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M. Malinverno�, G. Avino�, C. Casetti�, C. F. Chiasserini�, F. Malandrino�, S. Scarpina†
�Politecnico di Torino, Turin, Italy
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Abstract—One of the key applications envisioned for C-V2I

(Cellular Vehicle-to-Infrastructure) networks pertains to safety

on the road. Thanks to the exchange of Cooperative Awareness

Messages (CAMs), vehicles and other road users (e.g., pedes-

trians) can advertise their position, heading and speed and so-

phisticated algorithms can detect potentially dangerous situations

leading to a crash. In this paper, we focus on the safety application

for automotive collision avoidance at intersections, and study the

effectiveness of its deployment in a C-V2I-based infrastructure.

In our study, we also account for the location of the server

running the application as a factor in the system design. Our

simulation-based results, derived in real-world scenarios, provide

indication on the reliability of algorithms for car-to-car and car-

to-pedestrian collision avoidance, both when a human driver is

considered and when automated vehicles (with faster reaction

times) populate the streets.

Index Terms—Vehicular Networks, LTE-V2I Communications,

Automotive safety services

I. INTRODUCTION

In recent years, the development of vehicular network
applications has been attracting increasing interest from in-
dustries and researchers. A critical field of application of
vehicular networks is represented by safety; indeed, in 2015
the number of people who lost their lives in road traffic is
more than 1.2 million [1] and an increasing trend in road
casualties was observed in 2016 [2]. A most significant and,
at the same time, challenging safety application is collision

detection. One of the basic requirements for vehicles running
such an application is that they periodically send Cooperative

Awareness Message (CAM) to a detector [3]. These messages
are sent anonymously [4] toward the base station (BS) and
contain information about position, speed, acceleration and
direction of the sender. The collision detector combines all
the CAMs received by the vehicles determining if any couple
of vehicles is on a collision course. If so, the drivers involved
are immediately alerted. The communication between vehicles
and detectors happens through BSs that make communication
possible even in non-line-of-sight (NLoS) conditions, e.g., due
to buildings or other obstacles.

The application can be extended also to vulnerable road
users such as pedestrians, whose smartphone can send CAMs
to the detector. In this way, both drivers and pedestrians are
timely made aware of possible life-threatening situations and
can take proper action.

The purpose of this paper is to evaluate the performance of
a system for vehicle-with-vehicle and vehicle-with-pedestrian

collision detection when cellular vehicle-to-infrastructure (C-
V2I) is adopted as a communication technology. In particular,
we are mainly interested in the number of collisions that could
be avoided and in the number of false positive alerts (i.e., alert
messages referring to situations of low or no danger, that the
system delivers to the users). Indeed, a low number of false
positive alerts is essential in establishing user confidence in
the reliability of alerts received through the system.

The remainder of this paper is organized as follows: Section
II reviews the research related to the automotive collision
avoidance application. Our reference scenario is introduced
in Section III, while Section IV presents the design of the
automotive collision avoidance system, along with the detec-
tion algorithm. The description of the methodology for our
simulations and the output analysis technique are in Section
V. Section VI contains the results obtained; the paper closes
with our conclusions and future research directions in Section
VII.

II. RELATED WORK

There are several works in the literature that are related to
safety applications in the automotive domain (e.g., [5]). Many
of these works, such as [6] and [7], propose collision avoidance
and collision detection applications that do not leverage any
mobile network infrastructure. In particular [6] focuses on
collisions between vehicles and pedestrians in industrial plants.
In this case, positioning is achieved using a combination of
GPS, MEMS and smart sensors, while the type of wireless
communication to the control center is not specified. In [7],
White et al. propose a way to automatically detect a collision
after it has occurred, using smartphone accelerometers to
reduce the time gap between the actual collision and the first
aid dispatch.

Our solution proposes a trajectory-based collision detection
system based on a state-of-the art algorithm that we enhanced
to match our needs. The same base-algorithm has been used,
in different flavors, in [8] and [9]. [8] offers a top-down
and specification driven design of an adaptive, peer-to-peer
based collision warning system, while [9] proposes a V2V-
like approach.

