of the force and might dissipate more energy than the component 
manufactured by the back-injection molding technique. 

From the very beginning also it is clear that in this case, the BI component is more 
rigid than the CM component. The initiation of the crack observed in the CM 
component by the manifestation of the minor cracks, and since both types possess 
the same geometry, it might be concluded that the CM made a component is 
tougher that the BI. However, this conclusion must be proved by conducting the 
toughness related basic experiments to find the GI and GII. Even after the main 
failure, e.g., the pick points, the CM made component does not drop suddenly to 
the zero value and still can resist loading while on the contrary, the BI made 
component nearly collapses. 

 

Figure 5-7 The 3-point bending; component type is Compression Molding 
(CM); The test is conducted in the ambient temperature (AM); Boundary condition: 

case2 

According to our observation through the experiments, the collapse in both 
cases can be referenced to the initiation and progression of the damage in the 
central column of the internal constituent.  

The quasi static 3-point bending tests are conducted at a different temperature 
than the ambient temperature. They are accomplished by preheating the samples 
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up to 90 degree Celsius then they are loaded such as the previously described 
experiments. The bending test for the preheated components are only carried out 
for the Case1.  

Figure 5-9 shows the experimental results of the 3-point bending for the 
hybrid component manufactured by the compression molding procedure and 
preheated by 90 degree Celsius. In this case, unlike the test at the ambient 
condition, the components show a lower stifness before the main failure occurs 
and the degradation phenomenon is quite gradual. 

 

Figure 5-8 Comparison between the responses of the hybrid components 
manufactured by the back-injected and compression molding; temperature: 

Ambient(AM); Case2  

Figure 5-10 demonstrates the conducted bending test on the hybrid 
components manufactured by the back-injection method while the boundary 
conditions are Case2 and the components are preheated by 90 degree Celsius. In 
fact, more than two components have been tested, but for a couple of reasons, e.g., 
the technical problems, most of them were out of reasonable ranges and had been 
omitted. Also, the nonlinearity degree before the failure point is not negligible and 
the degradation occurs quite gradually.  
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Figure 5-9 The 3-point bending; component type is Compression Molding 
(CM); The test is conducted on the component preheated by 90 Degree Celsius 

(90Deg); Boundary condition: case1 

In Figure 5-11 the comparison between the experimental results of quasi-
static bending tests for the components made of the back-injection method and the 
compression molding technique ,which both are preheated by 90 degree Celsius, 
are represented. As it can be seen, clearly, the CM made component shows higher 
resistance than the BI made one to the bending loading. This resistance includes  

 

Figure 5-10 The 3-point bending; component type is Back-Injected (BI); The 
test is conducted on the component preheated by 90 Degree Celsius (90Deg); 

Boundary condition: case1 

having higher force pick point and the area under the force-displacement curve 
which demonstrates the amount of work has to be done to, in this case, bend the 
component until it completely collapses. 
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Figure 5-11 Comparison between the responses of the hybrid components 
manufactured by the Back-Injected (BI) and Compression Molding (CM); 

temperature: 90 Degree Celsius (90Deg); Case1 

Unlike, the quasi-static bending tests performed for the Case1 at the ambient 
condition, see Figure 5-5, here the preheated components made of two different 
techniques show different stiffness (see Figure 5-11). 

Here, various comparisons are presented between different quasi-static 
bending experimental results such as the bending results between Case1 and 
Case2 for BI manufactured components in Figure 5-13, and the CM made 
components in Figure 5-12. According to Figure 5-12, the stiffness differences are 
negligible between Case2 and Case1, as well as higher pick force (~7kN) versus 
(~4kN). Case2 In the real applications, we probably face the second case (Case2), 
since the exterior part of the components face the impacts or any kinds of loading. 
It might be claimed that the Case2 is a better choice than Case1 in terms of the 
higher stiffness, greater force tolerance and the bigger area under the force-
displacement curve. 

In contrast to the CM manufactured samples, the BI produced components 
show less difference of the force pick points between Case1 and 2 while their 
major differences appear after the main failure. In this case, on the contrary of 
Case2 which collapse after reaching the maximum force point, Case1 shows great 
resistance against damage and the damage is progressive. 
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Figure 5-12 Comparison between the responses of the hybrid components 
manufactured by the Compression Molding (CM); temperature: Ambient (AM); 

Case1& 2 

It seems for both manufacturing process the designer should not rely on the 
energy dissipation capacity of the hybrid components, unless the opposite side of 
the component; e.g., the open side, is reinforced by adding a piece of sheet. This 
might leads to having advantages of both cases. 

 

Figure 5-13 Comparison between the responses of the hybrid components 
manufactured by the Back-Injected (BI); temperature: Ambient (AM); Case1& 2 
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5.2 Simulation of the back-injected manufactured hybrid 
component under quasi-static bending at ambient 
conditions 

Here, We do not intend to simulate the compression molding manufactured 
components and the numerical simulation is concentrated on the quasi-static 
bending of the hybrid component manufactured by the injection over molded 
sheet. The simulation of the hybrid component is performed in the explicit fashion 
as described in section 4.5.2 considering the CDM model as discussed in section  
4.4.1.1. the materials properties are given in Table 5-1 for the short fiber 
reinforced internal part and the outer shell.  

Table 5-1 material properties of molded and injected constituents of the hybrid 
component; all modules of elasticity presented in GPa and strengths in MPa[6]  

Property E11 E22 G12 G23 ν12 ν23 XT XC YT YC S12 

Short 
fiber 8.5 6 2.1 2.3 0.29 0.3 125 200 125 200 50 

Plane 
weave 
fabric 

24.3 25.2 1.3 1.2 0.25 0.3 370 280 430 280 58 

 An isometric view of the hybrid component, without the outer shell and the 
details, is given in Figure 5-14. For the internal reinforcing part, it has been 
supposed that the material properties related to injected and compressed 
components have same values. The thickness assigned to the fabric shell is 1 mm 
while for the internal constituent varies from 2.2 to 5.4 mm at the route [6]. To 
perform the simulation at any stage; e.g., elastic, plastic or damage, the 
determination of the structural tensor and the material symmetries play significant 
roles.  

We try to make the dedicated material symmetries and the structural tensor, 
for any type of the simulations, clear by assigning them some specific colors. Of 
course, due to the lack of knowledge about the exact distributions of the fibers in 
each point, this process cannot be accomplished without some sorts of the 
simplifications, but the care must be taken to not violate the basic principles of the 
structural tensors (see sections 2.1.1 and 1.3.2).  



Simulation of the back-injected manufactured hybrid component 
under quasi-static bending at ambient conditions 

115 

 

 

Figure 5-14 Isometric view of the injected part of the hybrid component. The 
dimensions are in centimeters. 

According to Figure 1-6 and Figure 1-7, the preferred direction a which is 
introduced in section 2.5.2 for the injection gates, which are indicated by red color 
in Figure 5-15, as well as the segments are shown by the gray color might be 
a = [1,0,0]. For the ribs either in blue or green, the preferred direction can be 
defined as 𝑎 = [0.5,0.5,0].  

 

Figure 5-15 The distinguished parts of the internal part in terms of the fiber 
distribution and determination of the structural tensors 

The numerical result for the case1under quasi static bending is compared to 
the experimental results in Figure 5-16. Many simplifications have been applied, 
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such as ignoring the nonlinear response of the material, assigning bulk material 
symmetries according to the observations and not based on a flow simulation.  

 

Figure 5-16 Quasi static bending experimental and numerical results for Case1 
and back-injection technology [6]  

Considering the mentioned simplifications as well as the complex geometry 
of the case study and also the probability of the effect of the manufacturing 
process, including heating and cooling process, on the constituents properties, the 
numerical result shows a quite good agreement with the experimental one.   

 

Figure 5-17 Quasi static bending experimental and numerical results for Case2 
and back-injection technology [6] 
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The numerical calculation has been for the Case2 as well, and the result is 

illustrated in Figure 5-17. The numerical calculation does not predict the total 
stiffness of the Case2, precisely, but in terms of the maximum deflection and the 
maximum force before the collapse, it provides acceptable results.  

 

Figure 5-18 Quasi static bending experimental and numerical results for Case1 
with compression molding technology 

Comparing the numerical results obtained for the Case1 under quasi-static 
loading with the experimental results of the CM made a component in Figure 5-18 
shows a good agreement between them. But it should be noted that the simulation 
is performed using the short fiber reinforced material constants, though, to have  

5.3 Rate-dependent simulation of the back-injected 
manufactured hybrid  

This section is dedicated to the simulation of the hybrid component under 
bending test with the same conditions as explained in section 5.1 by changing the 
puncher’s rate to 127 mm/sec. Even though the loading rate is not dramatically 

changed from the quasi-static one, but according to the experimental results, the 
response is changed, dramatically. The effect of a change in loading rate on the 
Case1 is illustrated in Figure 5-19 so that the force pick point is moved about one 
kN up. Accordingly, the damage mechanisms illustrate some changes, comparing 
to the quasi-static loading. 
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Figure 5-19 The comparison between the Back-Injected component under 
loading condition Case1 at the ambient conditions subjected to the quasi-static and 

127 mm/sec loading 

On the contrary, as it is shown in Figure 5-20, the CM made component show les 
sensitivity to this rate of loading, and it remains quasi unchanged comparing to the 
quasi-static loading condition. In this case, the pick force is the same as a quasi-
static condition while a small change can be observed in the response of the 
component in the degraded zone. 

The simulation of the rate-dependency is accomplished based on the visco-elastic 
model is introduced in section 4.3 as well as the CDM damage model presented in 
section 4.4.1.1. 
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Figure 5-20 The comparison between the Compression Molding (CM) made 
component under loading condition Case1 at the ambient conditions subjected to the 

quasi-static and 127 mm/sec loading 

The numerical and experimental result for the BI made component under 3-
point bending test with the 127 mm/sec velocity are presented in  Figure 5-21.  

 

Figure 5-21 The comparison between the numerical and experimental results 
for the BI made component under 3-point bending test with 127 mm/sec puncher 

velocity [6]. 

The rate-dependent model reaches to ~5kN while the experimental results 
show higher pick point (~6.3 kN) while for the degradation process the numerical 
and experimental results show more agreement. Since in this research we focus on 
the quasi-static cases and mostly on the nonlinear elasto-plasticity behavior of the 
short fiber reinforced thermoplastics in detail, then we do not intend to discuss 
more visco-plasticity or visco-elasticity concepts. 

5.4 Elasto-plasticity results 

In this section, the numerical results of the model for the elsato-plasticity 
damage which is mathematically presented in sections 4.2 and numerically in 4.5 
are illustrated. Firstly, the model is applied to one 3D element using the implicit 
solver by incorporating the so-called UMAT subroutine which is given in 8.1.1. 
Then the model is applied to the fine elements, but the results do not show 
considerable differences with those obtained for the one element. We are also 
interested in the effect of the fiber distribution function, e.g., the structural tensor 
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which discussed in sections 2.1.1, on the stiffness matrix components (see the 
equations (2-56) and (2-66)). The numerical results for longitudinal tension with a 

different distribution of the fibers are presented. The element type is C3D8R, and 

the primary assumption for the preferred direction of the fibers is a = [1,0,0]. 

According to the equations (2-56) and (2-66) for the stiffness matrix, the 
variations of some of the stiffness matrix component are illustrated in . As it can 
be seen in Figure 5-22, C11 earns its maximum value when 100% of the fibers are 
aligned with the preferred direction 1, but its variation with respect to the fibers 
distribution is not linear. In other words, when the percentage of the aligned fibers 
in the direction 1 drops from 100 to 90, the value of C11 decreases about 22 
percent. Since this variation are nonlinear and the major governing component of 
the stress in the direction 1 is C11, then a minor change in the fiber distribution 
can affect the material behavior dramatically. C22 which governs the second 
principal stress component exhibits the same behavior in an opposite direction 
which is a small change in the direction of the fiber direction can affect the 
stiffness component value, drastically.  On the other hand, for example, the 
component C44 which manages the in-plane shear response of the material is 
much more insensitive than those govern the principal component of the stress 
tensor. It might be interpreted the the effect of the shear governing component of 
the stiffness matrix is rather constant respect to the distribution of the fibers. 

 

Figure 5-22 the variation of the stiffness matrix components with respect to the 
fiber distribution function 

Having discussed the effect of the distribution function on the main 
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parameters of the introduced elasto-plasticity model in chapter 3. The core 
element of the elasto-plasticity model is the yield function which is introduced 
into the equation (3-14). The yield function itself includes two main arguments: 

o Invariants (Ii) 
o Hardening parameters (αi) 

According to the invariants set ( see equation (3-13) ), all four invariants are 
related to stress tensors as well as the structural tensor A and their behaviors under 
different structural tensor might be predicted mathematically. But, the objective is 
to validate the segment of the subroutine UMAT (see Appendix1) which 
calculates the invariants. Comparing the expected mathematical results for the set 
of the invariants ,considering equation (3-13),  to the numerical results presented 
in Figure 5-23 for the first invariant, Figure 5-24 for the second invariant, Figure 
5-25 for the third invariant and Figure 5-26 for the last one, might prove the 
validity of the given subroutine in Appendix1 for the calculation of the invariants. 
The first invariant under longitudinal tension, i.e., first loading condition at Table 
3-1, behaves exactly as expected from equation (3-13) which indicates no effect 
of the structural tensor having the following form: 

A = [
0 0 0
0 1 0
0 0 0

] (5-1) 

Which the first invariant under the first loading conditions becomes: 

I1 =
1

2
σ11
2  (5-2) 

The result for that is shown by the black dashed line in Figure 5-23 which is 
completely compatible with the equation (5-2). Another simple check point might 
be introduced by the following structural tensor 

A = [
1 0 0
0 0 0
0 0 0

] (5-3) 

Which gives the first invariant as 

I1 = −
1

2
σ11
2  (5-4) 

Where the result for this specific conditions, which is shown in Figure 5-23, is 
well-matched with equation (5-4).  
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Figure 5-23 variations of the invariant 𝐈𝟏 versus 𝛔𝟏𝟏 under longitudinal tension 

Such examination, as it is accomplished before for the first invariant, is 
performed for the second one. Considering the structural tensor as introduced in 
equation (5-1) the second invariant obtain zero values which are fitted with the 
result in  Figure 5-24. Inserting the introduced structural tensor in equation (5-3) 
into equation (3-13) gives: 

I2 = σ11
2  (5-5) 

Which is completely fit with the numerical result. The result for both first and 
second invariant under a longitudinal simple tensile condition with any type of the 
structural tensor must be the quadratic type, and the numerical result shows the 
same fashion as they are shown in Figure 5-23 and Figure 5-24.  

 

Figure 5-24 variations of the invariant 𝐈𝟐 versus 𝛔𝟏𝟏 under longitudinal tension 
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According to equation (3-13), the third and fourth invariants are linear in 

combination with any structural tensor which can be proved by the numerical 
results in  Figure 5-25 and Figure 5-26. According to the Table 3-4, the hardening 
parameters of the introduced yield function are rather complicated, thus, to avoid 
the corresponding computational errors, the respective subroutines within the 
UMAT or VUMAT must be checked, individually. Since two hardening 
parameters α1 and α2 are similar, then to avoid reiteration only one of the 
respective results is represented in Figure 5-27 which indicates two points: 

o The numerical outcomes are as expected from the from the 
corresponding formula at Table 3-4 including the trends, which is 
more obvious, as well as point by point random check of the curves. 

o The hardening parameter does not change dramatically with respect to 
the fiber distribution function and becomes less sensitive to the fiber 
distribution when their alignment with the tensile direction approach 
to 80 percent.  

According to the relevant formula from Table 3-4, the hardening parameter 
α3 must demonstrate the same trend as the hardening parameter α1 which is 
displayed in Figure 5-28. The same approach has been considered to check the 
validity of the numerical results as for the hardening parameter α1. 

 

Figure 5-25 variations of the invariant 𝐈𝟑 versus 𝛔𝟏𝟏 under longitudinal tension 

It has to be taken into account that only the results indicate the nonlinear 
plasticity behavior of the material are relevant to the context while those results 
which belong to the linear elasticity and the damaged segments must be skipped 
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Figure 5-26 variations of the invariant 𝐈𝟒 versus 𝛔𝟏𝟏 under longitudinal tension 

Since there is a distinct relationship between α3 and α32 as well as the direct 
relation between  α4 and α42, therefore, to avoid irritation, only one of each pair is 
investigated. The variations of the hardening parameter α4 versus σ1 are presented 
in Figure 5-29 under different distributions of the fibers vary from 100% 
alignment with the preferred direction a to 50%. Again, the dramatic changes are 
no observed in the range from 80% alignment of the fibers in the preferred 
direction a to 50% alignment. 

 

Figure 5-27 hardening parameter 𝛂𝟏 vs 𝛔𝟏 

Having verified the core elements of the yield function, now we may turn to 
the entire model verification under different loading conditions. To verify the 
model which is numerically introduced in section 4.5.1 as well as the elasto-
plastic damage introduced in section 4.4.1.1, we begin with one 3-D element 
under different loading and different fiber distribution functions. 
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Figure 5-28 hardening parameter 𝛂𝟑 vs 𝛔𝟏 

The element type is C3D8R, and the primary assumption for the preferred 
direction of the fibers is a=[1,0,0]. The experimental data are available just for the 
state that the entire fibers are aligned with the preferred direction. Thus the other 
numerical results for the different distribution of the fibers must be considered as 
the prediction of the model. Considering the major effect of the fibers distribution 
on C11 which is the dominant component of the stiffness matrix in the tensile 
loading of first direction (see Figure 5-22), of course when the major portion of 
the fibers are still inclined toward on the first direction, then, the minor change of 
the fiber distribution( from 100% to 90% ) cause a considerable change in the 
material response to the tensile loading. 

 

Figure 5-29 hardening parameter 𝛂𝟒 vs 𝛔𝟏 

-0.0001
0.0004
0.0009
0.0014
0.0019
0.0024
0.0029

0 50 100

al
ph

a3
 

stress 11 

a11=1
a11=.9
a11=.8
a11=.7
a11=.6
a11=.5

-0.002
0

0.002
0.004
0.006
0.008
0.01

0.012

0 20 40 60 80 100 120

al
ph

a4
 

stress 11 

a11=1
a11=.9
a11=.8
a11=.7
a11=.6
a11=.5



126 Short fiber reinforced thermoplastics simulation 
 

 

Since the possibility of misalignment of the fibers is extremely high, even 
under fully controlled laboratorial conditions, the design might be more reliable if 
the designer considers a minimum (here 10%) of misalignment for the material. 
The experimental data for the short fiber reinforce thermoplastic PA6GF60 which 
are used to validate the presented elasto-plasticity model are obtained from 
reference [1]. The results of an element under tensile in the longitudinal direction 
with a different distribution of the fibers for PA6GF60 are presented in Figure 
5-30. The legend LT demonstrates the experimental results and the others show 
the simulation results which are performed under the same loading conditions but 
considering different structural tensor. Since the experimental results are just 
available for the specific case that 100% of the fibers are aligned with the tensile 
direction, then the other numerical results remain in the prediction level and 
cannot be validated. According to Figure 5-30, the saturation stress for the case 
with a11 = 1 and aij = 0, ij ≠ 11 is about 120(Mpa) while by decreasing the 
value of a11, the corresponding saturation stresses drop until a11 reaches the value 
of 0.5. Then a reverse trend begins so that by decreasing the value of a11, the 
saturation stress grows, but always remain under the result of  the case with 
a11 = 0.9. As it is in the graph, there is no available result for the response of the 
material after reaching the saturation point, and the numerical results for the 
damage are presented to show the functionality of the user-written subroutine in 
the damaged area.  

 

Figure 5-30 one element analysis (𝛔𝟏𝐯𝐬 𝛆𝟏) of a short fiber reinforced 
thermoplastic under loading condition 1 (see Table 3-1) with different fiber 

distribution (𝐚𝟏𝟏) 
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The numerical along with the experimental results for the compression in the 

longitudinal direction are illustrated in Figure 5-31. The saturation stress for the 

structural tensor with the components a11 = 1 and aij = 0, ij ≠ 11 is rather higher 
than the tension with the same situation (see Figure 5-30) . The variation of the 

a11 from 0.8 to zero affects the response of the PA6GF60 very slightly. Therefore, 

the mean value of 80 Mpa can be considered as a proper value for the maximum 

strength of PA6GF60 under compression . 

 

Figure 5-31 one element analysis (𝛔𝟏𝐯𝐬𝛆𝟏) of a short fiber reinforced 
thermoplastic under loading condition 1 (see Table 3-1) with different fiber 

distribution (𝐚𝟏𝟏) 

For the tension and compression loadings in the transverse direction the result 
is illustrated in Figure 5-32. Since the effect of the fiber orientation function have 
been already described and illustrated for the longitudinal tension and 
compression, we skip this discussion for the transverse direction. The 
experimental results for PA6GF60 under tension and compression are conducted 
by [115] and also reported by [1]. The tensile and compression tests are conducted 
based on ASTM D3039 and ASTM D695−10, respectively.   
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(a) tension (b) compression 

Figure 5-32 one element analysis (𝛔𝟐𝐯𝐬𝛆𝟐) of a short fiber reinforced 
thermoplastic under loading condition 1 (see Table 3-1) with different fiber 

distribution (𝐚𝟏𝟏) 

The associated tensile and compressive test geometries are available in Figure 
5-34. To virtualize the tests by applying the introduced model in chapter 4, we 
have to define an appropriate structural tensor as well as the hardening curves. 
The hardening curves can be extracted from stress versus strain basic curves, i.e., 
the curves from Figure 5-30 to Figure 5-32, by skipping the elastic segments. The 
structural tensor is introduced by [115] by taking the specimens cross section into 
consideration and accomplishing CT scan of the PA6GF60 mold flow plate. 
According to [1] and as it can be observed from the sample’s cross section in 
Figure 5-33, the typical fiber orientation distribution of the short fiber 
thermoplastic injected plate is divided into three layers including two skin layers 
and the core. According to [72], in the outer layers, nearly 80% of the fibers are 
inclined toward the flow direction while in the core layer the 20% of the fibers are 
aligned with the flow direction. Considering the CT scan results from the samples 
cross section which is shown in Figure 5-33, it seems the fibers orientation 
distribution in different layers are compatible with the statement of the reference  
[72]. Therefore, to virtualize both tension and compression tests the structural 
tensor can be considered such as follows for the skin layer: 

A = [
0.8 0 0
0 0.2 0
0 0 0

] (5-6) 

While for the core layer the nonzero values must be exchanged. As it can be 
seen in right side table in Figure 5-33, the component a12 is small enough 
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,comparing to a11 and a22 , to be neglected. Having defines the specimens’ 

geometries, now we may introduce the model used in ABAQUS.  

 
PA6GF60 

2D orientation tensor 

a11 a22 a12 
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Figure 5-33 2D-orientation tensor components according to the CT scan results 
taken from Ref [1] 

Since the specimens are symmetric with respect to three mutually 
perpendicular Cartesian planes, then to reduce the numerical costs, one eighth of 
the model is considered as the FEM model as it is illustrated in Figure 5-35 for the 
tensile test. The FEM analysis accomplished by applying the UMAT subroutines 
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such as presented in Appendix1. The UMAT subroutine in Appendix1 uses the 
introduced elasto-plasticity model in chapter 4 by taking the introduced EPCDM 
damage models (see section 4.4.1) into account. Since the non-local damage 
model is discussed in detail for the PA6GF60 in [1], then we here will focus on 
the damage model  EPCDM. To obtain the material properties for the complete 
alignments of the fibers with flow direction, we assume the PA6GF60’s  
mechanical properties belong to the material with the following structural tensor: 

A = [
0.65 0 0
0 0.35 0
0 0 0

] (5-7) 

The given values for a11 and a22 are the mean values of the respective numbers   
presented in right side table in Figure 5-33 and calculated by [1]. Besides, we 
assume that the material’s mechanical properties vary with respect to the 
structural tensor as the components of the stiffness matrix are presented in Figure 
5-22. Since the ratio of the variation 

  

(a) (b) 

Figure 5-34 tests specimens geometries (a) tension based on ASTM D3039; (b) 
compression based on ASTM D695 −10 

 of the stiffness matrix’s components with respect to the variation of a11is not 
linear, then it is different than the linear inter-extrapolation method introduced by 
[1]. Applying the same ratio, the material properties for the PA6GF60 with 100% 
orientation of the fibers in the injection flow direction can be achieved.  
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(a) (b) 

Figure 5-35 FEM models for the tensile test; (a) one eighth of the real specimen 
with boundary conditions. The red and yellow parts represent the core and the skin, 

respectively. (b) the complete FEM model after applying the symmetries.  

