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Abstract. Nowadays, the refined models of simulation to evaluate the seismic damage in an 

urban area are becoming of paramount interest for the scientific community. Regional seismic 

damage simulation can potentially provide valuable information that can facilitate decision 

making, enhance planning for disaster mitigation, and reduce human and economic losses. 

However, the application of refined models is limited because of their high computational cost 

and needs of highly experienced users. For these reasons, these approaches remain academic 

experiences. This study proposes a straightforward approach to the problem, at the same time 

competitive, to simulate the seismic response and to assess the degree of damage at urban scale. 

At first, the simulation of the standard building is performed using an equivalent single degree 

of freedom model. Subsequently, the same approach is extended to a number of regular build-

ings from a virtual city sample for time-history seismic response analysis. The first part of this 

work is devoted to present the methodology to prepare the one-degree-of-freedom model of the 

standard building by comparing it with a refined multi degrees of freedom model as a target. 

Finally, a seismic damage simulation of a virtual city sample is implemented to demonstrate 

the capacity and advantages of the proposed method at increasing seismic intensities for dam-

age assessment. It is the starting phase for further multi-hazards analyses at the regional scale 

through agent-based models. 
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1 INTRODUCTION 

Civil Engineering structural systems have been usually considered at standard scale level: 

e.g. the building one, even if of large dimensions. They are usually characterized by classical 

elements, forces and consolidated computational procedures for their analysis as well. However, 

recent social developments and economic transformations, related to globalization, with inte-

grated people activities within large urbanized areas, also characterized by high-density living 

and working, all together has changed the conditions of the last century toward regional dimen-

sions. The current trend involves not only expected standard forces (wind, earthquake, etc.) but 

also new hazard with higher level components and indirect effects related to interconnections 

between static and dynamic systems. The resulting scenario leads to a new paradigm of vulner-

ability and, consequently, new analysis tools are expected to be developed with respect to the 

urban dimension.  

The need of approaching such complex problem with rational tools is the object of this re-

search work. In particular, new approaches to urbanized systems and large-scale simulations 

within a seismic scenario are explored, by evaluating multipurpose codes for numerical simu-

lation and also simplified numerical approaches.  

A sample of a 3-D virtual city is developed for evaluating the seismic effects at increasing 

intensities. It will be the starting step for further urban loss analyses through agent-based models, 

which will be updated with respect to performance losses.  

Modern cities are systems with a high density of population and buildings. Once they are hit by 

earthquakes, the damage or collapse of buildings will result in huge economic losses and casu-

alties. Regular multi-story buildings occupy a large proportion in urban areas, therefore they 

are mainly exposed to seismic damage and collapse due earthquakes. An accurate and efficient 

regional seismic damage prediction method is required to assess the seismic damage of regular 

multi-story buildings in order to mitigate the earthquake disasters in modern cities on critical 

infrastructures.  

Several authors have proposed methods for modelling multi-degrees of freedom structural 

systems (e.g. [1,2]) with a high grade of complicacy the large number of regular buildings. For 

this purpose, an equivalent single-degree-of-freedom (SDOF) model of regular standard build-

ings is studied in this work within a multipurpose finite element (FE) code. It includes two main 

positive aspects: the structural analysis for damage assessment and the real time visualization 

in a single unit. The structural problem in literature is usually solved separately from the visu-

alization problem (e.g. 3D urban polygonal models [3]).  

In this study a single degree of freedom model is proposed to evaluate in details the seismic 

performance of the regular buildings trying to limit the complexity of the problem, not needing 

a super computer to conduct the analysis as in [4].  