An attempt to evaluate automotive forward collision warn-
ing and avoidance algorithm (CW/CA) has been done in
[10], where K. Lee et al. evaluated five different CW/CA
logics proposed by car makers. A very good survey of the
strengths and weaknesses of LTE as an enabler of vehicular



Fig. 1: Screenshot of the simulated scenario in SUMO.

communication technology is [11], where Araniti et al. also
extended some of the standardized safety messages used in
this work.

III. REFERENCE SCENARIO

The reference topology we consider (depicted in Fig. 1)
is an urban area composed of three roads, crossing at two
intersections, a pedestrian lane and three pedestrian crossings.
The intersections and crossings are unregulated, which makes
collisions more likely. The entities moving in the topology
are vehicles and pedestrians. Each of them is connected to
the cellular infrastructure and uses the collision avoidance
service, i.e., we assume a penetration rate equal to 1. Vehicles
are equipped with on-board units for C-V2I communications,
whereas pedestrians carry a smartphone with cellular con-
nectivity. Both periodically send CAMs toward the collision
avoidance application server.

In particular, we consider an LTE network with an eNodeB
(eNB) located at the center of the topology. The server hosting
the collision detector can be located at different points of
the network infrastructure, i.e., at the eNodeB itself or at
more remote network nodes. In order to study the difference
in performance, we consider two server deployments: at the
Metro node (very close to the eNB), in a multi-access edge
computing (MEC) fashion, and in the Cloud (farther from the
eNB). The choice of this urban topology allows us to have a
simple but, at the same time, representative scenario, which
closely mimics many real-world urban road layouts.

In order to assess the performance of the collision detection
service in our scenario, we use the SimuLTE-Veins simulator
[12], which leverages the mobility simulator SUMO [13].

A. Populating the Scenario

We use a realistic mobility model and a realistic genera-
tion rate of both vehicles and pedestrians. Vehicles have a
maximum speed of 13.89m/s (i.e., 50 km/h) and they follow
a straight path, i.e., there are neither left nor right turns at
junctions; pedestrians move with maximum speed of 2 m/s
on the pedestrian lane, crossing the street at three different
spots. Each generated vehicle is randomly assigned to one of
the six entry points at the edge of the map (shown in Fig. 1 and

Fig. 2: Evolution of the average number of vehicles for �p =
0.2 and �v varying from 0 to 2.

marked as v1...v6), while each vulnerable user is assigned to
one of either ends of the pedestrian lane (p1 or p2). Following
[14], vehicle arrivals are modeled as a Poisson process with
parameter �v; similarly, we model pedestrian arrivals with a
different Poisson process with rate �p.

In order to have reliable results and a realistic mobility
pattern, we apply the following methodology. We set both
the vehicular generation rate �v and the pedestrian generation
rate �p in such a way that the simulated scenario is stable;
in other words, the number of vehicles or pedestrians should
never grow so high as to yield the following situations:

1) too many cars start clogging the intersection;
2) the long queues of low-speed vehicles result into a

negligible number of collisions, and so the effectiveness
of the automotive collision avoidance application cannot
be correctly evaluated.

The dependence of the number of vehicles and pedestrians
from �v and �p is not linear because of the three crossings
in which the two entities share the road occupancy. To prop-
erly select the arrival rate of both cars and pedestrians, we
simulated the system when �v varies from 0 to 2.0 whereas
�p takes one of five possible values: 0, 0.05, 0.10, 0.15, 0.20.
The results without pedestrians (i.e., �p = 0) show that
the value of �v for which the average number of vehicles
in the simulation grows linearly with the generation rate
(i.e., it is in the stability region) is between 0 and 1.2. The
introduction of pedestrians, however, has a significant impact:
while with �p = 0 the maximum �v allowing stability is 1.2,
by increasing �p to 0.2, only values lower than 0.9 ensure
stability. Fig. 2 shows how the average number of vehicles
evolves for different values of �v with �p fixed to 0.2.

Consequently, we set �p to 0.1 and �v to 0.7. The value of
�v that we selected is consistent with real-world measurements
from the city of Turin, Italy [15].

IV. DESIGN OF THE COLLISION AVOIDANCE SYSTEM

The collision detection system that we developed is shown
in Fig. 3. Below, we first introduce the collision detection
algorithm (Section IV-A), then we present the system design
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Fig. 3: Collision avoidance system.