The results are presented  in Table 5-2 for the PA6GF60 with 100% and 65% 
alignments of the fibers in the flow direction. As it is stated and emphasized by 
[1], the method is not validated, and it is only an assumption in the lack of the 
required information for the mechanical properties of the short fiber reinforced 
thermoplastics with a different distribution of the fibers. The numerical and the 
experimental results, just for the longitudinal direction, are illustrated in Figure 
5-36, in order to show the functionality of the method.  

 

Figure 5-36 one element analysis (𝛔𝟏𝐯𝐬 𝛆𝟏) of PA6GF60 under loading condition 
1 (see Table 3-1) using inter-extrapolation method 
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Applying the extrapolation the maximum stress in the longitudinal direction for 
a11 increases by the level of 215 Mpa. A small decrease in the fibers orientation 
distributions in the longitudinal direction by causes a dramatic drop in the 
maximum stress. Since this behavior is not linear, then the maximum drop will 
happen in the first stage, i.e., when a11 changes from 1 to 0.9, while for the 
following steps the reductions decrease. The same approach is valid for the 
compression loading in the longitudinal direction with higher levels of the 
saturation stresses as it is seen in Figure 5-37.   

 

Figure 5-37 one element analysis (𝛔𝟐𝐯𝐬 𝛆𝟐) of PA6GF60 under loading condition 
2 (see Table 3-1) using inter-extrapolation method 

The skin layers under the longitudinal tension are stiffer than the core layer. 
Therefore, they yield before the core. The phenomenon for the tensile test in the 
longitudinal direction is shown in Figure 5-38 which clearly shows that the 
plasticity begins from the outer sides of the layers of the skin and by increasing 
the load it progresses toward the core, then the core itself begins to yield, and the 
process continues until the entire zone yields. The numerical and experimental 
results for the component under tensile and compression loadings in the 
longitudinal direction are presented in Figure 5-39. The numerical results are not 
exactly fit the experimental results due to the fact that the distribution functions 
for each 

Table 5-2 the mechanical properties of PA6GF60 

Property E11 E22 G12 G23 ν12 ν23 

a11 = 0.65 11767 5019 2081 2083 0.0167 0.35 

a11 = 1 21180.6 9034.2 3747.5 3749.5 0.0167 0.35 
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point is not determined and the mean value, as explained before, is applied to the 
model. It is impossible to determine the fiber distributions point by point, 
experimentally, for example using CT scan method. although an injection molding 
flow simulation software such as MOLDFLOW might be a numerical solution. 
Even in this case, i.e., having this kind of information, the entire procedure would 
be a grueling task, especially when a complicated geometry such as the hybrid 
component is introduced in section 1.2. 

     

(a) plasticity flow 

     

(b) damage  

Figure 5-38 plasticity and damage progression status 

The numerical and experimental results for both tensile and compression loadings 
under either tension or compression are presented in Figure 5-40. Since there are 
no available experimental results for damage phenomenon, then we skip the 
associated numerical results.  

Load increasing 
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(a) tensile  (b)compression  

Figure 5-39 displacement versus force; the experimental and the numerical 
results for the longitudinal direction 

 

  

(a) tensile  (b)compression  

Figure 5-40 displacement versus force; the experimental and the numerical 
results for the transverse direction 

5.5 Elasto-plastic simulation of the main component 
under torsion 

From the very beginning the aim to introduce the elasto-plasticity model, 
which is presented in sections 4.1 , theoretically, and 4.2 and numerically in 
section 4.5, was to simulate the nonlinear behavior of the main case study which 
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is introduced in section 1.2. Having some difficulties with the contacts, the 
explicit integration scheme, as explained in section 4.5.2, is chosen. The explicit 
integration scheme, which is called VUMAT, is introduced to ABAQUS in a 2D 
fashion and we use S4R shell element type for all the sections. The elasto-
plasticity model is applied on the injected parts while for the outer shell the elastic 
continuum damage model, introduced in section 4.4.1.1, is applied.   

  

(a) (b) 

Figure 5-41 torsion test configuration; (a) with component (b) without 
component 

The torsion experiment is conducted on the hybrid component with the same 
dimensions as illustrated in Figure 5-14 with the configuration which is presented 
in Figure 5-41. To apply the elasto-plasticity model, it is important to recognize a 
proper structural tensor for each segment which affects strongly the response of 
the component under torsion. According to  Figure 1-6 and the given explanation 
in section 1.2.1 the fibers orientations distributions in the injected columns, which 
are illustrated by red color in Figure 5-15, can be considered as follows: 

A = [
1 0 0
0 0 0
0 0 0

] (5-8) 

Which means it is assumed that the 100% of the fibers are aligned in the flow 
direction, but for the ribs, which are demonstrated by green and blue colors in 
Figure 5-15, it is given as: 

A = [
0.5 0 0
0 0.5 0
0 0 0

] (5-9) 
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Figure 5-42  main model in ABAQUS; blue area are injected, and the red one is 
made of the thermoplastic fabric shell 

The experimental results for the hybrid component are demonstrated in Figure 
5-43 where shows a nonlinear behavior, and it is continued till the damage 
happens in the second column gate and leads the major drop in the component’s 

load bearing. The numerical results show the same trend with a small amount of 
underestimation for either nonlinear and damage response of the component.  

 

Figure 5-43 numerical and experimental results for the component under 
torsion 

The different damage modes are demonstrated in Figure 5-44, and it is 
observed that the second injection gate fails suddenly while the ribs experience 
large deformation before damage.  

   

Figure 5-44 different damage modes under torsion  
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Chapter 7  

6 Summery and future works  

In this chapter, we present the conclusion of the current research and also 
discuss the possible direction for the future works on the short fiber-reinforced 
composites simulations.  

6.1 Conclusion  

This work is mainly dedicated to the short fiber reinforced thermoplastic 
composites, and according to some assumptions, they were considered as the 
transversely isotopic materials. The invariant and representation theories were 
employed to formulate and model the inelastic behavior of the fibrous 
thermoplastics. The elasto-plasticity model was able to capture the nonlinear 
behavior of the short fiber reinforced material for the simple components such as 
discussed in 5.4. In the proposed elasto-plasticity model, the structural tensor 
strongly affects the numerical results. It is a hard, sometimes impossible, task to 
determine the structural tensor for each point of complicated geometries such as 
the current work’s case study (see section 1.2). Therefore, for the simulation of 
the hybrid component under torsion where its nonlinear response was observed, 
we used mean values for different part of the injected constituents. The decision 
about the mean values of the fiber orientation distribution for each section of the 
hybrid component was made based on the photos taken from the damaged zones 
of the internal part. The damaged areas were chosen due to the fact that these 
points are under maximum stress (critical) conditions and have the leading role in 
the mechanical responses. Two damage models were proposed for either of the 
brittle and ductile composites where they were used for the numerical simulation 
of the bending and torsion experiments of the hybrid component, respectively. 
Also, it was shown that the hybrid component manufactured by the compression 
molding process has higher load bearing capacity than the back-injected-
manufactured one with the same geometry.   
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6.2 Future work 

The short fiber reinforced composites possess a complicated substructure 
which depends on many parameters such as the manufacturing techniques and 
conditions including the temperature, humidity and the flow direction and the 
velocity of the melted material. We proposed fully macromechanical constitutive 
equations which the environmental conditions are not regarded. Since any of these 
conditions have a huge impact on the mechanical behavior of the short fiber 
reinforced material, then the implementation of any of these parameters into the 
constitutive equations might be a further improvement of the proposed model. 
Also, the difference between the compression and injected molded short fiber 
reinforced materials are not investigated except for the simple tensile strength. 
Therefore, carrying out the basic experiments such as compression, shear and 
fatigue tests might be a new research activity.  
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Annex 

8 Appendix  

In the appendix, some of the subroutines which are developed based on the 
introduced elasto-plasticity model, in the UMAT format are given. 

8.1 Appendix1 

 Elasto-plasticy with damage UMAT subroutine 8.1.1

The proposed elasto-plasticity model has been coded in the FORTRAN for 
the implicit solver which is called UMAT in ABAQUS documentation. Writing a 
UMAT subroutine is well-documented in the ABAQUS documents, and it is not 
that much different than a written code in the FORTRAN. Some difficulties might 
be encountered during the coding process which using the following tips might be 
alleviated: 

1- Try not to use the main updated variables, i.e., STRESS and DDSDDE, 
with the original name in the internal subroutines arguments. 

2- If you declare a variable in the main subroutine and the variable is used as 
a dummy argument in an internal subroutine, it has to be re-declared in the 
internal subroutine. 

3- To debug the written code, use the command write(*,*) in UMAT and 
write(6,*) in VUAMT to receive the desired line information in .log 
format. 

4- Before applying the written code on the main model, try to apply it on one 
element with different boundary conditions. 

5- Begin writing a code with a simple elastic model and then develop it to 
the complicated models. 

In the following, you can find one of the subroutine which is developed for 
the proposed elasto-plasticity model for transversely isotropic materials. The 
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VUMAT is not given here due to the fact that a UMAT subroutine is easily can be 
converted to a VUMAT type and vice versa. The given subroutines employ the 
isotropic hardening formula to generate the hardening curves with can be easily 
replaced by a look-up type procedure. 

       SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD, 

     1 RPL,DDSDDT,DRPLDE,DRPLDT, 

     2 STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME, 

     3 NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT, 

     4 CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,JSTEP,KINC) 

C 

      INCLUDE 'ABA_PARAM.INC' 

C 

      CHARACTER*80 CMNAME 

      DIMENSION STRESS(NTENS),STATEV(NSTATV), 

     1 DDSDDE(NTENS,NTENS),DDSDDT(NTENS),DRPLDE(NTENS), 

     2 STRAN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(1),DPRED(1), 

     3 PROPS(NPROPS),COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3), 

     4 JSTEP(4)           

 

       DIMENSION STRAINPLAVECOLD(NTENS), STRAINPLAVECNEW(NTENS), 

     * STRAINTOTVECNEW(NTENS), STRAINTOTVECOLD(NTENS), 

     * 

STRAIN_EFF(NTENS),CE_MAT_2D(3,3),CE_MAT_3D(6,6),CDFULL(6,6), 

     * STRESSTRVECNEW(NTENS),STRESSTRVECOLD(NTENS), 

CE4TH(3,3,3,3), 

     * C_TAN(NTENS,NTENS),STRESS_OLD(NTENS), STRESS_TMP(NTENS), 

     *  

DFCDEPS(NTENS),DFTDEPS(NTENS),DMTDEPS(NTENS),DMCDEPS(NTENS), 

     *  STRESS_P_OLD(NTENS), STRESS_P(NTENS), STRAINTEMP(NTENS), 

     *  DDSDDETEMP(NTENS,NTENS),STRESST(NTENS), A_DIR(3,3), 

     *   STRESSELASTIC(NTENS),STRESSELASTIC_OLD(NTENS), 

     *  DDFDE(NTENS),DDMDE(NTENS),SIGMA(NTENS,NTENS), 

STRAN_DIST(NTENS), 

     *   EPS_PERT(NTENS),STRESS_DIST(NTENS) , 

DDSDDE_OLD(NTENS,NTENS), 

     * 

STRESSU(NTENS),STRESSU_OLD(NTENS),DSTRAIN(NTENS),DSTRAIN_OLD(NTENS

),TANG_OLD(NTENS,NTENS) 

      PARAMETER (ZERO = 0.D0,ONE = 1.D0,TWO = 2.D0, HALF = 0.5D0, 

     *    THREE =3.D0)  

C     GET THE MATERIAL PROPERTIES---ENGINEERING CONSTANTS 

       E_11 = PROPS(1)           !YOUNG'S MODULUS IN DIRECTION 1 

       E_22 = PROPS(2)           !YOUNG'S MODULUS IN DIRECTION 2  

       G_12 = PROPS(3)          !SHEAR MODULUS IN 12 PLANE 

       XNU_12 = PROPS(4)          !POISON'S RATIO  

       XNU_23 = PROPS(5)          !POISON'S RATIO  

       G_23 = PROPS(6)          !SHEAR MODULUS IN 23 PLANE 

       X_T = PROPS(7)          !FAILURE STRESS IN 1 DIRECTION IN 

TENSION 

       X_C = PROPS(8)          !FAILURE STRESS IN 1 DIRECTION IN 

COMPRES 
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       Y_T = PROPS(9)          !FAILURE STRESS IN 2 DIRECTION IN 

TENSION 

       Y_C = PROPS(10)          !FAILURE STRESS IN 2 DIRECTION IN 

COMPRE 

       S_12 = PROPS(11)        !FAILURE STRESS IN SHEAR IN 1-2 

PLANE  

       S_21 = PROPS(12)        !FAILURE STRESS IN SHEAR IN 1-2 

PLANE 

       S_23 = PROPS(13)   

       ALPHA = PROPS(14)       ! HASHIN'S COEFFICIENT 

       ETAFT = PROPS(15)       ! REGULARIZATION COEFFICIENT 

       ETAFC = PROPS(16)       ! REGULARIZATION COEFFICIENT 

       ETAMT = PROPS(17)       ! REGULARIZATION COEFFICIENT 

       ETAMC = PROPS(18)       ! REGULARIZATION COEFFICIENT 

       G_MT_C = PROPS(19)    ! MATRIX TAUGHNESS ENERGY IN TENSION 

       G_MC_C = PROPS(20)    ! MATRIX TAUGHNESS ENERGY IN 

COMPRESSION 

       G_FC_C = PROPS(21)    ! FIBER TAUGHNESS ENERGY IN 

COMPRESSION 

       G_FT_C = PROPS(22)    ! FIBER TAUGHNESS ENERGY IN TENSION 

       XMF_M = PROPS(23)    ! NOT USED 

       XMF_S = PROPS(24)    ! NOT USED 

       XMF_G = PROPS(25)    ! NOT USED 

       EPS_QS = PROPS(26)  ! NOT USED 

       EPS_F_X_T = PROPS(27)   

       EPS_F_X_C= PROPS(28)   

       EPS_F_Y_T= PROPS(29)   

       EPS_F_Y_C= PROPS(30)   

       EPS_SC= PROPS(31)   

       PLAST_TOL= PROPS(32) 

       Y_TR_0= PROPS(33)  

       Y_IP_0= PROPS(34)  

       Y2T_0= PROPS(35)  

       Y2C_0= PROPS(36)  

       Y1T_0= PROPS(37)  

       Y1C_0= PROPS(38) 

       A_ST_11= PROPS(39)  

       A_ST_22= PROPS(40)  

       A_ST_33= PROPS(41) ! NOT USED      

       CONST1 = PROPS(42)       

       CONST2= PROPS(43) 

       NUMBREAKINP= PROPS(44) 

       ZETHA= PROPS(45) 

 

C      DEFINE STATE VARIABLES 

         DO I = 1, NTENS         

         STRAINTOTVECOLD(I) = STATEV(I)  

         END DO       

         DFTOLD = STATEV(NTENS+1)    

         DFCOLD = STATEV(NTENS+2) 

         DMTOLD = STATEV(NTENS+3)    

         DMCOLD = STATEV(NTENS+4)    

         DFVTOLD = STATEV(NTENS+5)   

         DFVCOLD = STATEV(NTENS+6)   
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         DMVTOLD = STATEV(NTENS+7)   

         DMVCOLD = STATEV(NTENS+8)   

         XFFTOLD = STATEV(NTENS+9)       

         XFFCOLD = STATEV(NTENS+10)      

         XMFTOLD = STATEV(NTENS+11)      

         XMFCOLD = STATEV(NTENS+12) 

         SIGMA_FT_EQ_0_OLD = STATEV(NTENS+13) 

         DEL_FT_EQ_0_OLD = STATEV(NTENS+14) 

         XFFTTOLD = STATEV(NTENS+15) 

         DEL_FC_EQ_0_OLD = STATEV(NTENS+16) 

         XF_MC_SC_OLD = STATEV(NTENS+17) 

         SIGMA_FC_EQ_0_OLD = STATEV(NTENS+18) 

         SIGMA_MT_EQ_0_OLD = STATEV(NTENS+19) 

         DEL_MT_EQ_0_OLD = STATEV(NTENS+20) 

         SIGMA_MC_EQ_0_OLD = STATEV(NTENS+21) 

         DEL_MC_EQ_0_OLD = STATEV(NTENS+22) 

         DO I = NTENS+23, 2 * NTENS + 22 

         STRAINPLAVECOLD(I-NTENS-22) = STATEV(I) 

         END DO 

         EPSVAR_P_OLD = STATEV(2 * NTENS+24) 

         XF_YIELD_INI_OLD = STATEV(2 * NTENS+25) 

         DO I = 2 * NTENS+26, 3 * NTENS+25 

         STRESSTRVECOLD(I-2 * NTENS-25) = STATEV(I) 

         END DO           

         TOTALTIME_OLD = STATEV(3 * NTENS+27)         

         TIMEINCREMENT_OLD = STATEV(3 * NTENS+28) 

         DELTAGAMMAINTOLD = STATEV(3 * NTENS+29) 

         Y_TR_INI_OLD = STATEV(3 * NTENS+30) 

         Y_IP_INI_OLD = STATEV(3 * NTENS+31) 

         Y1T_INI_OLD = STATEV(3 * NTENS+32) 

         Y1C_INI_OLD = STATEV(3 * NTENS+33) 

         Y2C_INI_OLD = STATEV(3 * NTENS+34) 

         Y2T_INI_OLD = STATEV(3 * NTENS+35) 

         M_UXC_OLD = STATEV(3 * NTENS+36) 

         M_UXT_OLD = STATEV(3 * NTENS+37) 

         M_TUC_OLD = STATEV(3 * NTENS+38) 

         M_TUT_OLD = STATEV(3 * NTENS+39) 

         M_IP_OLD = STATEV(3 * NTENS+40) 

         M_TR_OLD = STATEV(3 * NTENS+41) 

         Y_1C_OD = STATEV(3 * NTENS+42) 

         Y_1T_OD = STATEV(3 * NTENS+43) 

         Y_2C_OD = STATEV(3 * NTENS+44) 

         Y_2T_OD = STATEV(3 * NTENS+45) 

         Y_IP_OD = STATEV(3 * NTENS+46) 

         Y_TR_OD = STATEV(3 * NTENS+47)       

         XINV_1_OLD = STATEV(3 * NTENS+48)        

         XINV_2_OLD = STATEV(3 * NTENS+49)        

         XINV_3_OLD = STATEV(3 * NTENS+50)        

         XINV_4_OLD = STATEV(3 * NTENS+51) 

         DO I = 3 * NTENS+52, 4 * NTENS+51 

         STRESS_P_OLD(I-3 * NTENS-51) = STATEV(I) 

         END DO 

         DO I = 4 * NTENS+52, 5 * NTENS+51 

         STRESSELASTIC_OLD(I-4 * NTENS-51) = STATEV(I) 
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         END DO 

         DO I = 5 * NTENS+52, 6 * NTENS+51 

         STRESSU_OLD(I-5 * NTENS-51) = STATEV(I) 

         END DO 

         DO I = 6 * NTENS+52, 7 * NTENS+51 

         DSTRAIN_OLD(I-6 * NTENS-51) = STATEV(I) 

         END DO 

         XF_YIELD_CURRENT_OLD = STATEV(7 * NTENS+52) 

         ALPHA1_OLD = STATEV(7 * NTENS+53) 

         ALPHA2_OLD = STATEV(7 * NTENS+54) 

         ALPHA4_OLD = STATEV(7 * NTENS+55) 

         ALPHA42_OLD = STATEV(7 * NTENS+56) 

         ALPHA5_OLD = STATEV(7 * NTENS+57) 

         ALPHA52_OLD = STATEV(7 * NTENS+58) 

         

               NALI = NDI 

         STRAINTEMP =  DSTRAN               

               NTALI = NTENS             

               NSHT = NSHR   

               DTIMET = DTIME 

         NTEMP = NDI                       

C    DEFINE OLD STRESS  

         DO I = 1, NTENS         

         STRESS_OLD(I) = STRESS(I)   

         END DO               

C DEFINE THE NEW STRAIN     

        DO I = 1, NTENS          

C         STRAINTOTVECOLD(I) = STRAN(I) 

         STRAINTOTVECNEW(I) = STRAN(I) + DSTRAN(I)       

        END DO 

C TEST 

                  DO I=1, NTENS 

             DSTRAIN(I) = DSTRAN(I)  

                 END DO   

C DEFINE THE STIFFNESS TENSOR        

        CALL STIFF4TH_2D (CE4TH, XNU_12,E_11, E_22,XNU_23, 

G_12,A_DIR,  

     *   NALI, NSHT,A_ST_11,A_ST_22, CE_MAT_2D,CE_MAT_3D)  

 

           IF (NDI .EQ.3) THEN  

               DO I=1, NTENS 

                  DO J=1, NTENS 

             DDSDDE(I,J) = CE_MAT_3D(I,J) 

                 END DO   

                END DO  

            ELSE  

               DO I=1, NTENS 

                  DO J=1, NTENS 

             DDSDDE(I,J) = CE_MAT_2D(I,J) 

                 END DO   

                END DO  

            END IF  

 

C CALCULATE ELASTIC STRESS 
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      CALL GETSTRESS3D(CE_MAT_3D, CE_MAT_2D,STRESSELASTIC, 

     *    STRAINTOTVECNEW,NTALI,NALI)     

         

C TIME DEFINITIONS    

      TOTALTIME_OLD = TIME(2) 

      TOTALTIME_NEW = TOTALTIME_OLD + DTIME    

      TIMEINCREMENT_NEW = DTIME  

C     CHECK THE FAILURE BASED ON OLD STRESS  

       CALL CHECKFAILURE(X_C,X_T,Y_C,Y_T,S_12,STRESS_OLD, 

DFTOLD,DMTOLD,  

     * NALI, NSHT, CELENT,G_FT_C,G_MT_C, STRAINTOTVECNEW, 

EPS_F_X_T,    

     *  EPS_F_X_C, EPS_F_Y_T, EPS_F_Y_C, EPS_SC, CE_MAT_3D, NTALI, 

     *   STRAINPLAVECOLD,TDFT, TDMT, NOEL,DDFDE, DDMDE) 

  

 

C     ! USE VISCOUS REGULARIZATION             

       DFVT = ETAFT / (ETAFT + DTIME) * DFVTOLD + DTIME /  

     *    (ETAFT + DTIME) * TDFT 

       DMVT = ETAMT / (ETAMT + DTIME) * DMVTOLD + DTIME / 

     *   (ETAMT + DTIME) * TDMT      

 

C  PLASTIC BEHAVIOUR MUST BE CHEKED IN THIS POINT TO DEFINE NEW 

STRESSES BEFORE.... 

