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Abstract

This PhD thesis is devoted to explore non-local orders in low-dimensional Hubbard-
like systems. This kind of systems plays a crucial role in condensed matter physics.
They were originally introduced to model solid state materials and, indeed, they
successfully describe many observed physical phenomena. Additionally, in last
decades, their scientific interest has exponentially increased thanks to the experiments
with cold atoms, which have opened the opportunity to simulate and manipulate this
type of lattice models. Trapping ultracold atomic gases into an optical lattice potential
provides the purest realization of Hubbard Hamiltonians. Most important, the high
control on the parameters involved allows to achieve even new fascinating regimes,
among them exotic phases occurring in one and two spatial dimensions. These
investigations are extremely interesting, since they unveil a totally novel physics,
with many potential applications. On the other hand, from the theoretical point of
view, Landau developed a theory that classifies possible phases of matter according
to their symmetry. These are called spontaneous symmetry breaking phases and are
typically identified by a local order parameter. Nevertheless, recent researches have
proven that many more phases may exist in quantum systems. These are often called
non-symmetry-breaking, hidden, exotic or topological phases. Hidden phases can
be revealed by non-local order parameters. Given their central task in this attractive
scenario, here we undertake to provide an overview on the capability of non-local
order parameters to detect fully or partly gapped quantum phases and capture their
essential microscopic features. To this end, we study their behavior, both analytically
and numerically, in different systems. First of all we show that they can probe a
large variety of one-dimensional quantum phases, actually all of them in the kind
of Hamiltonians we will consider. Then, we will use them to uncover possible
new phases and, finally, we will successfully attempt a generalization to the two
dimensional case. Our results supply a step forward in the comprehension of this
valuable tool and its range of applicability, in addition to the information we managed
to disclose about the physical systems we studied, thanks to their employment.
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Introduction

One of the main goals of condensed matter and quantum many-body physics is
the understanding of strongly correlated systems. Thanks to the interplay between
different kinds of degrees of freedom, they manifest very rich phase diagrams, which
often embody hidden orders beyond the spontaneous symmetry breaking phases. In
the wideness of possible scenarios appearing in the states of such materials, many
fascinating phenomena may emerge, such as high-temperature superconductivity,
fractional quantum Hall effect and topological ordering. That makes them partic-
ularly interesting for the potential impact on future technologies. An attractive
subclass of strongly interacting systems is formed by the low-dimensional materials,
in which collective quantum effects are expected to play a major role.
The fervid activity in this research field, has been stimulated in last decades by the
development of extremely efficient numerical techniques. Among them, the density
matrix renormalization group is the dominant method to handle one-dimensional
systems; while the quantum Monte Carlo algorithm enables to explore higher dimen-
sions, especially when dealing with bosonic systems.
On the other hand, the theoretical research is supported and motivated by the de-
velopment of quantum simulators with ultracold gases of atoms trapped in optical
lattices. The fast advancement of experimental techniques in this area has allowed to
get high control and tunability of many kinds of interactions among the atoms, thus
mimicking a huge variety of quantum systems, notably Heisenberg- or Hubbard-type
model Hamiltonians.
In this PhD thesis, we address the second type of models. Our interest is focused
on the unveiling of non-symmetry-breaking phases in such kind of systems, in one
and two spatial dimensions. To this purpose, we devote our efforts to the study of
non-local order parameters, which should be able to detect and characterize all the
fully and partly gapped quantum phases. In particular, we will consider two kinds of
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non-local string-like operators: the parity and the Haldane string. They can reveal the
presence of hidden regimes, which may manifest a trivial or non-trivial topological
behavior. In fact, they also disclose meaningful information about the topological
order and the microscopic arrangement of particles in a given state. Furthermore,
the spin-charge separation occurring for fermionic systems in low dimensionality
provides independent observables in the two channels. That equips us with four
different non-local order parameters for the discovery of different quantum regimes.
Among them, also the symmetry breaking phases can be captured, since in one
dimension they are found to appear by the coexistence of two non-local orders.
Therefore, non-local order parameters supply an extremely powerful tool to explore
the emergent low-dimensional quantum world. In this thesis, on one hand we will
frame them in the context of bosonization, which is the convenient environment
to build up a solid theoretical explanation of their action as quantum probes and
give predictions in the weak coupling regime. On the other hand, we will perform
accurate numerical simulations, based both on density matrix renormalization group
and Green’s function quantum Monte Carlo techniques to yield a complete picture
of the physical problems we will consider. Most of our work is concerned with
fermionic systems. In particular, our main goals are

1. prove that the non-local order parameters are able to detect all the phase
transitions occurring in Hubbard-like systems: to this end we examine the rich
phase diagram of the one-dimensional extended Hubbard model;

2. use non-local order parameters to unveil possible new phases: in this regard,
we determine the zero temperature phase diagram of a one-dimensional bond-
charge Hubbard model with dipolar interaction, which may eventually be
generated by a Floquet mapping from a time-periodic model;

3. generalize the non-local order parameters to two dimensions: to this last
purpose, we focus on one of them, the charge parity, and test its behavior in
the two-dimensional Bose-Hubbard model.

The thesis is organized in two main parts: the first one (Chs. 1-5) is devoted to the
introduction of the required physical, mathematical and numerical tools, while the
second one (Chs. 6-8) contains the author’s original contribution. The content of the
single chapters is outlined in the following:
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• Chapter 1 is an introduction to the Hubbard model and its symmetries. Partic-
ularly important for the development of the following results are the spin and
pseudo-spin operators which generate the continuous symmetry of the model.
This chapter also includes some results from the previous literature on various
generalizations of the model.

• Chapter 2 is devoted to the discussion of phase transitions and the classification
of one dimensional quantum phases. Here the fundamental concepts of non-
local order and non-local order parameters are provided.

• In Chapter 3 we present a derivation of the bosonization formalism, which is
the primary analytical technique used for our studies. Then, it is applied to
derive an effective model for interacting fermions in the weak coupling limit
and, in the last section, the non-local order parameters and the classification of
phases are framed into this picture, where they find a deeper explanation.

• Chapter 4 provides an introduction to the numerical techniques employed to
perform our analysis, i.e., the density matrix renormalization group and the
quantum Monte Carlo.

• Chapter 5 is an overview on the experimental achievements in simulating and
probing the Hubbard-like systems.

• In Chapter 6 we numerically compute the non-local order parameters through
the ground state phase transitions of the one dimensional extended Hubbard
model in order to check their validity as probes to detect both symmetry
breaking and hidden phases.

• In Chapter 7 we investigate the effect of both long-range dipolar interaction and
density-dependent hopping on the one-dimensional Hubbard model. We first
calculate the two-particle scattering matrix to identify the integrability points.
Then we tackle the many-body problem with both bosonization and density
matrix renormalization group techniques, tracing the transition lines in the
ground state phase diagram based on non-local order parameters. Moreover we
use the Floquet analysis to demonstrate that the Hamiltonian under examination
can be treated as an effective model for a time-periodic system.

• Finally Chapter 8 contains a generalization of the non-local order parameter
for the Mott insulator to the two dimensional case. We check the validity of
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our guess on the Bose-Hubbard model by employing the Green’s function
quantum Monte Carlo technique.



Part I

Literature review and theoretical
framework





Chapter 1

Hubbard Model and its extensions

1.1 A brief introduction: from real materials to cold
atom systems

Describing the microscopic phenomena related to the physics of solids is one of
the most challenging objectives of condensed matter physics. Indeed, real materials
possess many complex properties, which turn out to be the result of several mixing
effects. Moreover, they are affected by the presence of defects and impurities, which
need to be accounted for, in order to get a correct description of the system.
Many simplified models have been developed and analyzed, depending on the
phenomena that were requested to be captured. Among them, the simplest model
beyond the free electron theory is the Hubbard model. It was introduced in 1963
in two independent papers by Martin C. Gutzwiller [1] and John Hubbard [2] to
describe correlation phenomena of transition and rare-earth metals due to their partly
filled d- or f - bands. Later J. Hubbard developed the model in five subsequent papers
[3–7].
Thenceforth, the Hubbard model has been intensively studied. In fact, it is capable
to capture many features of real materials, ranging from itinerant magnetism and
metal-insulator (Mott) transition to high-Tc superconductivity.
Its relevance has been further increased by the implementation of experiments with
cold atoms, which not only allow to simulate existing materials with high control
of the interaction parameters, but also make it possible to faithfully realize new
Hamiltonian systems. In particular, they provide a toolbox to investigate the very



4 Hubbard Model and its extensions

rich physics of low dimensional Hubbard-like systems, where new exotic phenomena
can be observed. That justifies the prolific theoretical activity around this model. For
all the clarifications about cold atom systems, we refer the reader to Chapter 5.

1.2 The Hubbard Model

This section is devoted to illustrate the origins, the properties and the main results
concerning the Hubbard model, in its simplest form. After having derived the Hamil-
tonian for the generic three dimensional case, we will focus on the low dimensional
models.

1.2.1 Origin of the model

Here we derive the Hubbard Hamiltonian, starting from the picture of a solid as a
three-dimensional static lattice where electrons can move under the effect of the
ionic potential and the mutual Coulomb repulsion [8]. Within this approximation,
the system can be modeled by the following Hamiltonian

H =
N

∑
i=1

(
p⃗2

i
2m

+VI (⃗xi)

)
+ ∑

1≤i< j≤N
VC(⃗xi − x⃗ j) (1.1)

where N is the number of electrons, VI (⃗x) is the ionic potential and VC(⃗x) = e2/|⃗x| is
the Coulomb repulsion among the electrons. This Hamiltonian is still too complicated
to be solved. A further simplification consists in subtracting part of the Coulomb
interaction and reinsert it in the one-body term as a mean field contribution, in such
a way that the remaining two-body interaction has small matrix elements when
computed between the eigenstates of the one-particle Hamiltonian. The aim of this
procedure is to neglect most of these matrix elements. In fact, we will retain only the
main contribution which turns out to be a contact interaction. After having transfered
part of the interaction among electrons into the one-body term, the Hamiltonian
can be regarded as having a new single particle potential V (⃗x) and an effective
two-body interaction U (⃗x, y⃗). By using the following notation for the single-particle
Hamiltonian

h1(⃗x, p⃗) =
p⃗2

2m
+V (⃗x) , (1.2)
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the full Hamiltonian has the form

H =
N

∑
i=1

h1(⃗xi, p⃗i)+ ∑
1≤i< j≤N

U (⃗xi, x⃗ j) . (1.3)

We now introduce the second quantization formalism, which will be used hereinafter.
We may construct a suitable basis starting from the eigenfunctions ϕ

α⃗k of h1, meaning
those satisfying the eigenvalue equation

h1ϕ
α⃗k(⃗x) = ε

α⃗kϕ
α⃗k(⃗x) , (1.4)

which constitute a basis for the one-particle states. Here α is the band index and
k⃗ is the quasi-momentum, which runs over the first Brillouin zone. Since h1 only
contains the kinetic term and a periodic potential, its eigenfunctions are Bloch
functions. Hence they can be written as

ϕ
α⃗k(⃗x) = eı⃗k·⃗xu

α⃗k(⃗x) (1.5)

where u
α⃗k has the same periodicity of the lattice. These states are localized in the

reciprocal space. Another suitable basis is provided by the Wannier wave functions
ϕ̃α , which are localized in the real space. They are related to the Bloch wave
functions by a Fourier transform

ϕ̃α (⃗x) =
1√
L ∑

k⃗

ϕ
α⃗k(⃗x) =

1√
L ∑

k⃗

eı⃗k·R⃗iϕ
α⃗k(⃗x− R⃗i) (1.6)

ϕ
α⃗k(⃗x) =

1√
L ∑

i
eı⃗k·R⃗iϕ̃α (⃗x− R⃗i) (1.7)

where L is the number of lattice sites. Now we can introduce the creation operator
c†

α⃗k,σ
for an electron with spin σ in a Bloch state ϕ

α⃗k, and its Fourier transform

c†
αi,σ =

1√
L ∑

k⃗

e−ı⃗k·R⃗ic†
α⃗k,σ

. (1.8)

Finally, the field operator, which creates an electron of spin σ at position x⃗ is

Ψ
†
σ (⃗x) = ∑

α⃗k

ϕ
∗
α⃗k
(⃗x)c†

α⃗k,σ
= ∑

αi
ϕ̃
∗
α (⃗x− R⃗i)c

†
αi,σ (1.9)
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where the asterisk denotes complex conjugation. Hence the Hamiltonian (1.3) can
be written as

H = ∑
σ=↑,↓

∫
dx3

Ψ
†
σ (⃗x)h1Ψσ (⃗x)

+
1
2 ∑

σ ,σ ′=↑,↓

∫
dx3

∫
dy3

Ψ
†
σ (⃗x)Ψ

†
σ ′ (⃗y)U (⃗x, y⃗)Ψσ ′ (⃗y)Ψσ (⃗x) .

(1.10)

This formula relates the first and second quantized formalisms. By using the expres-
sions (1.9) for the field operators, we get the Hamiltonian in second quantization. In
the Wannier basis, it reads

H =−∑
α

∑
i, j

∑
σ

tα
i, jc

†
αi,σ cα j,σ +

1
2 ∑

α,β ,γ,δ
∑

i, j,k,l
∑

σ ,σ ′
Uα,β ,γ,δ

i, j,k,l c†
αi,σ c†

β j,σ ′cγk,σ ′cδ l,σ .

(1.11)
Here, the amplitudes of the hopping term and the interaction parameters are given by

tα
i, j =−⟨i|h1| j⟩=−

∫
dx3

ϕ̃
∗
α (⃗x− R⃗i)h1ϕ̃α (⃗x− R⃗ j) =−1

L ∑
k⃗

eı⃗k·(R⃗i−R⃗ j)ε
α⃗k (1.12)

and

Uα,β ,γ,δ
i, j,k,l = ⟨i j|U |kl⟩=

∫
dx3dy3

ϕ̃
∗
α (⃗x−R⃗i)ϕ̃

∗
β
(⃗y−R⃗ j)U (⃗x, y⃗)ϕ̃γ (⃗y−R⃗k)ϕ̃δ (⃗x−R⃗l) ,

(1.13)
respectively. We notice that this Hamiltonian is still equivalent to (1.1). The influ-
ence of the mutual Coulomb interaction, enclosed into the range and magnitude
of Uα,β ,γ,δ

i, j,k,l , can be minimized by an optimal choice of Wannier states (through an
optimal choice of the mean field potential which contribution is transfered from the
two-body term into the one-body term of the Hamiltonian). When the matrix ele-
ments Uα,β ,γ,δ

i, j,k,l are small compared to the hopping amplitudes, they can be set equal
to zero in a first approximation, and can later be taken into account by perturbation
theory (band theory). In the approximation of the Hubbard model the interaction
parameters are no longer considered as negligible. However their range is still very
small: in the sum only the intra-atomic contribution Uα,β ,γ,δ

i,i,i,i is retained. A further
simplification occurs when the Fermi surface lies within a single conduction band.
In this case, we can ignore the matrix elements that involve other bands. Thus, we
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get the so-called one-band Hubbard model

H = ∑
i, j

∑
σ

ti, jc
†
i,σ c j,σ +

U
2 ∑

i
∑

σ ,σ ′
c†

i,σ c†
i,σ ′ci,σ ′ci,σ , (1.14)

where we have omitted the band index and have set Ui,i,i,i =U . A further simplifica-
tion is possible when the tight binding approximation can be assumed. In this case,
the only relevant hopping processes are those occurring between neighboring sites.
Then, if we assume isotropic hopping, the Hamiltonian reduces to

H =−t ∑
⟨i, j⟩

∑
σ

c†
i,σ c j,σ +U ∑

i
ni,↑ni,↓ (1.15)

where the symbol ⟨i, j⟩ denotes summation over ordered pairs of nearest neighbors
and ni,σ = c†

i,σ ci,σ is the local occupation number operator. This is the Hamiltonian
will be referred to as the Hubbard Hamiltonian hereinafter.

1.2.2 Symmetries of the model

The role of the symmetries is very fundamental in determining the physical properties
of a system. Here we analyze the symmetries possessed by the Hubbard model.
Even though we will reduce our discussion to the one dimensional case, the results
generalize to (bipartite) lattices of arbitrary dimension. The Hubbard Hamiltonian
(1.15) in 1D is

H =−t
L

∑
j=1

∑
σ=↑,↓

(
c†

j,σ c j+1,σ + c†
j+1,σ c j,σ

)
+U

L

∑
j=1

n j,↑n j,↓ (1.16)

where we have assumed periodic boundary conditions (PBC): cL+1,σ ≡ c1,σ .
Hilbert space. The fermionic operators involved in the Hamiltonian satisfy the
following anticommutation rules

{
ci,σ ,c j,σ ′

}
=

{
c†

i,σ ,c
†
j,σ ′

}
= 0 (1.17){

ci,σ ,c
†
j,σ ′

}
= δi, jδσ ,σ ′ . (1.18)
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As a consequence of the previous relations, we get

[ci,σ ,c
†
i,σ ] = 1−2ni,σ (1.19)

[ni,σ ,ci,σ ] = −ci,σ (1.20)

[ni,σ ,c
†
i,σ ] = c†

i,σ . (1.21)

The Hilbert space can be constructed by applying the creation operators to the
vacuum state. In particular, the local Hilbert space on each site is given by the four
states

I j|0⟩ j = |0⟩ j ≡ |00⟩ j

c†
j,↑|0⟩ j = | ↑⟩ j ≡ |10⟩ j (1.22)

c†
j,↓|0⟩ j = | ↓⟩ j ≡ |01⟩ j

c†
j,↑c†

j,↓|0⟩ j = | ↑↓⟩ j ≡ |11⟩ j

where we have introduced two equivalent notations. Another possibility is to use the
matrix formalism. This is described in Appendix A, together with the formalism of
Hubbard operators.
Then, if we write a generic local state as |n↑ n↓⟩ j ≡ |n j,↑,n j,↓⟩, a basis for the total
Hilbert space can be identified with the 4L states given by{

L

∏
j=1

|n↑ n↓⟩ j with nσ = 0,1

}
. (1.23)

Thus, a generic state turns out to be a linear combinations of the states (1.23). We no-
tice that the latters can also be constructed starting from the so-called Wannier states
c†

xN ,σN ...c
†
x1,σ1|0⟩ and ordering the Fermi operators. Here, each operator c†

xn,σn creates
a fermion with spin σn ∈ {↑,↓} in the position xn ∈ {1, ..,L}, and |0⟩ ≡ ∏ j |0⟩ j. The
Wannier state contains a fixed number N of fermions; however, in order to build
a basis, N is allowed to range in the interval [0,2L]. The basis (1.23) is called the
Wannier basis.
Another possible basis is the Bloch basis, which is built by ordering the operators
in c†

kN ,σN
...c†

k1,σ1
|0⟩, with N ∈ {0, ...,2L}. This is obtained through the Fourier trans-

formation, which is a canonical transformation since it leaves the anticommutation
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rules invariant.
Now one can verify that the hopping term T̂ of the Hubbard Hamiltonian (1.16) is di-
agonal in the Bloch basis; whereas the double occupancy operator D̂ = ∑

L
j=1 n j,↑n j,↓,

which represents the interaction term in the Hubbard Hamiltonian, is diagonal in the
Wannier basis. It follows that, since [T̂ , D̂] ̸= 0, the Hubbard Hamiltonian cannot be
diagonal neither in the Bloch basis nor in the Wannier basis.
The physics of the model is determined by the competition between T̂ , which tends
to delocalize the fermions on the lattice, and D̂, which favors the localization.
The Hilbert space spanned by the set (1.23) has dimension 4L. However, one can
exploit the symmetries of the Hamiltonian in order to work in a smaller subspace.
Conserved quantities. Two very important conserved quantities are the total particle
number and the total magnetization, defined respectively as

N̂ = N̂↑+ N̂↓ =
L

∑
j=1

(n j,↑+n j,↓)

S(s),z =
1
2
(
N̂↑− N̂↓

)
=

1
2

L

∑
j=1

(n j,↑−n j,↓)

(1.24)

where N̂σ =∑
L
j=1 n j,σ is the total number operator for the species σ . It can be verified

that N↑ and N↓ are separately conserved by the Hamiltonian: [H, N̂↑] = [H, N̂↓] = 0.
This implies that both the total number of particles and the total magnetization are
conserved quantities: [H, N̂] = [H,S(s),z]=0. Thus, hereinafter we will assume to
deal with systems with fixed filling n = N/L and magnetization, if not otherwise
specified. Sometimes, instead of the number operator, the so-called total charge
operator is introduced

S(c),z =
1
2
[
N̂ −L

]
=

1
2

L

∑
j=1

(n j −1) . (1.25)

We notice that at half-filling the local operator n j −1 measures the deviation of the
particle number at site j with respect to its mean value, namely it coincides with the
normal ordered form of the local particle number operator : n j :. Hence, in this case,
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the spin and charge operators previously introduced can be regarded as

S(s),z =
1
2

L

∑
j=1

(: n j,↑ : − : n j,↓ :)

S(c),z =
1
2

L

∑
j=1

(: n j,↑ : + : n j,↓ :) .