(Section IV-B). Finally, we show how to set the system
parameters (Section IV-C).

A. The Collision Detection Algorithm

The core of the collision avoidance service is the detection
algorithm. Although our algorithm accounts for the vehicle
acceleration, Algorithm 1 presents a simplified version for the
sake of clarity. Note that, being a generic trajectory-based
algorithm, it can be applied to any kind of colliding entity
(in our case both for vehicle-vehicle and vehicle-pedestrian
collisions). The algorithm, which is based on [16], is run when,
after receiving a CAM, the detector determines that the sender
of the message is on a collision course with another node. The
collision detection algorithm requires as input (Line 0):

• position and speed of the current vehicle, respectively
identified by the two vectors ⇥x0 and ⇥v; note that the speed
vector also includes information on the heading;

• the latest CAM sent by each vehicle in the scenario stored
in B.

In Line 1, the set C of nodes with which the current entity
could collide is initialized and, in Line 2, the future position
of the current entity is evaluated for each future time instant.
Then the algorithm computes the position of each node b � B
that recently sent a CAM (Line 4) and the distance ⇥d(t)
between such a node and the current entity (Line 5). In Line
6, we compute the square of the distance D(t) := |⇥d(t)|2;
we do this to simplify the subsequent computations. Since we
are interested in the minimum value of D(t), in Line 7 we
compute t�, defined as the time instant at which the distance
between the two entities is minimum . If t� < 0, the two
entities are getting farther apart, whereas, if t� is greater than

a threshold t2ct (where t2c stands for time to collision), the
minimum distance will not be reached within t2ct from the
current time. In both cases, no action is required (Line 8). If t�
is between 0 and t2ct, in Line 11 the minimum distance d�

at which the two entities will be at time t� is computed.
The algorithm compares d� against a minimum threshold s2ct
(space to collision): if d� is lower, then vehicle b is added to
set C, otherwise the algorithm skips to the next iteration of
the cycle.

Once all of the CAMs in set B have been processed, the

Algorithm 1 Collision detection pseudocode
Require: ⇥x0,⇥v,B

1: C ⇥ ⇤
2: ⇥x(t) ⇥ ⇥x0 + ⇥vt

3: for all b � B do

4: ⇥xb(t) ⇥ ⇥xb

0 +
⇥vb · t

5: ⇥d(t) ⇥ ⇥x(t)⌅ ⇥xb(t)

6: D(t) := |⇥d(t)|2 ⇥ (⇥v⌅ ⇥vb) · (⇥v⌅ ⇥vb)t2 +2( ⇥x0 ⌅ ⇥xb

0) ·
iiiiiiiiiiiiii · (⇥v ⌅ ⇥vb)t+ ( ⇥x0 ⌅ ⇥xb

0) · ( ⇥x0 ⌅ ⇥xb

0)

7: t� := t : d
dtD(t) = 0 ⇥ ⇥( ⇥x0⇥ ⇥

x
b
0)·(⇥v⇥ ⇥

vb)

|⇥v⇥ ⇥
vb|2

8: if t� < 0 or t� > t2ct then

9: continue

10: d� ⇥
�
D(t�)

11: if d� ⇧ s2ct then

12: C ⇥ C ⌃ {b}
13: return C
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algorithm returns the set C of entities with which the current
one is on a collision course. If the set C is empty, no action
is taken, else an alert message is sent to the current entity as
well as to all entities in set C. We will discuss the setting of
the thresholds t2ct and s2ct in Section IV-C.

B. System Description

Looking at Fig. 3, we now specify how the other system
blocks work.

The frequency at which CAMs are sent by each entity is
10 Hz, which is the maximum frequency allowed by the ETSI
standard [17]. This high value allows the whole system to
work with updated information. Indeed, considering a lower
frequency, e.g., 1 Hz, and a car moving at 13.89 m/s (i.e.,
50 km/h), the error at the server (ignoring the transmission
delays) would be in the worst case of 13.89 m. Clearly, such
a high error is not acceptable when dealing with a safety
application.