C  .... DAMAGE INITIATION  

 

       IF (DFVT .NE. ZERO .OR. DMVT.NE. ZERO  ) GOTO 730  

       CALL SHORTFIBERPLAST3D( STRAINPLAVECOLD, STRAINPLAVECNEW,   

     * STRAINTOTVECNEW, STRESST,STRESS_OLD, EPSVAR_P_OLD,  

     * NALI, 

NSHT,CE_MAT_2D,CE_MAT_3D,XF_YIELD_INI_OLD,XF_YIELD_INI_NEW, 

     * C_TAN, STRAINTOTVECOLD, STRESSTRVECNEW, STRESSTRVECOLD, 

     * DTIMET ,TOTALTIME_NEW, TOTALTIME_OLD, DELTAGAMMAINT, 

     * Y_TR_INI_OLD, Y_TR_INI,Y_IP_INI_OLD, Y_IP_INI,Y1T_INI_OLD, 

     * Y1T_INI,Y1C_INI_OLD, Y1C_INI,Y2C_INI_OLD, 

Y2C_INI,Y2T_INI_OLD, 

     * Y2T_INI, M_UXC, M_UXT,M_TUC,M_TUT, M_IP, M_TR, 

Y_1CT,Y_1C_OD, 

     * Y_1TT,Y_1T_OD,Y_2CT,Y_2C_OD, Y_2TT,Y_2T_OD,Y_IPT,Y_IP_OD, 

Y_TRT, 

     * Y_TR_OD,Y_TR_0,Y_IP_0,Y2T_0,Y2C_0,Y1T_0,Y1C_0,A_ST_11, 

A_ST_22, 

     * CONST1, CONST2, XINV_1, XINV_2, XINV_3, 

XINV_4,NTALI,STRESS_P_OLD, 

     *  STRESS_P,NUMBREAKINP,DSTRAN,STRESSELASTIC,XF_YIELD_NEW, 

DSTRAIN_OLD, 

     *,DELTAGAMMAINTOLD ,ALPHA2,ALPHA4,ALPHA42,ALPHA5,ALPHA52) 

               DO I=1, NTENS 

         STRESS(I)= STRESST(I)    

                END DO    

       DO I=1,NTENS 

         DO J=1,NTENS 

              DDSDDE(I,J) = C_TAN(I,J)         

         END DO 
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       END DO 

C DEFINE MAXIMUM STRESS ( THE PICK POINT) 

               DO I=1, NTENS 

              STRESSU(I) = MAX(STRESS(I),STRESS_OLD(I)) 

                END DO 

       GOTO 731 

  730 CONTINUE  

      

C UPDATE THE STATE VARIABLES WHICH ARE NOT PASSING THROUGH THE 

PLASTIC SUBROUTINE 

       EPSVAR_P_NEW = EPSVAR_P_OLD 

C UPDATE PLASTIC STRAINS 

        DO I=1,NTENS 

              STRAINPLAVECNEW(I) = STRAINPLAVECOLD(I)  

            STRESSTRVECNEW(I) = STRESSTRVECOLD(I) 

       END DO            

       XF_YIELD_INI_NEW = XF_YIELD_INI_OLD 

       DELTAGAMMAINT = DELTAGAMMAINTOLD         

       Y_TR_INI = Y_TR_INI_OLD   

       Y_IP_INI =  Y_IP_INI_OLD   

       Y1T_INI  = Y1T_INI_OLD    

       Y1C_INI = Y1C_INI_OLD        

       Y2C_INI = Y2C_INI_OLD        

       Y2T_INI = Y2T_INI_OLD        

       M_UXC = M_UXC_OLD        

       M_UXT =  M_UXT_OLD    

       M_TUC =  M_TUC_OLD    

       M_TUT =  M_TUT_OLD    

       M_IP =   M_IP_OLD    

       M_TR = M_TR_OLD 

       Y_1CT = Y_1C_OD 

       Y_1TT = Y_1T_OD 

       Y_2CT = Y_2C_OD 

       Y_2TT = Y_2T_OD 

       Y_IPT = Y_IP_OD 

       Y_TRT = Y_TR_OD   

       XINV_1 = XINV_1_OLD   

       XINV_2 = XINV_2_OLD   

       XINV_3 = XINV_3_OLD   

       XINV_4 = XINV_4_OLD   

         DO I = 1, NTENS 

         STRESS_P (I) = STRESS_P_OLD(I) 

         END DO 

        DO I=1, NTENS 

        STRESSU(I) = STRESSU_OLD(I) 

        END DO        

         DO I =1,  NTENS 

         STRESSELASTIC(I) = STRESSELASTIC_OLD(I) 

         END DO       

         XF_YIELD_NEW = XF_YIELD_CURRENT_OLD          

         ALPHA1 = ALPHA1_OLD          

         ALPHA2 = ALPHA2_OLD          

         ALPHA4 = ALPHA4_OLD          

         ALPHA42 = ALPHA42_OLD        
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         ALPHA5 = ALPHA5_OLD          

         ALPHA52 = ALPHA52_OLD        

      

          

C DEFINE AN EFFECTIVE ELASTIC STRAIN 

        DO I=1,NTENS 

             STRAIN_EFF(I) = STRAINTOTVECNEW(I)  

       END DO    

        

       STRESS(1) = (ONE - DFVT) * STRESSU(1) 

       STRESS(2) = (ONE - DMVT) * STRESSU(2) 

       STRESS(3) =(ONE - DMVT) * STRESSU(3) 

       STRESS(4) =(ONE - DFVT) * (ONE - DMVT) * STRESSU(4) 

       STRESS(5) =(ONE - DFVT) * (ONE - DMVT) * STRESSU(5) 

       STRESS(6) =(ONE - DFVT) * (ONE - DMVT) * STRESSU(6)      

        

          IF (STRAINTOTVECNEW(1).GE.ZERO .AND. DFVT.NE.ZERO )   

     *   STRAIN_EFF(1) =  STRESS(1)/CE_MAT_3D(1,1) 

          IF (STRAINTOTVECNEW(2).GE.ZERO.AND. DMVT.NE.ZERO)  

     *     STRAIN_EFF(2) = STRESS(2)/CE_MAT_3D(2,2)  

 

       DO I=1, NTENS 

      STRAIN_EFF(I)=(ONE-DFVT)*(STRAINTOTVECNEW(I)-

STRAINPLAVECNEW(I))    

       END DO 

             

C       CALL GETSTRESS3D_FULL(CE_MAT_3D,CE_MAT_2D,DFVT,DMVT, 

C      *    STRAIN_EFF, NTALI,NALI,STRESST,CDFULL) 

      

      CALL 

GETCD_FULL(CE_MAT_3D,CE_MAT_2D,DFVT,DMVT,NTALI,NALI,CDFULL)   

          

       STRESS(1) = (ONE - DFVT) * STRESSU(1) 

       STRESS(2) = (ONE - DMVT) * STRESSU(2) 

       STRESS(3) =(ONE - DMVT) * STRESSU(3) 

       STRESS(4) =(ONE - DFVT) * (ONE - DMVT) * STRESSU(4) 

       STRESS(5) =(ONE - DFVT) * (ONE - DMVT) * STRESSU(5) 

       STRESS(6) =(ONE - DFVT) * (ONE - DMVT) * STRESSU(6) 

 

C       GOTO 578        

      CALL XJACOBIAN_CALC(CDFULL,CE_MAT_3D,DTIMET,NTALI,NALI,DMVT,   

     * DFVT,STRAIN_EFF,ETAFT,DDSDDETEMP,DDFDE,DDMDE) 

               DO I=1, NTENS 

                  DO J=1, NTENS 

       DDSDDE(I,J) =  DDSDDETEMP(I,J) 

                 END DO   

                END DO 

C  578  CONTINUE      

               DO I=1, NTENS 

                  DO J=1, NTENS 

       DDSDDE(I,J) = 0.1D0 * CE_MAT_3D(I,J) 

                 END DO   

                END DO               
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  731 CONTINUE    

C     DEFINE THE NEWVARIABLES        

         DO I = 1, NTENS         

         STATEV(I) = STRAINTOTVECNEW(I)  

         END DO           

         STATEV(NTENS+1) = TDFT    

         STATEV(NTENS+2) = TDFC 

         STATEV(NTENS+3) = TDMT  

         STATEV(NTENS+4) = TDMC  

         STATEV(NTENS+5) = DFVT 

         STATEV(NTENS+6) = DFVC  

         STATEV(NTENS+7) = DMVT  

         STATEV(NTENS+8)= DMVC    

         STATEV(NTENS+9) = XFFT      

         STATEV(NTENS+10) = XFFC         

         STATEV(NTENS+11) = XMFT         

         STATEV(NTENS+12) = XMFC 

         STATEV(NTENS+13) = SIGMA_FT_EQ_0_NEW 

         STATEV(NTENS+14) = DEL_FT_EQ_0_NEW  

         STATEV(NTENS+15) = XFFTT 

         STATEV(NTENS+16) = DEL_FC_EQ_0_NEW 

         STATEV(NTENS+17) = XF_MC_SC_NEW 

         STATEV(NTENS+18) = SIGMA_FC_EQ_0 

         STATEV(NTENS+19) = SIGMA_MT_EQ_0_NEW 

         STATEV(NTENS+20) = DEL_MT_EQ_0_NEW 

         STATEV(NTENS+21) = SIGMA_MC_EQ_0_NEW 

         STATEV(NTENS+22) = DEL_MC_EQ_0_NEW 

         DO I = NTENS+23, 2 * NTENS + 22 

         STATEV(I) = STRAINPLAVECNEW(I-NTENS-22) 

         END DO 

         STATEV(2 * NTENS+24) = EPSVAR_P_NEW 

         STATEV(2 * NTENS+25) = XF_YIELD_INI_NEW  

         DO I = 2 * NTENS+26, 3 * NTENS+25 

         STATEV(I) = STRESSTRVECNEW(I-2 * NTENS-25) 

         END DO       

         STATEV(3 * NTENS+27) = TOTALTIME_NEW         

         STATEV(3 * NTENS+28) = TIMEINCREMENT_NEW 

         STATEV(3 * NTENS+29) = DELTAGAMMAINT 

         STATEV(3 * NTENS+30) = Y_TR_INI  

         STATEV(3 * NTENS+31) = Y_IP_INI 

         STATEV(3 * NTENS+32) = Y1T_INI 

         STATEV(3 * NTENS+33) = Y1C_INI 

         STATEV(3 * NTENS+34) = Y2C_INI 

         STATEV(3 * NTENS+35) = Y2T_INI 

         STATEV(3 * NTENS+36) = M_UXC 

         STATEV(3 * NTENS+37) = M_UXT 

         STATEV(3 * NTENS+38) = M_TUC 

         STATEV(3 * NTENS+39) = M_TUT 

         STATEV(3 * NTENS+40) = M_IP 

         STATEV(3 * NTENS+41) = M_TR 

         STATEV(3 * NTENS+42) = Y_1CT 

         STATEV(3 * NTENS+43) = Y_1TT 

         STATEV(3 * NTENS+44) = Y_2CT 

         STATEV(3 * NTENS+45) = Y_2TT 
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         STATEV(3 * NTENS+46) = Y_IPT 

         STATEV(3 * NTENS+47) = Y_TRT         

         STATEV(3 * NTENS+48) = XINV_1    

         STATEV(3 * NTENS+49) = XINV_2        

         STATEV(3 * NTENS+50) = XINV_3        

         STATEV(3 * NTENS+51) = XINV_4 

         DO I = 3 * NTENS+52, 4 * NTENS+51 

         STATEV(I) = STRESS_P(I-3 * NTENS-51) 

         END DO  

         DO I = 4 * NTENS+52, 5 * NTENS+51 

         STATEV(I) = STRESSELASTIC(I-4 * NTENS-51) 

         END DO  

         DO I = 5 * NTENS+52, 6 * NTENS+51 

          STATEV(I)= STRESSU(I-5 * NTENS-51) 

         END DO 

         DO I = 6 * NTENS+52, 7 * NTENS+51 

         STATEV(I) = DSTRAIN(I-6 * NTENS-51) 

         END DO 

         STATEV(7 * NTENS+52) = XF_YIELD_NEW 

         STATEV(7 * NTENS+53) = ALPHA1 

         STATEV(7 * NTENS+54) = ALPHA2 

         STATEV(7 * NTENS+55) = ALPHA4 

         STATEV(7 * NTENS+56) = ALPHA42 

         STATEV(7 * NTENS+57) = ALPHA5 

         STATEV(7 * NTENS+58) = ALPHA52 

                      

      RETURN 

      END 

C*****************************************************************

************* 

C    PLASTICITY SUBROUTINE FOR SHORT FIBERS OF 2-D CASE 

C*****************************************************************

************* 

       SUBROUTINE SHORTFIBERPLAST3D( STRAINPLAVECOLD, 

STRAINPLAVECNEW,   

     * STRAINTOTVECNEW, STRESS_NEW, STRESS_OLD, EPSVAR_P_OLD,   

     * EPSVAR_P_NEW, ND, NSH, CE_2D, CE_3D, 

     *   XF_YIELD_INI_OLD, XF_YIELD_INI_NEW, C_TAN,  

     *  STRAINTOTVECOLD, STRESSTRVECNEW, STRESSTRVECOLD, 

PLAST_TOL, 

     *  DT ,TOTALTIME_NEW, TOTALTIME_OLD,  

     *   DELTAGAMMAINT,Y_TR_INI_OLD, Y_TR_INI,  

     *  Y_IP_INI_OLD, Y_IP_INI,Y1T_INI_OLD, Y1T_INI,Y1C_INI_OLD,  

     *  Y1C_INI,Y2C_INI_OLD, Y2C_INI,Y2T_INI_OLD, Y2T_INI, M_UXC, 

M_UXT, 

     *   M_TUC,M_TUT, M_IP, M_TR, 

Y_1C,Y_1C_OLD,Y_1T,Y_1T_OLD,Y_2C, 

     *   Y_2C_OLD, Y_2T,Y_2T_OLD,Y_IP,Y_IP_OLD, 

Y_TR,Y_TR_OLD,Y_TR_0, 

     * Y_IP_0,Y2T_0,Y2C_0,Y1T_0,Y1C_0,A_ST_11,A_ST_22,CONST1,  

     * CONST2, XI1_T, XI2_T, XI5_T, XI4_T,NTT,STRESS_P_OLD, 

STRESS_P, 

     *  NUMBREAK, 

DSTRAIN,STRESSELAST,XF_YIELD_NEW,DSTRAIN_OLD,CE4TH, 
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     * 

DELTAGAMMAINTOLD,ALPHA1,ALPHA2,ALPHA4,ALPHA42,ALPHA5,ALPHA52)      

      

      INCLUDE 'ABA_PARAM.INC' 

       CHARACTER(LEN=:), ALLOCATABLE :: FILEPATH_IP, FILEPATH_TR,  

     * FILEPATH_TUC, FILEPATH_TUT, FILEPATH_UXC, FILEPATH_UXT 

       DIMENSION STRAINTRVECNEW(NTT), STRAINTRVECOLD(NTT), 

     * STRAINPLAVECOLD(NTT), STRAINPLAVECNEW(NTT), 

     *  STRAINTOTVECNEW(NTT), STRAINTOTVECOLD(NTT), 

     * X_N_F(NTT),DISTURB(NTT), STRESSELAST(NTT), 

     * STRESSTRVECNEW(NTT),STRESSTRVECOLD(NTT), CE_3D(6,6), 

     *  DELTA(3,3), X_N_G(NTT), A_DIR(3,3), C_TAN(NTT,NTT), 

     * CE_2D(3,3), STRESS_NEW( NTT), STRESS_OLD(NTT),  

     *  DI1DSIGMA(NTT), DI2DSIGMA(NTT), 

DI4DSIGMA(NTT),DI5DSIGMA(NTT), 

     * DI3DSIGMA(NTT),STRESS_P_OLD(NTT),STRESS_P(NTT), 

     * DSTRESS_P(NTT), 

DSTRAIN(NTT),STRAINPLAVECINT(NTT),TANG_OLD(NTT,NTT), 

     *  SIGMA(NTT,NTT), STRAN_DIST(NTT), 

EPS_PERT(NTT),STRESS_DIST(NTT), 

     * 

DSTRAIN_OLD(NTT),X_M_MAT(6,6),X_M_TEN(3,3,3,3),TENSOR1(3,3,3,3), 

     * 

TENSOR2(3,3,3,3),TENSOR3(3,3),X_I_S(3,3,3,3),X_I(3,3,3,3),CE4TH(3,

3,3,3), 

     *  

TENSOR5(3,3,3,3),TENSOR4(3,3),F_TEN(NTT,NTT),DSIGMADDELTAGAMMA(NTT

), 

     * TERM3(NTT), A_DIR_VEC(3), 

P_PIND(3,3,3,3),P_PIND_A(3,3,3,3), A_DEV(3,3), 

     * 

TERM20(NTT,NTT),TERM21(NTT,NTT),TERM22(NTT,NTT),TERM23(NTT,NTT), 

     * 

TERM24(NTT,NTT),TERM30(NTT),TERM31(NTT),TERM32(NTT),TERM25(NTT,NTT

) 

 

      ALLOCATABLE  XY_TRSHEAR(:,:),   

     * XY_IPSHEAR(:,:), XY_IPSHEAR_T(:,:), XY_TRBC(:,:), 

XY_TRBC_T(:,:),  

     * XY_TRUC(:,:), XY_TRUC_T(:,:), XY_TRT(:,:), XY_TRT_T(:,:), 

     *  XY_UXT_T(:,:), XY_TRSHEAR_T(:,:),XY_TRBT(:,:), 

XY_TRBT_T(:,:), 

     *  XY_UXC(:,:), XY_UXC_T(:,:), XY_UXT(:,:) 

       PARAMETER (ZERO = 0.D0, ONE = 1.D0, TWO = 2.D0, HALF = 

0.5D0, 

     1          THREE = 3.D0, FOUR = 4.D0, EPS_P = 0.5D0 )   

        CALL FIBER_DIR(A_DIR,A_ST_11,A_ST_22) 

        A_DIR_VEC(1) = A_DIR(1,1) 

        A_DIR_VEC(2) = A_DIR(2,2) 

        A_DIR_VEC(3) = A_DIR(3,3) 

C       DEFINE KRONECKER DELTA 

           DO I = 1, 3 

             DO J = 1, 3 

              IF ( I .EQ. J ) THEN  
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              DELTA(I,J) = ONE 

              ELSE 

             DELTA(I,J) = ZERO   

              END IF        

            END DO            

          END DO   

C          DEFINE ELASTIC STRAIN  

        DO I = 1 , NTT 

       STRAINTRVECNEW(I) = STRAINTOTVECNEW(I) - STRAINPLAVECOLD(I)   

C        STRAINTRVECNEW(I) = STRAINTOTVECNEW(I) 

        END DO 

      CALL GETSTRESS3D(CE_3D, CE_2D,STRESSTRVECNEW,STRAINTRVECNEW, 

     *    NTT,ND)          

C      IMPORT PLASTICITY DATA FROM EXTERNAL FILE FOR DIFFERENT 

EXPERIMENTS 

         XF_CF_SH = ONE  ! FOR SHORT FIBER REINFORCED 

THERMOPLASTICS 

         XF_CF_UNI = ONE ! FOR SHORT FIBER REINFORCED 

THERMOPLASTICS 

          

         Y_TR_INI = Y_TR_0 * ( 1.D0 - EXP(-CONST1 * CONST2) ) 

         Y_IP_INI = Y_IP_0 * ( 1.D0 - EXP(-CONST1 * CONST2) ) 

         Y2T_INI = Y2T_0 * ( 1.D0 - EXP(-CONST1 * CONST2) ) 

         Y2C_INI = Y2C_0 * ( 1.D0 - EXP(-CONST1 * CONST2) ) 

         Y1T_INI = Y1T_0 * ( 1.D0 - EXP(-CONST1 * CONST2) ) 

         Y1C_INI = Y1C_0 * ( 1.D0 - EXP(-CONST1 * CONST2) ) 

         Y_TR = ZERO 

         Y_IP = ZERO 

         Y2T = ZERO 

         Y2C = ZERO 

         Y1T = ZERO 

         Y1C = ZERO 

         IF (Y_TR_OLD.EQ.ZERO) Y_TR_OLD = Y_TR_INI 

         IF (Y_IP_OLD.EQ.ZERO) Y_IP_OLD = Y_IP_INI 

         IF (Y_2T_OLD.EQ.ZERO) Y_2T_OLD = Y2T_INI 

         IF (Y_2C_OLD.EQ.ZERO) Y_2C_OLD = Y2C_INI 

         IF (Y_1T_OLD.EQ.ZERO) Y_1T_OLD = Y1T_INI 

         IF (Y_1C_OLD.EQ.ZERO) Y_1C_OLD = Y1C_INI 

      CALL INVARIANTS(STRESS_OLD, ND, NSH,XI1_T, 

     *   XI2_T,XI5_T,XI4_T,NTT, A_ST_11,A_ST_22, 

     *   TRSIGMA,DI1DSIGMA,DI2DSIGMA,DI4DSIGMA,DI5DSIGMA) 

C***************************************************************** 

C       DEFINE THE INVARIANTS FOR SHORT FIBER REINFORCED 

THERMOPLASTICS 

C*****************************************************************   

      CALL INVARIANTS(STRESSTRVECNEW, ND, NSH,XI1_INI, 

     *   XI2_INI,XI5_INI,XI4_INI,NTT, A_ST_11,A_ST_22, 

     *   TRSIGMA,DI1DSIGMA,DI2DSIGMA,DI4DSIGMA,DI5DSIGMA) 

      

      CALL CALCALPHA(Y_TR_INI,Y_IP_INI,Y1T_INI, Y1C_INI,  

     *  Y2C_INI,Y2T_INI, ALPHA1_INI, ALPHA2_INI,ALPHA4_INI, 

     *  ALPHA42_INI, ALPHA5_INI, ALPHA52_INI )  

  

C   DEFINE INITIA YIELD CRITERION    
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        XF_YIELD_INI_NEW = ALPHA1_INI * XI1_INI+ ALPHA2_INI * 

XI2_INI + 

     * ALPHA4_INI * XI4_INI + ALPHA42_INI * XI4_INI ** TWO +  

     * ALPHA5_INI * XI5_INI + ALPHA52_INI * XI5_INI ** TWO 

         

       CALL CALCBETA(Y_TR_INI,Y_IP_INI,Y1T_INI, Y1C_INI, Y2C_INI,  

     * Y2T_INI, BETA1, BETA2, BETA32T,BETA32C, BETA42T, BETA42C )  

               

C DEFINE TENSION OR COMPRESSION SITUATION 

       IF (TRSIGMA >= ZERO)THEN     

       BETA32 = BETA32T     

       BETA42 = BETA42T     

       ELSE             

       BETA32 = BETA32C     

       BETA42 = BETA42C         

       END IF      

C DEFINE POTENTIAL FUNCTION 

        X_G_NEW = BETA1 * XI1_INI+ BETA2 * XI2_INI + 

     *  BETA32 * XI3_INI ** TWO + BETA42 * XI4_INI ** TWO - ONE   

C ADDITIONAL DATA FOR NEWTON METHOD 

          DO I = 1, 3 

             DO J = 1, 3       

               DO K = 1, 3    

                 DO L = 1, 3                  

       X_I(I,J,K,L) = 0.5D0 * DELTA(I,K)* DELTA(J,L) 

       X_I_S(I,J,K,L) = X_I(I,J,K,L)-(1.D0/3.D0) *DELTA(I,J)* 

DELTA(K,L)     

      TENSOR5(I,J,K,L) = A_DIR(I,J)* A_DIR(K,L)         

                END DO           

              END DO                                   

            END DO            

          END DO  

           

          DO I = 1, 3 

             DO J = 1, 3       

               DO K = 1, 3    

                 DO L = 1, 3                  

      TENSOR2(I,J,K,L) = ZERO      ! DECLARE THE TENSORS' 

DIMENSIONS       

                   DO M = 1, 3      

      TENSOR2(I,J,K,L) = TENSOR2(I,J,K,L) + (A_DIR(I,M)* 

X_I(M,J,K,L) 

     *  +  X_I(I,J,K,M) * A_DIR(M,L))             

                   END DO  

                END DO           

              END DO                                   

            END DO            

          END DO  

 

          DO I = 1, 3 

             DO J = 1, 3 

      TENSOR3(I,J) = ZERO      

               DO K = 1, 3    

                 DO L = 1, 3                                
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      TENSOR3(I,J) = TENSOR3(I,J) + A_DIR(K,L) * X_I_S(K,L,I,J)  

  

                END DO           

              END DO                                   

            END DO            

          END DO 

           

          DO I = 1, 3 

             DO J = 1, 3       

               DO K = 1, 3    

                 DO L = 1, 3                       

      TENSOR1(I,J,K,L)= X_I(I,J,K,L)-TENSOR2(I,J,K,L)                 

                END DO           

              END DO                                   

            END DO            

          END DO  

           

          DO I = 1, 3 

             DO J = 1, 3  

      TENSOR4(I,J) = 3.D0 * A_DIR(I,J) - (A_DIR(1,1)+A_DIR(2,2)+ 

     * A_DIR(3,3)) * DELTA(I,J)                                

            END DO            

          END DO  

           

          DO I = 1, 3 

             DO J = 1, 3 

               DO K = 1, 3 

                 DO L = 1, 3 

      X_M_TEN(I,J,K,L) = BETA1 * TENSOR1(I,J,K,L) + BETA2 * 

TENSOR2(I,J,K,L) +  

     *  (3.D0 / 2.D0)  * BETA32 * TENSOR3(I,J)* TENSOR4(K,L) + 

2.D0 * 

     *  BETA42 * TENSOR5(I,J,K,L) 

                END DO            

              END DO              

            END DO            

          END DO   

 

          CALL TENSTOMATRIX6(X_M_TEN,X_M_MAT) 

          DO I = 1, 6 

             DO J = 1, 6 

          X_M_MAT(J,I)= X_M_MAT(I,J)      

            END DO            

          END DO     

C      IMPORT PLASTICITY DATA FROM EXTERNAL FILE FOR DIFFERENT 

EXPERIMENTS 

       DO I=1,NTT 

      STRESS_P(I) = ZERO 

       END DO 

 

      CALL GETSTRESS3D(CE_3D, CE_2D,STRESSELAST,DSTRAIN, NTT,ND) 

C          

      IF ( EPSVAR_P_OLD .NE. ZERO ) GOTO 125   

      IF ( XF_YIELD_INI_NEW < ONE ) GOTO 600 



164 Appendix 
 

 

  125 CONTINUE 

C                           """""""ELASTIC PREDICTOR""""""" 

   