For developing the equivalent single degree of freedom model for the standard regular build-

ing a sequence of analyses for comparison has been performed. A refined FE analyses is firstly 

performed for identifying the multi-degrees-of-freedom (MDOF) system with respect to ex-

pected characteristics from guidelines (Eurocode 8 [5]). Then the SDOF is developed with ref-

erence to structural dynamics and then implemented in FE code Ansys [6] through beam and 

solid elements. This last option is promising for a further automatic implementation of the vir-

tual city model by linking the 3D GIS city map and the simulation framework. Finally, we have 

developed a medium-sized district to assess the overall behaviour during an earthquake at in-

creasing intensities. In particular, the damage assessment is of a paramount importance for sub-

sequent simulations of critical infrastructures losses.  
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A 3D GIS of the ideal city is in a CAD format and it is imported into a FE code and the 

geometry of the whole buildings system (e.g. district) in a single step is imported. This proce-

dure is performed accounting for the numbers of the floors of every building, the material and 

the structural typology (masonry, frame).  

According to the Hazus report [7], the seismic damage is classified into five levels: none, 

slight, moderate, extensive, and complete damages. To assess the seismic damages of buildings, 

two sets of criteria are in existing literatures: the force-based damage criteria and the defor-

mation-based criteria. Both have their advantages and limitations. As proposed by Xiong et al. 

[1] and Yin et al. [8] this study defines the damage states by taking the advantages of both the 

force-based and deformation-based damage criteria. The force-based damage criteria are used 

for the “slight” and “moderate” damage states, whereas the deformation-based criteria are used 

for the “extensive” and “complete” damage states. The proposed method has the ability to out-

put the displacement contours for different time steps, thus making it possible to generate an 

animation of the building seismic responses. This research will provide a reference for the seis-

mic damage prediction of large urban areas. 

2 METHODOLOGY 

2.1 Description of the case study  

A finite element model is prepared considering a real residential building in the ideal city 

with a rectangular footprint and a polygonal shape. It is 11 meters high and the inter-story dis-

tance consists in 3.5 meters except the first floor that is to 4.5 meters from the ground. The 

building has three floors. Figure 1a depicts the dimensions of the plant and Figure 1b the lon-

gitudinal section. 

 

 

   (a) - Plant of the building - 
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(b)  - Longitudinal section - 

                                                           

(c) Section pier    Section beam 

Figure 1: Reference building. 

The material is the reinforced concrete (C25/30). Figure 1c reports the typical section of the 

beams and of the piers, constant for all floors. 

2.2 SDOF FE model of the regular ideal building: beam element approach 

To perform the analyses a multipurpose FE software is employed (Ansys [6]). The reference 

building is firstly represented through a beam (element BEAM188 in Ansys 2 nodes and 6 

degrees of freedom per node with cubic shape function). According to [6], the element is based 

on Timoshenko beam theory, therefore, shear deformation effects are included. The beam is 

fixed to the ground and a cross section equal to the shape of the footprint of the real building is 

assigned. The mass of the building is concentrated on the top of the beam (Figure 2). It is worth 

noting the polygonal shape performed by the FE post-processor (Figure 3). It results very useful 

for both the polygonal visualization of the virtual city and, at the same time, for low computa-

tional costs (low number of degrees of freedom). 

 

 

Figure 2: Beam model. 
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Figure 3: Polygonal output. 

According with Eurocode 8 [5] the expected period of the structure is given from the fol-

lowing formula: 

              𝑇 = 𝐶𝐻
3

4               (1) 
 

Where C is a constant in function of the material and H is the height of the building. In our 

case the high is 11 meters then: 

𝑇 = 0.075 ∙ 11
3

4 = 0.45 𝑠𝑒𝑐        (2) 

 

For this period, the stiffness of the building can be computed. A self-weight of 11
𝐾𝑁

𝑚2 is fixed 

accordingly with a widely accepted range of 10 
𝐾𝑁

𝑚2 ÷ 12
𝐾𝑁

𝑚2. Therefore, the total mass and the 

equivalent SDOF stiffness of the whole building are the following one: 
 

𝑚𝑡𝑜𝑡 = 𝑊𝑒𝑖𝑔ℎ𝑡 𝑓𝑜𝑟 𝑓𝑙𝑜𝑜𝑟 ∙ 𝑛° 𝑜𝑓 𝑓𝑙𝑜𝑜𝑟𝑠 ∙ 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑝𝑙𝑎𝑛𝑡 = 11 ∙ 403 ∙ 3 = 13299 𝐾𝑁 ≅
1355.6 𝐾𝑔      (3) 

 

𝐾 = (
2𝜋

𝑇
)

2

𝑚𝑡𝑜𝑡 = 259270850
𝑁

𝑚
       (4) 

 

The displacement corresponding to the equivalent stiffness is then computed: 

  
𝐹

𝐾
=  𝛿∗         (5) 

 

The cantilever bending stiffness is function of the inertia modulus of the cross section and 

the modulus of elasticity. The cross section is related to the building foot-print, while the mod-

ulus of elasticity can be tuned in the following identification procedure.  