(1.26)

Because of the particle number conservation, we can add a term proportional to N̂
to the Hamiltonian, without affecting its spectrum. Then, the Hamiltonian can be
written as

H =−t
L

∑
j=1

∑
σ=↑,↓

(
c†

j,σ c j+1,σ + c†
j+1,σ c j,σ

)
+U

L

∑
j=1

(
n j,↑−

1
2

)(
n j,↓−

1
2

)
,

(1.27)
which turns out to be of higher symmetry, if L is even.
Continuous symmetry. The Hamiltonian (1.27) has many symmetries. In particular,
it has two U(1) symmetries related to the conservation of S(c),z and S(s),z. Indeed
both operators generate U(1) transformations. In particular, S(s),z is the z-component
of the total spin. The Hubbard Hamiltonian also commutes with the other two
components, S(s),x and S(s),y. Since the three components combined together form a
representation of the Lie algebra su(2) that generates the group SU(2) of rotations
in spin space, our Hamiltonian is fully rotationally invariant. The components of the
spin operator are written in terms of the fermionic creation and annihilation operators
as

S(s),α =
L

∑
j=1

S(s),αj =
1
2

L

∑
j=1

∑
σ ,σ ′

c†
j,σ (σ

α)σσ ′c j,σ ′

=
1
2

L

∑
j=1

(
c†

j,↑ c†
j,↓

)( (σα)↑↑ (σα)↑↓
(σα)↓↑ (σα)↓↓

)(
c j,↑
c j,↓

) (1.28)

where α = x,y,z and σα are the Pauli matrices

σ
x =

(
0 1
1 0

)
, σ

y =

(
0 −ı
ı 0

)
, σ

z =

(
1 0
0 −1

)
, (1.29)

which elements have been labeled through the two fermionic species: the first
element of each row or column is labeled by the up spin species (↑) and the second
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element by the down spin species (↓). Hence, the components of the local spin at
each site are

S(s),xj =
1
2

(
c†

j,↑c j,↓+ c†
j,↓c j,↑

)
S(s),yj =

1
2ı

(
c†

j,↑c j,↓− c†
j,↓c j,↑

)
S(s),zj =

1
2

(
c†

j,↑c j,↑− c†
j,↓c j,↓

)
=

1
2
(
n j,↑−n j,↓

)
.

(1.30)

Instead of the x and y components, one can also use the following combinations

S(s),± = S(s),x ± ıS(s),y (1.31)

defined, respectively, as

S(s),+ =
L

∑
j=1

c†
j,↑c j,↓

S(s),− =
L

∑
j=1

c†
j,↓c j,↑ .

(1.32)

The spin operators obey the following commutation rules

[S(s),α ,S(s),β ] = ıεαβγS(s),γ

[S(s),z,S(s),±] =±S(s),±

[S(s),+,S(s),−] = 2S(s),z.

(1.33)

where the greek indexes in the first line can be x,y,z and εαβγ is the totally antisym-
metric tensor. In the relations (1.33) we can recognize the commutator relationships
of the su(2) algebra. They are valid for the local spin operators as well as for the total
spin operators. However, in general the Hubbard Hamiltonian does not commute
with the local spin components

[H,S(s),αj ] ̸= 0 (1.34)

but it commutes with each component of the total spin:

[H,S(s),α ]≡ ∑
j
[H,S(s),αj ] = 0 (1.35)
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and thus is fully rotationally invariant, as claimed before.
Another SU(2) symmetry is generated by the components of the charge operator.
They are also called pseudo-spin or η-pairing operators and can be obtained from
the spin operators by applying a particle-hole transformation solely on the fermion
species with down spin, accompanied by a change of sign on the sub-lattice formed
by the even sites:

c j,↑ → c j,↑ , c j,↓ → (−) jc†
j,↓ . (1.36)

If we apply (1.36) to (1.30) and (1.32), we get

S(c),xj =
(−) j

2

(
c†

j,↑c†
j,↓+ c j,↓c j,↑

)
S(c),yj =

(−) j

2ı

(
c†

j,↑c†
j,↓− c j,↓c j,↑

)
S(c),zj =

1
2

(
c†

j,↑c j,↑− c j,↓c†
j,↓

)
=

1
2
(
n j,↑+n j,↓−1

)
S(c),+j = (−) jc†

j,↑c†
j,↓

S(c),−j = (−) jc j,↓c j,↑ .

(1.37)

These can also be obtained applying the transformation directly to the local operators
in eq. (1.28). In this case, we get the compact form

S(c),αj =
1
2

(
c†

j,↑ (−) jc j,↓

)( (σα)↑↑ (σα)↑↓
(σα)↓↑ (σα)↓↓

)(
c j,↑

(−) jc†
j,↓

)
. (1.38)

The total operators obtained by summing each equation in (1.37) over j obey the
same commutation rules (1.33) and commute with the Hubbard Hamiltonian

[H,S(c),α ] = 0 . (1.39)

However we notice that this relations hold only for lattices with an even number
of sites. That imposes some restrictions on joint irreducible representations of spin
and charge realized on eigenstates of the Hubbard Hamiltonian. In fact S(s),z +

S(c),z = N̂↑− L
2 is an integer when L is even, implying that not all representations of

SU(2)×SU(2) are present. Thus the complete continuous symmetry of Hamiltonian
(1.27) is given by

SU(2)×SU(2)/Z2 = SO(4) . (1.40)
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Further clarifications about the role of the two SU(2) symmetries are given in
Appendix A. However, here we still want to mention that the transformation (1.36)
not only maps the spin sector into the charge sector, but also maps the repulsive U
regime into the attractive U regime, when applied to Hamiltonian (1.27). Indeed the
latter transforms as

H(t,U)→ H(t,−U) (1.41)

under (1.36), thus being invariant modulo sign of the coupling.
We observe that the presence of a magnetic field term (meaning a term proportional to
S(s),z) in the Hamiltonian would break the rotational invariance, whereas a chemical
potential term (meaning a term proportional to N̂ or equivalently S(c),z) would break
the η-symmetry. Then the symmetry, in the sector involved, is reduced from full
SU(2) (corresponding to the conservation of (S(ν))2, ν = s,c) to U(1) (corresponding
to the conservation of S(ν),z). In fact the conservation of the particle number, for
each species, is related to the U(1) gauge symmetry c j,σ → e−ıαc j,σ , as we already
said.
Discrete symmetries. Finally, we would like to mention that, in addition to the SO(4)
continuous symmetry, the Hubbard Hamiltonian has many discrete symmetries.
Among them, the most common are

1. the lattice translations on a ring of L sites c j,σ → c j+r,σ (if we assume PBC);

2. the symmetry under reflection c j,σ → cL− j+1,σ ;

3. the already mentioned particle-hole symmetry for bipartite lattices c j,σ →
(−) jc†

j,σ ;

4. the symmetry under spin-flips c j,σ → c j,σ̄ ;

5. the time-reversal symmetry c j,σ → σc j,σ̄ (where we associate a plus sign to
the species σ =↑ and a minus sign to the species σ =↓).

We observe that only the Hamiltonian (1.27) is invariant under the particle-hole
symmetry and not the Hamiltonian (1.16). In fact the particle number operator n j,σ

under this symmetry transforms into 1−n j,σ so that the interaction term counts the
number of empty sites instead of that of doubly occupations. This is equivalent to say
that a term proportional to L− N̂ is added to the Hamiltonian. However it disappears
in case of filling n = 1. In this case the particle-hole transformation turns out to be a
symmetry also for the Hamiltonian (1.16).
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1.2.3 Physical properties

Apart form the physical parameters t and U , the behavior of the system is determined
by the dimension D of the lattice, the temperature T and the filling n. Hereinafter we
will restrict our discussion to the case of zero temperature and half-filling balanced
(N↑ = N↓ = L/2) systems , and we will mainly focus on low dimensional lattices
(D = 1,2).
Except for the two limiting cases t = 0 and U = 0, the Hubbard model is exactly
solvable only in 1D, by means of the Bethe Ansatz approach. The system turns out
to be insulating in its ground state (GS) at any U > 0. The nature of this insulator
is different from that of the usual band insulators. In fact, here the charge gap is
produced by the interaction among the electrons. This kind of phase is called Mott
insulator (MI). In the attractive case, the role of charge and spin degrees of freedom
are exchanged; thus the ground state is formed by a spin gapped metallic phase.
The spin gap is the energy paid to reverse one spin, thus to pass from the subspace
S(s),z = 0 to the subspace S(s),z = 1.
Also for D = 2,3, the entire repulsive U regime is characterized by an insulating
behavior. Besides that, it shows long-range antiferromagnetic correlations [9, 10].
We observe that this cannot occur in 1D, since it would break the continuous spin
rotational SU(2) symmetry, thus violating the Mermin-Wagner theorem. Instead,
at U < 0, the system shows superconducting properties. In fact, by applying the
partial particle-hole transformation (1.36), one can verify that the existence of long-
range magnetic order in the repulsive case implies the existence of long-range
superconducting order in the attractive case.
The main features of these phases can be derived in the strong coupling limit. In
particular, in the repulsive regime the Hubbard Hamiltonian (1.15) can be mapped
into an effective t-J model by using a perturbation theory which includes projection
onto the restricted Hilbert space with no doubly occupied sites. At half-filling the
distribution of fermions on the lattice corresponds to exactly one particle per site and
the t-J Hamiltonian reduces to an isotropic antiferromagnetic spin-1/2 Heisenberg
Hamiltonian

HHeis. = J ∑
j

(
S⃗(s)j · S⃗(s)j+1 −

1
4

)
(1.42)

with exchange coupling J = 4t2/U .
Most features and results about the Hubbard model can be found in [8, 11, 12].
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1.2.4 Mapping to spin models

To conclude this section, we would like to do some considerations about the relation
between fermion systems and spin systems.
In eq. (1.28) we have introduced the spin-1/2 operators and expressed them in
terms of fermions. This is known as the Schwinger representation and was first
introduced to relate the spin operators to the boson operators. Then it was generalized
to fermions.
We want to mention that there exist other ways to represent the spin su(2) algebra in
terms of fermions. These are the Jordan-Wigner and the Majorana representations.
Here we describe just the first one and refer the interested reader to Refs. [13, 14].
The local Hilbert space for fermion systems is formed by the four states (1.22).
Since the dimension of the local Hilbert space for a spin-S system is (2S+1), one
can write a fermionic Hamiltonian as a two-spin-1/2 Hamiltonian. Let’s start by
recalling the Jordan-Wigner mapping for spinless fermions.

S̃z
j = n j −1/2

S̃+j = eıπ ∑l< j nl c†
j

S̃−j = e−ıπ ∑l< j nl c j .

(1.43)

Here the S̃ operators are spin-1/2 Pauli operators. This transformation could also
be applied to spinfull fermions. However, in this case one gets that the fermions of
different species obey commuting relations instead of the usual anticommuting rules.
In order to fulfill the latters, we need to modify the transformation for just one of the
two species. Thus the correct mapping turns out to be

S̃z
j,1 = n j,↑−1/2 S̃z

j,2 = n j,↓−1/2
S̃+j,1 = K j,↑c†

j,↑ S̃+j,2 = K↑K j,↓c†
j,↓

S̃−j,1 = K†
j,↑c j,↑ S̃−j,2 = K†

↑K†
j,↓c j,↓

(1.44)

where we have introduced the non-local operators Ks, defined as

K j,σ = eıπ ∑l< j nl,σ = ∏
l< j

(1−2nl,σ )

K̄ jσ = eıπ ∑l> j nl,σ = ∏
l> j

(1−2nl,σ )

Kσ = eıπ ∑l nl,σ = ∏
l
(1−2nl,σ ) .
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We observe that each of the local exponential operators forming the non-local
operators commute with annihilation and creation operators when they do not act on
the same lattice site

[eıπn j,σ ,ci,σ ] = 0 if j ̸= i . (1.45)

Meanwhile, when acting on the same site, the following useful identities hold

c†
j,σ eıπn j,σ = c†

j,σ (1−2n j,σ ) = c†
j,σ

eıπn j,σ c j,σ = (1−2n j,σ )c j,σ = c j,σ

eıπn j,σ c†
j,σ = (1−2n j,σ )c

†
j,σ =−c†

j,σ

c j,σ eıπn j,σ = c j,σ (1−2n j,σ ) =−c j,σ .

(1.46)

Thus their effect consists, at most, in a change of sign.

1.3 The 1D extended Hubbard model

A natural generalization of the Hubbard model consists in adding the nearest-
neighbor interaction deriving from the Coulomb repulsion to the Hamiltonian. This
is the so-called extended Hubbard model. The Hamiltonian reads

H =−t
L

∑
j=1

∑
σ=↑,↓

(
c†

j,σ c j+1,σ +h.c.
)
+U

L

∑
j=1

n j,↑n j,↓+V
L

∑
j=1

n jn j+1 , (1.47)

where h.c. denotes the hermitian conjugate. It shares the same symmetries of the
Hubbard model, except for the SU(2) η-symmetry, which is reduced to U(1). This
model has been intensively studied [15–24]. In fact, it presents a much richer phase
diagram then the simple Hubbard model. In particular, in the repulsive regime,
although the system is always insulating, three different orders can be distinguished.
Around the line U ≈ 2V the Mott phase is replaced by a small bond ordered wave
(BOW) phase, while below it a charge density wave (CDW) phase appears. These
emerge as a result of the competition between the U and V interactions. Indeed
the interaction among nearest-neighbor sites contrasts the tendency of uniformly
distributing the fermions on the lattice due to the on-site repulsion and favors the
alternation of holons (empty sites) and doublons (doubly occupied sites). In fact, for
large enough V , this is the picture of the ground state with CDW order. Instead, the
BOW phase is characterized by pairs of both holons/doublons and up/down spins
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on near sites. For negative V , the system shows some phase transitions to several
metallic phases, i.e. the phase separated (PS) phase and two phases with dominant
singlet superconducting (SS) or triplet superconducting (TS) correlations. The PS is
induced by a strong attractive V , which produces a separate condensation of holons
and doublons with a non-zero spin gap. This remains finite at the transition with
the SS region, making it a Luther Emery (LE) phase, and vanishes in the TS region,
which is, therefore, a gapless Luttinger Liquid (LL) phase. Figure 1.1a shows the
phase diagram of the model. The phases here introduced will be better characterized
in the following chapters.
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Fig. 1.1 a) Phase diagram of the extended Hubbard model. The figure has been reproduced
by extrapolating data from ref. [25]. b)Phase diagram of the extended Hubbard model with
long-range dipolar interaction in the repulsive regime. The figure has been reproduced by
extrapolating data from ref. [26].

The effect of long-range dipolar interaction V ∑i ̸= j
nin j
|i− j|3 on the ground state of the

extended Hubbard model has also been studied [26] in the repulsive regime. The
results show a stabilization of the BOW phase. In Figure 1.1b), we present the phase
diagram.

1.4 The 1D bond-charge Hubbard model

Another well known generalization of the Hubbard Hamiltonian is the bond-charge
Hubbard model, in which the hopping term incorporates a density-dependent two-
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body contribution

H =−t
L

∑
j=1

∑
σ=↑,↓

(
c†

j,σ c j+1,σ +h.c.
)[

1− X
t

(
n j,σ̄ +n j+1,σ̄

)]
+U

L

∑
j=1

n j,↑n j,↓ .

(1.48)
This is also called correlated hopping, since the amplitude of the hopping processes
varies according to the occupation of the sites involved. In fact, the bond-charge
interaction X naturally arises in systems with extended orbitals, where the charge in
the bond affects the screening and therefore the effective potential acting on valence
electrons. This model can be usefully rewritten in terms of Hubbard operators (see
Appendix A):

H =−t
L

∑
j=1

∑
σ=↑,↓

[
Xσ0

j X0σ
j+1 +

(
1− X

t

)
σ

(
Xσ0

j X σ̄2
j+1 +X2σ̄

j X0σ
j+1

)
+

(
1− 2X

t

)
X2σ̄

j X σ̄2
j+1

]
+h.c.+U

L

∑
j=1

X22
j .