C   SET DELTAGAMMAINT INITIAL VALUE    

       DELTAGAMMAINT = ZERO   

C   SET EPSVAR_P 

C     START THE ITERATION (LOOP) TO FIND PLASTIC MULTIPLIER  

DELTAGAMMAINT AND UPDATING PLASTIC STRAINS 

        NUMC = 0 

C INITIALIZE NEW STRESS  

         DO I = 1, NTT 

C        STRESS_NEW(I) = STRESSELAST(I)+STRESS_OLD(I)                   

        STRESS_NEW(I) = STRESSTRVECNEW(I)                   

         END DO       

C INITIALIZE THE EQUIVALENT PLASTIC STRAIN  

        DO I = 1, NTT 

          STRAINPLAVECINT(I) = STRAINPLAVECOLD(I)  

        END DO 

        EPSVAR_P_INT = EPSVAR_P_OLD      

      DO ! MAIN LOOP 

        NUMC = NUMC + 1  

 

C        CALL F_TEN_GENERATOR(F_TEN, X_M_MAT,DELTAGAMMAINT, CE_3D) 

       CALL F_TEN_GENERATOR_TOT(F_TEN, X_M_TEN,DELTAGAMMAINT, 

CE4TH)     

   

C   CALCULATE STRESS TENSOR                     

         DO I = 1, NTT 

             STRESS_NEW(I) = ZERO 

            DO J = 1, NTT 

         STRESS_NEW(I) =  STRESS_NEW(I) + F_TEN(I,J)* 

STRESSTRVECNEW(J)                            

           END DO 

         END DO 

C      IMPORT PLASTICITY DATA FROM EXTERNAL FILE FOR DIFFERENT 

EXPERIMENTS 

   

C***************************************************************** 

C  1. (TRANSVERSE SHEAR PLASTIC-STRAIN VS YIELD STRESS) Y_TR    

C***************************************************************** 

          EPS_TRSHEAR_P = EPSVAR_P_INT * XF_CF_SH 

      Y_TR = Y_TR_0 * (1.D0 - EXP(-CONST1 * (EPS_TRSHEAR_P + 

CONST2) ) ) 

      D_Y_TR_D_EPSVAR_P = Y_TR_0 * CONST1 * EXP(-CONST1 * 

(EPS_TRSHEAR_P + CONST2) ) 

C***************************************************************** 

C  2.  (IN-PLANE SHEAR PLASTIC-STRAIN VS YIELD STRESS) Y_IP 

C***************************************************************** 

          EPS_IPSHEAR_P = EPSVAR_P_INT * XF_CF_SH 

      Y_IP = Y_IP_0 * (1.D0 - EXP(-CONST1 * (EPS_IPSHEAR_P + 

CONST2) ) ) 

      D_Y_IP_D_EPSVAR_P = Y_IP_0 * CONST1 * EXP(-CONST1 * 

(EPS_IPSHEAR_P + CONST2) ) 

C***************************************************************** 
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C  3. (TRANSVERSE UNIAXIAL TENSION PLASTIC-STRAIN VS YIELD STRESS)  

C***************************************************************** 

          EPS_TUT_P = EPSVAR_P_INT * XF_CF_UNI 

      Y_2T = Y2T_0 * (1.D0 - EXP(-CONST1 * (EPS_TUT_P + CONST2) ) 

) 

      D_Y_2T_D_EPSVAR_P = Y2T_0 * CONST1 * EXP(-CONST1 * 

(EPS_TUT_P + CONST2) ) 

C***************************************************************** 

C  5.(TRANSVERSE UNIAXIAL COMPRESSION PLASTIC-STRAIN VS YIELD 

STRESS) Y_UC 

C***************************************************************** 

          EPS_TRUC_P = EPSVAR_P_INT * XF_CF_UNI 

      Y_2C = Y2C_0 * (1.D0 - EXP(-CONST1 * (EPS_TRUC_P + CONST2) ) 

) 

      D_Y_2C_D_EPSVAR_P = Y2C_0 * CONST1 * EXP(-CONST1 * 

(EPS_TRUC_P + CONST2) ) 

C***************************************************************** 

C  7. (UNIAXIAL TENSION IN FIBER DIRECTION PLASTIC-STRAIN VS YIELD 

STRESS) Y_1T 

C***************************************************************** 

          EPS_UXT_P = EPSVAR_P_INT * XF_CF_UNI 

      Y_1T = Y1T_0 * (1.D0 - EXP(-CONST1 * (EPS_UXT_P + CONST2) ) 

) 

      D_Y_1T_D_EPSVAR_P = Y1T_0 * CONST1 * EXP(-CONST1 * 

(EPS_UXT_P + CONST2) ) 

C   

****************************************************************** 

C  8. (UNIAXIAL COMPRESSION IN FIBER DIRECTION PLASTIC-STRAIN VS 

YIELD STRESS) Y_1C 

C  

****************************************************************** 

          EPS_UXC_P = EPSVAR_P_INT * XF_CF_UNI 

      Y_1C = Y1C_0 * (1.D0 - EXP(-CONST1 * (EPS_UXC_P + CONST2) ) 

) 

      D_Y_1C_D_EPSVAR_P = Y1C_0 * CONST1 * EXP(-CONST1 * 

(EPS_UXC_P + CONST2) ) 

C*****************************************************************  

C       DEFINE THE INVARIANTS FOR SHORT FIBER REINFORCED 

THERMOPLASTICS 

C*****************************************************************  

      CALL INVARIANTS(STRESS_NEW, ND, NSH,XI1,XI2,XI5,XI4,NTT, 

A_ST_11, 

     * A_ST_22,TRSIGMA,DI1DSIGMA,DI2DSIGMA,DI4DSIGMA,DI5DSIGMA)               

C CALCULATE NEW ALPHA 

 

      CALL CALCALPHA(Y_TR,Y_IP,Y_1T, Y_1C,Y_2C,Y_2T, ALPHA1, 

ALPHA2, 

     *  ALPHA4,ALPHA42, ALPHA5, ALPHA52 )     

C DEFINE TENSION OR COMPRESSION SITUATION 

 

C   DEFINE INITIA YIELD CRITERION    

        XF_YIELD_NEW = ALPHA1 * XI1+ ALPHA2 * XI2 +ALPHA4* XI4 +  

     * ALPHA42 * XI4** TWO + ALPHA5* XI5 + ALPHA52 * XI5 ** TWO - 

ONE 
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C   CALCULATE THE GRADIENT OF THE YIELD FUNCTION                    

         DO I = 1, NTT 

         X_N_F(I) = ALPHA1 * DI1DSIGMA(I) + ALPHA2 * DI2DSIGMA(I) 

+  

     *  ALPHA4 *  DI4DSIGMA(I) + TWO * ALPHA42 * XI4 * 

DI4DSIGMA(I)+  

     *  ALPHA5 *  DI5DSIGMA(I) + TWO * ALPHA52 * XI5 * 

DI4DSIGMA(I)                     

         END DO  

C                 DETERMINE DALPHA/DEPS BASED ON VOGLERS FORMULA 

       DALPHA1DEPSVAR_P = ( -2.D0 / Y_TR ** 3.D0 ) * 

D_Y_TR_D_EPSVAR_P 

       DALPHA2DEPSVAR_P = ( -2.D0 / Y_IP ** 3.D0 ) * 

D_Y_IP_D_EPSVAR_P 

 

      DEN =  Y_1T + Y_1C      

      XNUM = ONE/Y_1C +ONE/Y_1T + HALF * ALPHA1 * (Y_1C+Y_1T) - 

ALPHA2 *      

     *   (Y_1C+Y_1T)  

      DALPHA42DEPSVAR_P = ( (-ONE/Y_1T**TWO +HALF * ALPHA1 - 

ALPHA2) *  

     *   DEN - XNUM ) * D_Y_1T_D_EPSVAR_P / DEN**2.D0  +( (-

ONE/Y_1C**  

     *   TWO + HALF * ALPHA1-ALPHA2) *DEN - XNUM ) * 

D_Y_1C_D_EPSVAR_P / 

     *  DEN**2.D0+ HALF * DALPHA1DEPSVAR_P - DALPHA2DEPSVAR_P  

      DALPHA4DEPSVAR_P = (-ONE/Y_1T**TWO + HALF * ALPHA1 - ALPHA2 

-  

     * ALPHA42) * D_Y_1T_D_EPSVAR_P + HALF * Y_1T * 

DALPHA1DEPSVAR_P -  

     * Y_1T * DALPHA2DEPSVAR_P - Y_1T * DALPHA42DEPSVAR_P 

       DEN =   Y_2T + Y_2C            

       XNUM = ONE/Y_2C +ONE/Y_2T - HALF * ALPHA1 * (Y_2C+Y_2T)            

      DALPHA52DEPSVAR_P = ( (-ONE/Y_2T**TWO - HALF * ALPHA1)  *DEN 

-   

     * XNUM ) * D_Y_2T_D_EPSVAR_P /DEN**2.D0 + ((-ONE/Y_2C**TWO - 

HALF * 

     * ALPHA1)  *DEN - XNUM ) * D_Y_2C_D_EPSVAR_P /DEN**2.D0 - 

HALF * 

     * DALPHA1DEPSVAR_P 

      DALPHA5DEPSVAR_P = -(ONE/Y_2T**TWO + HALF * ALPHA1 + ALPHA52 

) * 

     * D_Y_2T_D_EPSVAR_P - HALF * Y_2T * DALPHA1DEPSVAR_P - Y_2T *  

     *  DALPHA52DEPSVAR_P  

C            END FOR D(ALPHA)/D(EQUIVALENT STRAIN)    

          DO I = 1, NTT 

              DSIGMADDELTAGAMMA(I) = ZERO 

             DO J = 1, NTT 

               DO K = 1, NTT 

                 DO L = 1, NTT 

       DSIGMADDELTAGAMMA(I) = DSIGMADDELTAGAMMA(I)+ F_TEN(I,J) *  

     *   CE_3D(J,K)* X_M_MAT(K,L) * STRESS_NEW(L)             

                END DO            

              END DO               
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            END DO 

             DSIGMADDELTAGAMMA(I) = - DSIGMADDELTAGAMMA(I)           

          END DO 

 

          DO I = 1, NTT 

         X_N_G(I) =ZERO 

             DO J = 1, NTT 

          X_N_G(I) = X_N_G(I) + X_M_MAT(I,J) * STRESS_NEW(I)      

            END DO            

          END DO 

C TEST CALCULATE THE NORM OF N?G 

           X_NG_NORM = ZERO  

          DO I = 1, NTT 

       X_NG_NORM = X_NG_NORM + X_N_G(I)**TWO           

          END DO     

C         X_NG_NORM = DSQRT(6.D0 *X_NG_NORM/2.D0) 

        X_NG_NORM = DSQRT(5.D0 *X_NG_NORM/2.D0) 

      

          DO I = 1, NTT 

             TERM3(I) = ZERO 

             DO J = 1, NTT 

          TERM3(I) = TERM3(I) + X_M_MAT(I,J) * STRESS_NEW(J)                   

            END DO            

          END DO 

      VALTERM3  = ZERO     

          DO I = 1, NTT 

      VALTERM3 = VALTERM3 + TERM3(I)** TWO                            

          END DO 

        VALTERM3 = SQRT(HALF* VALTERM3) 

C      DEFINE THE VALUE OF STRESS TENSOR 

      STRESSVAL = ZERO     

          DO I = 1, NTT 

      STRESSVAL = STRESSVAL + STRESS_NEW(I)** TWO                             

          END DO 

        STRESSVAL = SQRT(HALF* STRESSVAL) 

           

      DEPS_PDDELTAGAMMA = ZERO     

          DO I = 1, NTT 

             DO J = 1, NTT 

      DEPS_PDDELTAGAMMA = DEPS_PDDELTAGAMMA +  

     * X_M_MAT(I,J)* STRESS_NEW(I) * DSIGMADDELTAGAMMA(J)             

            END DO            

          END DO 

 

      DEPS_PDDELTAGAMMA = DELTAGAMMAINT * DEPS_PDDELTAGAMMA / 

STRESSVAL  + VALTERM3           

   

       DALPHA1DGAMA =  DALPHA1DEPSVAR_P * DEPS_PDDELTAGAMMA 

       DALPHA2DGAMA =  DALPHA2DEPSVAR_P * DEPS_PDDELTAGAMMA 

       DALPHA5DGAMA =  DALPHA5DEPSVAR_P * DEPS_PDDELTAGAMMA 

       DALPHA52DGAMA =  DALPHA52DEPSVAR_P * DEPS_PDDELTAGAMMA 

       DALPHA4DGAMA =  DALPHA4DEPSVAR_P * DEPS_PDDELTAGAMMA 

       DALPHA42DGAMA =  DALPHA42DEPSVAR_P * DEPS_PDDELTAGAMMA 

C CALCULATE DI/DGAMA 
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        DI1DGAMA = ZERO 

        DI2DGAMA = ZERO 

        DI4DGAMA = ZERO 

        DI5DGAMA = ZERO 

          DO I = 1, NTT 

       DI1DGAMA = DI1DGAMA + DI1DSIGMA(I) * DSIGMADDELTAGAMMA(I)           

       DI2DGAMA = DI2DGAMA + DI2DSIGMA(I) * DSIGMADDELTAGAMMA(I)                   

       DI4DGAMA = DI4DGAMA + DI4DSIGMA(I) * DSIGMADDELTAGAMMA(I)           

       DI5DGAMA = DI5DGAMA + DI5DSIGMA(I) * DSIGMADDELTAGAMMA(I)           

          END DO           

       DFDGAMA = (XI1 * DALPHA1DGAMA + XI2 * DALPHA2DGAMA + XI4 *  

     *  DALPHA4DGAMA+ XI4**TWO * DALPHA42DGAMA+ XI5 *DALPHA5DGAMA+ 

XI5** 

     * TWO * DALPHA52DGAMA) + (ALPHA1 * DI1DGAMA + ALPHA2 

*DI2DGAMA +  

     * ALPHA4 * DI4DGAMA + ALPHA5 *DI5DGAMA + TWO* ALPHA42 * XI4*   

     * DI4DGAMA + TWO*ALPHA52 * XI5* DI5DGAMA )  

          DELTATO2_GAMMA = - XF_YIELD_NEW/DFDGAMA    

C          

        DELTAGAMMAINT = DELTAGAMMAINT + DELTATO2_GAMMA   

C        

       EPSVAR_P_INT = EPSVAR_P_INT + DELTATO2_GAMMA * X_NG_NORM 

C 

         

          IF ( DABS(XF_YIELD_NEW) .LT. PLAST_TOL   ) 

     *    GOTO 400 

             

            IF ( NUMC > NUMBREAK ) THEN  

            WRITE(*,*) 'NUMC=', NUMC             

            GOTO 402          

            END IF 

C          

         END DO  ! END FOR MAIN LOOP 

C         

  400  CONTINUE 

C   401  CONTINUE 

  402  CONTINUE 

       DO I = 1, NTT 

       STRAINPLAVECNEW(I)= STRAINPLAVECOLD(I) + DELTAGAMMAINT * 

X_N_G(I) 

       END DO 

        EPSVAR_P_NEW =  EPSVAR_P_INT  

 

        DO I = 1, 6 

           DO J = 1, 6 

         TERM20(I,J) = ZERO 

             DO K1 = 1, 6 

          TERM20(I,J) = TERM20(I,J) + CE_3D(I,K1) *  X_M_MAT(K1,J)           

             END DO 

          END DO 

        END DO   

        DO I = 1, 6 

           DO J = 1, 6 

          TERM21(I,J) = STRESS_NEW(I) *  X_N_F(J)        
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          END DO 

        END DO 

         

        DO I = 1, 6 

           DO J = 1, 6 

         TERM22(I,J) = ZERO 

             DO K1 = 1, 6 

          TERM22(I,J) = TERM22(I,J) + TERM20(I,K1) *  TERM21(K1,J)           

             END DO 

          END DO 

        END DO 

         

        DO I = 1, 6 

           DO J = 1, 6 

         TERM23(I,J) = ZERO 

             DO K1 = 1, 6 

          TERM23(I,J) = TERM23(I,J)+ TERM22(I,K1) *  F_TEN(K1,J)         

             END DO 

          END DO 

        END DO   

 

        DO I = 1, 6 

           DO J = 1, 6 

         TERM24(I,J) = ZERO 

             DO K1 = 1, 6 

          TERM24(I,J) = TERM24(I,J)+ TERM23(I,K1) *  CE_3D(K1,J)         

             END DO 

          END DO 

        END DO 

 

        DO I = 1, 6 

         TERM30(I) = ZERO        

           DO J = 1, 6 

          TERM30(I) = TERM30(I) + X_N_F(I) *  F_TEN(I,J)         

          END DO 

        END DO 

 

        DO I = 1, 6 

         TERM31(I) = ZERO        

           DO J = 1, 6 

          TERM31(I) = TERM31(I) + TERM30(I) *  CE_3D(I,J)        

          END DO 

        END DO       

 

        DO I = 1, 6 

         TERM32(I) = ZERO        

           DO J = 1, 6 

          TERM32(I) = TERM32(I) + TERM31(I) *  X_M_MAT(I,J)          

          END DO 

        END DO 

 

        DENOM = ZERO         

        DO I = 1, 6      

          DENOM = DENOM + TERM32(I) *  STRESS_NEW(I)         
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        END DO 

 

        DENOM = DENOM + DABS(DFDGAMA) 

C FOR COMPRESSION 

C         DENOM = DENOM + DFDGAMA !JUST FOR TRANSVERSE DIRECTION 

        DO I = 1, 6      

           DO J = 1, 6 

          TERM25(I,J) = CE_3D(I,J) - TERM24(I,J) / DENOM           

          END DO 

        END DO 

 

        DO I = 1, 6 

           DO J = 1, 6 

         C_TAN(I,J) = ZERO 

             DO K1 = 1, 6 

          C_TAN(I,J) = C_TAN(I,J)+ F_TEN(I,K1) *  TERM25(K1,J)           

             END DO 

          END DO 

        END DO   

             

               DO I=1, NTT 

                  DO J=1, NTT 

       IF (C_TAN(I,J).LT. ZERO) C_TAN(I,J) = ZERO 

                 END DO   

                END DO                   

      GOTO 300   

       

  600  CONTINUE ! IF THE PLASTICITY HAS NOT BEEN OCCURED 

C GET ELASTIC STRESS   

        CALL GETSTRESS3D(CE_3D,CE_2D ,STRESS_NEW,STRAINTOTVECNEW,  

     *     NTT,ND)  

C SET ZERO VALUES FOR STRAN PLASTIC VECTOR IN PLASTICITY NOT 

HAPPENED 

        DO I = 1, NTT 

       STRAINPLAVECNEW (I) = ZERO  

        END DO          

C SET ELASTIC STIFFNESS MATRIX AS THE SECANT STIFFNESS MATRIX    

                IF (ND .EQ. 3) THEN      

        DO I = 1, 6 

           DO J = 1, 6 

          C_TAN(I,J) = CE_3D(I,J)            

          END DO 

        END DO 

             ELSE  

        DO I = 1, 3 

           DO J = 1, 3 

          C_TAN(I,J) = CE_2D(I,J)            

          END DO 

        END DO            

             END IF  

C UPDATE EQUIVALENT PLASTIC STRAIN       

      EPSVAR_P_NEW = EPSVAR_P_OLD      

  300  CONTINUE  
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            RETURN 

          END 

C*****************************************************************

************* 

C    CONVERT A FOURTH ORDE TENSOR TO  CORRESPONDING 3*3 SQUARE 

MATRIX IN VOIGT FORM 

C*****************************************************************

************* 

       SUBROUTINE TENSTOMATRIX3(A,B) 

      INCLUDE 'ABA_PARAM.INC'     

       DIMENSION A(3,3,3,3), B(3,3) 

        

        DO I = 1 , 3 

           DO J = 1,3  

         B(I,J) = 0.D0 

            END DO 

        END DO  

 

      B(1,1) = A(1,1,1,1)              

      B(2,1) = A(2,2,1,1)                          

      B(2,2) = A(2,2,2,2)                          

      B(3,3) = A(1,2,1,2)              

        DO I = 1 , 3 

           DO J = 1,3  

         B(J,I) = B(I,J) 

            END DO 

        END DO 

C       

       RETURN 

       END 

C***************************************************************** 

C    CONVERT A SECOND ORDE TENSOR TO  CORRESPONDING VECTOR IN 

VOIGT FORM 

C***************************************************************** 

       SUBROUTINE TENS3TOVECTOR(A,B,ND1,NTT1) 

      INCLUDE 'ABA_PARAM.INC' 

       DIMENSION A(3,3), B(NTT1) 

       

        IF (ND1.EQ.3) THEN       

        DO I = 1 , 3 

           DO J = 1,3  

                  IF ( I .EQ. 1 .AND. J .EQ. 1) M = 1 

                  IF ( I .EQ. 2 .AND. J .EQ. 2) M = 2 

                  IF ( I .EQ. 3 .AND. J .EQ. 3) M = 3 

                  IF ( I .EQ. 1 .AND. J .EQ. 2) M = 4 

                  IF ( I .EQ. 1 .AND. J .EQ. 3) M = 5 

                  IF ( I .EQ. 2 .AND. J .EQ. 3) M = 6 

                  B(M) = A(I,J)            

            END DO 

        END DO  

        ELSE  

        DO I = 1 , 3 

           DO J = 1,3  

                  IF ( I .EQ. 1 .AND. J .EQ. 1) M = 1 
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                  IF ( I .EQ. 2 .AND. J .EQ. 2) M = 2 

                  IF ( I .EQ. 1 .AND. J .EQ. 2) M = 3 

                  B(M) = A(I,J)            

            END DO 

        END DO  

        END IF  

C       

       RETURN 

       END 

C***************************************************************** 

C    CONVERT A FOURTH ORDE TENSOR TO  CORRESPONDING 9*9 SQUARE 

MATRIX IN VOIGT FORM 

C***************************************************************** 

       SUBROUTINE TENSTOMATRIX(A,B) 

      INCLUDE 'ABA_PARAM.INC'             

       DIMENSION A(3,3,3,3), B(9,9) 

  

        DO I = 1 , 3 

           DO J = 1,3  

              DO K = 1,3  

                  DO L = 1,3  

                  IF ( I .EQ. 1 .AND. J .EQ. 1) M = 1 

                  IF ( K .EQ. 1 .AND. L .EQ. 1) N = 1 

                  IF ( I .EQ. 2 .AND. J .EQ. 2) M = 2 

                  IF ( K .EQ. 2 .AND. L .EQ. 2) N = 2 

                  IF ( I .EQ. 3 .AND. J .EQ. 3) M = 3 

                  IF ( K .EQ. 3 .AND. L .EQ. 3) N = 3 

                  IF ( I .EQ. 2 .AND. J .EQ. 3) M = 4 

                  IF ( K .EQ. 2 .AND. L .EQ. 3) N = 4 

                  IF ( I .EQ. 1 .AND. J .EQ. 3) M = 5 

                  IF ( K .EQ. 1 .AND. L .EQ. 3) N = 5 

                  IF ( I .EQ. 1 .AND. J .EQ. 2) M = 6 

                  IF ( K .EQ. 1 .AND. L .EQ. 2) N = 6 

                  B(M,N) = A(I,J,K,L)              

                 END DO 

              END DO 

            END DO 

        END DO  

 

C TO FILL THE COULUMNS 7, 8 AND 9        

        DO I = 1 , 9 

           DO J = 7,9  

                  B(I,J) = B(I, J-3)               

            END DO 

        END DO 

C TO FILL THE ROWS 7, 8 AND 9        

        DO I = 7 , 9 

           DO J = 1,9  

                  B(I,J) = B(I-3, J)               

            END DO 

        END DO 

C       

       RETURN 

       END 
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C***************************************************************** 

C                    DEFINE FOURTH ORDER STIFFNESS TENSOR CE 

C***************************************************************** 

       SUBROUTINE STIFF4TH_2D(CE, XNU_12,E_11, E_22, XNU_23, 

G_12,A_DIR,  

     *   ND, NSH,A_ST_11,A_ST_22, CE_2D,CE_3D) 

       INCLUDE 'ABA_PARAM.INC'    

       DIMENSION CE(3,3,3,3), DELTA(3,3),CE_2D(3,3),  

     *  A_DIR(3,3),X_I_A(3,3,3,3), CE_3D(6,6), 

A_DIR_V(3),X_I(3,3,3,3) 

       XNU_21 = E_11 * XNU_12 / E_22 

       E_33 = E_22 

       XNU_32 = E_22 * XNU_23 / E_33 

       XNU_13 = XNU_12 ! CHECK IT AGAIN 

       XNU_31 = E_11 * XNU_13/ E_33 

       G_13 = G_12 

       G_23 = E_22 / ( 2.D0 * ( 1.D0 + XNU_23) ) 

       DET = 1.D0 - XNU_32 ** 2.D0  - 2.D0 * XNU_13 * XNU_31 - 

2.D0 *  

     *  XNU_32 * XNU_31 * XNU_13 

            