The detector placed at the server is able to distinguish
between CAMs sent by pedestrians and CAM sent by vehicles.
This gives us a double advantage. First, when the server
receives a CAM from a vehicle, it looks for possible collisions
with both cars and pedestrians, while on the contrary, with
a message sent from a pedestrian, the algorithm skips the
analysis for pedestrian-with-pedestrian collisions. The second
advantage involves the possibility to set different parameters
for the collision detection algorithm (i.e., s2ct and t2ct),
according to the type of entity which sent the CAM. This
allows a better performance of the algorithm, in terms of false
positives and false negatives.

Every time the detector receives a message, it checks if the
message is up-to-date: if so, the server stores the information
of the CAM; otherwise, the CAM is discarded. We set 0.8 s
as the threshold beyond which a CAM is considered as stale
and discarded. In the case of a fresh CAM, the algorithm
checks if its sender is at risk of collision. To improve the
system efficiency, we also introduce a range of action: only the
entities within such a range will be checked by the algorithm as
potential colliders. The radius varies according to the vehicle
speed as follows:

Radius = max{Speed · t2ct, s2ct}

When the server detects a pair of entities on a course of
collision, they are warned by an alert message. In order to
avoid an excessive number of duplicated alerts, the collision
detector does not generate the same alert message more then
one every second.

Thresholds and values used by the collision detector are
summarized in Table I and discussed in the next section.

C. Sensitivity Study on Collision Thresholds

Here we investigate the two parameters that mainly affect
the performance of the collision detection system: t2ct and
s2ct. Before delving into this study, we better detail their
meaning below:

TABLE I: Collision detection parameters for vehicles and
pedestrians.

Parameter Value
Vehicle Pedestrian

t2ct 10 s 5 s
s2ct 5 m 2 m

Max CAM Age 0.8 s 0.8 s
CAM frequency 10 Hz 10 Hz

Alert max frequency 1 Hz 1 Hz

• t2ct is the time to collision threshold. It introduces an
upper bound on the time to collision metric, i.e., the
time gap needed for two entities to reach their mutual
minimum distance. The higher this threshold, the more
likely it is that a pair of entities are considered at risk of
collision.

• s2ct: it is the space to collision threshold. It is the upper
bound to the distance at which two entities are at the time

to collision, to consider them at collision risk. Obviously,
the higher the threshold, the more likely it is that a pair
of entities is considered in collision course.

Setting those two parameters has a big impact both on system
accuracy and on system efficiency: relaxing them means to let
the algorithm trigger too many alerts, even when candidates
are not going to get that close. On the other hand, in this case
all the collisions are correctly detected, but a large percentage
of alerts refer to low-danger situations. On the other hand,
being too strict leads to the opposite situation in which the
number of unnecessary alerts is drastically reduced, but a
percentage of the collisions goes undetected or detected too
late. All the above are potentially dangerous for the driver. In
particular, for false positives it should be taken into account
that an excessive number of warnings may desensitize the
driver, causing future alerts to be ignored [8].

For these reasons, we undertook a study on the number
of undetected or late-detected collisions as well as on false
positives, as functions of s2ct and t2ct (Fig. 4). Looking at
the heatmap in Fig. 4a, it is clear that for values of t2ct equal
or lower than 3 s, in a scenario where vehicles travel at or
around 50 km/h, the system is completely unreliable. Indeed,
considering the delays introduced by different factors (e.g.,
processing time, human reaction, braking time), sending the
alert not earlier than 3 s before the expected impact, does not
allow the driver to stop the vehicle and avoid the accident.
Thus, the t2ct value needs to be at least 4 s. Looking at s2ct
and considering t2ct equal to 4 s, any value greater than 3 m
ensures the system to work efficiently, detecting in time the
collisions occurred.