Thus, a general constant force F is applied to the elastic model of the structure in the Ansys 

FE code, reading the top displacement 𝛿. The modulus of elasticity is then modified, within a 

tuning procedure, until 𝛿 results equal to 𝛿∗. Table 1 summarizes the tuning values. 

 

Applied force  K 𝛿∗  E 𝛿 

100 kN  259270.85 kN/m  3.85E-4 m 43.6 MPa 3.85E-4 m 

Table 1: Tuning values. 

The same result can be obtained by considering the Timoshenko stiffness closed form: 
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𝑣(𝑧 = 𝐻) =
𝐹𝐻

𝐺𝐴𝑆
+

𝐹𝐻3

3𝐸𝐼
     (6) 

 

Where v in the transversal displacement of the beam, z is the beam longitudinal coordinate, 

G is the shear modulus, AS is the shear surface (AS =0.85A) and EI respectively the elastic and 

inertia moduli.  

The mode shape of the first vibration mode for the regular ideal building can be assumed 

almost linear as depicted in Figure 4. 

 

 

Figure 4: First mode shape of vibration. 

Normalized eigenvectors corresponding to every floor can be computed by proportion. Thus, 

x1 and x2 in Figure 4 result:  

 
1: 11 = 𝑥2: 7.5 → 𝑥2 = 0.68     (7) 

 
1: 11 = 𝑥1: 4 → 𝑥1 = 0.36     (8) 

 

A self-weight of 11
𝐾𝑁

𝑚2 is fixed for all floors except for the last roof floor, where the self-

weight is 10
𝐾𝑁

𝑚2 . The foot print area Afp and the modal mass associated to the first mode m* 

can be computed as:   
 

Afp = 403 𝑚2       (9) 
 

𝑚∗ = ∑ 𝑚𝑖 ∙ 𝜑𝑖 = 11 ∙ 403 ∙ 0.36 + 11 ∙ 403 ∙ 0.68 + 10 ∗ 403 ∙ 1 = 8640.2 𝐾𝑁  (10) 
 

 
Where 𝜑𝑖 is the value of the eigenvector of i floor. The circular frequency  𝜔∗ associated to 

the i mode is then computed: 

 

𝜔∗ = √
𝐾

𝑚∗ = √(
2𝜋

𝑇
)

2
𝑚𝑡𝑜𝑡

∑ 𝑚𝑖𝜑𝑖
    (11) 

 

The ratio 
𝑚𝑡𝑜𝑡

𝑚∗  is a kind of inverse of the participation coefficient for the first mode of vibra-

tion. Finally, the fundamental period for the equivalent SDOF is: 
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𝑇∗ =
2𝜋

𝜔∗     (12) 

 
From the response spectrum of the city of Turin, with a behaviour factor equal to one, the 

spectral acceleration and the spectral displacement for 𝑇∗ is calculated.  
 

 

 Figure 5: Response spectrum- Acceleration 

 

 Figure 6: Response spectrum- Displacement 

 
Appling to SDOF model on FE code a force 𝐹 = 𝑚∗𝑆𝑎

∗  the resulting displacement response 
at the top 𝛿𝑆𝑎

 is computed and compared with the spectral displacement 𝑆𝑑
∗ . Table 2 reports 
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the spectral values. The displacement 𝛿𝑆𝑎
 consists in 0.000708g meters, in good agreement 

with the spectral one. 

 

𝑆𝑎
∗  𝑆𝑑

∗  𝑇∗ 𝐹 

0.217 g 0.000747g m  0.36 sec 1874.9 kN 

Table 2: Spectral values. 