(1.49)

We observe that for X = t, this reduces to the following particle-hole symmetric
model

H =−t
L

∑
j=1

∑
σ=↑,↓

[
Xσ0

j X0σ
j+1 +X2σ̄

j X σ̄2
j+1

]
+h.c.+U

L

∑
j=1

X22
j (1.50)

which is exactly solvable [27, 28]. The exact solution is facilitated by the symmetries.
In particular, [T̂ ,Û ] = 0 in (1.50) implies that the number of doublons is conserved.
At half filling, it is characterized by a Mott insulator for U ≥ 4 and by a supercon-
ducting phase which contains both singly and doubly occupied sites for U < 4. This
phase extends into the region of negative U , until U = −4. Below this point, the
state is still superconducting but does not contain singly occupied sites. Figure 1.2a)
shows the phase diagram as a function of the filling. The region above the curve is
characterized by the maximum number of singly occupied sites. However, only at
half filling it shows an insulating behavior.
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Fig. 1.2 a) Phase diagram of the bond-charge Hubbard Hamiltonian at X/t = 1 (eq.
1.50) as a function of the filling n. b) Phase diagram of the bond-charge Hamiltonian
(1.48). The figure has been reproduced by extracting data from ref. [29].

For a generic X the ground state (at half filling) shows three different phases in the
repulsive regime: MI, BOW and LE with dominant SS correlations [29]. The phase
diagram is depicted in Figure 1.2b).
We observe that, while the Hamiltonian (1.48) in general breaks the continuous
η-symmetry and the particle-hole symmetry, these are restored1 in the integrable
case X/t = 1. For arbitrary X , both symmetries can be rebuilt by modifying the
correlated hopping term in the following way

H =−t
L

∑
j=1

∑
σ=↑,↓

(
c†

j,σ c j+1,σ +h.c.
)[

1− X
t

(
n j,σ̄ −n j+1,σ̄

)2
]
+U

L

∑
j=1

n j,↑n j,↓ .

(1.51)
At X/t = 1 this system shows the same ground state of Hamiltonian (1.50) (Fig.
1.2a) [27]. Hamiltonian (1.51) is a particular case of the more general Hamiltonian

H =−t
L

∑
j=1

∑
σ=↑,↓

(
c†

j,σ c j+1,σ +h.c.
)[

1− X
t

(
n j,σ̄ +n j+1,σ̄

)
+

X̃
t

n j,σ̄ n j+1,σ̄

]
+Û ,

(1.52)
obtained by setting X̃ = 2X . Here Û = UD̂ is the usual on-site interaction. The
three-body term is not obtained from the Coulomb interaction, but can be derived
from a three band model. In fact, (1.52) was derived from the three band model as
an effective one-band Hamiltonian for the description of cuprate superconductors
[30]. Here, its presence can be justified by the fact that it can be implemented in cold

1Note that in order to fully restore the η-symmetry the on-site interaction should be written as
(n j,↑−1/2)(n j,↓−1/2).
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atom systems. In terms of Hubbard operators, it reads

H =−t
L

∑
j=1

∑
σ=↑,↓

[
Xσ0

j X0σ
j+1 +

(
1− X

t

)
σ

(
Xσ0

j X σ̄2
j+1 +X2σ̄

j X0σ
j+1

)
+

(
1− 2X

t
+

X̃
t

)
X2σ̄

j X σ̄2
j+1

]
+h.c.+U

L

∑
j=1

X22
j .

(1.53)

Some results about this model will be given in the next section.

1.5 Other extensions

The Hamiltonian (1.52) has also been studied in the presence of the nearest-neighbor
interaction

H =− t
L

∑
j=1

∑
σ=↑,↓

(
c†

j,σ c j+1,σ +h.c.
)[

1− X
t

(
n j,σ̄ +n j+1,σ̄

)
+

X̃
t

n j,σ̄ n j+1,σ̄

]

+U
L

∑
j=1

n j,↑n j,↓+V
L

∑
j=1

n jn j+1 .

(1.54)

This model is symmetric under the continuous SU(2) symmetry2 in the charge sector
only for V = 2X − X̃ = 0, while in the general case the η-symmetry is reduced to
U(1). Moreover, it is not invariant under the particle-hole symmetry, which holds
only for X̃ = 2X .
However, as (1.48), the model (1.54) has an integrable point at X/t = 1. In this case,
three phases are found [31] in the repulsive V regime: a MI for large and positive
values of U , a CDW in the strong repulsive V regime and a metallic phase, not better
characterized, in an extended region around the origin U=V=0. The phase diagram
is shown in Figure 1.3.

2Note that in order to have the full η-symmetry the on-site interaction should be written as
(n j,↑−1/2)(n j,↓−1/2), and V = 2X − X̃ = 0.
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Fig. 1.4 Phase diagram of Hamiltonian (1.54) at X̃ = 2X and |X/t| = 0.25 as obtained
from bosonization (left column) and numerical simulations (right column). Figures a),b)
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bosonization transition lines have been obtained for a generic X̃ [32]. They are given by:
U −2|V |+8|X̃ |/π and U −2V −8|X̃ |/π . Along the dotted (dashed) lines the charge (spin)
gap is zero. Figures b),d) have been reproduced by extracting data from ref. [25].
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The general case has been studied in the weak coupling regime by means of bosoniza-
tion [32]. In this limit, the X-term leads only to a renormalization of the hopping
amplitude t [33]. Instead the three-body term plays an important role. Indeed,
the metallic phase is replaced by an Haldane insulator (HI) for X̃ > 0 and by a
BOW phase for X̃ < 0 [32]. These results have been confirmed numerically in the
particle-hole symmetric case X̃ = 2X [25]. Moreover, in the attractive (U,V ) regime,
the bosonization predicts the existence of phases with dominant superconducting
correlations, while in the particle-hole symmetric strong coupling limit numerical
simulations show the occurrence of a phase separation. Finally, at V = 0 the ground
state is described by a MI for U > 8|X̃ |/π , by a LE phase for U <−8|X̃ |/π , and by
a Luttinger liquid (if X̃ > 0) or a BOW (if X̃<0) in the middle region delimited by
the two critical points. These results are summarized in Fig. 1.4.

1.6 The Bose-Hubbard model

Thanks to the possibility to realize condensed matter systems in cold atom exper-
iments, great attention has been devoted also to the Hubbard model with bosonic
particles. This is called the Bose-Hubbard model and is described by the following
Hamiltonian

H =−t ∑
⟨i, j⟩

(
b†

i b j +h.c.
)
+

U
2 ∑

i
ni(ni −1) (1.55)

where b†
i (bi) creates (destroys) a boson on the site i and ni = b†

i bi. This Hamiltonian
is invariant under a global U(1) transformation. It is obtained by applying the
operator eıφni (with φ ∈ [0,2π]) at each site, and corresponds to the conservation of
the total particle number.
As usual, we focus on the case n= 1. In the weak coupling regime, the phase diagram
presents a superfluid (SF) region. As the strength of the interaction is increased, the
system undergoes a transition to a MI phase (see Fig. 1.5). This behavior is observed
in one, two and three spatial dimensions. The respective critical values at which
the transition occurs are Uc/t ≈ 3.3 in D = 1 [34], Uc/t ≈ 18 in D = 2 [35, 36], and

Uc/t U/tSF MI

Fig. 1.5 Phase diagram of the Bose-Hubbard model (1.55).
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Uc/t ≈ 29.3 in D = 3 [37]. In the limiting case U = 0, the ground state is given by

|Φ⟩U=0 ∝

(
∑

i
b†

i

)N

|0⟩ , (1.56)

which shows Bose-Einstein condensation in the zero-momentum Bloch state. Indeed
the creation operator associated to the zero-momentum Bloch state is proportional
to ∑i b†

i . Thus, each particle is delocalized over the entire lattice, and the superfluid
state is described by a macroscopic wave function. In the opposite limit t = 0, the
ground state has the form

|Φ⟩t=0 ∝ ∏
i
(b†

i )
ni|0⟩= ∏

i
|ni⟩ . (1.57)

Thus it consists of localized wave functions with a fixed number of bosons in each
lattice site that minimizes the interaction energy.



Chapter 2

Phase transitions and classification of
quantum phases of matter

A phase transition is a change of the equilibrium state of a system - which implies
a sudden change of one or more physical properties - due to a small variation of
some externally controllable parameters. In the case of classical phase transitions
(CPTs), this role is played by a thermodynamic variable, typically the temperature.
Instead, quantum phase transitions (QPTs) occurring at zero temperature are driven
by a physical parameter, such as magnetic field. The CPTs arise from the thermal
fluctuations, which vanish at zero temperature and therefore no phase transition can
occur at T = 0. However quantum fluctuations, arising from Heisenberg’s uncertainty
principle, are present and are responsible for QPTs. These occur at the quantum
critical point (QCP), where quantum fluctuations diverge and become scale invariant
in space and time. Although absolute zero is not physically realizable, characteristics
of the transition can be detected in the low-temperature behavior of the system near
the critical point. Indeed, at non-zero temperatures, quantum fluctuations compete
with classical fluctuations and dominate the system behavior until their energy scale
is larger than kBT (where kB is the Boltzmann constant). This condition marks the
so-called quantum critical region (see Fig. 2.1).
At each side of the transition, the order of the system changes. Thus, the transition
can be described by an order parameter, which behavior is different in the two phases.
Typically, it is non-zero in the ordered phase and vanishes in the disordered one.
Phase transitions can be classified according to the behavior of the order parameter
near the critical point. If it is discontinuous, the transition is first-order. If instead it
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Fig. 2.1 Phase diagram of classical and quantum phase transitions. Here T is the temperature
and g is the quantum tuning parameter.

changes from zero to a non-zero value in a continuous way, the transition is second-
order (or continuous). In the latter case, the correlation length diverges, giving rise
to the so-called critical phenomena. Indeed the infinite correlation length implies
that fluctuations are present at each length scale, since they extend over the whole
many-body system. Thus the system is scale invariant, meaning that it looks similar
at every length scale and the renormalization group method [38, 39] can be applied.
The above classification of phase transitions has been developed for CPTs. When
these concepts are applied to QPTs, great attention should be paid. In fact the
physics underlying QPTs is quite complex and not completely understood yet. In
the following sections we will first remind the theory of CPTs and then we will
discuss QPTs. After that we will introduce some useful tools to study several new
phases that have been discovered in the last decades and that cannot be included in
the Landau symmetry breaking (SB) scheme [40–43].

2.1 Classical Phase Transitions

As mentioned before, phase transitions are traditionally classified into first order and
continuous or second-order transitions. This classification was firstly introduced by
Paul Ehrenfest basing on the singularities of the free energy derivatives. In particular,
a transition is said to be first order if a first derivative of the free energy (e.g. the
magnetization) is discontinuous at the transition point. Often this discontinuity is
accompanied by a jump in the entropy, thus involving a latent heat Q = T ∆S (being
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∆S = S2 −S1 the difference between the entropies of the two phases). This is also
related with the possible coexistence of two phases at the critical point. Indeed the
presence of latent heat implies an absorption or release of energy, which cannot occur
instantaneously. If, instead, all the first derivatives of the free energy are continuous
but a second derivative (e.g. the susceptibility or the specific heat) has a discontinuity,
the transition is classified as continuous or second order. In this case the latent heat
is not involved and the different phases do not coexist. Although the nomenclature
of the Ehrenfest classification is still used, very often the literature disagrees on the
precise definition of these concepts. In fact the Ehrenfest classification does not take
into account the case in which a derivative of the free energy diverges. In the modern
classification it is often referred to first order phase transitions as those involving a
latent heat and phase coexistence (such as ice and water at T = 273.15 K or water
and steam at T = 373.15 K). Whereas second order phase transitions are defined in
terms of a diverging susceptibility, an infinite correlation length, and a power-law
decay of correlations near criticality.
Phase transitions can be accompanied by symmetry breaking, meaning that the state
of the system is driven from a highly symmetric phase to a lower symmetric one.
An example of first order phase transition with symmetry breaking is the liquid-
solid transition, where the continuous translational symmetry is broken. Instead the
liquid-vapor transition does not break any symmetry. Second order phase transitions
typically involve change of symmetry. In fact they continuously drive the system
from a state with higher symmetry to a state with reduced symmetry. The more
symmetrical phase is commonly identified as the disordered phase and the less
symmetrical one as the ordered phase. Typically the disordered phase dominates
the behavior of the system at high temperature, where thermal fluctuations allow
the system to access states in a broader range of energies. As the temperature de-
creases, the thermal agitation does not provide enough energy to let the constituent
microscopic particles to arrange themselves in many different configurations. The
number of accessible configurations is reduced and an order is established according
to the Hamiltonian terms, which overcome the entropy driven term. That results
in a reduced symmetry. The symmetry can be spontaneously or explicitly broken.
Typically the first case occurs when the Hamiltonian exhibits all the possible symme-
tries of a system, whereas the ordered state lacks some of them. The symmetry is
explicitly broken when some terms in the Hamiltonian do not respect the symmetry
of the theory. Usually this is referred to situations in which the symmetry breaking
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is small and hence the symmetry is approximately respected. To better clarify these
concepts, let’s consider an example. One of the most illustrative phase transitions is
that occurring in the Ising model between paramagnetic and ferromagnetic states.
The Hamiltonian reads

H =− ∑
⟨i, j⟩

Ji, jσiσ j −∑
j

B jσ j (2.1)

where σ j are discrete variables taking the values ±1 and the coupling coefficients
are often chosen to be constant: Ji, j = J and B j = B ∀i, j. Moreover we assume
J > 0. At zero applied magnetic field, the magnetization varies continuously from
zero (in the paramagnetic phase) to finite values (in the ferromagnetic phase) as a
function of the temperature. Thus the transition is classified as second-order. At
low temperature, where the thermal fluctuations are not sufficient to destroy the
order wanted by the Hamiltonian, all the spins are aligned in the same direction,
meaning that the system spontaneously chooses one of the two possible degenerate
ground states (σi =+1∀i or σi =−1∀i). The ground state breaks the Z2 symmetry
owned by the Hamiltonian1. Hence this is a spontaneous symmetry breaking. When
the symmetry is spontaneously broken, the ground state is chosen arbitrarily and
changing this choice should have zero energy cost. The presence of the magnetic
field in the Ising Hamiltonian breaks itself the symmetry (the Hamiltonian is no more
Z2 invariant) and for each value of T induces the state to assume one of the two
ferromagnetic configurations, depending on the sign of B. In this case the symmetry
is explicitly broken.
Beyond first and second order phase transitions, other kinds of phase transitions can
be found. In particular, infinite order phase transitions have the characteristic to be
continuous without breaking any symmetry. Among them the most known is the
Berezinskii–Kosterlitz–Thouless (BKT) transition, that was first designed to indicate
the transition from bound vortex-antivortex pairs at low temperatures to unpaired
vortices and anti-vortices at some critical temperature in the two-dimensional XY-
model. It involves the presence of topological order and will be discussed later.

1The original symmetry group is Z2, containing the trivial identity transformation σi → σi and
the reflection symmetry σi →−σi. As a result of the transition, the Z2 symmetry group is reduced to
the identity transformation, since the ferromagnetic ground state breaks the reflection symmetry. A
similar phenomenon occurs in the Heisenberg ferromagnet, which is similar to the Ising model but
the spins are allowed to point in a continuum of directions. In this case the parent symmetry is the
three dimensional rotation group O(3), which breaks to O(2) as the system is cooled down at low
temperature, where it spontaneously magnetizes along a random direction.
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For the moment, we focus on the second order phase transitions, which have been
well studied in the past century and for which a well known theory exists.

2.1.1 Critical exponents in second order phase transitions

Continuous phase transitions have an associated order parameter. It is a thermo-
dynamic quantity that characterizes the ordered phase, where it is non-zero, and
vanishes at the critical point, where the disordered phase takes place. Although the
thermodynamic average of the order parameter is zero for T > Tc, its fluctuations
are non-zero. The spatial correlations of these fluctuations increase as the system
is driven towards the transition and become long-ranged as the critical point is
approached. A typical behavior is the exponential decay

C(i, j) ∝ e−|⃗xi−⃗x j|/ξ (2.2)

where ξ is the correlation length. Close to Tc it diverges as

ξ ∼ |εT |−ν (2.3)

where
εT =

|T −Tc|
Tc

(2.4)

is a dimensionless parameter estimating the distance from the critical point, and ν

is a critical exponent. In general, a critical exponent defines the scaling behavior
of a given quantity very close to the critical point of a continuous phase transition.
Contrary to the high temperature behavior, for T < Tc the correlation function at
large distance is finite; however, the relation (2.3) for the correlation length remains
true when approaching the critical point from below. In addition to a diverging
correlation length, we also observe a diverging correlation time as εT → 0

τc ∼ ξ
z ∼ |εT |−νz . (2.5)

Here z is the dynamic critical exponent. These two divergences are responsible for the
so-called critical phenomena. Indeed, close to the transition, the correlation length is
the only relevant length scale. Therefore, rescaling all lengths by a common factor
leaves the physical properties unchanged and the system is said scale-invariant. In
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Table 2.1 Commonly used critical exponents for magnetic systems. D is the space dimen-
sionality. These exponents are related to each other and to the exponent ν .

definition conditions

specific heat c ∼ |εT |−α εT → 0, B = 0
magnetization m ∼ (−εT )

β εT → 0−, B = 0
susceptibility χ ∼ |εT |−γ εT → 0, B = 0
magnetization m ∼ sign(B)|B|−δ εT = 0, B → 0
correlation function C(r)∼ 1

rD−2+η εT = 0, B = 0

addition to the critical exponents defined above, other critical exponents are usually
introduced. The most common for magnetic systems are reported in Table 2.1.

2.1.2 Landau theory for symmetry breaking phases

Landau theory of phase transitions was developed by Landau in 1937 and later
generalized to the so-called Ginzburg-Landau theory to study superconductivity.
It is a phenomenological theory; hence it is not concerned with the microscopic
details of the interactions. Meanwhile it is strictly related to symmetry. In fact,
different systems, described by different microscopic theories, which share the same
symmetry, may look very similar within the Landau theory. As we will see, this is at
the very basis of the idea of universality. The Landau theory applies to symmetry
breaking transitions, and in particular to second order phase transitions. Indeed, it
relies on the idea that the order parameter is small close to the phase transition. This
observation led Landau to suggest that a Taylor expansion of the free energy with
respect to the order parameter would provide information about the behavior of the
system near the phase transition. Thus the first step of the theory is to identify an
order parameter which is non-zero only in the ordered (symmetry breaking) phase.
Then, one can proceed to construct the Landau free energy F as a function of
the external parameters (e.g. temperature, pressure, magnetic field) and the order
parameter m. It has the following form

F = F0 +∑
n

Fnmn . (2.6)

The first term represents the free energy of the highly symmetric phase, where the
order parameter is zero. The number of terms in the series can be restricted by
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symmetry considerations: it must only contain terms which respect the symmetry
of the Hamiltonian (for example, a magnetic system in zero applied magnetic field
has the symmetry m →−m, which excludes any odd power of m in (2.6)). Moreover
the series is truncated as soon as the physics is captured. For a given set of external
parameters, the stable state of the system is obtained by minimizing the free energy
with respect to m

∂F

∂m
= 0 . (2.7)

Finally, one can compute the critical exponents.
We would like to mention that the critical exponents derived from the Landau theory
are not exact in low dimension, since it is based on mean field approximation and
neglects fluctuations: the order parameter is treated as being completely uniform
in space. Typically the upper critical dimension, above which the approximation is
valid, is D = 4. For example, this is the case of the Ising model. The upper critical
dimension can be obtained from the Ginzburg criterion. In fact, Ginzburg understood
how to see what goes wrong with Landau theory. It fails in D = 1 and gives only
qualitative results in D = 2,3. The issue was solved some decades later by Wilson
and others through the renormalization group method [38, 39].