As mentioned before, the drawback of having high values of
the threshold is the number of false positives. Fig. 4b shows
that few false positives can be obtained only with very low
thresholds (both t2ct and s2ct equal or lower than 2), but
this is completely unacceptable given the high percentage of
collisions not detected or detected too late with such values.
Thus, an interesting observation is that a high number of false
positives is the price to pay in order to realize a reliable
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(a) Vehicle-with-vehicle:
percentage of undetected or
late-detected collisions

(b) Vehicle-with-vehicle: percent-
age of false positives

(c) Vehicle-with-pedestrian:
percentage of undetected or
late-detected collisions

(d) Vehicle-with-pedestrian: per-
centage of false positives

Fig. 4: Thresholds analysis for vehicles traveling at 50 km/h.

collision detection system.
Looking at the case of vehicle-with-pedestrian alerts, we

observe a similar behavior. Fig. 4c shows that, even if the
trend is the same, a better performance is achieved by using
smaller values for the t2ct and s2ct thresholds. This happens
because, in the case of an alert, a pedestrian can stop almost
instantaneously due to her low speed. The above dynamic
causes the total number of false positives to be in general
higher than in the vehicle-with-vehicle case (Fig. 4d).

V. SIMULATION METHODOLOGY

In this section, we first describe the approach we adopted to
process the simulation logs in order to derive the main metrics
of interest. We then detail how we discern whether alerts are
received on time by the involved entities so that the collision
can be avoided.

A. Processing the Simulation Logs

We start by collecting the following information:
1) the dynamics of vehicles and pedestrians (e.g., their

position, speed and heading), using the SUMO Floating

Car Data output;
2) the vehicle-with-vehicle and vehicle-with-pedestrian col-

lisions that occurred, through the SUMO error-log file;
3) all the alerts sent by the collision avoidance application,

using the SimuLTE-Veins simulator.
Then, through post-processing, we analyze, for each colli-

sion, when it occurred and if the corresponding alert message

was generated. Furthermore, if the alert was correctly trans-
mitted, we also look at when it was received and processed
by the involved entities. In this way, we can determine if the
vehicle had sufficient time to brake before the impact.

B. Reaction to Alerts

Whether a collision is detected in time or too late is deter-
mined in the post-processing phase, by considering the alert
messages that have been received. A collision is considered as
“detected too late” if:

TA < TB

where TA represents the time available to the driver to avert
the collision, i.e., the interval between when the driver initiates
evasive actions and the actual collision. TB , instead, is the
time needed by the entity to stop, given its current speed and
maximum deceleration. TA is computed as follows:

TA = TFA ⌅ TD ⌅ TH , (1)

where the three elements in the above expression are:
• TD: the time gap between the moment at which a

collision is detected by the server and the moment at
which the alert reaches the driver through the vehicle
HMI. It includes the transmission time and the processing

time. The transmission time includes the time to transfer
data from the application server to the eNB, and then
to the entities involved in the collision. The processing
time is the time needed at the receiving node to process
an alert message from the time instant at which the first
bit is received to the time instant at which the driver is
notified about the received information. The processing
time is set to 400 ms [18];

• TH : the time needed by a human driver to take action
following the prompt of an alert. It is fixed to 1 second, as
suggested by several studies [19] [20] that take in account
different variables such as age, travel length, environment,
etc. Note that this parameter is set to zero in the case of
automated vehicles;

• TFA: the time interval between the generation of the first
alert related to a possible collision and when the actual
collision occurs.

Fig. 5 provides a visual representation of the timeline of the
communication between the collision detector and the human
driver, highlighting the time intervals discussed above.

VI. PERFORMANCE RESULTS

Below, we describe the simulation settings we used (Sub-
section VI-A), and we show our results in terms of collision
detection accuracy and alert reliability (Subsection VI-B).

A. Simulation Settings

We run two sets of ten 300s-long simulations, one with
the server at the Metro node and the other with the server
placed in the Cloud. As exemplary values reflecting real-world
mobile operators topologies, 5 ms and 20 ms have been chosen
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Fig. 5: Timeline of the communication between the detection server and the human driver.

Fig. 6: Vehicle-with-vehicle (Veh-Veh) and vehicle-with-
pedestrian (Veh-Ped) collisions detected, detected too late
and not detected, for the Human Driver (HD) case and
the Autonomous Vehicle (AV) case, and for different server
placements.

for the Metro-eNB and cloud-eNB latencies. In the post-
processing phase, each of the two simulation sets is analyzed
considering either the human driver or the automated vehicle
case. Intuitive, a better performance can be expected in the
automated vehicle scenario, asTH = 0.