2.3 MDOF FE model of the regular ideal building 

A refined FE analyses of the regular building is performed in SAP2000 (Figure 7) [9] for 

reproducing the whole MDOF system behaviour. The weight of every floor is summarized in 

Table 3 accordingly with the first mode eigenvector. The corresponding masses are concen-

trated in the centre of mass at every floor. In this case of regular ideal building the centres of 

mass and stiffness are roughly in the same position.  

  

Floor  W [kN] 

1 11 

2 10.8 

3 9.7 

Table 3: Floors’ weights. 

 

  
 

Figure 7: MDOF model on SAP2000 

The fundamental period of the structure is computed through modal analysis. Then the re-

sponse spectrum analysis is implemented in order to get the displacement at the top of the 

building. Satisfactorily comparison is reported in table 4. Figure 8 depicts the top displacement 

from the static spectrum analysis on the MDOF model.  

 

T [MDOF] T [SDOF] 𝛿 [MDOF] 𝛿 [SDOF] 

0.38 sec 0.36 sec 0.0007g m 0.0007g m 
 

Table 4: Period and displacement 
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Figure 8: joint displacement at the centroid (top view). 

The second mode of vibration (T2) also is translational but in the orthogonal direction to the 

first and the period of vibration is 0.33 seconds (Table 5). The second mode of vibration of the 

SDOF model is translational and the period is 0.29 seconds. Comparing these results, the SDOF 

model approximates satisfactorily the dynamic behavior of the structure in both directions.  

 

T2 [MDOF] T2 [SDOF] 

0.33 sec 0.29 sec 

Table 5: Period of the second mode of vibration. 

2.4 SDOF FE model of the regular ideal building: solid element approach 

The reference building is now represented through a solid element within the same multi-

purpose FE software [6] employed for the beam element implementation of the previous sec-

tion. The reason to use this finite element has a practical aspect: importing the 3D geometry of 

the buildings of the virtual city from CAD framework to Ansys, all volumes reproducing the 

buildings can be easily converted solid Fes. The advantage is to get and discretize all buildings 

of the city in Ansys in a single step, reducing essentially complications and time.  

The calibration steps for the solid FE model are the same as the model with beam elements 

previously described. Thus, a general constant force F is applied at the top of the elastic model 

of the regular buildings in Ansys, reading the resulting top displacement (𝛿). The modulus of 

elasticity is then modified, within a tuning procedure, until 𝛿 results equal to 𝛿∗. Table 6 sum-

marizes the tuning values. 

 
Applied force  K 𝛿∗  E 𝛿 

100 kN  259270.85 kN/m  3.85E-4 m 43.6 MPa 3.85E-4 m 

Table 6: Tuning values. 

Then the same spectral procedure through Figures 5 and 6 as for the SDOF FE model with 

beam element implementation is repeated with equivalent outcomes as in in Table 2. Figure 9 

reports the top displacement resulting from the response spectrum equivalent static force; it 

results 0.000722g m as 𝑆𝑑
∗  in Table 2. Therefore, the SDOF FE model of the regular ideal build-

ing with solid element is equivalent to that one with beam element approach. 
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Figure 9: displacement of the solid model 

2.5 Case of a finite number of buildings 

By using the approach with solid element (section 2.3), the geometrical parameters are not 

necessary to calculate. The mechanical parameters (stiffness and mass) only are needed for 

the analyses computation. The method can be extended to all buildings of the ideal city. Fig-

ure 10 summarizes the procedure for an equivalent single degree of freedom model.  

 

 

Figure 10: Method for stiffness and the mass identification for regular buildings. 

Importing a 3D GIS in the FE code, the geometrical model of the regular buildings in a single 

step can be defined. However, before importing the geometry, a regular volume of the building 

(free of defects and negligible peculiarities) is necessary through the CAD software. Figure 11 

exemplifies the general procedure for performing the solid FE mesh of the ideal city. 