2.1.3 Universality

The concept of universality is related to the behavior of the system near the critical
point. As we have discussed in Section 2.1.1, the physical properties close to a
second order phase transition are described by the critical exponents. As argued by
Landau, those depend only on the symmetry of the system and the dimension of
the space. This phenomenon is known as universality and systems which share the
same critical exponents are said to belong to the same universality class. In fact,
near criticality the microscopic details of the Hamiltonian become unimportant and
different Hamiltonians with the same symmetries show a similar behavior.

2.2 Quantum Phase Transitions

A quantum phase transition is the transformation of a system from one phase of
matter to another at zero temperature. It implies an abrupt change in the ground
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Fig. 2.2 Low eigenvalues E of an Hamiltonian H(g) as a function of g. Left: Actual level
crossing. It can occur in the case H(g) = H0 +gH1 and [H0,H1] = 0. Right: Avoided level
crossing. It occurs in most cases.

state due to quantum fluctuations. In fact, at finite temperature quantum fluctuations
compete with thermal fluctuations. At high enough temperatures, the quantum
fluctuations are completely destroyed and a purely classical theory is applicable. In
order to establish the range of validity of the classical picture, one has to compare
the typical energy scales of long-distance order parameter fluctuations. The typical
energy of quantum fluctuations is h̄ωtyp (ωtyp being the typical frequency at which
the important degrees of freedom at long distance fluctuate), whereas the thermal
energy is kBT . The behavior of the order parameter fluctuations crosses over from
classical to quantum when kBT < h̄ωtyp.
At T = 0, the transition is driven by a parameter g appearing in the Hamiltonian
H(g) as a dimensionless coupling. By varying g, one can follow the evolution of
the ground state energy EGS(g). In general, for a finite lattice, it will be an analytic
function of g. An exception is obtained when the Hamiltonian has the form

H(g) = H0 +gH1 with [H0,H1] = 0 . (2.8)

Indeed, in this case H0 and H1 can be simultaneously diagonalized, meaning that
there exist a common set of eigenfunctions {|ψn⟩} for H0, H1 and H(g), with
eigenvalues {E(0)

n }, {E(1)
n } and {En(g) =E(0)

n +gE(1)
n }, respectively. Thus, although

the eigenvalues of H(g) depend on g, its eigenfunctions are independent of g. That
entails the possibility of a level crossing between the ground state E0(g) and an
excited state E1(g) at some critical point g = gc (see Fig. 2.2, left panel). To better
explain this concept, let’s fix the value of the coupling constant g = ḡ. For this
value, the ground state of the system is found in a given phase A and its energy is
EA

GS(ḡ) = min
n
{En(ḡ)}. Suppose the minimum of the energy in this phase is obtained

for n = 0: EA
GS(ḡ)≡ E0(ḡ). Then let’s start to tune g with continuity. The energy of
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the ground state EA
GS(g) ≡ E0(g) varies with continuity as a function of g, until it

reaches a critical point g = gc. Here the energy of the first excited state equals that
of the ground state:

E1(gc) = E0(gc) , (2.9)

and for g > gc it becomes smaller. Then the ground state energy switches to
EB

GS(g)≡ E1(g). The system has passed from the phase A to the phase B through the
critical point g = gc identified as a point of non-analyticity in EGS(g). In fact a phase
transition is defined as a point of non-analyticity in the ground state energy of the
system in the limit of an infinite lattice. This can emerge from a level crossing in
the finite size system as well as the limiting case of an avoided level crossing (see
Fig. 2.2, right panel). Indeed, in the latter case the gap between the energy of the
first excited state and that of the ground state could become smaller and smaller as
the size L of the system is increased and reduces to zero in the limit L → ∞.
Similarly to CPTs, also QPTs can be classified as first or second order phase tran-
sitions. Different definitions can be found in the literature. In Ref. [44], a first
order phase transition is associated with a singularity arising from a simple level
crossing, which could occur also in a finite lattice system. In this case one does
not observe diverging correlations. By contrast, second order phase transitions are
associated with an avoided level crossing. In Ref [45], second order phase transitions
are related to the fact that the characteristic energy scale of fluctuations above the
ground state (i.e., the energy gap ∆, if this is non-zero) vanishes when g → gc, and
the characteristic length scale (i.e., the correlation length) diverges. We agree that
second order phase transitions show a diverging correlation length, in analogy with
the classical case2. On the other hand, the behavior of the energy gap near the critical
point could reveal the nature of the phase transition. In fact, in most first order phase
transitions, it closes exponentially fast, contrary to the polynomial decay typically
observed in second order phase transitions3. Here

∆ ∼ |g−gc|zν . (2.10)

This behavior holds for both g > gc and g < gc, with the same critical exponent
zν , which value is universal, but with different constants of proportionality. The

2In analogy with CPTs, we will also recognize first order phase transitions as showing a jump in
the order parameter (see Chapter 6).

3We observe that the behavior described above is typical of most phase transitions, but some
exceptions have been found (see, for instance, [46]).
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correlation length diverges as

ξ
−1 ∼ Λ|g−gc|ν , (2.11)

hinting that ∆ ∼ ξ−z.
Strictly speaking, QPTs occur only at T = 0. However, all experiments are carried
out at some finite temperature. For small enough temperatures, around the critical
point g = gc, we observe the interplay between quantum and thermal fluctuations.
Thus, a central task is to understand the effects of the singularity at T = 0 on the
T > 0 regime. Two cases can be distinguished. In the first one, the singularity
occurs only at T = 0 and all properties are analytic functions of g at T > 04. The
second possibility occurs when the singularity at T = 0 is the end point of a line
describing a classical second order phase transition, along which the thermodynamic
free energy is not analytic. Along this line, h̄ωtyp << kBT and a purely classical
description can be applied. Consequently, the singularity at T = 0 can be inferred
by the classical theory. In both cases, several regions can be identified (see Fig.
2.1). In the thermally disordered region, the long-range order is mainly destroyed
by thermal fluctuations of the order parameter, whereas in the quantum disordered
region the physics is controlled by the quantum fluctuations and the ground state
looks similar to that observed at T = 0 and g > gc. In the quantum critical region
(kBT ∼ h̄ωtyp ∼ |g−gc|zν ), both types of fluctuations are relevant. We finally high-
light the fact that universality is characteristic of the neighborhood of the quantum
critical point, therefore it is not observed at high temperatures.
A last consideration is deserved by the possibility to map quantum models into
classical models. In fact, QPTs in D dimensions are related to CPTs in D+ z dimen-
sions.The mapping between D-dimensional quantum models and D+ z-dimensional
classical models becomes exact in the scaling limit (i.e., when the lattice spacing
goes to zero). This mapping entails that the critical dimensions are reduced by z in
the theory of quantum phase transitions. Therefore, most QPTs (with z = 1) show
mean field behavior in D = 3 [45, 44].

4This is the case of 2D spin systems with SU(2) symmetry, where long-range order at T > 0 is
forbidden by the Mermin-Wagner theorem.
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2.3 The KT transition

In the last decades, many new phases of matter have been found, that cannot be
identified by their pattern of symmetry breaking. These usually involve topological
order and their phase transitions are not described by the Landau theory, since there is
not a change of symmetry and an associated local real order parameter. A completely
new kind of phase transition was discovered in 1972 by J. Michael Kosterlitz and
David J. Thouless. The Kosterlitz-Thouless (KT) transition (sometimes also called
Berezinskii-Kosterlitz-Thouless (BKT) transition) was firstly studied in the two
dimensional (classical) XY -model5, which is an effective theory for both planar
magnets and superfluid systems. In fact, they can be both described by a complex
order parameter that depends by a single angle θ and therefore belong to the same
universality class. The two-point correlations of the order parameter are usually
finite in the ordered phase (typically at low temperature) and decay exponentially
with the distance in the disordered (high temperature) phase

lim
r→∞

C(r) =

{
c1 T < Tc

c2e−r/ξ T > Tc ,
(2.12)

where c1 and c2 are constants. Exactly at the transition point T = Tc, the correlation
falls as a power law

lim
r→∞

C(r)∼ r−(1+η) , (2.13)

signaling a critical behavior. That happens, for example, in three dimensions. Instead,
in the KT transition, the correlations decay exponentially at high temperature, but
their behavior follows a power law in the low temperature regime:

C(r)∼ r−aT for T < TKT . (2.14)

This is know as quasi-long-range order. In the superfluid system, this is generated by
the formation of vortex-antivortex pairs, which creation requires small energy and
can be thermally excited also at low temperature. At a certain critical temperature,
the pairs will break up into individual vortices, which have high energy. The
KT transition does not break any symmetry and does not present a singularity

5This is equivalent to a one dimensional quantum model.
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in any derivative of the thermodynamic potential, thus constituting an infinite-order
transition.

2.4 Mermin-Wagner theorem

After having introduced the possible types of phase transitions, here we would like
to mention that some of them are not permitted in low dimensions, as established
by the Mermin-Wagner theorem [47]. It states that, in D ≤ 2, classical systems with
sufficiently short-range interactions cannot show ordered phases that spontaneously
break a continuous symmetry. It exemplifies the fact that fluctuations become more
important in low dimension, and below D = 2, they destroy potential ordering. On
the other hand, the quantum-classical mapping allows to map a zero-temperature 1D
quantum problem into a 2D classical problem and a zero-temperature 2D quantum
problem into a 3D classical problem. Therefore, we conclude that the Mermin-
Wagner theorem prevents the appearance of ordered phases that break a continuous
symmetry in 1D systems already at T = 0 and in 2D systems at T > 0.
Nevertheless, some phase transitions that do not break any continuous symmetry of
the system can occur. Actually, in last decades it has been found that also several
zero-temperature one-dimensional phases that respect all the symmetries of the
Hamiltonian may exist. These phases do not fall into the classification of symmetry
breaking phases derived from the Landau theory. That brings us to ask whether and
how the system is ordered at this type of phase transitions. As we will see in the
following section, the answer relies on the appearance of non-local ordering.

2.5 Hidden orders and non-local order parameters

In this section, we focus on the one dimensional quantum phases at zero tempera-
ture that do not break any symmetry of the Hamiltonian and consequently are not
predicted by the Landau theory, although they are allowed by the Mermin-Wagner
theorem. In fact, in recent years they have been observed in many one dimensional
lattice systems. Since these quantum phases are not depicted inside the Landau
scheme, they cannot be characterized by a local order parameter. Nevertheless, it is
reasonable to inquire whether they manifest any different kind of ordering.
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Indeed, the appearance of such new phases in many cases can be revealed by proper
non-local string-like operators. Different string-like operators have been proposed in
both bosonic and fermionic systems, as well as for spin systems. The first findings
concerned the Haldane phase in quantum spin chains [48]. Here, it was shown that
this non-symmetry-breaking regime can be captured by a proper non-local order
parameter (NLOP), called Haldane string [49]. Subsequently, the same type of order
was found in the extended Bose-Hubbard model [50], and few years later also the
Mott insulating phase was characterized in terms of a non-local order, called parity
[51]. Finally, similar non-local order parameters were introduced in the context of
fermionic systems, in both the charge and spin degrees of freedom [52]. Furthermore,
subsequent numerical studies on the extended Hubbard model proved that non-local
orders are hidden also in local gapped phases [53].
Here, we concentrate on 1D fermionic systems, where the presence of non-local
hidden order is strictly related to the spin-charge separation. As argued, in the
context of Hubbard-like systems, two kinds of string operators have been introduced,
which are able to capture the presence of some hidden order. These are called parity
(P) and Haldane string (S) operators, respectively, and are defined by the following
expressions:

O(ν)
P ( j) =

j−1

∏
k=0

eı2πS(ν),zk (2.15)

O(ν)
S ( j) = 2S(ν),zj

j−1

∏
k=0

eı2πS(ν),zk (2.16)

where ν = s,c indicate the spin and charge degrees of freedom and S(ν),zj are the spin
and pseudo-spin operators defined in eqs. (1.30) and (1.37), i.e.

S(s),zj =
1
2
(n j,↑−n j,↓) ; S(c),zj =

1
2
(n j,↑+n j,↓−1) . (2.17)

The corresponding correlators C(ν)
A (r) = ⟨O(ν)†

A ( j)O(ν)
A ( j+ r)⟩ (with A = P,S) have

the form

C(ν)
P (r) = ⟨

j+r−1

∏
k= j

eı2πS(ν),zk ⟩ (2.18)

C(ν)
S (r) = ⟨2S(ν),zj

j+r−1

∏
k= j

eı2πS(ν),zk 2S(ν),zj+r ⟩ . (2.19)
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In the asymptotic limit r → ∞, the correlators themselves play the role of order
parameters, since they are non-zero only in the ordered phase. In particular, a non-
vanishing correlator in the charge sector signals the presence of an insulating phase
with a finite charge gap

∆c =
E(L+2,0)+E(L−2,0)−2E(L,0)

2
, (2.20)

where E(N,S(s),z) is the energy of the system with N particles and total magnetization
S(s),z. Instead, a non-zero correlator in the spin channel entails a finite spin gap,
defined as the energy necessary to reverse one spin:

∆s = E(L,1)−E(L,0) . (2.21)

The non-local operators find a systematic description in the context of field the-
ory, which mathematical framework can be used to study the low energy behavior
of lattice systems. That is achieved by means of an analytical technique, called
bosonization, which details can be found in Chapter 3. In particular, in Section 3.13,
we will revisit the non-local order parameters in this picture.

2.5.1 Classification of different phases

In the literature, non-local order parameters have been used to characterize different
gapped phases. In particular, each parameter can in principle identify one hidden
phase, when it is non-zero while the others vanish: C(ν)

A ̸= 0 only for a specific
combination of A and ν . Therefore, we think that NLOPs should allow to recognize
four distinct partly gapped phases. However, up to now only three of them have been
observed in Hubbard-like systems [54, 53]. In the strong coupling limit, each partly
gapped phase is described by a parent state with the corresponding correlator equal to
its maximum value: C(ν)

A = 1. In presence of fluctuations, the value of the non-local
correlator decreases (C(ν)

A < 1) but still remains non-zero, while it vanishes in the
other partly gapped phases. Fluctuations in the parity order consist in the formation
of holon/doublon pairs in a background of singly occupied sites or up/down spin
pairs in a background of holons and doublons depending on whether the ordering
occurs in the charge or in the spin sector. These partly gapped phases are called Mott
insulator (MI) and Luther Emery (LE), respectively. Instead, the Haldane string order
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Table 2.2 Left:Classification of 1D fermionic quantum phases based on string orders.
Right:Schematic representation of string orders.

∆c ∆s NLOP
LL 0 0 none
MI ̸= 0 0 C(c)

P

LE 0 ̸= 0 C(s)
P

HI ̸= 0 0 C(c)
S

CDW ̸= 0 ̸= 0 C(c)
S ,C(s)

P

BOW ̸= 0 ̸= 0 C(c)
P ,C(s)

P

C(c)
P

C(s)
P

C(c)
S

C(s)
S

signals the presence of alternated and diluted holons and doublons or up and down
spins. The first kind of order characterizes the Haldane insulator (HI), while the
second one has not been observed yet. Besides the partly gapped phases, non-local
order parameters capture also the fully gapped phases, identified by the coexistence
of two simultaneous non-local orders, such as the charge density wave (CDW) and
the bond ordered wave (BOW). The observed phases are summarized in Table 2.2
and characterized in terms of non-local order parameters, while in the right panel we
illustrate a schematic picture of non-local orders.
The classification of Table 2.2 finds a complete description in the bosonization
context, as will be clarified in Section 3.13.

2.6 Symmetry protected topological phases

Over the last decades, the discovery of phase transitions that occur without sponta-
neous symmetry breaking has stimulated the development of the concept of topologi-
cal quantum phases, besides that of the already discussed non-local order. Actually,
the two concepts are closely related to each other. In particular, the Haldane string
order is linked to non-trivial topological properties.
Two kinds of topological phases are commonly recognized, a first one characterized
by an “intrinsic” topological order, and a second one that is strictly connected to
the presence of a certain symmetry. Here we are concerned about the latter, usually
referred to as symmetry protected topological (SPT) order. As opposed to the topo-
logical phases, SPT phases can be distinguished from each other unless the symmetry
is broken. Therefore, they can be smoothly deformed into the same trivial product
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state if the deformation does not preserve the symmetry. Different SPT phases are
typically identified by means of the projective representations of the symmetry group
of the Hamiltonian and can be classified according to group cohomology theory
(in case of bosonic SPT phases) [55, 56] and group supercohomology theory (in
case of fermionic SPT phases) [57]. The first examples of non-trivial SPT phases
are given by the Haldane phase of spin-1 chain [58, 59], which is protected by
SO(3) spin rotation symmetry, and the topological insulators [60–65], which are
protected by U(1) and time reversal symmetries. The early results in the attempt of
classifying SPT phases were obtained for free fermion systems, in the development
of a periodic table for topological insulators and superconductors [66–69]. Focusing
on the one-dimensional case, the next breakthrough was the complete classification
of all the 1D gapped bosonic quantum phases [55, 56]. In fact, 1D bosonic systems
cannot manifest long-range entanglement [70] and their states belong to the category
of either SB states or SPT states. Instead, the situation is more complicated when
dealing with interacting fermionic systems. Nevertheless, in Refs. [71, 72] it has
been studied the effect of interactions on the classification of topological phases in
insulators and superconductors in case of 1D systems; moreover, very recently it
has been found that the construction of bosonic SPT orders can be generalized to
fermionic systems by generalizing the group cohomolgy theory to group supercoho-
mology theory [57].
At the end of this chapter, we would like to point out that, since non-local orders
and SPT orders are both beyond the Landau SB theory, some connection may exist
between them. In fact, while the parity order is topologically trivial, the string
Haldane order signals the presence of degenerate edge modes with fractional charge
or spin [73–77]. The linkage is even stronger, since the phases classified accord-
ing to non-local order parameters, as in Table 2.2, when derived in the context of
bosonization, appear to be in one to one correspondence with those obtained from
group cohomology theory [78]. Further elucidations will be given in Chapter 3.