       XNU12_LIMIT =  SQRT(.5D0 * (1.D0 - XNU_23)* E_22 / E_11)                     

      XNU21_LIMIT = SQRT(.5D0 * (1.D0 - XNU_23)* E_11 / E_33)      

       XNU23_LIMIT =  1.D0 - 2.D0 * (XNU_12 ** 2.D0) * E_11 /E_22 

            

       IF ( DABS(XNU_12).GE.XNU12_LIMIT )THEN 

      WRITE(*,*)'NU12=LIMIT', XNU12_LIMIT    

         WRITE(*,*) 'E_11=', E_11 

         WRITE(*,*) 'E_22=', E_22 

         WRITE(*,*) 'XNU_12=', XNU_12 

          WRITE(*,*)    'XNU_21=', XNU_21 

         WRITE(*,*) 'E_33=', E_33 

         WRITE(*,*) 'G_13=', G_13 

         WRITE(*,*) 'XNU_23=', XNU_23 

      WRITE(*,*)'ERROR: THE GIVEN MAT PROPERTIES CAN NOT BE TRUE'       

       CALL XIT  

      END IF  

       IF ( DABS(XNU_21).GE.XNU21_LIMIT )THEN 

      WRITE(*,*)'XNU21_LIMIT', XNU21_LIMIT  

      WRITE(*,*)'ERROR: THE GIVEN MAT PROPERTIES CAN NOT BE TRUE'       

       CALL XIT  

      END IF       

       IF ( XNU_23.GE.XNU23_LIMIT .OR. XNU_23.LT. (-1.D0) )THEN 

      WRITE(*,*)'XNU23_LIMIT=',  XNU23_LIMIT 

      WRITE(*,*)'ERROR: THE GIVEN MAT PROPERTIES CAN NOT BE TRUE'       

       CALL XIT  

      END IF       

 

       GOTO 234    

       XLANDA = E_22 * (XNU_23 + XNU_31 * XNU_13) / DET 

       ALPHA = E_22 * ( XNU_31 * ( 1.D0 + XNU_32 - XNU_13 ) - 

XNU_32 ) /DET 

       BETHA = E_11 * ( 1.D0 - XNU_32 * XNU_23 ) / DET - E_22 * ( 

1.D0 -  
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     *  XNU_21 *( XNU_12 + 2.D0 * ( 1.D0 + XNU_23 ) ) )/ DET  - 

4.D0 * 

     *   G_12 

  234  CONTINUE 

C        

       DELTA1 = 1.D0 - XNU_12 * XNU_21 * (1.D0 +XNU_23 ) - 

XNU_23**2.D0 

       XLANDA = (1.D0 - XNU_12 * XNU_21) *  E_22/ DELTA1 - 2.D0 * 

G_12 

       ALPHA = (XNU_21+ XNU_21 *XNU_23 ) *  E_22/ DELTA1 - XLANDA 

       BETHA = (1.D0 - XNU_23**2.D0) * E_11/DELTA1 - XLANDA - 2.D0 

*  

     *  ALPHA  - 4.D0 * G_12 + 2.D0 * G_23   

C    

C       DEFINE KRONECKER DELTA 

           DO I = 1, 3 

             DO J = 1, 3 

              IF ( I .EQ. J ) THEN  

              DELTA(I,J) = 1.D0  

              ELSE 

             DELTA(I,J) = 0.D0   

              END IF        

            END DO            

          END DO       

        CALL FIBER_DIR(A_DIR,A_ST_11,A_ST_22) 

          A_DIR_V(1) = A_DIR(1,1)        

          A_DIR_V(2) = A_DIR(2,2)        

          A_DIR_V(3) = A_DIR(3,3) 

           

          DO I = 1, 3 

             DO J = 1, 3 

               DO K = 1, 3 

                 DO L = 1, 3 

       X_I(I,J,K,L) =  0.5D0 *( DELTA(I,K)* DELTA(J,L) + 

DELTA(I,L)* DELTA(J,K)  )                  

                END DO            

              END DO              

            END DO            

          END DO     

           

          DO I = 1, 3 

             DO J = 1, 3 

               DO K = 1, 3 

                 DO L = 1, 3 

         X_I_A(I,J,K,L) = 0.D0 

                   DO M = 1, 3 

       X_I_A(I,J,K,L) = X_I_A(I,J,K,L) +  A_DIR_V(I)* X_I(J,M,K,L) 

*    

     * A_DIR_V(M)+   A_DIR_V(M)* X_I(M,I,K,L) *  A_DIR_V(J) 

                  END DO                

                END DO            

              END DO              

            END DO            

          END DO 
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          DO I = 1, 3 

             DO J = 1, 3 

               DO K = 1, 3 

                 DO L = 1, 3 

         X_I_A(I,J,K,L) = 0.D0 

                   DO M = 1, 3 

       X_I_A(I,J,K,L) = X_I_A(I,J,K,L) +  A_DIR(I,M)* 0.5D0 *                  

     *  ( DELTA(J,K)* DELTA(M,L) + DELTA(J,L)* DELTA(M,K)  )  +                  

     * A_DIR(J,M) * 0.5D0 *( DELTA(M,K)* DELTA(I,L) + DELTA(M,L)*  

     *  DELTA(I,K) )      

                  END DO                

                END DO            

              END DO              

            END DO            

          END DO 

           

          DO I = 1, 3 

             DO J = 1, 3 

               DO K = 1, 3 

                 DO L = 1, 3 

      CE(I,J,K,L) = XLANDA *DELTA(I,J)* DELTA(K,L) +2.D0 * G_23 * 

0.5D0*                  

     *  ( DELTA(I,K)* DELTA(J,L) + DELTA(I,L)* DELTA(J,K) ) + 

ALPHA *  

     * ( A_DIR(I,J) * DELTA(K,L) + DELTA(I,J) * A_DIR(K,L)) + 

BETHA *     

     * A_DIR_V(I) * A_DIR_V(J) *A_DIR_V(K) * A_DIR_V(L) + 2.D0 *  

     * (G_12 - G_23 ) * X_I_A(I,J,K,L)     

                END DO            

              END DO              

            END DO            

          END DO   

           

          CALL TENSTOMATRIX6(CE,CE_3D) 

          CALL TENSTOMATRIX3(CE,CE_2D)   

       GOTO 326 

           DO I = 1, 6 

             DO J = 1, 6 

             CE_3D(I,J) = 0.D0          

            END DO            

          END DO 

        CE_3D(1,1) = (1.D0 -  XNU_32 * XNU_23) * E_11 / DET 

        CE_3D(1,2) = (XNU_21 +  XNU_31 * XNU_23) * E_22 / DET 

        CE_3D(1,3) = (XNU_31 +  XNU_21 * XNU_32) * E_33 / DET 

        CE_3D(2,2) = (1.D0 -   XNU_31 * XNU_13) * E_22 / DET 

        CE_3D(2,3) = (XNU_32 +  XNU_31 * XNU_12) * E_33 / DET 

        CE_3D(3,3) = (1.D0 -  XNU_21 * XNU_12) * E_33 / DET 

        CE_3D(4,4) = G_12 

        CE_3D(5,5) = G_13 

        CE_3D(6,6) = G_23 

           DO I = 1, 6 

             DO J = 1, 6 

             CE_3D(J,I) = CE_3D(I,J)        
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            END DO            

          END DO 

  326   CONTINUE           

 

       RETURN 

       END  

C**************************************************************** 

C    CALCULATE INITIAL ALPHA VALUES FOR SHORT FIBER REINFORCED 

THERMOPLASTICS 

C**************************************************************** 

       SUBROUTINE CALCALPHA(Y_TR,Y_IP,Y1T, Y1C, Y2C,Y2T, ALPHA1,  

     *       ALPHA2,ALPHA4,ALPHA42, ALPHA5, ALPHA52 )     

      INCLUDE 'ABA_PARAM.INC'     

       PARAMETER (ZERO = 0.D0, ONE = 1.D0, TWO = 2.D0, HALF = 

0.5D0, 

     1          THREE = 3.D0, FOUR = 4.D0 )    

C    DETERMINATION OF ALPHA VALUES FOR INITIAL PLASTICITY OF SHORT 

FIBERS 

       ALPHA1 = ONE / Y_TR ** TWO     ! TR = TRANSVERSE SHEAR 

       ALPHA2 = ONE / Y_IP ** TWO    ! IP = IN-PLANE SHEAR 

C       

      ALPHA42 = (ONE/Y1C +ONE/Y1T + HALF * ALPHA1 * (Y1C+Y1T) - 

ALPHA2 * (Y1C+Y1T)  )/(Y1C+Y1T) 

      ALPHA4 = ONE/Y1T + HALF * Y1T *ALPHA1  -  Y1T * ALPHA2 - 

ALPHA42 * Y1T 

      ALPHA52 =(ONE/Y2C +ONE/Y2T - HALF * ALPHA1 * (Y2C+Y2T)  

)/(Y2C+Y2T) 

      ALPHA5 = ONE/Y2T - HALF * Y2T * ALPHA1 - ALPHA52 * Y2T 

       

       RETURN 

       END 

C***************************************************************** 

C    CALCULATE INITIAL BETA VALUES FOR SHORT FIBER REINFORCED 

THERMOPLASTICS 

C***************************************************************** 

       SUBROUTINE CALCBETA(Y_TR,Y_IP,Y1T, Y1C, Y2C,Y2T, BETA1,  

     *       BETA2,BETA32T,BETA32C, BETA42T, BETA42C )    

      INCLUDE 'ABA_PARAM.INC'     

       PARAMETER (ZERO = 0.D0, ONE = 1.D0, TWO = 2.D0, HALF = 

0.5D0, 

     1          THREE = 3.D0, FOUR = 4.D0 )    

C DETERMINATION OF ALPHA VALUES FOR INITIAL PLASTICITY OF SHORT 

FIBERS 

       BETA1 = 1.D0 / Y_TR ** 2.D0     ! TR = TRANSVERSE SHEAR 

       BETA2 = 1.D0 / Y_IP ** 2.D0     ! IP = IN-PLANE SHEAR 

C 

      BETA32T = FOUR/(Y2T ** TWO )- TWO * BETA1  

      BETA42T = ONE / Y1T ** TWO - BETA32T - BETA2 + HALF * BETA1  

C  

      BETA32C= FOUR /(Y2C ** TWO )-  BETA1  

      BETA42C = ONE /(Y1C ** TWO ) + BETA1 / TWO - BETA2 - BETA32C 

C  

 

       RETURN 
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       END 

C**************************************************************** 

C                    CONVERT VECTOR TO TENSOR (SYMMETRIC ONE) 

C**************************************************************** 

       SUBROUTINE CONVVECTORTO2RANKTENS_2D(VECTOR,TENSOR, ND, NSH) 

      INCLUDE 'ABA_PARAM.INC'     

       DIMENSION TENSOR(3,3), VECTOR(ND+NSH)        

        DO I = 1, 3 

           DO J = 1, 3 

          TENSOR(I,J) = 0.D0             

          END DO 

        END DO 

         IF (ND.EQ.3) THEN  

          TENSOR(1,1) = VECTOR(1) 

          TENSOR(2,2) = VECTOR(2) 

          TENSOR(3,3) = VECTOR(3) 

          TENSOR(1,2) = VECTOR(4) 

          TENSOR(1,3) = VECTOR(5) 

          TENSOR(2,3) = VECTOR(6) 

        ELSE  

          TENSOR(1,1) = VECTOR(1) 

          TENSOR(2,2) = VECTOR(2) 

          TENSOR(3,3) = 0.D0 

          TENSOR(1,2) = VECTOR(3) 

          TENSOR(1,3) = 0.D0 

          TENSOR(2,3) = 0.D0         

        END IF   

     

        DO I = 1, 3  

           DO J = 1, 3 

          TENSOR(J,I) = TENSOR(I,J)  ! FOR SYMMETRIC TENSORS           

          END DO 

        END DO 

C     

       RETURN 

       END             

C**************************************************************** 

C    LINEAR INTERPOLATION FUNCTION   

C**************************************************************** 

     FUNCTION YIINTP(XA ,YA ,XB , YB, X)  

      INCLUDE 'ABA_PARAM.INC'  

       YIINTP = YA +(YB - YA)* (X-XA) / (XB-XA)   

      RETURN 

      END 

C***************************************************************** 

C    TRACE FUNCTION 

C***************************************************************** 

      FUNCTION TR(A11 ,A22 , A33)  

      INCLUDE 'ABA_PARAM.INC'  

       TR = A11 + A22 + A33 

  

      RETURN 

      END 

C***************************************************************** 
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C  CALCULATE THE SQUARE OF THE 2-D T TENSOR AND ITS TRACE 

C***************************************************************** 

        SUBROUTINE INVARIANTS(T_3D, NDT, 

NSHT,XI1_T,XI2_T,XI5_T,XI4_T, NTTT,A_11_T, 

     * A_22_T , TRT,DI1DSIGMAV,DI2DSIGMAV,DI4DSIGMAV,DI5DSIGMAV) 

      INCLUDE 'ABA_PARAM.INC' 

          DIMENSION T_3D(NDT+NSHT), T_2D(3,3), TTO2(3,3), 

STRT(3,3), 

     *  AT(3,3), UNI(3,3), SIG_P(3,3), T_DEV(3,3), TA(3,3), 

     *  A_DIR(3,3), ADEVT(3,3), DELTA(3,3),ATTO2(3,3), DEVT(3,3), 

     * DI1DSIGMA(3,3), DI2DSIGMA(3,3),DI4DSIGMA(3,3), 

DI3DSIGMA(3,3), 

     * DI1DSIGMAV(NTTT), DI2DSIGMAV(NTTT),DI4DSIGMAV(NTTT),  

     * DI3DSIGMAV(NTTT),DI5DSIGMA(3,3),DI5DSIGMAV(NTTT),A_DIR_V(3) 

       PARAMETER (ZERO = 0.D0, ONE = 1.D0, TWO = 2.D0, HALF = 

0.5D0, 

     1          THREE = 3.D0) 

      

C       DEFINE KRONECKER DELTA 

           DO I = 1, 3 

             DO J = 1, 3 

              IF ( I .EQ. J ) THEN  

              DELTA(I,J) = ONE 

              ELSE 

             DELTA(I,J) = ZERO   

              END IF        

            END DO            

          END DO 

C    CONVERT VECTOR TO TENSOR; IN THIS CASE T = STRESS OR STRAIN 

       CALL CONVVECTORTO2RANKTENS_2D(T_3D,T_2D, NDT, NSHT)          

C       DEFINE MATERIAL DIRECTION VECTOR A(A1,A2,A3) 

        CALL FIBER_DIR(A_DIR,A_11_T,A_22_T)   

         A_DIR_V(1)=A_DIR(1,1)       

         A_DIR_V(2)=A_DIR(2,2)       

         A_DIR_V(3)=A_DIR(3,3)       

C DETERMINE TRACE STRESS TENSOR 

        TRT = ZERO 

        DO I = 1, 3 

           DO J = 1, 3 

          TRT = TRT + T_2D(I,J) * DELTA(I,J)             

          END DO 

        END DO 

C DEFINE DEVIATORIC STRESS ?^'= ?-1/3 TR(?)? 

        DO I = 1, 3 

           DO J = 1, 3 

          DEVT(I,J) = T_2D(I,J) - (ONE / THREE) * TRT * DELTA(I,J)               

          END DO 

        END DO 

C   DETERMINE THE TERM A?^'                  

        DO I = 1, 3 

           DO J = 1, 3 

        ADEVT(I,J) = ZERO 

              DO M = 1, 3 

          ADEVT(I,J) = ADEVT(I,J) + A_DIR(I,M) * DEVT(M,J)               
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            END DO 

          END DO 

        END DO 

C   DETERMINE THE TRACE A?^' 

        TRADEVT = ZERO 

        DO I = 1, 3 

           DO J = 1, 3 

          TRADEVT = TRADEVT + ADEVT(I,J) * DELTA(J,I)            

          END DO 

        END DO 

C   DETERMINE THE TRACE A 

        TRA = ZERO 

        DO I = 1, 3 

           DO J = 1, 3 

          TRA = TRA + ADEVT(I,J) * DELTA(I,J)            

          END DO 

        END DO 

C   DETERMINE THE TERM A?                    

        DO I = 1, 3 

           DO J = 1, 3 

        AT(I,J) = ZERO 

        TA(I,J) = ZERO 

              DO M = 1, 3 

C           AT(I,J) = AT(I,J) + A_DIR(I,M) * T_2D(M,J)               

          AT(I,J) = AT(I,J) + A_DIR_V(I) * T_2D(J,M)* A_DIR_V(M)             

          TA(I,J) = TA(I,J) + A_DIR_V(M) * T_2D(M,I)* A_DIR_V(J)             

            END DO 

          END DO 

        END DO 

C   DETERMINE THE TRACE A?^' 

        TRAT = ZERO 

        TRTA = ZERO 

        DO I = 1, 3 

           DO J = 1, 3 

          TRAT = TRAT + AT(I,J) * DELTA(I,J)             

          TRTA = TRTA + TA(I,J) * DELTA(I,J)             

          END DO 

        END DO 

C   DETERMINE THE TERM SIG^2                     

        DO I = 1, 3 

           DO J = 1, 3 

        TTO2(I,J) = ZERO 

              DO M = 1, 3 

          TTO2(I,J) = TTO2(I,J) + T_2D(I,M) * T_2D(M,J)              

            END DO 

          END DO 

        END DO 

C CALCULATE TRACE SIG^2 

        TRTTO2 = ZERO 

        DO I = 1, 3 

           DO J = 1, 3 

          TRTTO2 = TRTTO2 + TTO2(I,J) * DELTA(I,J)               

          END DO 

        END DO   
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C   DETERMINE THE TERM A*SIG^2                   

        DO I = 1, 3 

           DO J = 1, 3 

        ATTO2(I,J) = ZERO 

              DO M = 1, 3 

          ATTO2(I,J) = ATTO2(I,J) + A_DIR(I,M) * TTO2(M,J)               

            END DO 

          END DO 

        END DO       

C CALCULATE TRACE A*SIG^2 

        TRATTO2 = ZERO 

        DO I = 1, 3 

           DO J = 1, 3 

          TRATTO2 = TRATTO2 + ATTO2(I,J) * DELTA(I,J)            

          END DO 

        END DO 

C  DETERMINE FIRST INVARIANT I_1=1/2 TR[?^2 ]-TR[A?^2 ] 

        XI1_T = HALF * TRTTO2 - TRATTO2  

C DETERMINE THE SECOND INVARIANT I_2=TR[A?^2 ] 

        XI2_T = TRATTO2          

C DTERMINE THIRD INVARIANT I3 = 3/2 TR[A?^' ] 

        XI3_T = (THREE / TWO) * TRADEVT 

C DETERMINE I4 =TR[A?]   

        XI4_T = TRAT     

        XI5_T = TRT-TRAT         

C   DEFINE INITIAL YIELD CRITERION   

C DEFINE DEVIATORIC STRESS ?^'= ?-1/3 TR(?)? 

        DO I = 1, 3 

           DO J = 1, 3 

          DI1DSIGMA(I,J) = T_2D(I,J) - ( AT(I,J) + TA(I,J) )             

          DI2DSIGMA(I,J) = AT(I,J) + TA(I,J)     

C           DI3DSIGMA(I,J) = HALF * ( THREE * A_DIR(I,J) -TRA 

*DELTA(I,J))         

          DI4DSIGMA(I,J) = A_DIR(I,J)          

          DI5DSIGMA(I,J) = DELTA(I,J) - A_DIR(I,J)             

          END DO 

        END DO 

C   CONVERT TO VECTORS 

         CALL TENS3TOVECTOR(DI1DSIGMA,DI1DSIGMAV,NDT,NTTT)       

         CALL TENS3TOVECTOR(DI2DSIGMA,DI2DSIGMAV,NDT,NTTT)       

C          CALL TENS3TOVECTOR(DI3DSIGMA,DI3DSIGMAV,NDT,NTTT)         

         CALL TENS3TOVECTOR(DI4DSIGMA,DI4DSIGMAV,NDT,NTTT)        

         CALL TENS3TOVECTOR(DI5DSIGMA,DI5DSIGMAV,NDT,NTTT)        

       RETURN 

       END       

C**************************************************************** 

C  DETERMINE THE STRUCTRUL TENSOR A WHICH SHOWS THE DIRECTIONS OF 

THE FIBERS 

C***************************************************************** 

        SUBROUTINE FIBER_DIR(A_DIR_TEN,A_ST_11,A_ST_22) 

      INCLUDE 'ABA_PARAM.INC' 

         DIMENSION A_DIR_TEN(3,3) 

       A_DIR_TEN(1,1) = A_ST_11 

       A_DIR_TEN(1,2) = 0.D0 
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       A_DIR_TEN(1,3) = 0.D0 

       A_DIR_TEN(2,1) = 0.D0 

       A_DIR_TEN(2,2) = A_ST_22 

       A_DIR_TEN(2,3) = 0.D0 

       A_DIR_TEN(3,1) = 0.D0 

       A_DIR_TEN(3,2) = 0.D0 

       A_DIR_TEN(3,3) = 1.D0 - A_ST_22 - A_ST_11 

       RETURN 

       END  

C***************************************************************** 

C    MATRIX N BY N INVERSE SUBROUTINE 

C***************************************************************** 

      SUBROUTINE INVERSE(A,C,N) 

      INCLUDE 'ABA_PARAM.INC' 

!----------------------------------------------------------- 

! INVERSE MATRIX 

! METHOD: BASED ON DOOLITTLE LU FACTORIZATION FOR AX=B 

! ALEX G. DECEMBER 2009 

!----------------------------------------------------------- 

! INPUT ... 

! A(N,N) - ARRAY OF COEFFICIENTS FOR MATRIX A 

! N      - DIMENSION 

! OUTPUT ... 

! C(N,N) - INVERSE MATRIX OF A 

! COMMENTS ... 