 

 

 

Figure 11: method to import the geometrical model in a FE software. 
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3 DISTRICT SEISMIC RESPONSE SIMULATION  

A medium-sized district has been considered to firstly assess the overall procedure and the 

structural behaviour during an earthquake. The district is situated in Turin and contains nine 

regular buildings. Structures with “L” shape in reality are parts of buildings with a rectangular 

shape divided by a seismic joint.  In figure 12 a top view of the district is reported. 

 

Figure 12: Study area 

The 3D model of the buildings is defined through the design software “Infraworks 360” [10] 

and imported in Ansys. Figure 13 depicts the visualization of 3D model in Infraworks 360 and 

the model in Ansys. Figure 14 reports the comparison between the visualization of Google Earth 

and the FE software.  

  

(a)      (b) 

Figure 13: the Infraworks visualization  (a) and the Ansys one (b). 
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(a)      (b) 

Figure 14: The Google Earth visualization (a) and the Ansys one (b). 

The stiffness and the mass for each building are computed as explained in Section 2 with the 

values in Table 7. 

 

Buildings m* [Kg] E [MPa] 

A 3825850 231.3024 

B 6690600 233.4302 

C 1952500 371.9756 

D 1952500 337.2031 

H 4892690 259.8985 

E 5640000 406.9188 

F 2461972 302.0051 

G 1674141 247.6341 

I 4467831 386.0803 
 

Table 7: Mass and modulus of elasticity values. 

The fundamental periods of the regular buildings in the district are computed through modal 

analysis. In Table 8 the frequencies associated to the first mode of vibration for every building 

are reported. 

 

Buildings Frequency [Hz] 

A 1.3766 

B 1.7686 

C 1.4807 

D 1.5161 

H 1.6096 

E 1.3259 

F 1.6589 

G 1.5616 

I 1.7944 
 

Table 8: Frequency of the first mode of vibration. 
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SIMQKE_GR software [11] is used for generating an accelerogram in function of the coor-

dinates of the city, type of soil, topography of the area, total duration of the earthquake (Dr). It 

applied to the virtual city at increasing intensities. 

 

 

 

PGA [g] Dr [s] 

0.002 20 
 

 
 

Table 9: peak ground acceleration (PGA) and total duration values  

 

PGA [g] Dr [s] 

0.006 20 
 

 

Table 10: peak ground acceleration (PGA) and total duration values  

 

PGA [g] Dr [s] 

0.01 20 
 

 

Table 11: peak ground acceleration (PGA) and total duration values  

 

PGA [g] Dr [s] 

0.02 20 

 

  

Table 12: peak ground acceleration (PGA) and total duration values  
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PGA [g] Dr [s] 

0.028 20 
 

 

Table 13: peak ground acceleration (PGA) and total duration values  

 

 

PGA [g] Dr [s] 

0.038 20 

 

 

 

Table 14: peak ground acceleration (PGA) and total duration values  

 

 

 

PGA [g] Dr [s] 

0.046 20 
 

 
 

Table 15: peak ground acceleration (PGA) and total duration values  

 

The following Figures 16 and 17 depict respectively the output displacements in direction z 

and y axes of the district stresses. With x the vertical axis, y and z the horizontal ones. Axis y is 

oriented with respect to North of 56°. The district seismic output is evaluated through linear 

analysis with direct integration of equation of motion. Damping is fixed to 0.05. In Turin the 

design peak ground acceleration 0.036g. In the figure 16 and figure 17 are represented the dis-

placements along the two directions x,y concerning to the earthquake with a PGA equal to 

0.046g 

-0.4

-0.2

0

0.2

0.4

0 5 10 15 20

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 5 10 15 20

-1

-0.5

0

0.5

1

0 5 10 15 20



G.P. Cimellaro , M. Domaneschi, S. Mahin, G. Scutiero 

 

 

 

Figure 16: displacements along y axes 

 

Figure 17: displacements along z axes 

4 DAMAGE ASSESSMENT AT THE URBAN SCALE FOR LINEAR ELASTIC 

BUILDINGS MODELS 

HAZUS [7] is software to estimate damage and losses caused by natural disasters. This 

methodology is developed by the Federal Emergency Management Agency (FEMA) to estimate 

the potential damage caused by natural disasters like earthquake. According to the Hazus report 