Chapter 3

Analytical techniques: the
bosonization

The one dimensional Hubbard model (1.16) can be exactly solved by means of the
Bethe Ansatz method [8]. However, unfortunately, the integrable models that can be
solved by exact techniques as the Bethe Ansatz, are not a very extended class. Most
quantum condensed matter systems are described by richer models which cannot
be exactly solved. Nevertheless there exist many approximate analytical techniques
which allow to get very meaningful insights into the physics of these systems and
provide some useful basic information that can be used as the starting point for
a subsequent numerical investigation. Among them, the bosonization is a well
established method for one dimensional systems. It is a powerful field-theoretical
tool that enables to calculate correlation functions. In fact, it gives very reliable
results in the weak coupling regime, furnishing the low energy phase diagram of the
model.
Here, we do not intend to derive the framework of bosonization, but to give all
the tools needed to apply the technique. Therefore we will not follow the usual
construction; instead we will provide a schematic treatment of the main concepts
and will derive the formula that will be used in the second part of the thesis. For a
complete treatment of bosonization, we refer the reader to [79–84].
While most of the chapter is devoted to illustrate the technique, the last two sections
contain important information for the full comprehension of this work. In particular,
in Section 3.12 we will apply the bosonization to derive an effective weak coupling
model for strongly interacting systems, and in Section 3.13 we will show how to
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treat the non-local order parameters and the subsequent classification of phases in
this context, as well as their connection with symmetry protected topological order.

3.1 General context

The bosonization consists in the representation of fermionic fields Ψσ (x) in terms of
bosonic fields φσ (x) through an expression of the form

Ψσ (x)∼ ησ e−ıφσ (x) . (3.1)

This can be derived in a rigorous way by noticing that the fermionic field operator
applied to the N-particle ground state (i.e., the state with lowest energy for fixed N,
which is the one with no particle-hole excitations) turns out to be an eigenstate of
the bosonic annihilation operator in the momentum space. Thus one can obtain the
form (3.1) from a coherent state representation. For the details we refer the reader to
[82, 84].
This construction enables to study many problems that appear intractable when
formulated in terms of fermions and turn out to become very simple in the language
of boson fields.
Since this procedure is dealing with field theory, a preliminary step for our pur-
poses consists in doing the continuum limit of the lattice Hamiltonian. Once the
Hamiltonian is written in terms of fermionic fields, one can proceed to substitute
their expression in terms of bosonic fields. An important aspect of our treatment
relies in the structure of the Fermi surface. In 1D systems, this is formed only by
the two points ±kF . Therefore one can classify the excitations as right(R)- and
left(L)-moving particles and regard the fermionic field as the sum of two fields,
acting on the right and left movers, respectively. In the following, we will start by
introducing the continuum limit for fermion operators and then we will define the
fermionic and bosonic fields with the correct commutation rules.
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3.2 Continuum limit and bosonization

The first step in the standard bosonization approach is to perform the continuum
limit of the discrete Hamiltonian. Thus we replace the sums with integrals as

∑
j
−→ 1

a

∫
dx (3.2)

and the annihilation operator with the fermionic fields as

c j,σ −→
√

aΨσ (x) =
√

a
[
eıkF x

ΨRσ (x)+ e−ıkF x
ΨLσ (x)

]
(3.3)

with x = ja (a being the lattice spacing). At half filling kF = π/(2a) and the fermion
operator takes the following expression

c j,σ −→
√

a
[
(ı) j

ΨRσ (x)+(−ı) j
ΨLσ (x)

]
. (3.4)

Then, the bosonization amounts to write the fermionic fields Ψχσ in terms of the
bosonic ones φχσ :

Ψχσ (x) =
ηχσ√
2πα

e−ıχ
√

4πφχσ (x) =

=
ηχσ√
2πα

eı
√

π[χφσ (x)+θσ (x)] =

=
ηχσ√
2πα

eı
√

π

2 [χφc(x)+θc(x)+σ(χφs(x)+θs(x))]

(3.5)

where the generic index χ can denote right (R) or left (L) movers, with the usual
convention that it assumes a positive sign in the first case and a negative sign in the
second one; while α ∼ a is an ultraviolet cutoff. In the second and third lines, the
bosonic fields have been rearranged in different combinations, whose meaning will
be clear in the following, as well as that of the the Klein factor ηχσ .

3.3 Definition of the bosonic fields

In our later calculations, we will apply the bosonization at first order in a. In the
Hamiltonian, one always deals with products of an even number of fermion operators.
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To properly treat the product of exponential operators of the form (3.5), one needs to
carefully consider the commutation relations between the bosonic field operators.
For that purpose, we provide the expressions of the fields in terms of the lattice
operators (in Fourier space) and derive the commutation rules in the continuum
space from those in the discrete space. In doing that, for the sake of simplicity, we
will neglect the spin index. Thus all the following formula are supposed to hold
for bosons of the same species. In fact, bosonic fields describing different species
always commute. However, later we will reintegrate the spin indexes and combine
them in order to define two new degrees of freedom. Starting from boson creation
and annihilation operators, we define the bosonic fields in the following way:

ϕR(x) =
ı√
2L ∑

q>0

eıqx
√

q
e−αq/2bqR (3.6)

ϕ
†
R(x) = − ı√

2L ∑
q>0

e−ıqx
√

q
e−αq/2b†

qR (3.7)

ϕL(x) = − ı√
2L ∑

q>0

e−ıqx
√

q
e−αq/2bqL (3.8)

ϕ
†
L(x) =

ı√
2L ∑

q>0

eıqx
√

q
e−αq/2b†

qL (3.9)

which can be expressed, in a more compact form, as

ϕχ(x) =
ıχ√
2L ∑

q>0

eıχqx
√

q
e−αq/2bqχ (3.10)

and its hermitian conjugate. We also define the real fields

φχ(x) = ϕχ(x)+ϕ
†
χ(x) =

ıχ√
2L ∑

q>0

e−αq/2
√

q

(
eıχqxbqχ − e−ıχqxb†

qχ

)
. (3.11)

Now we can write the fermionic fields in terms of the bosonic fields (3.11) as

Ψχ(x) =
ηχ√
2πα

e−ı
√

4πχφχ (x) . (3.12)
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Explicitly:

ΨR(x) =
ηR√
2πα

e−ı
√

4πφR(x) =
ηR√
2πα

eı
√

π[φ(x)+θ(x)] (3.13)

ΨL(x) =
ηL√
2πα

eı
√

4πφL(x) =
ηL√
2πα

eı
√

π[−φ(x)+θ(x)] (3.14)

Ψ
†
R(x) =

η
†
R√

2πα
eı
√

4πφR(x) =
η

†
R√

2πα
e−ı

√
π[φ(x)+θ(x)] (3.15)

Ψ
†
L(x) =

η
†
L√

2πα
e−ı

√
4πφL(x) =

η
†
L√

2πα
e−ı

√
π[−φ(x)+θ(x)] (3.16)

where we have introduced the dual fields φ(x) and θ(x):

φ(x) = −(φR(x)+φL(x)) (3.17)

θ(x) = −(φR(x)−φL(x)) . (3.18)

By inserting eq. (3.11) into (3.17), we obtain the expression of the field φ in terms
of the boson creation and annihilation operators:

φ(x) = ı ∑
q̸=0

e−α|q|/2−ıqx

q

(
|q|
2L

)1/2(
b†

q +b−q

)
(3.19)

where we have used bqL = b−q (see Appendix B.1). Analogously, its dual field is

θ(x) = ı ∑
q̸=0

e−α|q|/2−ıqx

|q|

(
|q|
2L

)1/2(
b†

q −b−q

)
. (3.20)

Let’s focus on φ(x). As φχ(x), it is a real field and can be written as the sum of
two hermitian conjugate fields, related to annihilation and creation boson operators,
respectively:

φ(x) = ϕ(x)+ϕ
†(x) (3.21)
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with

ϕ(x) = ı ∑
q̸=0

e−α|q|/2−ıqx

q

(
|q|
2L

)1/2

b−q (3.22)

ϕ
†(x) = ı ∑

q′ ̸=0

e−α|q′|/2−ıq′x

q′

(
|q′|
2L

)1/2

b†
q′ . (3.23)

3.4 The q = 0 contribution

We observe that in defining the bosonic fields (3.10) and (3.11), as well as (3.19) and
(3.20), we neglected the q = 0 contribution in the sum. This can be justified when
working in the thermodynamic limit L → ∞, since it decays as 1/L. If we want to
reintegrate it, we can take it into account separately, by including it directly inside
eq. (3.12) as an extra term added to the bosonic field φχ(x):

Ψχ(x) =
ηχ√
2πα

eıχ
2πN̂χ

L xe−ı
√

4πχφχ (x) (3.24)

where N̂χ counts the number of χ-particles added or removed from the system in the
excited state. Its meaning will be explained in Section 3.11. Sometimes the q = 0
contribution is included into the bosonic field:

φχ(x)→ φχ(x)−
√

πN̂χ

L
x . (3.25)

Although the number operator N̂χ defined for q = 0 does not commute with the Klein
factors

[N̂χ ,η
†
χ ′] = δχ,χ ′η

†
χ , [N̂χ ,ηχ ′] =−δχ,χ ′ηχ , (3.26)

it commutes with the bosonic operators defined for q ̸= 0

[bqχ ′, N̂χ ] = [b†
qχ ′, N̂χ ] = 0 . (3.27)

Therefore, also if this term was included in the bosonic field, it would not be relevant
in the calculation of commutation rules between the bosonic fields and we will
continue to neglect it in the following sections.
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3.5 Normal ordering

Since the fermionic field depends on the exponential of the field φ , in the bosonization
procedure the operator eı

√
4πφ(x) is recurrent and sometimes one approximates it by

a Taylor expansion. In doing that, one has to pay attention to commutation rules
between the two components (3.22) and (3.23). Indeed, the expansion can be done if
the operator is normal ordered, which means that all the creation operators are on
the left of the annihilation operators in the product. By denoting the normal ordering
operation with the symbol ::, we have the following relation:

eı
√

4πφ(x) =eı
√

4π(ϕ(x)+ϕ†(x)) = eı
√

4πϕ†(x)eı
√

4πϕ(x)e2π[ϕ†(x),ϕ(x)] =

= : eı
√

4πφ(x) : e−2π[ϕ(x),ϕ†(x)] =: eı
√

4πφ(x) :
2πα

L
.

(3.28)

For the derivation of the last equality, see Appendix B.1. As mentioned before,
normal ordering is important when dealing with the expansion of exponential opera-
tors. This happens especially when the exponent is the difference of the same field
computed in two different points. For example

eı
√

4π[φ(x+R)−φ(x)] . (3.29)

Since the field varies slowly, we can approximate φ(x+R) ≃ φ(x)+R∇φ(x) and
then expand eı

√
4πR∇φ(x) ≃ 1+ ı

√
4πR∇φ(x). However, this last expression is wrong,

since the field φ contains both creation and annihilation operators which do not
commute with each other and cannot be treated as simple variables. The correct
expansion is

: eı
√

4πR∇φ(x) :≃ 1+ ı
√

4πR∇φ(x) . (3.30)

The normal ordered exponential is related to (3.29) by

eı
√

4π[φ(x+R)−φ(x)] =: eı
√

4π[φ(x+R)−φ(x)] :
(

α

R

)2
(3.31)

(see Appendix B.1 for the proof).
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3.6 Commutation rules

Here we compute the commutation rules involving the real bosonic fields φ and θ :

[φ(x),φ(y)] = [θ(x),θ(y)] = 0

[φ(x),θ(y)] =− ∑
q,q′ ̸=0

e−
α

2 (|q|+|q′|)e−ı(qx+q′y)

q|q′|

√
|qq′|
2L

[b†
q +b−q,b

†
q′ −b−q′]︸ ︷︷ ︸

2δq′,−q

→

=− 1
L ∑

q̸=0

e−α|q|+ıqR

q
=

L→∞−−−→− ı
π

∫
∞

0

dq
q

sin(qR)e−α|q| →

α→0−−−→ ı
2

sgn(x− y)
(3.32)

(see Appendix B.1 for the complete calculation). From these formula, one can also
derive the commutation rules between φχ ’s:

φR =−φ +θ

2
φL =−φ −θ

2
(3.33)

hence

[φχ(x),φχ(y)] =
1
4
[φ(x)+χθ(x),φ(y)+χθ(y)] =

=
χ

4
([φ(x),θ(y)]− [φ(y),θ(x)]) =

=
χ

4

( ı
2

sgn(x− y)− ı
2

sgn(y− x)
)
=

=χ
ı
4

sgn(x− y)

(3.34)

whereas

[φR(x),φL(y)] =− 1
4
([φ(x),θ(y)]+ [φ(y),θ(x)]) =

=− 1
4

( ı
2

sgn(x− y)+
ı
2

sgn(y− x)
)
= 0 .

(3.35)
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3.7 Derivatives of the fields

By bosonizing an Hamiltonian at first order, not only the bosonic fields themselves
appear, but also their derivatives. Therefore we give their expressions as functions of
the creation and annihilation operators and their commutation rules:

∇φ(x) = ∑q̸=0 e−α|q|/2−ıqx
(
|q|
2L

)1/2 (
b†

q +b−q
)

(3.36)

∇θ(x) = ∑q̸=0 e−α|q|/2−ıqx q
|q|

(
|q|
2L

)1/2 (
b†

q −b−q
)
. (3.37)

The commutation rules are

[∇φ(x),∇φ(y)] = [∇θ(x),∇θ(y)] = 0

[φ(x),∇φ(y)] = [θ(x),∇θ(y)] = 0

[∇φ(x),∇θ(x)] = 0

[∇φ(x),θ(y)] = ıδ (x− y)

[φ(x),∇θ(y)] =−ıδ (x− y) .

(3.38)

These commutation rules can be easily obtained also directly from expressions (3.19),
(3.20), (3.36) and (3.37). For example, the last one is

[φ(x),∇θ(y)] =− ı ∑
q̸=0

e−α|q|−ıq(x−y)

q
q
|q|

|q|
2L

·2 =

=− ı
L ∑

q ̸=0
e−α|q|+ıqR →

L→∞−−−→− ı
2π

∫ +∞

−∞

dqeıqRe−α|q| →

α→0−−−→− ı
1

2π

∫ +∞

−∞

dqeıqR︸ ︷︷ ︸
δ (R)

(3.39)
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whereas the commutator between the two derivatives is

[∇φ(x),∇θ(x)] =
1

2L ∑
q,q′ ̸=0

e−α(|q|+|q′|)/2−ıx(q+q′)y q′

|q′|
√

|qq′|[b†
q +b−q,b

†
q′ −b−q′] =

=
1
L ∑

q,q′ ̸=0
e−α(|q|+|q′|)/2−ıx(q+q′)y q′

|q′|
√

|qq′|δq′,−q =

=− 1
L ∑

q̸=0
e−α|q|q = 0 .

(3.40)

3.8 Spinfull case: charge and spin degrees of freedom

In the previous sections we defined the fields for spinless fermions. The same
relations are true for spinfull fermions. In this case we simply add a spin index to
all expressions. Indeed one can use the boson representation for each fermionic
species separately. Thus we deal with two sets of fields (φ↑,θ↑) and (φ↓,θ↓), with
the following commutation rules:

[φσ (x),φσ ′(y)] = [θσ (x),θσ ′(y)] = 0

[φσ (x),θσ ′(y)] = δσ ,σ ′ ı
2sgn(x− y) .

(3.41)

It is useful to combine up- and down-spin fields to get the so-called charge and spin
bosonic fields:

φc =
φ↑+φ↓√

2
θc =

θ↑+θ↓√
2

φs =
φ↑−φ↓√

2
θs =

θ↑−θ↓√
2

.

(3.42)

In fact, Hamiltonian can often be decoupled in two independent Hamiltonians, one
depending only on the charge degree of freedom and the other on the spin degree of
freedom.
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The charge and spin fields commute:

[φc(x),φs(y)] = [θc(x),θs(y)] = 0

[φc(x),θs(y)] = 1
2

{
[φ↑(x),θ↑(y)]− [φ↓(x),θ↓(y)]+ [φ↓(x),θ↑(y)]− [φ↑(x),θ↓(y)]

}
= 0

(3.43)
whereas

[φc(x),θc(y)] =
1
2
{
[φ↑(x),θ↑(y)]+ [φ↓(x),θ↓(y)]+ [φ↓(x),θ↑(y)]+ [φ↑(x),θ↓(y)]

}
=

=
1
2
·2[φ(x),θ(y)] = ı

2
sgn(x− y)

[φs(x),θs(y)] =
1
2
{
[φ↑(x),θ↑(y)]+ [φ↓(x),θ↓(y)]− [φ↓(x),θ↑(y)]− [φ↑(x),θ↓(y)]

}
=

=
1
2
·2[φ(x),θ(y)] = ı

2
sgn(x− y) .

(3.44)
As anticipated, the fermionic field (3.5) in terms of charge and spin bosonic fields is

Ψχσ (x) =
ηχσ√
2πα

eı
√

π

2 [χφc(x)+θc(x)+σ(χφs(x)+θs(x))] . (3.45)

3.9 Klein factors and fermion anti-commutation rules

In the definition of the fermionic field, eq. (3.5), we have introduced the quantity
ηχσ . It is a unitary operator, called Klein factor, which changes the total number of
fermions by one and guarantees the anti-commutation relations between fermionic
fields of different species1 (see, e.g., [84], [85]). They satisfy the following proper-
ties:

η
†
λ

ηλ = ηλ η
†
λ
= 1 (3.46)

{ηλ ,η
†
λ ′} = 2δλ ,λ ′ (3.47)

{η
†
λ
,η†

λ ′} = {ηλ ,ηλ ′}= 0 for λ ̸= λ
′ (3.48)

1Here the term species is used in a very general sense. It can denote, for example, the spin or the
left/right moving modes.
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where we have used the multi-index λ = (χ,σ). Moreover we observe that the Klein
factors commute with the bosonic operators

[bqλ ,η
†
λ ′] = [b†

qλ
,η†

λ ′] = [bqλ ,ηλ ′] = [b†
qλ
,ηλ ′] = 0 , (3.49)

while, as already argued, do not commute with the number operator

[N̂λ ,η
†
λ ′] = δλ ,λ ′η

†
λ
, [N̂λ ,ηλ ′] =−δλ ,λ ′ηλ . (3.50)

Sometimes the Klein factors are written as ηλ = e−ıθ̂λ , with θ̂λ = θ̂
†
λ

[82]. In this
case, equations (3.50) correspond to the following

[N̂λ , ıθ̂λ ′] = δλ ,λ ′ . (3.51)

In the thermodynamic limit one can forget about the fact that the Klein factors change
the total number of particles and concentrate on the sign due to these operators. Then,
they can be replaced by Majorana fermions, which are hermitian operators η

†
λ
= ηλ

and obey the Clifford algebra

{ηλ ,ηλ ′}= 2δλ ,λ ′ . (3.52)

The space on which they act has a minimal dimension which depends on the number
of fermion species. In case of four species (up/down spins and right/left movers), the
minimal dimension is four and the Klein factors have a representation in terms of
Kronecker products of Pauli matrices [86], [13]. For instance, we can take

ηR↑ = σ
x ⊗σ

x , ηR↓ = σ
z ⊗σ

x ,

ηL↑ = σ
y ⊗σ

x , ηL↓ = I⊗σ
y .