! THE ORIGINAL MATRIX A(N,N) WILL BE DESTROYED  

! DURING THE CALCULATION 

!-----------------------------------------------------------     

 

       DIMENSION A(N,N), C(N,N), PTEM(N,N), U(N,N), B(N), D(N), 

X(N) 

 

 

! STEP 0: INITIALIZATION FOR MATRICES L AND U AND B 

! FORTRAN 90/95 ALOOWS SUCH OPERATIONS ON MATRICES 

      PTEM=0.D0 

      U=0.D0 

      B=0.D0 

! STEP 1: FORWARD ELIMINATION 

       DO K=1, N-1 

        DO I=K+1,N 

         COEFF=A(I,K)/A(K,K) 

         PTEM(I,K) = COEFF 

           DO J=K+1,N 

           A(I,J) = A(I,J)-COEFF*A(K,J) 

           END DO 

       END DO 

      END DO 

 

! STEP 2: PREPARE L AND U MATRICES  

! L MATRIX IS A MATRIX OF THE ELIMINATION COEFFICIENT 

! + THE DIAGONAL ELEMENTS ARE 1.0 

      DO I=1,N 

       PTEM(I,I) = 1.D0 



182 Appendix 
 

 

      END DO 

! U MATRIX IS THE UPPER TRIANGULAR PART OF A 

      DO J=1,N 

      DO I=1,J 

        U(I,J) = A(I,J) 

      END DO 

      END DO 

 

! STEP 3: COMPUTE COLUMNS OF THE INVERSE MATRIX C 

      DO K=1,N 

          B(K)=1.D0 

          D(1) = B(1) 

! STEP 3A: SOLVE LD=B USING THE FORWARD SUBSTITUTION 

          DO I=2,N 

           D(I)=B(I) 

            DO J=1,I-1 

         D(I) = D(I) - PTEM(I,J)*D(J) 

            END DO 

          END DO 

! STEP 3B: SOLVE UX=D USING THE BACK SUBSTITUTION 

       X(N)=D(N)/U(N,N) 

      DO I = N-1,1,-1 

       X(I) = D(I) 

      DO J=N,I+1,-1 

       X(I)=X(I)-U(I,J)*X(J) 

       END DO 

       X(I) = X(I)/U(I,I) 

      END DO 

! STEP 3C: FILL THE SOLUTIONS X(N) INTO COLUMN K OF C 

          DO I=1,N 

          C(I,K) = X(I) 

          END DO 

       B(K)=0.D0 

      END DO 

       

       RETURN 

       END   

 

C***************************************************************** 

C CALCULATE THE STRESS BASED ON THE DAMAGE 

VARAIBLES*************************** 

C***************************************************************** 

        SUBROUTINE GETSTRESS3D(CFULL,CDTHREE, 

STRESS_T,STRANT,NTT,ND) 

      INCLUDE 'ABA_PARAM.INC' 

      DIMENSION CFULL(6,6),STRESS_T(NTT),STRANT(NTT), 

     *   CDTHREE(3,3) 

       PARAMETER (ZERO = 0.D0, ONE = 1.D0, TWO = 2.D0, HALF = 

0.5D0, 

     *          THREE = 3.D0)            

 

 

C   UPDATE THE STRESS STATE IF 3D CASE 

C 
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      IF (ND .EQ. 3) THEN 

         DO I = 1, NTT 

            STRESS_T(I)=ZERO 

            DO J = 1, NTT 

               STRESS_T(I)=STRESS_T(I)+CFULL(I,J) * STRANT(J) 

            END DO 

         END DO    

C      

C     INITIALIZE THE 3X3 CONDENSED STIFFNESS MATRIX IF PLANE 

STRESS CASE 

C      

      ELSE IF ( ND .EQ. 2) THEN 

C     UPDATE THE STRESS        

         DO I = 1, NTT 

            STRESS_T(I)=ZERO 

            DO J = 1, NTT 

               STRESS_T(I)=STRESS_T(I)+CDTHREE(I,J) * STRANT(J) 

            END DO 

         END DO 

 

      END IF 

C             

       RETURN 

       END          

C***************************************************************** 

C CALCULATE THE STRESS IN PLASTIC REGION 

C***************************************************************** 

        SUBROUTINE GETSTRESS3D_FULL(CFULL,CDTHREE ,DFT,  

     *    DMT,STRANT,NT,ND, STR,CFDT) 

      INCLUDE 'ABA_PARAM.INC' 

      DIMENSION CFULL(6,6),CFDT(6,6),STR(NT),STRANT(NT), 

     *   CDTHREE(3,3) 

       PARAMETER (ZERO = 0.D0, ONE = 1.D0, TWO = 2.D0, HALF = 

0.5D0, 

     *          THREE = 3.D0)            

C     CDTHREE.....DAMAGED CONDENSED-ELASTICITY MATRIX FOR PLANE 

STRESS PROBLEM 

      DO I = 1, NT 

         DO J = 1, NT 

            CFDT(I,J) = CFULL(I,J) 

         END DO 

      END DO 

       

      IF ( (DFT .NE. ZERO)  .OR. (DMT .NE. ZERO) ) THEN 

         CFDT(1,1) = (ONE - DFT)* CFULL(1,1) 

         CFDT(1,2) = (ONE - DFT) *(ONE - DMT)  * CFULL(1,2) 

         CFDT(2,1) = CFDT(1,2) 

         CFDT(2,2) = (ONE - DMT)  * CFULL(2,2) 

         CFDT(1,3) = (ONE - DFT) * CFULL(1,3) 

         CFDT(3,1) = CFDT(1,3) 

         CFDT(2,3) = (ONE - DMT) * CFULL(2,3) 

         CFDT(3,2) = CFDT(2,3) 

         CFDT(4,4) = (ONE - DMT)  *(ONE - DFT)  * CFULL(4,4) 

      END IF 
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C 

      IF (ND .EQ. 3) THEN 

         DO I = 1, NT 

            STR(I)=ZERO 

            DO J = 1, NT 

               STR(I)=STR(I)+CFDT(I,J) * STRANT(J) 

            END DO 

         END DO     

C     INITIALIZE THE 3X3 CONDENSED STIFFNESS MATRIX IF PLANE 

STRESS CASE      

      ELSE IF ( ND .EQ. 2) THEN    

C     UPDATE THE STRESS      

         DO I = 1, NT 

            STR(I)=ZERO 

            DO J = 1, NT 

               STR(I)=STR(I)+CDTHREE(I,J) * STRANT(J) 

            END DO 

         END DO 

      END IF       

       RETURN 

       END          

C***************************************************************** 

C    CONVERT A FOURTH ORDE TENSOR TO  CORRESPONDING 6*6 SQUARE 

MATRIX IN VOIGT FORM 

C***************************************************************** 

       SUBROUTINE TENSTOMATRIX6(A,B)  

      INCLUDE 'ABA_PARAM.INC' 

       DIMENSION A(3,3,3,3), B(6,6) 

        

              DO I = 1,6  

                  DO J = 1,6  

                  B(J,I) = 0.D0        

                 END DO 

              END DO 

               

        DO I = 1 , 3 

           DO J = 1,3  

              DO K = 1,3  

                  DO L = 1,3  

                  IF ( I .EQ. 1 .AND. J .EQ. 1) M = 1 

                  IF ( K .EQ. 1 .AND. L .EQ. 1) N = 1 

                  IF ( I .EQ. 2 .AND. J .EQ. 2) M = 2 

                  IF ( K .EQ. 2 .AND. L .EQ. 2) N = 2 

                  IF ( I .EQ. 3 .AND. J .EQ. 3) M = 3 

                  IF ( K .EQ. 3 .AND. L .EQ. 3) N = 3 

                  IF ( I .EQ. 1 .AND. J .EQ. 2) M = 4 

                  IF ( K .EQ. 1 .AND. L .EQ. 2) N = 4 

                  IF ( I .EQ. 1 .AND. J .EQ. 3) M = 5 

                  IF ( K .EQ. 1 .AND. L .EQ. 3) N = 5 

                  IF ( I .EQ. 2 .AND. J .EQ. 3) M = 6 

                  IF ( K .EQ. 2 .AND. L .EQ. 3) N = 6 

                  B(M,N) = A(I,J,K,L)              

                 END DO 

              END DO 
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            END DO 

        END DO  

C      APPLY SYMMETRY  

              DO I = 1,6  

                  DO J = 1,6  

                  B(J,I) = B(J,I)              

                 END DO 

              END DO 

        

       RETURN 

       END 

 

C***************************************************************** 

C                SUBROUTINE JACOBIAN 

C***************************************************************** 

      SUBROUTINE XJACOBIAN_CALC(CFDT, CFULL,DT, NTT,ND,DMT, 

     *  DFT ,STRANT,ETA, XJACOBI,DDFDE,DDMDE) 

      INCLUDE 'ABA_PARAM.INC' 

      DIMENSION CFDT(6,6), DCDDMT(6,6),DCDDMC(6,6),DCDDFT(6,6), 

     1  DCDDFC(6,6),DFCDE(NTT), DFTDE(NTT), DMTDE(NTT),  

     2  XJACOBI(NTT,NTT), TDDSDDE(6,6), ATEMP1(NTT),ATEMP2(NTT), 

     3  ATEMP3(NTT),ATEMP4(NTT),DMCDE(NTT), TSTRANT(4), 

     4  STRANT(NTT), 

CFULL(6,6),DDFDE(NTT),DDMDE(NTT),DCDDM(NTT,NTT), 

     5  DCDDF(NTT,NTT) 

      PARAMETER (ZERO = 0.D0, ONE = 1.D0, HALF = 0.5D0) 

 

C     CALCULATE THE DERIVATIVE MATRIX DC/DDM, DC/DDF OF THE 

DAMAGED MATRIX 

C      

      CALL ELASTICDERIVATIVE_TEST(CFULL,DMT,DFT, DCDDM,DCDDF)               

C     UPDATE THE JACOBIAN 

C      

C     FULL 3D CASE 

      IF (ND .EQ. 3) THEN 

         DO I = 1, NTT 

            ATEMP1(I) = ZERO 

            DO J = 1, NTT 

               ATEMP1(I) = ATEMP1(I) + DCDDM(I,J) * STRANT(J) 

            END DO 

         END DO          

         DO I = 1, NTT 

            ATEMP2(I) = ZERO 

            DO J = 1, NTT 

               ATEMP2(I) = ATEMP2(I) + DCDDF(I,J) * STRANT(J) 

            END DO 

         END DO           

         DO I = 1, NTT 

            DO J = 1, NTT 

               XJACOBI(I,J)=CFDT(I,J) + ( ATEMP1(I) * DDMDE(J) 

     1              + ATEMP2(I) * DDFDE(J) ) * DT / (DT + ETA) 

            END DO 

         END DO    

C     ! PLANE STRESS CASE 
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C      

      ELSE IF (ND .EQ.2) THEN 

         TSTRANT(1) = STRANT(1) 

         TSTRANT(2) = STRANT(2) 

         TSTRANT(3) = -CFDT(1,3) / CFDT(3,3) * STRANT(1) 

     1        - CFDT(2,3) / CFDT(3,3) * STRANT(2) 

         TSTRANT(4) = STRANT(3) 

         DO I = 1, 4 

            ATEMP1(I) = ZERO 

            DO J = 1, 4 

               ATEMP1(I) = ATEMP1(I) + DCDDM(I,J) * TSTRANT(J) 

            END DO 

         END DO 

          

         DO I = 1, 4 

            ATEMP2(I) = ZERO 

            DO J = 1, 4 

               ATEMP2(I) = ATEMP2(I) + DCDDF(I,J) * TSTRANT(J) 

            END DO 

         END DO 

         DO I = 1,6 

            DO J = 1,6 

            TDDSDDE(I,J) = ZERO 

            END DO 

         END DO 

C     TO GET THE UNCONDENSED JACOBIAN FOR PLANE STRESS CASE 

         DO I = 1, NTT 

            DO J = 1, NTT 

               XJACOBI(I,J) = ZERO 

            END DO 

         END DO 

         DO I = 1, 4 

            DO J = 1, 4 

               TDDSDDE(I,J)= CFDT(I,J) + ( ATEMP1(I) * DDMDE(J) 

     1              + ATEMP2(I) * DDFDE(J) ) * DT / (DT + ETA) 

            END DO 

         END DO 

C      

C     CONDENSE THE JACOBIAN MATRIX FOR PLANE STRESS PROBLEM 

C      

         CALL MATRIXCONDENSE(TDDSDDE,XJACOBI) 

      END IF 

 

      RETURN 

      END 

C***************************************************************** 

C                      SUBROUTINE : DERIVDDELTA 

C*****************************************************************  

      SUBROUTINE DERIVDDELTA(DDDDELTA0,DDDDELTAEQ, DEL_EQ, DEL_F,  

     *    DELTA_PLA, DEL_EQ_0) 

      INCLUDE 'ABA_PARAM.INC' 

      DDDDELTA0 = (DEL_EQ -DEL_F )  / ((DEL_EQ - DELTA_PLA) * 

     *   (DEL_F - DEL_EQ_0) ** 2.D0) 

      DDDDELTAEQ = (DEL_F- DELTA_PLA) * (DEL_EQ - DEL_F ) 
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     * / ( (DEL_EQ - DELTA_PLA) ** 2.D0 * (DEL_F - DEL_EQ_0)) 

      RETURN 

      END 

C***************************************************************** 

C     SUBROUTINE TO CONDENSE THE 4X4 MATRIX INTO 3X3 MATRIX* 

C***************************************************************** 

      SUBROUTINE MATRIXCONDENSE(CFULL,CTHREE) 

      INCLUDE 'ABA_PARAM.INC' 

      DIMENSION CFULL(6,6),CTHREE(3,3) 

C      

      CTHREE(1,1) = CFULL(1,1) - CFULL(1,3) * CFULL(3,1) / 

CFULL(3,3) 

      CTHREE(1,2) = CFULL(1,2) - CFULL(1,3) * CFULL(3,2) / 

CFULL(3,3) 

      CTHREE(2,1) = CFULL(2,1) - CFULL(2,3) * CFULL(3,1) / 

CFULL(3,3) 

      CTHREE(2,2) = CFULL(2,2) - CFULL(2,3) * CFULL(3,2) / 

CFULL(3,3) 

      CTHREE(3,3) = CFULL(4,4) 

      RETURN 

      END 

C***************************************************************** 

C  TO CHECK THE FAILURE INITIATION AND THE CORRESPONDING 

DERIVATIVE 

C***************************************************************** 

       SUBROUTINE CHECKFAILURE(X_C,X_T,Y_C,Y_T,S_12,STRESST, 

DFTOLDT, 

     *  DMTOLDT,NDI, NSH, XLC,G_FT_C,G_MT_C,STRAIN,EPS_F_X_T, 

EPS_F_X_C,     

     * EPS_F_Y_T, EPS_F_Y_C, EPS_SC , CFULL, NTT, STRAINPLA,DFT, 

     *   DMT, NOEL,DDFDET, DDMDET)   

      INCLUDE 'ABA_PARAM.INC' 

       DIMENSION STRESST(NTT), STRAIN(NTT),CFULL(6,6), 

     *   STRAINPLA(NTT),DFMNDE(NTT), STRAINPLAVECNEW(NTT), 

     * DDMDET(NTT),DFFNDE(NTT),DDFDET(NTT) 

       PARAMETER (ZERO = 0.D0, ONE = 1.D0, TWO = 2.D0, HALF = 

0.5D0, 

     1          THREE = 3.D0, FOUR = 4.D0) 

        

C CALCULATE THE FAILURE STRAIN BY FAILURE STRESS 

      EPITL = X_T / CFULL(1,1) !FAILURE STRAIN 1 DIRECTION IN 

TENSION 

      EPICL = X_C / CFULL(1,1) !FAILURE STRAIN 1 DIRECTION IN 

COMPRESSION 

      EPITT = Y_T / CFULL(2,2) !TENSILE FAILURE STRAIN 2 DIRECTION 

      EPICT = Y_C / CFULL(2,2) !COMPRESSIVE FAILURE STRAIN 2 

DIRECTION 

      EPISLT = S_12/ CFULL(4,4)    ! FAILURE SHEAR STRAIN 

...ENGINEERING STRAIN  

       

        IF ( EPS_F_X_T .EQ. ZERO ) THEN  

        EPS_F_X_T = X_T / CFULL(1,1) 

        END IF  

        IF ( EPS_F_X_C .EQ. ZERO ) THEN  



188 Appendix 
 

 

        EPS_F_X_C = X_C / CFULL(1,1) 

        END IF 

        IF (EPS_F_Y_T .EQ. ZERO) THEN  

        EPS_F_Y_T = Y_T / CFULL(2,2) 

        END IF  

        IF ( EPS_F_Y_C .EQ. ZERO ) THEN    

        EPS_F_Y_C = Y_C / CFULL(2,2) 

        END IF 

        IF ( EPS_SC .EQ. ZERO ) THEN  

        EPS_SC = S_12 / CFULL(4,4) 

        ENDIF        

 

        DMT = ZERO 

        DFT = ZERO 

        STRAINFAIL_XT = EPS_F_X_T 

        STRAINFAIL_XC = EPS_F_X_C 

        STRAINFAIL_YT = EPS_F_Y_T 

        STRAINFAIL_YC = EPS_F_Y_C 

         

      TERM1 = STRAIN(2)**TWO / EPICT / EPITT 

      TERM2 = (EPICT - EPITT) / EPICT / EPITT * STRAIN(2) 

      IF (NDI .EQ. 3) THEN 

         TERM3 = (STRAIN(4))**TWO / EPISLT**TWO 

      ELSE IF (NDI .EQ. 2) THEN 

         TERM3 = (STRAIN(3))**TWO / EPISLT**TWO 

      END IF 

      TERM = TERM1 + TERM2 + TERM3 

      IF (TERM .GT. ZERO) THEN 

         XFMN = SQRT(TERM) 

      ELSE 

         XFMN = ZERO 

      END IF 

C 

       IF (STRAIN(2).GE.ZERO) XFMN = DABS(STRAIN(2)) / 

STRAINFAIL_YT 

       IF (STRAIN(2).LT.ZERO) XFMN = DABS(STRAIN(2)) / 

STRAINFAIL_YC 

C     INITIALIZE THE ARRAY AND VARIABLE 

C 

      DDMDFMN = ZERO 

      DO I = 1, 6 

         DFMNDE(I) = ZERO 

         DDMDET(I) = ZERO 

      END DO 

      IF (XFMN .GT. ONE  ) THEN !.AND. DFTOLDT.EQ.ZERO 

C     CALCULATE DM, DDMDFMN 

         CALL DAMAGEEVALUATION( CFULL(2,2), XFMN, G_MT_C, XLC, 

     *        EPITT, DMT, DDMDFMN) 

C     CALCULATE DFMNDE 

         IF (DMT .GT. DMTOLDT) THEN 

            DFMNDE(2) = HALF / XFMN * (TWO * STRAIN(2) + EPICT - 

EPITT) 

     *           / EPICT / EPITT 

            IF (NDI .EQ. 3) THEN 
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               DFMNDE(4) = ONE / XFMN * STRAIN(4) / EPISLT**TWO 

            ELSE IF (NDI .EQ. 2) THEN 

               DFMNDE(4) = ONE / XFMN * STRAIN(3) / EPISLT**TWO 

            END IF 

            DO I = 1, 6 

               DDMDET(I) = DFMNDE(I) * DDMDFMN 

            END DO 

         END IF 

      END IF 

      DMT = MAX (DMT, DMTOLDT) 

       

       

       IF (STRAIN(1).GE.ZERO) XFFN = MAX(DABS(STRAIN(1)) / 

STRAINFAIL_XT,XFFNOLD) 

       IF (STRAIN(1).LT.ZERO) XFFN = DABS(STRAIN(1)) / 

STRAINFAIL_XC 

        

      DDFDFFN = ZERO 

      DO I = 1, 6 

           DFFNDE(I) = ZERO 

           DDFDET(I) = ZERO 

      END DO 

       

      IF (XFFN .GT. ONE  ) THEN ! .AND. DMTOLDT.EQ.ZERO 

C     CALCULATE DFT, DDFDFFN 

           CALL DAMAGEEVALUATION( CFULL(1,1), XFFN, G_FT_C, XLC, 

     *          EPITL, DFT, DDFDFFN) 

C     CALCULATE DFFNDE 

           IF (DFT .GT. DFTOLDT) THEN 

              DFFNDE(1) = HALF / XFFN * (TWO * STRAIN(1) + EPICL - 

EPITL) 

     *             /  EPICL / EPITL 

              DDFDET(1) = DFFNDE(1) * DDFDFFN 

           END IF 

       END IF 

        

        DFT = MAX (DFT, DFTOLDT) 

 

        

      RETURN 

      END 

C***************************************************************** 

C     SUBROUTINE TO EVALUATE THE DAMAGE AND THE 

C     DERIVATIVE* 

C***************************************************************** 

      SUBROUTINE DAMAGEEVALUATION(STIFF, FN, GF, XLC, EPIT, D, 

     1     DDDFN) 

C     CALCULATE DAMAGE VARIABLE 

      INCLUDE 'ABA_PARAM.INC' 

      PARAMETER (ONE = 1.D0,TOL=1D-3, ZERO = 0.D0) 

      TERM1 = STIFF * EPIT**2 * XLC / GF 

      TERM2 = (ONE - FN) * TERM1 

      D = ONE - EXP(TERM2) / FN 
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C     CALCULATE THE DERIVATIVE OF DAMAGE VARIABLE WITH RESPECT TO 

FAILURE 

C     RITERION 

      DDDFN = (ONE / FN + TERM1) * (ONE - D) 

      RETURN 

      END 

C***************************************************************** 

C SUBROUTINE TO GET THE DERIVATIVE MATRIX OF CONDENSE DAMAGED 

MATRIX OVER 

C**** THE DAMAGE VARIABLE 

C***************************************************************** 

      SUBROUTINE ELASTICDERIVATIVE_TEST(CFULL,DMV,DFV, 

DCDDM,DCDDF) 

      INCLUDE 'ABA_PARAM.INC' 

      DIMENSION CFULL(6,6), DCDDM(6,6), 

     1     DCDDF(6,6) 

      PARAMETER (ZERO = 0.D0, ONE = 1.D0, HALF = 0.5D0) 

C     INITIALIZE THE DATA TO ZERO 

      DO I = 1, 6 

         DO J = 1, 6 

            DCDDM(I,J) = ZERO 

            DCDDF(I,J) = ZERO 

         END DO 

      END DO      

C     CALCULATE DC/DDF      

      DCDDF(1,1) = - CFULL(1,1) 

      DCDDF(1,2) = - (ONE - DMV) * CFULL(1,2) 

      DCDDF(2,1) = DCDDF(1,2) 

      DCDDF(1,3) = -CFULL(1,3) 

      DCDDF(3,1) = DCDDF(1,3) 

      DCDDF(4,4) = -(ONE - DMV) * CFULL(4,4)      

C     CALCULATE DC/DDM      

      DCDDM(1,2) = - (ONE - DFV) * CFULL(1,2) 

      DCDDM(2,1) = DCDDM(1,2) 

      DCDDM(2,2) = -CFULL(2,2) 

      DCDDM(2,3) = -CFULL(2,3) 

      DCDDM(3,2) = DCDDM(2,3) 

      DCDDM(4,4) = -(ONE - DFV) * CFULL(4,4) 

      RETURN 

      END 

C***************************************************************** 

C                    DEFINE FOURTH ORDER F(I,J,K,L) TENSOR 

C***************************************************************** 

       SUBROUTINE F_TEN_GENERATOR_TOT(F_MAT, X_M_TEN,GAMA, CE) 

      INCLUDE 'ABA_PARAM.INC'     

      DIMENSION CE(3,3,3,3), X_M_TEN(3,3,3,3), 

DELTA(3,3),TEMP(3,3,3,3),  

     * F_TEN_INV(3,3,3,3), F_TEN(3,3,3,3), F_MAT(6,6), 

F_MAT_INV(6,6) 

C DEFINE DELTA KRONEKER  

              DO I = 1, 3 

                DO J = 1, 3 

           IF (I .EQ. J) DELTA(I,J) = 1.D0          

           IF (I .NE. J) DELTA(I,J) = 0.D0          
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               END DO             

             END DO  

 

           DO I = 1, 3 

              DO J = 1, 3 

                DO K = 1, 3 

                  DO L = 1, 3 

            TEMP(I,J,K,L) = ZERO 

                    DO M = 1, 3 

                      DO N = 1, 3 

       TEMP(I,J,K,L) = TEMP(I,J,K,L) +  CE(I,J,M,N) * 

X_M_TEN(M,N,K,L)                    

                      END DO              

                   END DO             

                 END DO               

               END DO             

             END DO               

           END DO 

            

           DO I = 1, 3 

              DO J = 1, 3 

                DO K = 1, 3 

                  DO L = 1, 3 

       TEMP(I,J,K,L) = GAMA * TEMP(I,J,K,L)                               

                 END DO               

               END DO             

             END DO               

           END DO           

           DO I = 1, 3 

              DO J = 1, 3 

                DO K = 1, 3 

                  DO L = 1, 3 

       F_TEN_INV(I,J,K,L) =   DELTA(I,K)* DELTA(J,L) + 

TEMP(I,J,K,L)                              

                 END DO               

               END DO             

             END DO               

           END DO                  

C   CONVERT F_INVERSE(I,J,K,L) TO F_INVERSE(I,J) , I=1,9 AND J=1,9 

       CALL TENSTOMATRIX6(F_TEN_INV,F_MAT_INV) 

           DO I = 1, 6 

              DO J = 1, 6 

       F_MAT_INV(J,I)= F_MAT_INV(I,J)             

             END DO               

           END DO       

C  CALCULATE INVERSE OF F_MAT_INV AND GET F_MAT 

       CALL INVERSE(F_MAT_INV,F_MAT,6)              

            

       RETURN 

       END 

 

C***************************************************************** 

C CALCULATE THE STRESS IN PLASTIC REGION 

C***************************************************************** 



192 Appendix 
 

 

        SUBROUTINE GETCD_FULL(CFULL,CDTHREE ,DFT, DMT,NT,ND,CFDT) 

      INCLUDE 'ABA_PARAM.INC' 

      DIMENSION CFULL(6,6),CFDT(6,6),STR(NT),STRANT(NT), 

     *   CDTHREE(3,3) 

       PARAMETER (ZERO = 0.D0, ONE = 1.D0, TWO = 2.D0, HALF = 

0.5D0, 

     *          THREE = 3.D0)            

C     CDTHREE.....DAMAGED CONDENSED-ELASTICITY MATRIX FOR PLANE 

STRESS PROBLEM 

      DO I = 1, NT 

         DO J = 1, NT 

            CFDT(I,J) = CFULL(I,J) 

         END DO 

      END DO 

       

      IF ( (DFT .NE. ZERO)  .OR. (DMT .NE. ZERO) ) THEN 

         CFDT(1,1) = (ONE - DFT)* CFULL(1,1) 

         CFDT(1,2) = (ONE - DFT) *(ONE - DMT)  * CFULL(1,2) 

         CFDT(2,1) = CFDT(1,2) 

         CFDT(2,2) = (ONE - DMT)  * CFULL(2,2) 

         CFDT(1,3) = (ONE - DFT) * CFULL(1,3) 

         CFDT(3,1) = CFDT(1,3) 

         CFDT(2,3) = (ONE - DMT) * CFULL(2,3) 

         CFDT(3,2) = CFDT(2,3) 

         CFDT(4,4) = (ONE - DMT)  *(ONE - DFT)  * CFULL(4,4) 

      END IF 

       

       RETURN 

       END          
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8.2 Appendix.2 

In this appendix a plasticity internal subroutine is given which uses the 
perturbation method to calculate the numerical tangent. 