B. Simulation Results

Fig. 6 shows the effectiveness of our collision avoidance
system in terms of number of accidents that can be prevented.
The four bars show the number of vehicle-with-vehicle de-
tected, late-detected and undetected collisions among those
reported by the SUMO simulator. A collision is reported in
SUMO each time the polygon describing an entity overlaps
with the polygon describing another entity. The two leftmost
bars refer to the case in which the server is placed at the Metro
node, both in the human driver case and in the automated
vehicle case, while the other two refer to the scenario where
the server is in the Cloud.

The first important result that we highlight is the effective-
ness of our algorithm: regardless of the location of the server,

Fig. 7: Screenshot from SUMO representing a situation that
leads to a false negative.

it reaches 100% in case of automated vehicle, and over 80%
in case human driver. A second relevant result, is the absence
of “Not detected” collisions in the four case studies. More in
general, the histograms referring to the Metro node are quite
similar to the ones referring to the Cloud, with the exception of
few “Detected too late” cases: the latter show a little increase
when the server is placed in the Cloud. The reasons for this
limited increase are twofold. First, when a collision is correctly
detected, the time between the generation of the first alert and
the actual collision (TFA) is around 10 seconds (which is the
threshold t2ct). Thus, relatively speaking, the delay introduced
by moving the collision detector from the Metro node to the
Cloud can be considered as negligible. Second, even if the t2ct
value were reduced, the increased transmission time would not
have an impact. Indeed, looking at the expression of TA in (1),
the difference of 15 ms due to the location of the server, is very
small compared to the processing time (400 ms) or, in case of
human driver, to TH (1 s).

Next, we focus on the collisions between pedestrians and
vehicles. The generation rate of pedestrians is relatively low
(on average 1 pedestrian every 10 s), so the number of colli-
sions observed is lower than in the previous case. We notice
a decrease in the effectiveness of our collision detector, with
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Fig. 8: False positive statistics for vehicle-with-vehicle (Veh-
Veh) and vehicle-with-pedestrian (Veh-Ped) collisions for the
Human Driver (HD) case and the Autonomous Vehicle (AV)
case, and for different server placements.

about 6.5% of collisions going undetected. Furthermore, false
negatives now affect all the case studies, regardless of the type
of driver and the location of the server. Since the “undetected”
collisions are very few, we scrutinized each of them. It turned
out that all false negatives are due to the mobility model
used in SUMO for pedestrians at zebra crossings and for the
approaching vehicles. Let us consider a vehicle and a pedes-
trian approaching a free zebra crossing. Since no pedestrian
occupies the crosswalk, the vehicle proceeds at maximum
speed. Once the pedestrian enters the zebra crossing, the
car, which now sees the obstacle, starts to decelerate. If it
is impossible to stop in time, the “best” thing to do would
be not to stop. However, according to the SUMO mobility
model, the vehicle always tries to stop when approaching an
occupied junction, thus the vehicle continues to decelerate.
Our algorithm, which is aware of the speed, distance and
acceleration of the car, predicts that the vehicle will never
hit the pedestrian and, also, that when it stops completely,
the pedestrian will be behind the car, thus no alerts are sent.
However, as shown in Fig. 7, the vehicle stops in the middle
of the crosswalk and the pedestrian, completing the crosswalk,
rather than dodging it, physically walks over it. This is reported
as a collision in the SUMO logs. By discounting this issue, the
system performance becomes comparable to that of vehicular
collision case, as depicted in Fig. 6. Looking at the histogram,
moving the server to a farther location only minimally affects
the “Detected too late” cases. This is because, whenever a
possible collision is correctly detected, the pedestrian will have
about 5 s (which is the t2ct threshold for the pedestrian case)
to act, which is more than enough since pedestrians can stop
almost instantaneously.

Another issue to investigate is the study of the quality of
alerts that are actually received by the vehicles, in order to find
the fraction of false positives, i.e., the alert messages referring
to situations of low or no danger. False positives are not as
critical as undetected collisions but they may be a cause of

Fig. 9: CDF of the distance between cars in a false positive
situation.

distraction for human drivers. The list of the metrics studied
in this section follows:

• total alert sent: total number of alerts sent by the server
to vehicles to warn them about detected collisions.