(3.53)

Then, the products of four Klein factors appearing in the Hamiltonian are diagonal
with eigenvalues ±1. For a given product, we can choose one of the two eigenvalues.
We choose

ηL↓ηL↑ηR↓ηR↑ = 1 . (3.54)

The values of the other products follow from the anticommutation rules of the
Clifford algebra.
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3.10 Fermion densities and point splitting

We conclude the definition of the operators needed for applying the bosonization
by introducing very important quantities, i.e. fermion densities. For right- and
left-movers, fermion density operators are defined as

ρχ(x) = : Ψ
†
χ(x)Ψχ(x) := lim

a→0

[
Ψ

†
χ(x+a)Ψχ(x)−⟨Ψ†

χ(x+a)Ψχ(x)⟩
]
=

= lim
a→0

[
η

†
χηχ

2πα
eıχ

√
4πφχ (x+a)e−ıχ

√
4πφχ (x)−⟨...⟩

]
=

≃− 1√
π

∇φχ(x) =
1

2
√

π
(∇φ(x)+χ∇θ(x))

(3.55)

(see Appendix B.1 for the derivation). We notice that we have denoted the “fermionic”
normal ordering :: with the same symbol used to normal order exponentials of the
bosonic field. Here it indicates the operation written in the first line that is more
properly called “point splitting”. It is necessary to avoid divergences when one takes
the limit α → 0. Eq. (3.55) implies

ρR = − 1√
π

∇φR = 1
2
√

π
(∇φ +∇θ) (3.56)

ρL = − 1√
π

∇φL = 1
2
√

π
(∇φ −∇θ) (3.57)

and

ρ = ρR +ρL = 1√
π

∇φ (3.58)

j̃ = ρR −ρL = 1√
π

∇θ . (3.59)

These two quantities correspond to the density and the renormalized current j̃ = j/vF ,
respectively. The same relations hold when the spin label is added:

ρχσ = − 1√
π

∇φχσ =
1

2
√

π
(∇φσ +χ∇θσ ) (3.60)

ρσ = ρRσ +ρLσ =
1√
π

∇φσ (3.61)

j̃σ = ρRσ −ρLσ =
1√
π

∇θσ . (3.62)
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As for the fields, we can combine up- and down- densities and currents to obtain
their expressions in the charge and spin degrees of freedom:

ρc =
ρ↑+ρ↓√

2
=

1√
π

∇φc j̃c =
j̃↑+ j̃↓√

2
=

1√
π

∇θc (3.63)

ρs =
ρ↑−ρ↓√

2
=

1√
π

∇φs j̃s =
j̃↑− j̃↓√

2
=

1√
π

∇θs . (3.64)

At this point we have all the instruments to apply the technique. A summary of the
main formula can be found in Appendix C. In the following section we would like to
sketch some physical aspects which are at the basis of the procedure.

3.11 On the relation of fields with discrete fermionic
operators

So far we have developed a batch of practical rules which enables us to apply
bosonization in a very simple way. Here we would like to provide more deep
physical justification of the procedure. For this purpose, we go back to the fermionic
creation and annihilation operators in the momenta space and explicit the important
fields as function of them. In K space, the vacuum state is defined as the Dirac sea,
where all the states below the Fermi level are occupied and all the states above it are
empty. The bosonization relies on the assumptions that the energy spectrum is linear
around the two Fermi points

εk −µ ∼

{
vF(k− kF) right moving branch
−vF(k+ kF) left moving branch

(3.65)

and that each branch can be extended in order that k runs from −∞ to +∞. For both
of them, we can define a particle number operator as

N̂χ = ∑
k

: c†
kχ

ckχ := ∑
k

[
c†

kχ
ckχ − 0⟨c†

kχ
ckχ⟩0

]
(3.66)

where 0⟨...⟩0 denotes the expectation value computed with respect to the vacuum
state. Therefore it represents the number of particles added or removed from the
Fermi sea in each branch. Moreover, we can define the operators that create particle-
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hole excitations of momentum q ̸= 0 as

ρχ(q) = ∑
k

c†
k+qχ

ckχ . (3.67)

Those are called density fluctuation operators and obey the following algebra

[ρχ(q),ρχ ′(q′)] =−χ
qL
2π

δq,−q′δχ,χ ′ (3.68)

which can be turned into the canonical bosonic algebra by renormalizing the operators
in the following way

bqχ =

√
2π

Lq
ρχ(−χq) , b†

qχ =

√
2π

Lq
ρχ(χq) (3.69)

with q > 0. These bosonic operators create collective excitations involving the
coherent superposition of a large number of electron–hole pairs. The non-interacting
fermionic Hamiltonian can be rewritten as a non-interacting Hamiltonian in terms
of the new bosonic operators. When interactions are included into the model, one
needs to distinguish two types of possible processes: particle-hole excitations can
be created by scatterings which occur on one branch of the Fermi surface or by
scatterings which bring particles from one branch to the other. The first kind of
interaction is referred to as forward scattering, while the second kind is called
backward scattering. Forward scattering interactions can still be written in terms
of the density fluctuation operators. The Hamiltonian involving only the kinetic
part and the forward scattering interaction is known as the Tomonaga-Luttinger
model and, ones written in terms of bosons, is easily diagonalized by a Bogoliubov
transformation. Since the diagonal boson operators are linear combinations of the
original ones, the elementary excitations are collective bosonic density fluctuations.
This is also true in presence of backward scattering interactions only in case of
spinless fermions. Clearly all the previous relations can be rewritten by adding a
spin index. In this case, the backward scattering interactions can not be expressed
as combinations of the bosonic operators and one needs to bosonize the single
fermionic operator, as in (3.12). At half filling, also umklapp processes, which
entail momentum transfer between the fermion system and the lattice, can occur and
require the bosonization of Ψχ(x).
Finally, we observe that Ψχ(x) in terms of fermion operators in reciprocal space can



3.11 On the relation of fields with discrete fermionic operators 55

be defined as
Ψχ(x) =

1√
L ∑

k
eıkxckχ , (3.70)

its inverse being

ckχ =
1√
L

∫
dxe−ıkx

Ψχ(x) . (3.71)

Thus, the density field in real space (3.55) is given by

ρχ(x) = : Ψ
†
χ(x)Ψχ(x) :=

1
L ∑

k,k′
eı(k−k′)x : c†

k′χckχ :=
1
L ∑

k,q
e−ıqx : c†

k+qχ
ckχ :=

=
1
L ∑

k
: c†

kχ
ckχ : +

1
L ∑

q̸=0
e−ıqx

∑
k

c†
k+qχ

ckχ =

=
N̂χ

L
+

1
L ∑

q̸=0
e−ıqx

ρχ(q) .

(3.72)

The first term here is missing in eq. (3.55), since we used the definition (3.12) in
deriving it. It is recovered if instead one uses (3.24). Note that ckR ≡ ckF+k and
ckL ≡ c−kF+k.2 Therefore the field Ψ(x), which is the continuum limit analogs of c j,
is given by

Ψ(x) =
1√
L ∑

k
eıkxck =

1√
L ∑

k
eı(kF+k)xckF+k +

1√
L ∑

k
e−ı(kF−k)xc−kF+k

=eıkF x
ΨR(x)+ e−ıkF x

ΨL(x) ,
(3.73)

and the corresponding density, at half filling, is

n(x) =: Ψ
†(x)Ψ(x) := ρ(x)+(−) jM(x) (3.74)

with
M(x) = Ψ

†
R(x)ΨL(x)+Ψ

†
L(x)ΨR(x) . (3.75)

2Another possibility is to define ckL ≡ c−kF−k. This would entail a slightly different definition of
(3.70), (3.71) and (3.72), as well as (3.68) and (3.69). However, the bosonic operators obtained at
the end are the same and the formula of the previous sections are not affected. For more details, see
Appendix B.2.
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3.12 Application to interacting fermions: the sine-Gordon
model

The Hamiltonian of an interacting fermion model with linear spectrum describing
the low energy excitations can be written as

H ≈ H0 +Hint (3.76)

with
H0 = vF ∑

k,χ,σ
χk : c†

kχσ
ckχσ : (3.77)

Hint =
1

2L ∑
k,k′,q

∑
χ

∑
σ ,σ ′

{
g1σσ ′c†

k+qχσ
ckχ̄σ c†

k′−qχ̄σ ′ck′χσ ′+

g2σσ ′c†
k+qχσ

ckχσ c†
k′−qχ̄σ ′ck′χ̄σ ′+

g3σσ ′c†
k+qχσ

ckχ̄σ c†
k′−qχσ ′ck′χ̄σ ′+

g4σσ ′c†
k+qχσ

ckχσ c†
k′−qχσ ′ck′χσ ′

}
(3.78)

where χ̄ denotes the opposite moving branch with respect to χ and the momentum
q is assumed to be small enough that k and k± q belong to the neighborhood of
the same Fermi point. The g2 and g4 terms model the forward scattering processes,
whereas g1 describes the backward scattering interactions and g3 is the umklapp
term. By using the relation (3.71), with the spin index included,

ckχσ =
1√
L

∫
dxe−ıkx

Ψχσ (x) , (3.79)

one obtains the Hamiltonians (3.77) and (3.78) in the continuum real space

H0 = vF ∑
χ,σ

∫
dx : Ψ

†
χσ (x)(−ıχ∂x)Ψχσ (x) : (3.80)

Hint =
1
2 ∑

χ

∑
σ ,σ ′

∫
dx
{

g1σσ ′Ψ
†
χσ (x)Ψχ̄σ (x)Ψ

†
χ̄σ ′(x)Ψχσ ′(x)+

g2σσ ′Ψ
†
χσ (x)Ψχσ (x)Ψ

†
χ̄σ ′(x)Ψχ̄σ ′(x)+

g3σσ ′Ψ
†
χσ (x)Ψχ̄σ (x)Ψ

†
χσ ′(x)Ψχ̄σ ′(x)+

g4σσ ′Ψ
†
χσ (x)Ψχσ (x)Ψ

†
χσ ′(x)Ψχσ ′(x)

}
.

(3.81)
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If the system is unpolarized (i.e., it is invariant under time reversal), the interactions
depend only on the relative orientation of the spins:

gi↑↑ = gi↓↓ = gi∥ , gi↑↓ = gi↓↑ = gi⊥ , i = {1,2,3,4} . (3.82)

By applying the bosonization mapping to this Hamiltonian, after appropriate normal
ordering, one gets an Hamiltonian of the form

H = ∑
ν=c,s

Hν +Hcs (3.83)

with

Hν =
1
2

∫
dx
[

vνKν (∇θν(x))
2 +

vν

Kν

(∇φν(x))
2
]
+

2gν

(2πa)2

∫
dxcos(

√
8πφν(x))

(3.84)

Hcs =
2gcs

(2πa)2

∫
dxcos(

√
8πφc(x))cos(

√
8πφs(x)) , (3.85)

being the coefficients given by

vνKν = vF

[
1+

g4∥−g2∥+g1∥+ cν (g4⊥−g2⊥)

2πvF

]
(3.86)

vν

Kν

= vF

[
1+

g4∥+g2∥−g1∥+ cν (g4⊥+g2⊥)

2πvF

]
(3.87)

gc =−g3⊥ , gs = g1⊥ , gcs =−g3∥ , (3.88)

where cc =+1 and cs =−1. From equations (3.86) and (3.87), we get the velocities
vν and the Luttinger parameters Kν

vν = vF [(1+ y−,ν)(1+ y+,ν)]
1/2 ≃ vF

[
1+

y−,ν

2
+

y+,ν

2

]
(3.89)

Kν =

[
1+ y−,ν

1+ y+,ν

]1/2

≃ 1+
y−,ν

2
−

y+,ν

2
, (3.90)

where y±,ν =(g4∥±(g2∥−g1∥)+cν(g4⊥±g2⊥))/(2πvF), and in the second equality
we have done a linear approximation valid for small interaction values. Very often,
the Hamiltonian (3.85), which couples the charge and spin degrees of freedom,
can be neglected upon resorting to a renormalization group analysis (see, e.g.,
[81],[18],[87],[88],[89],[90]). So, assuming charge-spin separation, one ends up
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with two decoupled Hamiltonians, each one having the form

HSG =
1
2

∫
dx
[
vK (∇θ(x))2 +

v
K
(∇φ(x))2

]
+

2g
(2πa)2

∫
dxcos(

√
8πφ(x)) ,

(3.91)
which is known as the sine-Gordon Hamiltonian. This Hamiltonian contains two
competing terms. Indeed the quadratic term does not want the field φ to be locked
and favors its fluctuations. On the other hand, the massive term tries to pin the
field in one of the minima of the cosine. In order to know which term wins and
to obtain the low-energy physical properties of the model, one has to employ the
renormalization group procedure. The basic idea of this procedure is to move towards
larger distances (i.e, lower energies) by integrating out the fields with shorter and
shorter wavelengths. Technically, one starts with a decomposition of the original
field into short-wavelength and long-wavelength parts, then integrates over the short-
wavelength component and get an effective model for the long-wavelength field. The
structure of the new effective action will be the same as the original one, but with a
different set of coupling constants. This procedure is repeated many times and at
each RG iteration one obtains to reproduce the form of the starting model (up to
irrelevant terms). Relations between the renormalized couplings and the original
ones generate the RG equations, which solution provides informations about the
low-energy phase diagram. The RG analysis can be performed in several ways. The
most standard, based on the Kadanoff-Wilson picture, is to start from the partition
function

Z =
∫

Dφe−S (3.92)

and compute the action. For the sine-Gordon model, the action is

S=
1

2K

∫
dxdτ

[
1
v
(∂τφ(x,τ))2 + v(∂xφ(x,τ))2

]
︸ ︷︷ ︸

S0

+
2g

(2πa)2

∫
dxdτ cos(

√
8πφ(x,τ))︸ ︷︷ ︸

Sg

.

(3.93)
Now the procedure consists in changing the cutoff of the system and at the same time
varying the coupling constants in order to keep the low-energy properties unchanged.
We denote the original cutoff, which delimits the Brillouin zone, by Λ. Then, the
Brillouin zone |k|< Λ can be split into two regions: 0 < |k|< Λ′ and Λ′ < |k|< Λ,
with Λ′ = Λ−dΛ. If one writes the field in Fourier transform, it can be divided into
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Δ =0

Δ >0

Δ >0

g/(πv)

2(K-1)

Fig. 3.1 RG flow diagram for the sine-Gordon model (3.91). The arrows indicate the direction
of the flow with increasing the length scale. The black lines mark the phase transitions. In
the green region φ = 0, while in the blue region φ =

√
π/8.

the sum of slow (0 < |k|< Λ′) and fast (Λ′ < |k|< Λ) components:

φ = φ
<+φ

> . (3.94)

The same holds for the quadratic part of the action S0

S0 = S<0 +S>0 , (3.95)

while it is not possible for Sg. Therefore a perturbative expansion of the partition
function in the cosine term is needed. Here we realize that the RG procedure is a
perturbative method. Hence it is reliable only if the renormalized couplings remain
small. After the expansion in powers of the cosine term, one can average over the
fast modes and obtain the partition function expressed in terms of an effective action
for the slow fields only, i.e., with a smaller cutoff Λ′ with respect to the original one.
At this point, if one rescales the momenta as

k′ =
Λ

Λ′ k , (3.96)

one recovers the original form for the action, with new coupling constants. The
cutoff is usually parametrized by Λ(l) = Λ0e−l . Therefore Λ′(l) = Λ0e−l−dl and
Λ

Λ′ = edl ≈ 1+ dl. With this notation, one gets that the relation between the new
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coupling and the old one is

g(l +dl) = g(l)e(2−2K)dl (3.97)

which leads to the following differential equation

∂g(l)
∂ l

= g(l)(2−2K(l)) . (3.98)

Within this RG procedure, one can also obtain another differential equation for
∂K(l)/∂ l, coupled to (3.98). The exact form of this equation depends on the precise
cutoff procedure used. Therefore here we do not write it. For the details of the
RG method, see e.g. [81], [25], [32], [86] or [91]. The RG flow is drawn in Figure
3.1. We see that the system flows to the point g = 0 if |g| ≤ 2πv(K − 1), while
it flows toward strong coupling if |g| > 2πv(K − 1). In fact, in the first case the
parameter g is irrelevant (i.e., it decreases algebraically under renormalization) and
the theory is massless (∆ = 0), while in the second case g becomes relevant (i.e.,
it grows algebraically) and makes the theory massive (∆ ̸= 0), with two possible
distinct phases, depending on the sign of g. Finally, if K = 1, the cosine term is
marginal (i.e., it undergoes logarithmic variations).
We observe that if the original lattice model is invariant under the SU(2) symmetry,
the RG flow is restricted to the line 2πv(K − 1) = g, implying that the theory is
gapless for K > 1 and gapped for K < 1. For the Hubbard model, this is the
case in both charge and spin sectors. However, the presence of adding terms in
the Hamiltonian may break the symmetry at least in one of the two sectors, thus
expanding the number of possible phases.