C***************************************************************** 

C    PLASTICITY SUBROUTINE FOR SHORT FIBERS OF 3-D CASE 

C***************************************************************** 

       SUBROUTINE SHORTFIBERPLAST3D( STRAINPLAVECOLD, 

STRAINPLAVECNEW,   

     * STRAINTOTVECNEW, STRESS_NEW, STRESS_OLD, EPSVAR_P_OLD,   

     * EPSVAR_P_NEW, ND, NSH, CE_2D, CE_3D, 

     *   XF_YIELD_INI_OLD, XF_YIELD_INI_NEW, C_TAN,  

     *  STRAINTOTVECOLD, STRESSTRVECNEW, STRESSTRVECOLD, 

PLAST_TOL, 

     *  DT ,TOTALTIME_NEW, TOTALTIME_OLD,  

     *   DELTAGAMMAINT,Y_TR_INI_OLD, Y_TR_INI,  

     *  Y_IP_INI_OLD, Y_IP_INI,Y1T_INI_OLD, Y1T_INI,Y1C_INI_OLD,  

     *  Y1C_INI,Y2C_INI_OLD, Y2C_INI,Y2T_INI_OLD, Y2T_INI, M_UXC, 

M_UXT, 

     *   M_TUC,M_TUT, M_IP, M_TR, 

Y_1C,Y_1C_OLD,Y_1T,Y_1T_OLD,Y_2C, 

     *   Y_2C_OLD, Y_2T,Y_2T_OLD,Y_IP,Y_IP_OLD, 

Y_TR,Y_TR_OLD,Y_TR_0, 

     * Y_IP_0,Y2T_0,Y2C_0,Y1T_0,Y1C_0,A_ST_11,A_ST_22,CONST1,  

     * CONST2, XI1_INI, XI2_INI, XI3_INI, 

XI4_INI,NTT,STRESS_P_OLD, 

     *   STRESS_P,NUMBREAK, DSTRAIN,STRESSELAST,XF_YIELD_NEW, 

     * DSTRAIN_OLD,CE4TH,DELTAGAMMAINTOLD)  

      INCLUDE 'ABA_PARAM.INC' 

       CHARACTER(LEN=:), ALLOCATABLE :: FILEPATH_IP, FILEPATH_TR,  

     * FILEPATH_TUC, FILEPATH_TUT, FILEPATH_UXC, FILEPATH_UXT 

       DIMENSION STRAINTRVECNEW(NTT), STRAINTRVECOLD(NTT), 

     * STRAINPLAVECOLD(NTT), STRAINPLAVECNEW(NTT), 

     *  STRAINTOTVECNEW(NTT), STRAINTOTVECOLD(NTT), 

     * X_N_F(NTT),DISTURB(NTT), STRESSELAST(NTT), 

     * STRESSTRVECNEW(NTT),STRESSTRVECOLD(NTT), CE_3D(6,6), 

     *  DELTA(3,3), X_N_G(NTT), A_DIR(3,3), C_TAN(NTT,NTT), 

     * CE_2D(3,3), STRESS_NEW( NTT), STRESS_OLD(NTT),  

     *  DI1DSIGMA(NTT), DI2DSIGMA(NTT), 

DI4DSIGMA(NTT),DI5DSIGMA(NTT), 

     * DI3DSIGMA(NTT),STRESS_P_OLD(NTT),STRESS_P(NTT), 

     * DSTRESS_P(NTT), 

DSTRAIN(NTT),STRAINPLAVECINT(NTT),TANG_OLD(NTT,NTT), 

     *  SIGMA(NTT,NTT), STRAN_DIST(NTT), 

EPS_PERT(NTT),STRESS_DIST(NTT), 

     * 

DSTRAIN_OLD(NTT),X_M_MAT(6,6),X_M_TEN(3,3,3,3),TENSOR1(3,3,3,3), 

     * 

TENSOR2(3,3,3,3),TENSOR3(3,3),X_I_S(3,3,3,3),X_I(3,3,3,3),CE4TH(3,

3,3,3), 
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     *  

TENSOR5(3,3,3,3),TENSOR4(3,3),F_TEN(NTT,NTT),DSIGMADDELTAGAMMA(NTT

), 

     * TERM3(NTT), A_DIR_VEC(3), 

P_PIND(3,3,3,3),P_PIND_A(3,3,3,3), A_DEV(3,3), 

     * 

TERM20(NTT,NTT),TERM21(NTT,NTT),TERM22(NTT,NTT),TERM23(NTT,NTT), 

     * 

TERM24(NTT,NTT),TERM30(NTT),TERM31(NTT),TERM32(NTT),TERM25(NTT,NTT

) 

C        DOUBLEPRECISION, ALLOCATABLE, DIMENSION(:,:):: 

XY_TRSHEAR,   

C      * XY_IPSHEAR, XY_IPSHEAR_T, XY_TRBC, XY_TRBC_T, XY_TRBT, 

XY_TRBT_T,  

C      * XY_TRUC, XY_TRUC_T, XY_TRT, XY_TRT_T, XY_UXC, XY_UXC_T, 

XY_UXT, 

C      *  XY_UXT_T, XY_TRSHEAR_T 

      ALLOCATABLE  XY_TRSHEAR(:,:),   

     * XY_IPSHEAR(:,:), XY_IPSHEAR_T(:,:), XY_TRBC(:,:), 

XY_TRBC_T(:,:),  

     * XY_TRUC(:,:), XY_TRUC_T(:,:), XY_TRT(:,:), XY_TRT_T(:,:), 

     *  XY_UXT_T(:,:), XY_TRSHEAR_T(:,:),XY_TRBT(:,:), 

XY_TRBT_T(:,:), 

     *  XY_UXC(:,:), XY_UXC_T(:,:), XY_UXT(:,:) 

       PARAMETER (ZERO = 0.D0, ONE = 1.D0, TWO = 2.D0, HALF = 

0.5D0, 

     1          THREE = 3.D0, FOUR = 4.D0, EPS_P = 0.5D0 )   

        CALL FIBER_DIR(A_DIR,A_ST_11,A_ST_22) 

        A_DIR_VEC(1) = A_DIR(1,1) 

        A_DIR_VEC(2) = A_DIR(2,2) 

        A_DIR_VEC(3) = A_DIR(3,3) 

C       DEFINE KRONECKER DELTA 

           DO I = 1, 3 

             DO J = 1, 3 

              IF ( I .EQ. J ) THEN  

              DELTA(I,J) = ONE 

              ELSE 

             DELTA(I,J) = ZERO   

              END IF        

            END DO            

          END DO   

C          DEFINE ELASTIC STRAIN  

        DO I = 1 , NTT 

       STRAINTRVECNEW(I) = STRAINTOTVECNEW(I) - STRAINPLAVECOLD(I)   

C        STRAINTRVECNEW(I) = STRAINTOTVECNEW(I) 

        END DO 

      CALL GETSTRESS3D(CE_3D, CE_2D,STRESSTRVECNEW,STRAINTRVECNEW, 

     *    NTT,ND)          

C      IMPORT PLASTICITY DATA FROM EXTERNAL FILE FOR DIFFERENT 

EXPERIMENTS 

         XF_CF_SH = 1.414D0  ! FOR SHORT FIBER REINFORCED 

THERMOPLASTICS 

         XF_CF_UNI = ONE ! FOR SHORT FIBER REINFORCED 

THERMOPLASTICS 
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         Y_TR_INI = Y_TR_0 * ( 1.D0 - EXP(-CONST1 * CONST2) ) 

         Y_IP_INI = Y_IP_0 * ( 1.D0 - EXP(-CONST1 * CONST2) ) 

         Y2T_INI = Y2T_0 * ( 1.D0 - EXP(-CONST1 * CONST2) ) 

         Y2C_INI = Y2C_0 * ( 1.D0 - EXP(-CONST1 * CONST2) ) 

         Y1T_INI = Y1T_0 * ( 1.D0 - EXP(-CONST1 * CONST2) ) 

         Y1C_INI = Y1C_0 * ( 1.D0 - EXP(-CONST1 * CONST2) ) 

         Y_TR = ZERO 

         Y_IP = ZERO 

         Y2T = ZERO 

         Y2C = ZERO 

         Y1T = ZERO 

         Y1C = ZERO 

         IF (Y_TR_OLD.EQ.ZERO) Y_TR_OLD = Y_TR_INI 

         IF (Y_IP_OLD.EQ.ZERO) Y_IP_OLD = Y_IP_INI 

         IF (Y_2T_OLD.EQ.ZERO) Y_2T_OLD = Y2T_INI 

         IF (Y_2C_OLD.EQ.ZERO) Y_2C_OLD = Y2C_INI 

         IF (Y_1T_OLD.EQ.ZERO) Y_1T_OLD = Y1T_INI 

         IF (Y_1C_OLD.EQ.ZERO) Y_1C_OLD = Y1C_INI 

C*****************************************************************

************ 

C       DEFINE THE INVARIANTS FOR SHORT FIBER REINFORCED 

THERMOPLASTICS 

C*****************************************************************

************    

      CALL INVARIANTS(STRESSTRVECNEW, ND, NSH,XI1_INI, 

     *   XI2_INI,XI5_INI,XI4_INI,NTT, A_ST_11,A_ST_22, 

     *   TRSIGMA,DI1DSIGMA,DI2DSIGMA,DI4DSIGMA,DI5DSIGMA)    

      CALL CALCALPHA(Y_TR_INI,Y_IP_INI,Y1T_INI, Y1C_INI,  

     *  Y2C_INI,Y2T_INI, ALPHA1_INI, ALPHA2_INI,ALPHA4_INI, 

     *  ALPHA42_INI, ALPHA5_INI, ALPHA52_INI )  

C DEFINE TENSION OR COMPRESSION SITUATION 

C   DEFINE INITIA YIELD CRITERION    

        XF_YIELD_INI_NEW = ALPHA1_INI * XI1_INI+ ALPHA2_INI * 

XI2_INI + 

     * ALPHA4_INI * XI4_INI + ALPHA42_INI * XI4_INI ** TWO +  

     * ALPHA5_INI * XI5_INI + ALPHA52_INI * XI5_INI ** TWO       

       CALL CALCBETA(Y_TR_INI,Y_IP_INI,Y1T_INI, Y1C_INI, Y2C_INI,  

     *  Y2T_INI, BETA1, BETA2, BETA32T,BETA32C, BETA42T, BETA42C )             

C DEFINE TENSION OR COMPRESSION SITUATION  

       BETA32 = BETA32T     

       BETA42 = BETA42T            

C  DEFINE P_PIND [P^PIND=∂_Σ Σ^PIND=I-1/2 (1⊗1)+1/2 (A⊗1+1⊗A)-

3/2 (A⊗A)] 

          DO I = 1, 3 

             DO J = 1, 3 

               DO K = 1, 3 

                 DO L = 1, 3 

          P_PIND(I,J,K,L) = DELTA(I,L) * DELTA(J,K) - (1.D0 / 

2.D0)*  

     *  DELTA(I,J) * DELTA(K,L)  + (1.D0 / 2.D0) * ( A_DIR(I,J) * 

! NOTE: P_PIND IS INDEPENDENT OF ITERATION PROCESS 

     *  DELTA(K,L) +  DELTA(I,J) * A_DIR(K,L) ) - (3.D0/2.D0) *  

     *     ( A_DIR(I,J) * A_DIR(K,L) ) 
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                END DO            

              END DO              

            END DO            

          END DO 

           

C    P_PND IS SYMMETRIC        

          DO I = 1, 3 

             DO J = 1, 3 

               DO K = 1, 3 

                 DO L = 1, 3 

          P_PIND(I,J,L,K) = P_PIND(I,J,K,L) 

          P_PIND(J,I,K,L) = P_PIND(I,J,K,L) 

          P_PIND(K,L,I,J) = P_PIND(I,J,K,L) 

                END DO            

              END DO              

            END DO            

          END DO               

C   DEFINE P_PIND_A [P_A^PIND=A_IM P_MJKL^PIND+A_MJ P_IMKL^PIND] 

 

          DO I = 1, 3 

             DO J = 1, 3 

               DO K = 1, 3 

                 DO L = 1, 3 

         SUM1 = 0.D0 

                    DO M = 1, 3 

      SUM1 = SUM1 + A_DIR(I,M) * P_PIND(M,J,K,L) + A_DIR(M,J) * ! 

NOTE: P_PIND_A IS INDEPENDENT OF ITERATION PROCESS 

     *   P_PIND(I,M,K,L)   

                    END DO 

            P_PIND_A(I,J,K,L) = SUM1     

                END DO            

              END DO              

            END DO            

          END DO  

          DO I = 1, 3 

             DO J = 1, 3 

               DO K = 1, 3 

                 DO L = 1, 3 

          P_PIND_A(I,J,L,K) = P_PIND_A(I,J,K,L) 

          P_PIND_A(J,I,K,L) = P_PIND_A(I,J,K,L) 

          P_PIND_A(K,L,I,J) = P_PIND_A(I,J,K,L) 

                END DO            

              END DO              

            END DO            

          END DO 

C   DEFINE DEVIATORIC PART OF A TENSOR A-----> A_DEV 

          DO I = 1, 3 

             DO J = 1, 3 

          SUM2 =0.D0 

                DO K = 1, 3 

      SUM2 = SUM2 + A_DIR(I,J) - (1.D0/3.D0)* A_DIR(K,K) * 

DELTA(I,J) ! NOTE: A_DEV IS INDEPENDENT OF ITERATION PROCESS           

                END DO  

            A_DEV(I,J) = SUM2                
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            END DO            

          END DO   

C DEFINE TENSION OR COMPRESSION SITUATION 

 

C     DEFINE M  

          DO I = 1, 3 

             DO J = 1, 3 

               DO K = 1, 3 

                 DO L = 1, 3 

          X_M_TEN(I,J,K,L) = BETA1 * P_PIND(I,J,K,L) + (BETA2 -  

     * BETA1) * P_PIND_A(I,J,K,L) + 2.D0 * BETA32 * (DELTA(I,J) -   

     * A_DIR(I,J)) *( DELTA(J,K) - A_DIR(J,K) ) + (9.D0 / 2.D0) *  

     *   BETA42 * A_DEV(I,J) * A_DEV(K,L) 

                END DO            

              END DO              

            END DO            

          END DO 

 

          CALL TENSTOMATRIX6(X_M_TEN,X_M_MAT) 

          DO I = 1, 6 

             DO J = 1, 6 

          X_M_MAT(J,I)= X_M_MAT(I,J)      

            END DO            

          END DO           

  

C                     """"PLASTIC CORRECTOR"""""      

C      IMPORT PLASTICITY DATA FROM EXTERNAL FILE FOR DIFFERENT 

EXPERIMENTS 

       DO I=1,NTT 

      STRESS_P(I) = ZERO 

       END DO 

 

      CALL GETSTRESS3D(CE_3D, CE_2D,STRESSELAST,DSTRAIN, NTT,ND) 

      IF ( EPSVAR_P_OLD .NE. ZERO ) GOTO 125   

      IF ( XF_YIELD_INI_NEW < ONE ) GOTO 600 

  125 CONTINUE 

C                 """""""ELASTIC PREDICTOR""""""" 

   

C   SET DELTAGAMMAINT INITIAL VALUE    

       DELTAGAMMAINT = ZERO   

C   SET EPSVAR_P 

C     START THE ITERATION (LOOP) TO FIND PLASTIC MULTIPLIER  

DELTAGAMMAINT AND UPDATING PLASTIC STRAINS 

        NUMC = 0 

C INITIALIZE NEW STRESS  

         DO I = 1, NTT                  

        STRESS_NEW(I) = STRESSTRVECNEW(I)                   

         END DO   

C INITIALIZE THE EQUIVALENT PLASTIC STRAIN  

        DO I = 1, NTT 

          STRAINPLAVECINT(I) = STRAINPLAVECOLD(I)  

        END DO 

        EPSVAR_P_INT = EPSVAR_P_OLD      

      DO ! MAIN LOOP 
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        NUMC = NUMC + 1  

       CALL F_TEN_GENERATOR_TOT(F_TEN, X_M_TEN,DELTAGAMMAINT, 

CE4TH)      

C   CALCULATE STRESS TENSOR                     

         DO I = 1, NTT 

             STRESS_NEW(I) = ZERO 

            DO J = 1, NTT 

         STRESS_NEW(I) =  STRESS_NEW(I) + F_TEN(I,J)* 

STRESSTRVECNEW(J)                            

           END DO 

         END DO 

 

C      IMPORT PLASTICITY DATA FROM EXTERNAL FILE FOR DIFFERENT 

EXPERIMENTS 

C***************************************************************** 

C  1. (TRANSVERSE SHEAR PLASTIC-STRAIN VS YIELD STRESS) Y_TR    

C***************************************************************** 

          EPS_TRSHEAR_P = EPSVAR_P_INT * XF_CF_SH 

      Y_TR = Y_TR_0 * (1.D0 - EXP(-CONST1 * (EPS_TRSHEAR_P + 

CONST2) ) ) 

      D_Y_TR_D_EPSVAR_P = Y_TR_0 * CONST1 * EXP(-CONST1 * 

(EPS_TRSHEAR_P +      CONST2) ) 

C***************************************************************** 

C  2.  (IN-PLANE SHEAR PLASTIC-STRAIN VS YIELD STRESS) Y_IP 

C***************************************************************** 

          EPS_IPSHEAR_P = EPSVAR_P_INT * XF_CF_SH 

      Y_IP = Y_IP_0 * (1.D0 - EXP(-CONST1 * (EPS_IPSHEAR_P + 

CONST2) ) ) 

      D_Y_IP_D_EPSVAR_P = Y_IP_0 * CONST1 * EXP(-CONST1 * 

(EPS_IPSHEAR_P + CONST2) ) 

C***************************************************************** 

C  3. (TRANSVERSE UNIAXIAL TENSION PLASTIC-STRAIN VS YIELD STRESS) 

Y_UT  

C***************************************************************** 

          EPS_TUT_P = EPSVAR_P_INT * XF_CF_UNI 

      Y_2T = Y2T_0 * (1.D0 - EXP(-CONST1 * (EPS_TUT_P + CONST2) ) 

) 

      D_Y_2T_D_EPSVAR_P = Y2T_0 * CONST1 * EXP(-CONST1 * 

(EPS_TUT_P + CONST2) ) 

C***************************************************************** 

C  5.(TRANSVERSE UNIAXIAL COMPRESSION PLASTIC-STRAIN VS YIELD 

STRESS) Y_UC 

C***************************************************************** 

          EPS_TRUC_P = EPSVAR_P_INT * XF_CF_UNI 

      Y_2C = Y2C_0 * (1.D0 - EXP(-CONST1 * (EPS_TRUC_P + CONST2) ) 

) 

      D_Y_2C_D_EPSVAR_P = Y2C_0 * CONST1 * EXP(-CONST1 * 

(EPS_TRUC_P + CONST2) ) 

C***************************************************************** 

C  7. (UNIAXIAL TENSION IN FIBER DIRECTION PLASTIC-STRAIN VS YIELD 

STRESS) Y_1T 

C***************************************************************** 

          EPS_UXT_P = EPSVAR_P_INT * XF_CF_UNI 
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      Y_1T = Y1T_0 * (1.D0 - EXP(-CONST1 * (EPS_UXT_P + CONST2) ) 

) 

      D_Y_1T_D_EPSVAR_P = Y1T_0 * CONST1 * EXP(-CONST1 * 

(EPS_UXT_P + CONST2) ) 

C   

****************************************************************** 

C  8. (UNIAXIAL COMPRESSION IN FIBER DIRECTION PLASTIC-STRAIN VS 

YIELD STRESS) Y_1C 

C  

****************************************************************** 

          EPS_UXC_P = EPSVAR_P_INT * XF_CF_UNI 

      Y_1C = Y1C_0 * (1.D0 - EXP(-CONST1 * (EPS_UXC_P + CONST2) ) 

) 

      D_Y_1C_D_EPSVAR_P = Y1C_0 * CONST1 * EXP(-CONST1 * 

(EPS_UXC_P + CONST2) ) 

C*****************************************************************  

C       DEFINE THE INVARIANTS FOR SHORT FIBER REINFORCED 

THERMOPLASTICS 

C***************************************************************** 

      CALL INVARIANTS(STRESS_NEW, ND, NSH,XI1,XI2,XI5,XI4,NTT, 

A_ST_11, 

     * A_ST_22,TRSIGMA,DI1DSIGMA,DI2DSIGMA,DI4DSIGMA,DI5DSIGMA)            

C CALCULATE NEW ALPHA 

      CALL CALCALPHA(Y_TR,Y_IP,Y_1T, Y_1C,Y_2C,Y_2T, ALPHA1, 

ALPHA2, 

     *  ALPHA4,ALPHA42, ALPHA5, ALPHA52 )     

C   DEFINE INITIA YIELD CRITERION    

        XF_YIELD_NEW = ALPHA1 * XI1+ ALPHA2 * XI2 +ALPHA4* XI4 +  

     * ALPHA42 * XI4** TWO + ALPHA5* XI5 + ALPHA52 * XI5 ** TWO - 

ONE 

C   CALCULATE THE GRADIENT OF THE YIELD FUNCTION                    

         DO I = 1, NTT 

         X_N_F(I) = ALPHA1 * DI1DSIGMA(I) + ALPHA2 * DI2DSIGMA(I) 

+  

     *  ALPHA4 *  DI4DSIGMA(I) + TWO * ALPHA42 * XI4 * 

DI4DSIGMA(I)+  

     *  ALPHA5 *  DI5DSIGMA(I) + TWO * ALPHA52 * XI5 * 

DI4DSIGMA(I)                     

         END DO  

C                 DETERMINE DALPHA/DEPS BASED ON VOGLERS FORMULA 

       DALPHA1DEPSVAR_P = ( -2.D0 / Y_TR ** 3.D0 ) * 

D_Y_TR_D_EPSVAR_P 

       DALPHA2DEPSVAR_P = ( -2.D0 / Y_IP ** 3.D0 ) * 

D_Y_IP_D_EPSVAR_P 

 

      DEN =  Y_1T + Y_1C      

      XNUM = ONE/Y_1C +ONE/Y_1T + HALF * ALPHA1 * (Y_1C+Y_1T) - 

ALPHA2 *      

     *   (Y_1C+Y_1T)  

      DALPHA42DEPSVAR_P = ( (-ONE/Y_1T**TWO +HALF * ALPHA1 - 

ALPHA2) *  

     *   DEN - XNUM ) * D_Y_1T_D_EPSVAR_P / DEN**2.D0  +( (-

ONE/Y_1C**  



200 Appendix 
 

 

     *   TWO + HALF * ALPHA1-ALPHA2) *DEN - XNUM ) * 

D_Y_1C_D_EPSVAR_P / 

     *  DEN**2.D0+ HALF * DALPHA1DEPSVAR_P - DALPHA2DEPSVAR_P  

      DALPHA4DEPSVAR_P = (-ONE/Y_1T**TWO + HALF * ALPHA1 - ALPHA2 

-  

     * ALPHA42) * D_Y_1T_D_EPSVAR_P + HALF * Y_1T * 

DALPHA1DEPSVAR_P -  

     * Y_1T * DALPHA2DEPSVAR_P - Y_1T * DALPHA42DEPSVAR_P 

       DEN =   Y_2T + Y_2C            

       XNUM = ONE/Y_2C +ONE/Y_2T - HALF * ALPHA1 * (Y_2C+Y_2T)            

      DALPHA52DEPSVAR_P = ( (-ONE/Y_2T**TWO - HALF * ALPHA1)  *DEN 

-   

     * XNUM ) * D_Y_2T_D_EPSVAR_P /DEN**2.D0 + ((-ONE/Y_2C**TWO - 

HALF * 

     * ALPHA1)  *DEN - XNUM ) * D_Y_2C_D_EPSVAR_P /DEN**2.D0 - 

HALF * 

     * DALPHA1DEPSVAR_P 

      DALPHA5DEPSVAR_P = -(ONE/Y_2T**TWO + HALF * ALPHA1 + ALPHA52 

) * 

     * D_Y_2T_D_EPSVAR_P - HALF * Y_2T * DALPHA1DEPSVAR_P - Y_2T *  

     *  DALPHA52DEPSVAR_P       

C            END FOR D(ALPHA)/D(EQUIVALENT STRAIN)    