[7], the seismic damage is classified into five levels: none, slight, moderate, extensive, and 

complete damages. To assess the seismic damages of buildings, two sets of criteria are in ex-

isting literatures: the force-based damage criteria and the deformation-based criteria. The force-

based damage criteria are used for the “slight” and “moderate” damage states, whereas the de-

formation-based criteria are used for the “extensive” and “complete” damage states. the RC 

frames reach the “slight damage” and “moderate damage” states when the internal force ex-

ceeds 𝑉𝑦𝑖𝑒𝑙𝑑,𝑖 and 
𝑉𝑦𝑖𝑒𝑙𝑑,𝑖+𝑉𝑝𝑒𝑎𝑘,𝑖

2
, respectively, as shown in Fig.18 and reported in Table 8. The 

tri-linear backbone curve features three key points: the yield point, which is the turning point 

between the linear behaviour and the nonlinear behaviour and after which the stiffness is sig-

nificantly reduced; the peak point, which is the point where the peak strength is reached; and 

the ultimate point, after which the story is deemed collapsed or completely damaged. The de-

termination of strength and deformation parameters of each key point were discussed in the 

paper [1]. 
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Figure 18: V-𝛿 for Reinforce concrete frame 

 

 Slight Moderate Extensive Complete 

Reinforce concrete 

frame 
𝑉𝑦𝑖𝑒𝑙𝑑,𝑖 

𝑉𝑦𝑖𝑒𝑙𝑑,𝑖 + 𝑉𝑝𝑒𝑎𝑘,𝑖

2
 𝛿𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑣𝑒 𝛿𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 

Table 10: Damage criteria 

 

Figure 19: Damage state with PGA 0.002g and PGA 0.006g 

Figures 19,20,21,22 depict through different colours the grade of damage of the buildings 

due to the seismic input discussed in section 3. The procedure identifies five different level of 

damage, accordingly with the implemented conditions. 

 



G.P. Cimellaro , M. Domaneschi, S. Mahin, G. Scutiero 

 

 

 

Figure 20: Damage state with PGA 0.01g and PGA 0.02g 

 

 

Figure 21: Damage state with PGA 0.028g and PGA 0.038g 



G.P. Cimellaro , M. Domaneschi, S. Mahin, G. Scutiero 

 

 

 

Figure 22: Damage state with PGA 0.046g 

 

As shown in the Figure 19, the first damaged buildings are B and H. The fundamental natural 

vibration frequencies for these buildings are respectively about 1.71 for the building B and 1.61 

Hz for the building H. The input periodogram PSD, Figure 23, shows that the maximum peri-

odogram PSD value is at about 1.69 Hz. The fundamental natural vibration frequencies of the 

remaining buildings are larger than 2 Hz. Furthermore, building A is never seriously damaged 

because the direction of the building is essentially parallel to the direction of the earthquake 

and then the structure reacts to this force with the side with the high inertia. In Figure 22 almost 

all the buildings are seriously damaged due to PGA is fixed to 0.046g and the buildings were 

designed for 0.036g PGA. 

 

Figure 23: Periodogram PSD of the input 
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5 CONCLUSIONS  

A simple SDOF model of a standard regular building with natural period equivalent to that 

one deduced from a MDOF model is obtained. It is also in agreement with the guideline pre-

scriptions. Seismic displacements of the SDOF model are also equivalent to those correspond-

ing to displacement response spectra. 

This simplified approach can be extended and implemented into a more general procedure 

on a virtual city model. The preliminary tests on a small district result promising for extensive 

application to large number of regular building that usually characterize for large parts of urban 

areas.  

Finally, a seismic damage prediction approach is also proposed within the same urban dis-

trict through a widely accepted protocol at increasing input. Such simple application demon-

strates that it can be also implemented at a larger scale as the virtual city one. The proposed loss 

prediction approach results of a reasonable accuracy and can give a significant contribution to 

disaster resilience analysis and prevention in urban areas.  
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