3.13 Non-local order parameters in bosonization, clas-
sification of phases in the sine-Gordon model and
their topological properties

The previous analysis offers an ideal platform to derive, in a systematic way, the
classification of phases introduced in Section 2.5.1. Indeed, most Hubbard-like
Hamiltonians can be mapped , at first order in the lattice parameter a, into the sum
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of two decoupled sine-Gordon models

H = ∑
ν=c,s

Hν , (3.99)

with Hν given by eq. (3.84). As a result of the competition between the quadratic
term and the interaction term, some gapless or gapped phases can appear in each
ν−sector. In particular, the gap is open when the field φν is pinned at some fixed
value. The condition |gν |> 2πvν(Kν −1) guarantees the fulfillment of this require-
ment. In order to minimize the energy, depending on the sign of the mass gν , the
only two possible pinning values are 0 or

√
π/8, which correspond to unit values

of cos(
√

2πφν) and sin(
√

2πφν) respectively. Thus, these two operators can be
regarded as detectors for the corresponding gapped phases. In fact, it is easy to
verify that they are the continuum version of the parity and Haldane string operators
introduced in Section 2.5:

O(ν)
P (x)∼ cos(

√
2πφν(x)) ; O(ν)

S (x)∼ sin(
√

2πφν(x)) (3.100)

and the corresponding correlators, which in the asymptotic limit act as order parame-
ters, are expressed as

C(ν)
P (R)∼ ⟨cos(

√
2πφν(x))cos(

√
2πφν(x+R))⟩ (3.101)

C(ν)
S (R)∼ ⟨sin(

√
2πφν(x))sin(

√
2πφν(x+R))⟩ . (3.102)

As a consequence, the phases of Table 2.2 can be reinterpreted in the bosonization
language. According to this picture, eight distinct gapped phases can be induced
by the interaction in the gapless Luttinger Liquid regime. In each channel, the two
pinning values of the field (i.e., 0 and

√
π/8) correspond to two distinct orders (i.e.,

the parity and the Haldane string). That determines the existence of four distinct
partly gapped phases and four fully gapped phases, the latter occurring when both
φc and φs are pinned. In conclusion, the bosonization provides adding information
to the classification of phases given in Table 2.2. A complete description of those
phases is reported in Table 3.1. We observe that here the scenario of possible phases
is enlarged with respect to that found in the literature. In fact, Hubbard-like models
typically have SU(2) spin symmetry, which prevents the case φs =

√
π/8 in one-

loop bosonization.
We would like to highlight that the partly gapped phases can not be detected by
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Table 3.1 Classification of 1D quantum phases and corresponding string orders from bosoniza-
tion and RG analysis. The letter u has been used to label the unpinned fields and NLOP
stands for non-local order parameter.

Φc Φs ∆c ∆s NLOP
LL u u 0 0 none
MI 0 u ̸= 0 0 C(c)

P

LE u 0 0 ̸= 0 C(s)
P

HI
√

π/8 u ̸= 0 0 C(c)
S

HLE u
√

π/8 0 ̸= 0 C(s)
S

CDW
√

π/8 0 ̸= 0 ̸= 0 C(c)
S ,C(s)

P

SDW 0
√

π/8 ̸= 0 ̸= 0 C(c)
P ,C(s)

S

BOW 0 0 ̸= 0 ̸= 0 C(c)
P ,C(s)

P

BSDW
√

π/8
√

π/8 ̸= 0 ̸= 0 C(c)
S ,C(s)

S

means of local order parameters. By contrast, according to the one loop bosonization
presented above, we can always find a local order parameter for the fully gapped
phases, where the charge and spin degrees of freedom can be recombined. Never-
theless those phases are also characterized by the simultaneous non-vanishing of
two non-local string operators. Thus the string order parameters (2.18) and (2.19),
and their continuum version (3.101) and (3.102), are able to capture all the possible
gapped phases appearing in the sine-Gordon model.
Finally we stress that also the topological properties associated to the string order
find a deeper explanation in the framework of bosonization. In fact, since the cosine
term in the sine-Gordon model can pin the field φν to either the value 0 or

√
π/8,

at the interface between the two corresponding phases the field experiences a kink.
This affects the spin (or pseudo-spin) operator Sz,(ν)

j . Indeed, in the continuum limit

Sz,(ν)
j ∼ a√

2π
∇φν(x). In particular, it is found that at the edges of the system (or

equivalently at the boundary between the two separated phases) a fractional spin (or
charge) is accumulated [76–78]:

lim
a→0

1√
2π

∫ x+a

x
dx∇φν(x) =±1

4
. (3.103)

The evidence of such fractionalization at the edges is a typical signature of an SPT
phase. Actually, here the distinction of phases is established under the protection
of the particle-hole symmetry. In Ref. [78] the correspondence between the phases
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obtained for the sine-Gordon model and those derived from the group cohomology
theory has been made more consistent. Indeed, it has been shown that each (charge
or spin) channel is described by a U(1)⋊Z2 symmetry hosted by the sine-Gordon
Hamiltonian and it has been proven that two inequivalent projective representations
exist, as predicted by the group cohomology classification. Those are associated with
a trivial and a non-trivial SPT phase, the first one being identified with the parity
non-local order and the second one with the Haldane string order. These findings
have confirmed and enforced the previous results about the relation of Haldane string
order with non-trivial SPT phases based on the matrix product formalism [73–75].



Chapter 4

Numerical methods

In this Chapter we present two kinds of numerical techniques, which will be used
in the second part of the thesis to investigate Hubbard-like systems. The first one
is the density matrix renormalization group (DMRG) method, which is particularly
suitable to study one dimensional systems. It relies on the truncation of the Hilbert
space based on the eigenvalues of the reduced density matrix. The second one is
the quantum Monte Carlo (QMC), which is built on the sampling of the possible
configurations of the system. These two methods allow to compute non-local order
parameters since the latter can be constructed from the product of local operators
with diagonal entries.

4.1 Density matrix renormalization group (DMRG)

The DMRG has been introduced by White in 1992 [92, 93]. It consists in a procedure
to progressively enlarge the system size without extending the Hilbert space beyond
a given dimension m. In order to obtain this result, the system is embedded in a
larger environment and the truncation of the Hilbert space is attained by choosing
the eigenvectors of the reduced density matrix with the largest eigenvalues. Indeed,
this choice provides the most accurate representation of the state of the entire lattice,
i.e., the system plus the universe.
The first step of the algorithm consists in building a portion of the lattice, called block,
of size ℓ and described by mℓ states. It will be denoted by Bℓ(mℓ). At the beginning,
the block is composed by just one site: B1(m1), where m1 is the dimension of the
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single site Hilbert space (for the Hubbard model m1 = 4). In the second step, a site
is added to the right of the block. The block plus the site constitutes the left enlarged
block, which is also referred to as the system. Then the right enlarged block, which
represents the environment, is constructed by reflecting the left enlarged block. This
global system is called superblock (see Fig. 4.1, Left panel) and is described by the
following Hamiltonian

Hn
sB = Hn

leB +Hn
reB +Hn

lS,rS (4.1)

where the superscript n = ℓ−1 indicates the iteration of the DMRG algorithm, Hn
lS,rS

is the interaction between the two central sites and Hn
leB(reB) is the Hamiltonian of

the left (right) enlarged block, given by the sum of the block Hamiltonian, the site
Hamiltonian and the interaction between block and site:

Hn
leB = Hn

lB +Hn
lS +Hn

lB,lS . (4.2)

The Hamiltonian of the superblock, Hn
sB, is memorized as a sparse matrix and is

diagonalized in order to find a particular state (generally the ground state). This is
called the target state. If |i⟩n and | j⟩n are complete sets of states for the system and
the environment, respectively, the state of the superblock can be expressed as

|Ψn⟩= ∑
i, j

ψ
n
i, j|i⟩n| j⟩n . (4.3)

However, we are interested in finding a representation of |Ψn⟩ such that the system
is described at most by m states. In particular, we would like to characterize the
left enlarged block with mℓ+1 = min(mℓm1,m) states |uα=1,...,mℓ+1⟩n = ∑i uα,n

i |i⟩n.
Therefore, we want to find the optimal states |uα⟩n such that the state |Ψn⟩ can be
approximated as

|Ψn⟩ ≈ |Ψ̄n⟩= ∑
α, j

an
α, j|uα⟩n| j⟩n , (4.4)

i.e., we wish to minimize the quantity ||Ψn⟩− |Ψ̄n⟩|2 by varying both |uα⟩n and an
α, j.

It can be proven [93] that this is achieved by taking the eigenstates of the reduced
density matrix of the system

ρ
n
i,i′ = ∑

j
ψ

n
i, jψ

n
i′, j (4.5)
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corresponding to the largest eigenvalues. Thus, the change of basis is performed
through a mℓm1 ×mℓ+1 rectangular matrix Ôn which columns are the selected mℓ+1

eigenstates of ρn. The output is a truncated enlarged block which forms the block
Bℓ+1(mℓ+1) for the next iteration. Its Hamiltonian is given by

Hn+1
lB = Ô†

nHn
leBÔn . (4.6)

This procedure is repeated many times, until convergence is reached. At each
iteration a truncation error is introduced. It can be estimated by looking at the
eigenvalues wn

α of ρn. Indeed each of them represents the probability of being in the
state |uα⟩n and the sum of all the eigenvalues is equal to 1: ∑α wn

α = 1. Therefore,
the deviation of ∑

m
α=1 wn

α from unity provides a measure of the accuracy of the
results.
The procedure described here is called “infinite-system DMRG” and furnishes
informations about the ground state of an infinite chain. However, in many cases,
it is not sufficiently accurate. A grater precision can be obtained by implementing
the so-called “finite-system DMRG”, which yields results for a finite chain of length
L. The first steps of this algorithm rely on the infinite-system method. In fact this
is applied until the superblock reaches the length L, being composed of two blocks
BL/2−1(m) and two sites. At this point, the efficiency is improved by employing
the so-called “sweep procedure” (Fig. 4.1, Right panel). It consists in enlarging
the left block to BL/2(m) with the usual method, and simultaneously reducing the
right block to BL/2−2(m) by taking it from memory. The procedure is iterated until
the left block reaches the size L−4. At this point, the new left block BL−3(m) is
given by the renormalization procedure, while the right block B1(m1) is built from
scratch. Finally, the algorithm continues by exchanging the role of the two blocks.
The sweep procedure can be iterated several times in order to enhance the accuracy
of the ground state representation.
We would like to stress that the configuration of the superblock depicted in Fig. 4.1
is optimal for open boundary conditions. If periodic boundary conditions are applied,
it is more advisable to modify the configuration in order to not have the two blocks as
neighbors, which would reduce the sparseness of HsB. Therefore, the right enlarged
block is constructed by switching the positions of block and site.
Some reviews about density matrix renormalization group can be found in [94, 95].
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block site site block

superblock

Fig. 4.1 Left panel: DMRG construction of blocks and superblock. Right panel:
Schematic representation of the sweep procedure.

Summary of the DMRG algorithm

In summary, the DMRG algorithm relies on the following steps:

1. Construct the initial block B1(m1).

2. Construct the enlarged left block by adding one site to the block and build the
superblock by reflecting the left enlarged block.

3. Diagonalize the superblock Hamiltonian to find the target state (usually the
ground state).

4. Use the state to build the reduced density matrix of the left enlarged block
(and eventually to compute expectation values of operators).

5. Diagonalize the reduced density matrix.

6. Use the eigenvectors of the reduced density matrix with largest eigenvalues to
form the columns of the matrix Ô.

7. Use the matrix Ô to redefine the Hamiltonian of the left enlarged block. This
will become the left block for the next iteration.

8. Iterate the procedure from point 2 with the new block until the superblock
reaches the length L.

9. Continues to iterate the procedure by enlarging the left block and reducing the
right block, until the latter is composed by just one sites.

10. Continues to iterate the procedure by switching the role of left and right blocks.

11. Iterate points 9,10 until a satisfactory convergence is reached.
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4.2 Quantum Monte Carlo (QMC)

In this section, we will describe two Monte Carlo schemes: the variational quantum
Monte Carlo (VQMC) and the Green’s function quantum Monte Carlo (GFQMC)
[96]. These techniques face the problem of large Hilbert space by sampling the
configuration space. In general, we can divide the process of solving a many body
problem into two steps: the computation of the ground state wave function |ΦGS⟩
and the computation of its energy EGS, i.e., the expectation value of the Hamiltonian
over |ΦGS⟩.
In the VQMC the form of the wave function |Φ⟩= |Φ⟩{γ} is assumed at the beginning.
It depends on some variational parameters {γ} which have to be optimized1 in order
to minimize the energy. For a given configuration2 x, the squared norm of the
normalized wave function |ΦNORM(x)|2 ≡ |⟨x|ΦNORM⟩|2, yields the probability for
the system of being in the state |x⟩. Then, the Monte Carlo technique is applied to
move about in the configuration space and to extract the sample configurations used
to compute the expectation value of the Hamiltonian. The move is guided by the ratio
between the probability of the new configuration and that of the old one, through an
acceptance-rejection method. After the energy converged to its equilibrium value, the
algorithm continues to sample the configurations. Indeed all the physical quantities
are computed as the average of a given function over many configurations.
The GFQMC is based on the power method, which consists in applying recursively a
projector operator to an initial wave function to filter out the high energy components
and find the ground state. Therefore, contrary to the VQMC, the GFQMC provides
an exact result. This projection procedure is implemented in a stochastic way, by
using a Monte Carlo technique where the move from one configuration to another is
driven by the matrix elements of the Hamiltonian. Since, in this case, the transfer
matrix is not normalized to 1, one has to introduce a weight associated to each
configuration and the expectation values will be computed as weighted averages.

1The optimization is typically performed by a preliminary Monte Carlo simulation.
2The set of all the possible configurations is the basis of the space over which the Monte Carlo

simulation is performed. For example, in bosonic and fermionic systems, the configuration is specified
by the number of particles at each lattice site.
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4.2.1 Variational QMC

Given a state |Φ⟩ and a complete basis |x⟩, the expectation value of an operator Ô on
the state |Φ⟩ can be expressed as

⟨Ô⟩= ⟨Φ|Ô|Φ⟩
⟨Φ|Φ⟩

= ∑
x

⟨Φ|x⟩
⟨Φ|Φ⟩

⟨x|Ô|Φ⟩= ∑
x

P(x)O(x) (4.7)

with P(x) and O(x) given by

P(x) =
|⟨Φ|x⟩|2

⟨Φ|Φ⟩
≡ |Φ(x)|2

∑x′ |Φ(x′)|2
, (4.8)

O(x) =
⟨x|Ô|Φ⟩
⟨x|Φ⟩

, (4.9)

respectively. We observe that P(x) satisfies the properties of a probability distribution,
i.e., P(x)≥ 0 and ∑x P(x) = 1. Therefore, the calculation of the expectation value
⟨Ô⟩ can be casted as the average of a random variable O(x) over a probability
distribution P(x).
The random variable O(x) can be computed as

O(x) = ∑
x′
⟨x|Ô|x′⟩⟨x

′|Φ⟩
⟨x|Φ⟩

≡ ∑
x′

Ox,x′
Φ(x′)
Φ(x)

. (4.10)

In particular, we are interested in the case in which Φ ≡ ΦGS and Ô ≡ H, hence
O(x) ≡ eL(x) is the local energy and ⟨Ô⟩ ≡ EGS is the energy of the ground state.
Therefore, we are dealing with two problems: 1) finding the form of |ΦGS⟩; 2) com-
puting the sums. Indeed, since the Hilbert space of a many-body system is typically
very large, the number of possible configurations {x} is large too and the sum (4.7)
cannot be computed exactly.3 The first issue is solved by choosing a variational
wave function, which depends on some variational parameters. Those parameters
are optimized by a preliminary Monte Carlo simulation (see the subsection below),
which provides the general form of the wave function that will be employed for the
calculation of the expectation values. In particular, its normalized squared norm, eq.
(4.8), is regarded as a probability distribution and is used in the step 2) to drive the

3We notice that the sum (4.10), instead, can be easily computed, since the operator Ô typically
connects only few configurations x′ to a given configuration x, i.e. the matrix element Ox,x′ is non-zero
only for a small number of configurations.
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system from an initial configuration x0 to a configuration x1, or in general from xn

to xn+1, where the label n indicates the n-th iteration of the Monte Carlo algorithm.
Indeed, step 2) consists in extracting the configurations {x} over which the sums
are computed according to the probability distribution (4.8). That is achieved by
means of the Metropolis algorithm (see the subsection below). It allows, after an
equilibration time, to converge to the minimum energy. When the convergence is
reached, the Metropolis algorithm continues to work to extract the configurations
over which the average will be done. In fact, the expectation value will be evaluated
after having generated a sequence of configurations {xn|n ≥ n̄} distributed according
to the equilibrium probability (4.8) as an average of the function O(xn) over {xn}:

⟨Ô⟩= 1
N̄it

Nit

∑
n=n̄

O(xn) , (4.11)

where Nit is the number of iterations and N̄it = Nit − n̄+1 is the number of iterations
after equilibration . In fact we observe that at the beginning the variables x are not
distributed according to the equilibrium probability distribution P(x). Only after n̄
iterations (i.e., the number of iterations corresponding to the equilibration time) that
is achieved. In general, for n < n̄, the variable xn will be distributed according to a
different probability Pn(xn). However, these distributions are not important and are
not computed. Whereas P(xn) is computed (up to a normalization constant) also for
n < n̄ in order to drive the algorithm towards the convergence, as will be explained
in the subsection devoted to the Metropolis algorithm.
In what follows, we will see the details of the Metropolis algorithm and the optimiza-
tion technique.

Markov chain and Metropolis algorithm

We assume that at each step n, the configuration xn depends only on the configuration
at the step n−1. Therefore, this process is a Markov chain and the evolution of the
probability distribution can be described by the following master equation

Pn+1(xn+1) = ∑
xn

ωxn+1,xnPn(xn) , (4.12)

where ωxn+1,xn is the transition probability from the configuration xn to xn+1. We
want to generate a Markov chain such that, for large n, the variables xn are distributed
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according to a stationary probability given by (4.8). This means that after the
equilibration time, i.e., for n ≥ n̄, the variables are distributed according to the
desired probability: Pn(xn)≡ P(xn) and the master equation reads

P(xn+1) = ∑
xn

ωxn+1,xnP(xn) . (4.13)

A sufficient requirement for reaching a stationary distribution P(x) is the detailed
balance condition

ωxn+1,xnP(xn) = ωxn,xn+1P(xn+1) . (4.14)

Therefore, we have to define a transition matrix ωx′,x which satisfies this condition.
A simple way to do this is to implement the Metropolis scheme. The idea is to split
the transition matrix into the product of two elements

ωxn+1,xn = Axn+1,xnTxn+1,xn . (4.15)

Then, the configuration xn+1 is generated from xn by Txn+1,xn , which can be chosen
with great freedom, as long as ergodicity is ensured. The proposed move is accepted
with probability

Axn+1,xn = min
{

1,
P(xn+1)Txn,xn+1

P(xn)Txn+1,xn

}
(4.16)

meaning that a random number ξ ∈ [0,1] is extracted and the move is accepted if
ξ ≤ Axn+1,xn . In most cases, the matrix T can be taken symmetric, in which case the
acceptance rate (4.16) reduces to

Axn+1,xn = min
{

1,
P(xn+1)

P(xn)

}
≡ min

{
1,
|Φ(xn+1)|2

|Φ(xn)|2

}
. (4.17)

We finally observe that, in order to implement the Metropolis algorithm, at each
iteration n it is sufficient to compute the probability P(xn) up to a normalization
constant, i.e. it is sufficient to compute |Φ(xn)|2.