          DO I = 1, NTT 

              DSIGMADDELTAGAMMA(I) = ZERO 

             DO J = 1, NTT 

               DO K = 1, NTT 

                 DO L = 1, NTT 

       DSIGMADDELTAGAMMA(I) = DSIGMADDELTAGAMMA(I)+ F_TEN(I,J) *  

     *   CE_3D(J,K)* X_M_MAT(K,L) * STRESS_NEW(L)             

                END DO            

              END DO               

            END DO 

             DSIGMADDELTAGAMMA(I) = - DSIGMADDELTAGAMMA(I)           

          END DO       

C CALCULATE DEPS_PDDELTAGAMMA                              

          DO I = 1, NTT 

         X_N_G(I) =ZERO 

             DO J = 1, NTT 

          X_N_G(I) = X_N_G(I) + X_M_MAT(I,J) * STRESS_NEW(I)      

            END DO            

          END DO 

C TEST CALCULATE THE NORM OF N?G 

           X_NG_NORM = ZERO  

          DO I = 1, NTT 

       X_NG_NORM = X_NG_NORM + DSQRT(HALF * X_N_G(I)**TWO)         

          END DO 

     

C RECALCULATE NG 

      GOTO 621 

          DO I = 1, NTT 

          X_N_G(I) = X_N_G(I)/X_NG_NORM                                         

          END DO 

 

C TEST CALCULATE THE NORM OF NG 
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           X_NG_NORM = ZERO  

          DO I = 1, NTT 

       X_NG_NORM = X_NG_NORM + X_N_G(I)**TWO           

          END DO 

        X_NG_NORM = SQRT(HALF* X_NG_NORM)         

  621  CONTINUE      

C        DEPS_PDDELTAGAMMA = DSQRT(HALF) * X_NG_NORM      

          DO I = 1, NTT 

             TERM3(I) = ZERO 

             DO J = 1, NTT 

          TERM3(I) = TERM3(I) + X_M_MAT(I,J) * STRESS_NEW(J)                   

            END DO            

          END DO 

      VALTERM3  = ZERO     

          DO I = 1, NTT 

      VALTERM3 = VALTERM3 + TERM3(I)** TWO                            

          END DO 

        VALTERM3 = SQRT(HALF* VALTERM3) 

C      DEFINE THE VALUE OF STRESS TENSOR 

      STRESSVAL = ZERO     

          DO I = 1, NTT 

      STRESSVAL = STRESSVAL + STRESS_NEW(I)** TWO                             

          END DO 

        STRESSVAL = SQRT(HALF* STRESSVAL) 

           

      DEPS_PDDELTAGAMMA = ZERO     

          DO I = 1, NTT 

             DO J = 1, NTT 

      DEPS_PDDELTAGAMMA = DEPS_PDDELTAGAMMA +  

     * X_M_MAT(I,J)* STRESS_NEW(I) * DSIGMADDELTAGAMMA(J)             

            END DO            

          END DO 

 

      DEPS_PDDELTAGAMMA = DELTAGAMMAINT * DEPS_PDDELTAGAMMA / 

STRESSVAL  + VALTERM3            

       DALPHA1DGAMA =  DALPHA1DEPSVAR_P * DEPS_PDDELTAGAMMA 

       DALPHA2DGAMA =  DALPHA2DEPSVAR_P * DEPS_PDDELTAGAMMA 

       DALPHA5DGAMA =  DALPHA5DEPSVAR_P * DEPS_PDDELTAGAMMA 

       DALPHA52DGAMA =  DALPHA52DEPSVAR_P * DEPS_PDDELTAGAMMA 

       DALPHA4DGAMA =  DALPHA4DEPSVAR_P * DEPS_PDDELTAGAMMA 

       DALPHA42DGAMA =  DALPHA42DEPSVAR_P * DEPS_PDDELTAGAMMA 

C CALCULATE DI/DGAMA 

        DI1DGAMA = ZERO 

        DI2DGAMA = ZERO 

        DI4DGAMA = ZERO 

        DI5DGAMA = ZERO 

          DO I = 1, NTT 

       DI1DGAMA = DI1DGAMA + DI1DSIGMA(I) * DSIGMADDELTAGAMMA(I)           

       DI2DGAMA = DI2DGAMA + DI2DSIGMA(I) * DSIGMADDELTAGAMMA(I)                   

       DI4DGAMA = DI4DGAMA + DI4DSIGMA(I) * DSIGMADDELTAGAMMA(I)           

       DI5DGAMA = DI5DGAMA + DI5DSIGMA(I) * DSIGMADDELTAGAMMA(I)           

          END DO   

       DFDGAMA = (XI1 * DALPHA1DGAMA + XI2 * DALPHA2DGAMA + XI4 *  
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     *  DALPHA4DGAMA+ XI4**TWO * DALPHA42DGAMA+ XI5 *DALPHA5DGAMA+ 

XI5** 

     * TWO * DALPHA52DGAMA) + (ALPHA1 * DI1DGAMA + ALPHA2 

*DI2DGAMA +  

     * ALPHA4 * DI4DGAMA + ALPHA5 *DI5DGAMA + TWO* ALPHA42 * XI4*   

     * DI4DGAMA + TWO*ALPHA52 * XI5* DI5DGAMA )  

           

          DELTATO2_GAMMA = - XF_YIELD_NEW/DFDGAMA    

C          

        DELTAGAMMAINT = DELTAGAMMAINT + DELTATO2_GAMMA           

       EPSVAR_P_INT = EPSVAR_P_INT + DELTATO2_GAMMA* X_NG_NORM       

          IF ( DABS(XF_YIELD_NEW) .LT. PLAST_TOL   ) 

     *    GOTO 400 

             

            IF ( NUMC > NUMBREAK ) THEN  

            WRITE(*,*) 'NUMC=', NUMC     

C             CALL EXIT          

            GOTO 402          

            END IF 

C      

         END DO  ! END FOR MAIN LOOP 

C         

  400  CONTINUE 

C   401  CONTINUE 

  402  CONTINUE 

        DO I = 1, NTT 

       STRAINPLAVECNEW (I) = STRAINPLAVECOLD (I) + DELTAGAMMAINT *  

     *  X_N_G(I) 

        END DO 

        EPSVAR_P_NEW =  EPSVAR_P_INT  

C ********************************************** 

C DEFINE THE PURTURBATED STRAIN AND ADD IT TO THE CURRENT STRAIN 

TENSOR ONE BY ONE 

 

       DO K = 1,NTT        

      STRAN_DIST(K) = STRAINTOTVECNEW(K) 

      EPS_PERT(K) =  MAX(1D-8* STRAINTOTVECNEW(K), 1D-8) 

       END DO  

        

       DO K = 1,NTT 

      STRAN_DIST(K) = STRAINTOTVECNEW(K) + EPS_PERT(K) 

    

C                                   """"PLASTIC CORRECTOR"""""      

C      IMPORT PLASTICITY DATA FROM EXTERNAL FILE FOR DIFFERENT 

EXPERIMENTS 

 

       DO I=1,NTT 

      STRESS_P(I) = ZERO 

       END DO 

C          DEFINE ELASTIC STRAIN  

        DO I = 1 , NTT 

          STRAINTRVECNEW(I) = STRAN_DIST(I) - STRAINPLAVECOLD(I)     

C           STRAINTRVECNEW(I) = STRAN_DIST(I)    

        END DO 
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      CALL GETSTRESS3D(CE_3D, CE_2D,STRESSTRVECNEW,STRAINTRVECNEW, 

     *    NTT,ND) 

      CALL GETSTRESS3D(CE_3D, CE_2D,STRESSELAST,DSTRAIN, NTT,ND) 

 

C                           """""""ELASTIC PREDICTOR"""""""    

           

C   SET DELTAGAMMAINT INITIAL VALUE    

C   SET EPSVAR_P 

C     START THE ITERATION (LOOP) TO FIND PLASTIC MULTIPLIER  

DELTAGAMMAINT AND UPDATING PLASTIC STRAINS 

        NUMC1 = 0 

C INITIALIZE NEW STRESS  

         DO I = 1, NTT 

       STRESS_DIST(I) = STRESSTRVECNEW(I) ! STRESS IN POINT A                                   

         END DO      

C INITIALIZE THE EQUIVALENT PLASTIC STRAIN 

        DO I = 1, NTT 

          STRAINPLAVECINT(I) = STRAINPLAVECOLD(I)  

        END DO 

        EPSVAR_P_INT_DIST = EPSVAR_P_OLD 

       DELTAGAMADIST = ZERO      

      DO ! MAIN LOOP FOR THE PERTURBATION METHOD     

        NUMC1 = NUMC1 + 1  

       CALL F_TEN_GENERATOR_TOT(F_TEN, X_M_TEN,DELTAGAMADIST, 

CE4TH)                    

         DO I = 1, NTT 

             STRESS_DIST(I) = 0.D0 

            DO J = 1, NTT 

      STRESS_DIST(I) =  STRESS_DIST(I) + F_TEN(I,J)* 

STRESSTRVECNEW(J)                             

           END DO 

         END DO 

C DEFINE OLD PARAMETERS 

C*****************************************************************

*********** 

C  1. (TRANSVERSE SHEAR PLASTIC-STRAIN VS YIELD STRESS) Y_TR    

C*****************************************************************

*********** 

          EPS_TRSHEAR_P = EPSVAR_P_INT_DIST * XF_CF_SH 

      Y_TR = Y_TR_0 * (1.D0 - EXP(-CONST1 * (EPS_TRSHEAR_P + 

CONST2) ) ) 

      D_Y_TR_D_EPSVAR_P = Y_TR_0 * CONST1 * EXP(-CONST1 * 

(EPS_TRSHEAR_P + CONST2) ) 

C*****************************************************************

*********** 

C  2.  (IN-PLANE SHEAR PLASTIC-STRAIN VS YIELD STRESS) Y_IP 

C*****************************************************************

*********** 

          EPS_IPSHEAR_P = EPSVAR_P_INT_DIST * XF_CF_SH 

      Y_IP = Y_IP_0 * (1.D0 - EXP(-CONST1 * (EPS_IPSHEAR_P + 

CONST2) ) ) 

      D_Y_IP_D_EPSVAR_P = Y_IP_0 * CONST1 * EXP(-CONST1 * 

(EPS_IPSHEAR_P + CONST2) ) 
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C*****************************************************************

*********** 

C  3. (TRANSVERSE UNIAXIAL TENSION PLASTIC-STRAIN VS YIELD STRESS) 

Y_UT [?_UNI^P=F_UNI^(C.F.) ? ?_P] 

C*****************************************************************

*********** 

          EPS_TUT_P = EPSVAR_P_INT_DIST * XF_CF_UNI 

      Y_2T = Y2T_0 * (1.D0 - EXP(-CONST1 * (EPS_TUT_P + CONST2) ) 

) 

      D_Y_2T_D_EPSVAR_P = Y2T_0 * CONST1 * EXP(-CONST1 * 

(EPS_TUT_P + CONST2) ) 

C*****************************************************************

*********** 

C  5.(TRANSVERSE UNIAXIAL COMPRESSION PLASTIC-STRAIN VS YIELD 

STRESS) Y_UC 

C*****************************************************************

*********** 

          EPS_TRUC_P = EPSVAR_P_INT_DIST * XF_CF_UNI 

      Y_2C = Y2C_0 * (1.D0 - EXP(-CONST1 * (EPS_TRUC_P + CONST2) ) 

) 

      D_Y_2C_D_EPSVAR_P = Y2C_0 * CONST1 * EXP(-CONST1 * 

(EPS_TRUC_P + CONST2) ) 

C*****************************************************************

*********** 

C  7. (UNIAXIAL TENSION IN FIBER DIRECTION PLASTIC-STRAIN VS YIELD 

STRESS) Y_1T 

C*****************************************************************

*********** 

          EPS_UXT_P = EPSVAR_P_INT_DIST * XF_CF_UNI 

      Y_1T = Y1T_0 * (1.D0 - EXP(-CONST1 * (EPS_UXT_P + CONST2) ) 

) 

      D_Y_1T_D_EPSVAR_P = Y1T_0 * CONST1 * EXP(-CONST1 * 

(EPS_UXT_P + CONST2) ) 

C   

******************************************************************

*********** 

C  8. (UNIAXIAL COMPRESSION IN FIBER DIRECTION PLASTIC-STRAIN VS 

YIELD STRESS) Y_1C 

C  

******************************************************************

*********** 

          EPS_UXC_P = EPSVAR_P_INT_DIST * XF_CF_UNI 

      Y_1C = Y1C_0 * (1.D0 - EXP(-CONST1 * (EPS_UXC_P + CONST2) ) 

) 

      D_Y_1C_D_EPSVAR_P = Y1C_0 * CONST1 * EXP(-CONST1 * 

(EPS_UXC_P + CONST2) ) 

C*****************************************************************

*********** 

C       DEFINE THE INVARIANTS FOR SHORT FIBER REINFORCED 

THERMOPLASTICS 

C*****************************************************************

***********   

      CALL INVARIANTS(STRESS_DIST, ND, NSH,XI1,XI2,XI5,XI4,NTT, 

A_ST_11, 
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     * A_ST_22,TRSIGMA,DI1DSIGMA,DI2DSIGMA,DI4DSIGMA,DI5DSIGMA)  

      CALL CALCALPHA(Y_TR,Y_IP,Y_1T, Y_1C,Y_2C,Y_2T, ALPHA1, 

ALPHA2, 

     *  ALPHA4,ALPHA42, ALPHA5, ALPHA52 )      

C   DEFINE INITIA YIELD CRITERION    

        XF_YIELD_NEW_PERT =ALPHA1 * XI1+ ALPHA2 * XI2 +ALPHA4* XI4 

+  

     * ALPHA42 * XI4** TWO + ALPHA5* XI5 + ALPHA52 * XI5 ** TWO - 

ONE 

C   CALCULATE THE GRADIENT OF THE YIELD FUNCTION                      

       DALPHA1DEPSVAR_P = ( -2.D0 / Y_TR ** 3.D0 ) * 

D_Y_TR_D_EPSVAR_P 

       DALPHA2DEPSVAR_P = ( -2.D0 / Y_IP ** 3.D0 ) * 

D_Y_IP_D_EPSVAR_P 

      DEN =  Y_1T + Y_1C      

      XNUM = ONE/Y_1C +ONE/Y_1T + HALF * ALPHA1 * (Y_1C+Y_1T) - 

ALPHA2    

     *  * (Y_1C+Y_1T)  

      DALPHA42DEPSVAR_P = ( (-ONE/Y_1T**TWO + HALF * ALPHA1-

ALPHA2) *  

     *   DEN - XNUM ) * D_Y_1T_D_EPSVAR_P / DEN**2.D0  +( (-

ONE/Y_1C**  

     *   TWO + HALF * ALPHA1-ALPHA2) *DEN - XNUM ) * 

D_Y_1C_D_EPSVAR_P / 

     *  DEN**2.D0+ HALF * DALPHA1DEPSVAR_P - DALPHA2DEPSVAR_P  

      DALPHA4DEPSVAR_P = (-ONE/Y_1T**TWO + HALF * ALPHA1 - ALPHA2 

-  

     * ALPHA42) * D_Y_1T_D_EPSVAR_P + HALF * Y_1T * 

DALPHA1DEPSVAR_P -  

     * Y_1T * DALPHA2DEPSVAR_P - Y_1T * DALPHA42DEPSVAR_P 

       DEN =   Y_2T + Y_2C            

       XNUM = ONE/Y_2C +ONE/Y_2T - HALF * ALPHA1 * (Y_2C+Y_2T)            

      DALPHA52DEPSVAR_P = ( (-ONE/Y_2T**TWO - HALF * ALPHA1)  *DEN 

-   

     * XNUM ) * D_Y_2T_D_EPSVAR_P /DEN**2.D0 + ((-ONE/Y_2C**TWO - 

HALF * 

     * ALPHA1)  *DEN - XNUM ) * D_Y_2C_D_EPSVAR_P /DEN**2.D0 - 

HALF * 

     * DALPHA1DEPSVAR_P 

      DALPHA5DEPSVAR_P = -(ONE/Y_2T**TWO + HALF * ALPHA1 + ALPHA52 

) * 

     * D_Y_2T_D_EPSVAR_P - HALF * Y_2T * DALPHA1DEPSVAR_P - Y_2T *  

     *  DALPHA52DEPSVAR_P  

          DO I = 1, NTT 

              DSIGMADDELTAGAMMA(I) = ZERO 

             DO J = 1, NTT 

               DO K1 = 1, NTT 

                 DO L = 1, NTT 

       DSIGMADDELTAGAMMA(I) = DSIGMADDELTAGAMMA(I)+ F_TEN(I,J) *  

     *   CE_3D(J,K1)* X_M_MAT(K1,L) * STRESS_DIST(L)              

                END DO            

              END DO               

            END DO 

             DSIGMADDELTAGAMMA(I) = - DSIGMADDELTAGAMMA(I)           
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          END DO 

C  CALCULATE DEPS_PDDELTAGAMMA          

          DO I = 1, NTT 

         X_N_G(I) =ZERO 

             DO J = 1, NTT 

          X_N_G(I) = X_N_G(I) + X_M_MAT(I,J) * STRESS_DIST(I)     

            END DO            

          END DO 

C TEST CALCULATE THE NORM OF NG 

           X_NG_NORM = ZERO  

          DO I = 1, NTT 

       X_NG_NORM = X_NG_NORM + DSQRT(HALF * X_N_G(I)**TWO)         

          END DO 

 

C RECALCULATE NG 

      GOTO 622 

          DO I = 1, NTT 

          X_N_G(I) = X_N_G(I)/X_NG_NORM                                         

          END DO 

           X_NG_NORM = ZERO  

          DO I = 1, NTT 

       X_NG_NORM = X_NG_NORM + DSQRT(HALF * X_N_G(I)**TWO)         

          END DO 

  622  CONTINUE 

 

          DO I = 1, NTT 

             TERM3(I) = ZERO 

             DO J = 1, NTT 

          TERM3(I) = TERM3(I) + X_M_MAT(I,J) * STRESS_DIST(J)                      

            END DO            

          END DO 

      VALTERM3  = ZERO     

          DO I = 1, NTT 

      VALTERM3 = VALTERM3 + TERM3(I)** TWO                            

          END DO 

        VALTERM3 = SQRT(HALF* VALTERM3) 

C      DEFINE THE VALUE OF STRESS TENSOR 

      STRESSVAL = ZERO     

          DO I = 1, NTT 

      STRESSVAL = STRESSVAL + STRESS_DIST(I)** TWO                            

          END DO 

        STRESSVAL = SQRT(HALF* STRESSVAL)    

          DO I = 1, NTT 

             DO J = 1, NTT 

      DEPS_PDDELTAGAMMA = DEPS_PDDELTAGAMMA +  

     * X_M_MAT(I,J)* STRESS_DIST(I) * DSIGMADDELTAGAMMA(J)            

            END DO            

          END DO 

      DEPS_PDDELTAGAMMA = DELTAGAMADIST * DEPS_PDDELTAGAMMA / 

STRESSVAL  + VALTERM3  

       DALPHA1DGAMA =  DALPHA1DEPSVAR_P * DEPS_PDDELTAGAMMA 

       DALPHA2DGAMA =  DALPHA2DEPSVAR_P * DEPS_PDDELTAGAMMA 

       DALPHA5DGAMA =  DALPHA5DEPSVAR_P * DEPS_PDDELTAGAMMA 

       DALPHA52DGAMA =  DALPHA52DEPSVAR_P * DEPS_PDDELTAGAMMA 
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       DALPHA4DGAMA =  DALPHA4DEPSVAR_P * DEPS_PDDELTAGAMMA 

       DALPHA42DGAMA =  DALPHA42DEPSVAR_P * DEPS_PDDELTAGAMMA 

C CALCULATE DI/DGAMA 

        DI1DGAMA = ZERO 

        DI2DGAMA = ZERO 

        DI4DGAMA = ZERO 

        DI5DGAMA = ZERO 

          DO I = 1, NTT 

       DI1DGAMA = DI1DGAMA + DI1DSIGMA(I) * DSIGMADDELTAGAMMA(I)           

       DI2DGAMA = DI2DGAMA + DI2DSIGMA(I) * DSIGMADDELTAGAMMA(I)                   

       DI4DGAMA = DI4DGAMA + DI4DSIGMA(I) * DSIGMADDELTAGAMMA(I)           

       DI5DGAMA = DI5DGAMA + DI5DSIGMA(I) * DSIGMADDELTAGAMMA(I)           

          END DO           

           

       DFDGAMA = (XI1 * DALPHA1DGAMA + XI2 * DALPHA2DGAMA + XI4 *  

     *  DALPHA4DGAMA+ XI4**TWO * DALPHA42DGAMA+ XI5 *DALPHA5DGAMA+ 

XI5** 

     * TWO * DALPHA52DGAMA) + (ALPHA1 * DI1DGAMA + ALPHA2 

*DI2DGAMA +  

     * ALPHA4 * DI4DGAMA + ALPHA5 *DI5DGAMA + TWO* ALPHA42 * XI4*   

     * DI4DGAMA + TWO*ALPHA52 * XI5* DI5DGAMA )      

      

          DELTATO2_GAMMA = - XF_YIELD_NEW_PERT/DFDGAMA   

               

       DELTAGAMADIST = DELTAGAMADIST + DELTATO2_GAMMA     

C UPDATE EQUIVALENT PLASTIC STRAIN     

        EPSVAR_P_INT_DIST = EPSVAR_P_INT_DIST + DELTATO2_GAMMA * 

X_NG_NORM 

          IF ( DABS(XF_YIELD_NEW_PERT) .LT. PLAST_TOL   ) 

     *    GOTO 800           

            IF ( NUMC1 > NUMBREAK ) THEN  

C             WRITE(*,*) 'NUMC=', NUMC1                

            GOTO 802          

            END IF 

C          

         END DO  ! END FOR MAIN LOOP 

C         

  800  CONTINUE 

C   401  CONTINUE 

  802  CONTINUE 

          DO M = 1, NTT 

C  CALCULATE THE DISTURBED STRESS MATRIX 

           SIGMA(M,K) = STRESS_DIST(M)    

          END DO  

      STRAN_DIST(K) = STRAINTOTVECNEW(K) 

       END DO  

C END APPROXIMATE JACOBEAN MATRIX                

               DO I=1, NTT 

                  DO J=1, NTT 

      C_TAN(I,J) = (SIGMA(I,J) - STRESS_NEW(I) )/ EPS_PERT(J) 

                 END DO   

                END DO   

                                     

      GOTO 300   
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  600  CONTINUE ! IF THE PLASTICITY HAS NOT BEEN OCCURED 

C GET ELASTIC STRESS   

        CALL GETSTRESS3D(CE_3D,CE_2D ,STRESS_NEW,STRAINTOTVECNEW,  

     *     NTT,ND)  

C SET ZERO VALUES FOR STRAN PLASTIC VECTOR IN PLASTICITY NOT 

HAPPENED 

        DO I = 1, NTT 

       STRAINPLAVECNEW (I) = ZERO  

        END DO          

C SET ELASTIC STIFFNESS MATRIX AS THE SECANT STIFFNESS MATRIX    

                IF (ND .EQ. 3) THEN      

        DO I = 1, 6 

           DO J = 1, 6 

          C_TAN(I,J) = CE_3D(I,J)            

          END DO 

        END DO 

             ELSE  

        DO I = 1, 3 

           DO J = 1, 3 

          C_TAN(I,J) = CE_2D(I,J)            

          END DO 

        END DO            

             END IF  

C UPDATE EQUIVALENT PLASTIC STRAIN       

      EPSVAR_P_NEW = EPSVAR_P_OLD      

  300  CONTINUE  

 

            RETURN 

          END 
 

8.3 Appendix.3 

A VUMAT subroutine must be started with the following piece of code to 
accomplish the initial calculations and checks. In the data check phase of the 
analysis Abaqus/Explicit calls user subroutine VUMAT with a set of fictitious 
strains and a totalTime and stepTime both equal to 0.0. 

         IF ( STEPTIME .EQ. ZERO ) THEN 

 

            DO KM = 1, NBLOCK    

C   HERE JUST DEFINE THE ELASTIC RESPONSE OF THE MATERIAL        

            END DO    

             

         ELSE 

 

            DO KM = 1, NBLOCK    

C   USER MAIN CODE        

            END DO    
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       ENDIF 

  

 

        

8.4 Appendix.4 

In this study the case study, i.e. the hybrid component, is made of two 
materials which governed by two different material models. To implement more 
than one material model in the subroutine the following piece of code can be 
used[110]: 

      if (cmname(1:4) .eq. 'MAT1') then 

      call VUMAT_MAT1(argument_list) 

      else if (cmname(1:4) .eq. 'MAT2') then 

      call VUMAT_MAT2(argument_list) 

      end if 

It must be taken into account that the materials name; e.g. 'MAT1', must be 
introduced in the capital letters.  

 