• true positives: alerts that have been sent and refer to
collisions that actually occurred. They include:

– true and timely positives: alerts for which the driver
had enough time to brake before the collision hap-
pened;

– true but late positives: alerts for which the driver did
not have enough time to brake before the collision
happened.

• false positives: alerts that have been sent and refer to
collisions that would not take place.

Fig. 8 shows the results of this analysis. The false positive
percentage is high, greater than 60%. As was explained in
Section IV-C, the value of false positives may decrease by
decreasing the values of the thresholds t2ct and s2ct.

This high value of false positive alerts brings us to analyze
their relevance. We therefore look at the minimum distance
reached by the pairs of vehicles receiving false positives alerts
to determine if, also in absence of collision, a dangerous
situation has arisen. By parsing the Floating Car Data SUMO
output, we checked, for each pair of vehicles warned by a
false positive alert, the minimum distance that the two vehicles
reached over the time. The Cumulative Density Function
(CDF) of this quantity is shown in Fig. 9. This plot tells us
that:

• 60% of the false positive alerts are sent to vehicles that
got less than 2.3 m apart;

• there are no vehicles warned by a false positive alert
whose minimum distance is more than 5 m.

This highlights that the false positive alerts are transmitted
in situations that are indeed dangerous – a factor that is
particularly important when inaccuracies of the positioning
system are taken into account.
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Fig. 10: CDF of the vehicle-to-pedestrian distance in a false
positive situation.

As far as the vehicle-with-pedestrian false positive alerts are
concerned, the results are shown in Fig. 8. The histograms por-
tray a situation that is more critical than in vehicle-to-vehicle
collisions. Indeed, the false positive rate is around 80%. This
behavior is due to the characteristics of the pedestrian mobility
with respect to cars: zebra crossings are occupied for a longer
time by pedestrians, in particular, since pedestrians move at a
maximum speed of 2 m/s and the two lanes are each 6 m wide,
a pedestrian will occupy the crossing for about 6 seconds.
During this time, it is likely that other cars will approach the
crossing and, if they stop or pass close to the pedestrian, the
collision detector will trigger the generation of an alert, even if
no collision actually occurs. In this case too, it is important to
look at the CDF of the vehicle-to-pedestrian distance (Fig. 10),
which shows that 50% of the false positives are sent for
situations in which the car and the pedestrian were 2 m apart
from each other.

As a final remark, although the percentage of false pos-
itives is quite high, a C-V2I-based system can ensure high
reliability in collision detection, and even false positives refer
to actually dangerous situations. Furthermore, large margins
of improvement are possible if additional information coming
from on-board sensors (cameras, radars, lidars...) is merged
with that available through the C-V2I interface, and advanced
data fusion algorithms are used so as to provide the driver
with a comprehensive, yet accurate, warning system.

VII. DISCUSSION AND CONCLUSIONS

In this paper, we have proposed an efficient C-V2I-based
system for automotive collision avoidance, and tested it under
different scenarios. By exploiting the transmission of CAMs
toward the collision detection server, the latter determines
whether any pair of vehicles, or vehicle and pedestrian, are
set on a collision course, and, if so, it issues an alert message.
We deployed the server in two different points of the network,
namely, in the Metro node and in the Cloud, and we considered
both human drivers and automated vehicles.

Our results show that in every case study we analyzed, the
percentage of detected collisions is 100%. However, consid-
ering a human driver, a percentage of those collisions (on
average 14%) is detected too late. Considering automated
vehicle instead, due to the absence of the human reaction
time, no late-detected collisions are observed. Additionally, in
this case, the different location of the server does not have a
noticeable impact on the system performance, given the values
for human reaction time and on-board processing time.

As far as the analysis of alert messages sent by the server
is concerned, we see that a high percentage thereof are false
positives. At a closer inspection, we found that, even if the
number of false positive alerts is very high, they are sent in
situations that are actually dangerous. This fact is particularly
important if inaccuracies of the positioning system are taken
into account.

Two main directions for future research can be envisioned:
(i) investigating the gain that cellular vehicle-to-vehicle (C-
V2V) communications can bring; (ii) assessing the benefits
that may come from data fusion performed on CAMs and
sensory data such as those collected via cameras, radars and
lidars.
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