Optimization of the variational parameters

Before performing the actual Monte Carlo simulation, it is necessary to optimize the
variational parameters of the wave function, in order to obtain reliable results. There
exist different optimization schemes, based both on the variance minimization and
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on the energy minimization. Here, we present the stochastic reconfiguration method,
which belongs to the second category.
Since the wave function depends on some variational parameters {γ}, also the
expectation value (4.7) changes with {γ}. In particular, the expectation value of the
Hamiltonian can be written as

E{γ} =
⟨Φ{γ}|H|Φ{γ}⟩
⟨Φ{γ}|Φ{γ}⟩

, (4.18)

where {γ} denotes a set of p parameters: {γ} ≡ {γk}k=1,...,p. The index k will be
often omitted in the following. We would like to set up an iterative scheme that
allows to find the values of {γ} for which the energy reaches the minimum possible
value. In order to do that, let’s consider an initial set of parameters {γ0} and run a
Monte Carlo simulation to compute E{γ0}, as described in the previous subsections.
Then consider a small variation of the parameters: γ1

k = γ0
k + δγ0

k . If the wave
function has the form

|Φ{γ}⟩= e∑
p
k=1 γkÔk |φ0⟩ , (4.19)

we can linearly expand |Φ{γ1}⟩ with respect to δγ0:

|Φ{γ1}⟩= e∑
p
k=1 γ1

k Ôk |φ0⟩= e∑
p
k=1(γ

0
k +δγ0

k )Ôk |φ0⟩ ≃
p

∑
k=0

δγ
0
k Ôk|Φ{γ0}⟩ , (4.20)

with δγ0
0 = 1 and Ô0 = I. We want that |Φ{γ1}⟩ has a lower energy than |Φ{γ0}⟩.

For this to happen, we could use the projection |ΦH⟩= (Λ−H)|Φ{γ0}⟩. However,
in general, this wave function is not of the form (4.19). In fact, we see from eq.
(4.20) that |Φ{γ1}⟩ must lie in the subspace spanned by the basis {Ôk|Φ{γ0}⟩}k=0,...p.
Therefore, we can project |ΦH⟩ over that subspace. In particular, we project it along
a basis vector and impose that this projection is equal to the projection of (4.20)
along the same vector:

⟨Φ{γ0}|Ôk(Λ−H)|Φ{γ0}⟩=
p

∑
k′=0

⟨Φ{γ0}|Ôkδγ
0
k′Ôk′|Φ{γ0}⟩ . (4.21)
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From eq. (4.21) with k = 0 we can obtain δγ0
0 as a function of Λ and by substituting

this value into eq. (4.21) with k > 0, we get

p

∑
k′=1

δγ
0
k′s

0
k,k′ = f 0

k (4.22)

with s0
k,k′ = ⟨ÔkÔk′⟩−⟨Ôk⟩⟨Ôk′⟩ and f 0

k =−
[
⟨ÔkH⟩−⟨Ôk⟩⟨H⟩

]
, where the expecta-

tion values are computed over |Φ{γ0}⟩. Therefore, during the Monte Carlo simulation
in which E{γ0} is computed, also those quantities should be evaluated, in a stochastic
way. Then, one can evaluate the variation of the parameters by inverting eq. (4.22):

δγ
0 = (s0)−1 · f 0 (4.23)

and the procedure is iterated with the new parameters {γ1 = γ0 + δγ0} and the
corresponding wave function |Φ{γ1}⟩. The scheme is repeated until the variational
parameters converge to a stationary value.

Summary of the VQMC algorithm

In summary, the VQMC algorithm relies on the following steps:

1. Choose a variational wave function Φ ≡ Φ{γ}.

2. Optimize the parameters {γ} by preliminary QMC simulations, i.e., follow
points 3-10, evaluating for each configuration, not only the local energy, but
also the quantities needed to compute the expectation values involved in eq.
(4.22); at the end of point 10, solve eq. (4.23) to find the new parameters and
repeat the entire procedure until the parameters reach a stationary value.

3. Choose the matrix T , i.e. the rule to propose a move in the configuration space.

4. Choose an initial configuration x0.

5. Compute the local energy eL(x0) (i.e., compute the ratio RA(x′|x0) =
Φ(x′)
Φ(x0)

and
the matrix element Hx0,x′ , for all the configurations x′ connected to x0).

6. Propose a move from x0 to a new configuration x1, according to T .

7. Compute the square norm |RA(x1|x0)|2 and accept or reject the move, accord-
ing to the acceptance rate Ax1,x0 .
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8. If the move has been rejected, set x1 = x0.

9. Iterate points 5-8 with the new configuration, i.e., with the subscript of x
increased by 1.

10. Compute the ground state energy as the average of the local energies eL(xn)

by discarding the values with n < n̄.

11. Notice that the points 5,10 can be extended to compute any other observable
with the same procedure used for the energy; however, in most cases it is
convenient to memorize the configurations xn and to compute the desired
observables a posteriori.

4.2.2 Green’s function QMC

Contrary to the VQMC, the goal of the GFQMC [97] is to find the exact ground state
|ΦGS⟩ of a quantum system. In the VQMC, the ground state is approximated and its
form is known after the optimization process. Therefore, the stationary probability
distribution P(x)∼ |⟨x|ΦGS⟩|2 in the master equation (4.13) is known a priori and
the strength of the method consists in determining the transition matrix ωx′,x that
drives the move in configuration space in such a way that the probability distribution
of the extracted configurations converges to P(x). If, instead, knowing the ground
state wave function only approximately through the variational optimization of an
initial guess is not satisfactory and the target is to get it exactly, P(x) can not be
determined a priori. Therefore, in the GFQMC the Markov chain described by
eq. (4.12) is realized thanks to the knowledge of the particular transition matrix
(the Green function) that enables the initial probability distribution P0(x) (i.e., the
initial wave function Φ0(x)) to evolve towards the probability distribution P(x)
corresponding to the exact ground state of the system ΦGS(x). In fact, the sampling
in the configuration space is leaded by the Hamiltonian of the system.
As a matter of fact, the ground state of a system can be found through the power
method, which consists in applying iteratively the operator4 ΛI−H to an initial trial
wave function |Φ0⟩:

|Φn+1⟩= (ΛI−H) |Φn⟩= (ΛI−H)n+1 |Φ0⟩ . (4.24)

4Another operator that is able to project an initial state onto the ground state is e−βH .
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Indeed, the operator (ΛI−H)n filters out the excited states from |Φ0⟩, thus projecting
it onto the ground state, for large n:

|ΦGS⟩= lim
n→∞

(ΛI−H)n |Φ0⟩ . (4.25)

The power method can be implemented stochastically. Indeed by projecting eq.
(4.24) onto a basis vector ⟨x|, it reads

Φn+1(x) = ∑
x′

Gx,x′Φn(x′) (4.26)

with Gx,x′ ≡
(
Λδx,x′ −Hx,x′

)
. We can recognize that this has the same form of the

master equation (4.12) and the property (4.25) implies that for large enough n a
stationary wave function ΦGS(x) is achieved, as in (4.13). Therefore, it should be
possible to solve the equation for ΦGS(x) stochastically by sampling the configura-
tion space according to the transition matrix G. However Gx,x′ does not have the
characteristics of a transition probability, since in general it is not normalized to
1 and it is not always positive. This issue is solved by decomposing this matrix
element into three factors:

Gx,x′ = sx,x′ωx,x′bx′ (4.27)

where ωx,x′ fulfills the conditions ωx,x′ ≥ 0 and ∑x′ ωx,x′ = 1, bx′ = ∑x Gx,x′ is a
normalization factor, and sx,x′ is a sign. This last factor can be taken always equal
to one in case of bosonic systems. Indeed, the interchanging of bosonic operators
does not introduce a negative sign and the positiveness of Gx,x can be guaranteed by
taking a sufficiently large Λ. We will do this assumption hereinafter.
Thus, equation (4.26) can be written as

Φn+1(xn+1) = ∑
xn

ωxn+1,xnbxnΦn(xn) . (4.28)

Here the transition probability ωxn+1,xn determines the evolution of the configuration
xn. However the full matrix contains also the diagonal factor bxn . It can be taken
into account in the stochastic process by introducing another variable, the so called
weight wn. Therefore, the basic element of the Markov chain is now the so called
walker, i.e. the pair (xn,wn). At each Monte Carlo step, the new configuration xn+1

is extracted according to the probability ωxn+1,xn , whereas the weight is obtained
from the deterministic rule wn+1 = bxnwn (with w0 = 1). That can be thought as an
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evolution under a transition probability having the form of a Dirac delta function
δ (wn+1 −bxnwn) (notice that wn is a continuous variable).
The walker moves about in the Hilbert space of the matrix G and assumes a config-
uration (xn,wn) according to a given probability Pn(xn,wn). The Master equation
corresponding to such a probability is

Pn+1(xn+1,wn+1) = ∑
xn

∫
dwnωxn+1,xnδ (wn+1 −bxnwn)Pn(xn,wn) . (4.29)

Indeed, if we require that

Φn(x) =
∫

dwnwnPn(x,wn) = ∑
xn

∫
dwn(wnδx,xn)Pn(xn,wn) , (4.30)

it is easy to recover eq. (4.28) from (4.29). On the other hand, one can also verify
from eq. (4.29) that the probability Pn(xn) =

∫
dwnPn(xn,wn) of the configuration xn

evolves as
Pn+1(xn+1) = ∑

xn

ωxn+1,xnPn(xn) , (4.31)

which is identical to (4.12).
From the GFQMC technique it would be possible, in principle, to obtain the am-
plitude of the ground state wave function for a given configuration x. Indeed, eq.
(4.30) corresponds to the stochastic average of the weights over many realizations of
the Markov chain, i.e., over the possible paths5 to reach the configuration x, namely
⟨wnδx,xn⟩.6 However, it is rarely pursued in actual practice, since it is computationally
demanding and the information contained in ΦGS(x) for a fixed x is too large for
being physically relevant.
The most important information about the ground state of the system are, instead,
obtained from the energy and the correlation functions over the state |ΦGS⟩. The
ground state energy EGS = H|ΦGS⟩ can be written as

EGS =
∑x⟨x|H|ΦGS⟩

∑x⟨x|ΦGS⟩
, (4.32)

5Notice that the weight wn associated to the configuration x ≡ xn strongly depends on the pathway
followed to reach x via wn = ∏

n−1
i=0 bxi .

6In order to obtain the amplitude of the ground state, the walkers (xn,wn) must be distributed
according to the equilibrium probability P(xn,wn), i.e., n ≥ n̄, n̄ being the equilibration time.



4.2 Quantum Monte Carlo (QMC) 77

which can be computed as the following statistical average

EGS =
⟨(Λ−bx)w⟩

⟨w⟩
≡

1
#I ∑(x,w)∈I(Λ−bx)w

1
#I ∑(x,w)∈I w

, (4.33)

where I is a set of walkers (x,w) which are distributed according to the equilibrium
probability P(x,w) and #I is its cardinality. For the demonstration of the formula
(4.33), see Appendix D. However, we notice that this calculation of the energy does
not satisfy the zero variance property as in the VQMC, i.e., the average (4.33) is
always affected by large statistical fluctuation, regardless of the initial trial wave
function. The zero variance property would allow to reduce the statistical fluctuations
by using a trial wave function close to the ground state wave function. In particular, if
the trial wave function coincides with the ground state wave function, then the energy
is free of statistical fluctuations. This property can be recovered by introducing the
so called importance sampling Green’function

G̃x,x′ = Gx,x′
ΦG(x)
ΦG(x′)

, (4.34)

where ΦG is named guiding wave function and is a guess of the ground state wave
function, typically obtained via the optimization scheme of the VQMC. The impor-
tance sampling allows to reduce the statistical fluctuations when ΦG is close to ΦGS.
With this definition of the Green’s function, the master equation (4.26) reads

Φ̃n+1(x) = ∑
x′

G̃x,x′Φ̃n(x′) , (4.35)

with Φ̃n(x) = ΦG(x)Φn(x) =
∫

dwwP̃(x,w). Therefore, if the GFQMC scheme
reproduces eq. (4.35) instead of (4.26), ones the convergence is reached, the walkers
will be distributed according to the probability P̃(x,w), corresponding to the wave
function Φ̃GS(x). In this case, the ground state energy can be evaluated as

EGS =
⟨ΦG|H|ΦGS⟩
⟨ΦG|ΦGS⟩

=
∑x eL(x)Φ̃GS(x)

∑x Φ̃GS(x)
=

⟨eL(x)w⟩
⟨w⟩

=
⟨(Λ− b̃x)w⟩

⟨w⟩
. (4.36)

Here, eL(x) is the local energy on the guiding wave function, defined as in (4.9)7 and
b̃x = ∑x′ G̃x′,x. The details of the calculation can be found in Appendix D. Notice

7We are assuming that the wave function is real.
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that eq. (4.36) is similar to eq. (4.33), but now the averages are computed over the
walkers (x,w) ∈ Ĩ distributed according to P̃(x,w), and b̃x depends on the guiding
wave function. That allows to reduce the statistical fluctuations by improving ΦG.
The stochastic averages in eq. (4.36) could be evaluated upon several Markov chains,
namely

⟨eL(x)w⟩
⟨w⟩

=
⟨eL(xn)wn⟩

⟨wn⟩
=

1
NMC

∑
NMC
i=1 eL(x

(i)
n )w(i)

n

1
NMC

∑
NMC
i=1 w(i)

n

, (4.37)

where NMC is the number of Markov chains used to accumulate statistics in the
calculation of the average, i labels the different Markov chains and n, labeling a
particular iteration of each Markov process, is large enough that all the Markov
chains have reached the convergence. An alternative to this, would be to develop a
long Markov chain (with Nit >> n̄). In this case, we have

⟨eL(x)w⟩
⟨w⟩

=

1
N̄it−l ∑

Nit
n=n̄+l eL(xn)wl

n

1
N̄it−l ∑

Nit
n=n̄+l wl

n
, (4.38)

where the weight wn = ∏
n−1
i=0 bxi , which would increase exponentially with n, has

been replaced by wl
n = ∏

l
i=1 bxn−1 . This is allowed by the following argument:

after the equilibration time, the configurations xn are distributed according to the
probability P̃(xn) =

∫
dwnP̃(xn,wn), which differs from Φ̃GS(xn) by the weights

that weight differently the various configurations; therefore, we may consider the
equilibrium state Φ̃GS(xn) as being obtained from the power method (4.25) with
an initial trial state P̃(xn−l). That would imply that the initial walker (xn−l,w′

n−l),
with weight w′

n−l = 1, distributed according to P̃(xn−l), evolves into the walker
(xn,w′

n), with weight w′
n = ∏

l
i=1 bxn−i , distributed according to Φ̃GS(xn), in l steps.

Then, we can recognize that w′
n ≡ wl

n. In summary, this procedure consists in doing
many Markov chains, starting from the configurations {xn̄,xn̄+1,xn̄+2, ...} and ending
in the configurations {xn̄+l,xn̄+1+l,xn̄+2+l, ...}. This is advantageous because their
convergence is much faster than the initial thermalization (requiring n̄ iterations).
In Figure 4.2, we show the behavior of the ground state energy as a function of the
number l of correcting factors.
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Fig. 4.2 Example of ground state energy as a function of the numbel l of correcting factors.
The computation refers to the superfluid phase of the one-dimensional Bose-Hubbard model.

Many walkers formulation and branching

In the scheme presented above, for large l the variance of wl
n diverges exponentially.

In order to overcome this problem, one can consider a scheme where many walkers
evolve simultaneously and every nB iterations a reconfiguration scheme that redefines
the walkers is applied. During this process, the walkers with negligible weights
are suppressed and those with high weights are duplicated. Equations (4.29) and
(4.30) are easily generalized to the case of many independent walkers. Within the
importance sampling scheme, they read

P̃(⃗xn+1, w⃗n+1) = ∑
x(1)n ,...,x(NW )

n

∫
dw(1)

n ...dw(NW )
n

(
NW

∏
j=1

ω̃
x( j)

n+1,x
( j)
n

δ (w( j)
n+1 − b̃

x( j)
n

w( j)
n )

)
P̃n(⃗xn, w⃗n)

(4.39)

and

Φ̃n(x) = ∑
x(1)n ,...,x(NW )

n

∫
dw(1)

n ...dw(NW )
n

(
1

NW

NW

∑
j=1

w( j)
n δ

x,x( j)
n

)
P̃n(⃗xn, w⃗n) = ⟨ 1

NW

NW

∑
j=1

w( j)
n δ

x,x( j)
n
⟩ ,

(4.40)

respectively, where the couple of vectors (⃗xn,w⃗n) denote the set of NW simultaneous
walkers ({x( j)

n },{w( j)
n }) at iteration n, with the superscript ( j) labeling the j-th

walker. Moreover, since the walkers are uncorrelated from each other, the probability
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P̃n(⃗xn, w⃗n) is given by

P̃n(⃗xn, w⃗n)≡ P̃n(x
(1)
n , ...,x(NW )

n ,w(1)
n , ...w(NW )

n ) =
NW

∏
j=1

P̃n(x
( j)
n ,w( j)

n ) . (4.41)

The reconfiguration process consists in defining new walkers (⃗x′n, w⃗
′
n) that are dis-

tributed according to a new probability P̃′
n(⃗x

′
n, w⃗

′
n), without changing the wave func-

tion given by the statistical average in (4.40), namely Φ̃n(x) = Φ̃′
n(x). This can be

achieved through a particular Markov process which, starting from the old walkers
(⃗xn,w⃗n), generate the new ones (⃗x′n, w⃗

′
n). It is described by the following Master

equation

P̃′
n(⃗x

′
n, w⃗

′
n) = ∑

x(1)n ,...,x(NW )
n

∫
dw(1)

n ...dw(NW )
n K(⃗x′n, w⃗

′
n|⃗xn, w⃗n)P̃n(⃗xn, w⃗n) (4.42)

with K(⃗x′n, w⃗
′
n|⃗xn, w⃗n) = ∏

NW
j=1

∑i w(i)
n δ

x′( j)
n ,x(i)n

∑i w(i)
n

δ (w′( j)
n − ∑i w(i)

n
NW

), implying that all the new

walkers are generated with the same weight w′( j)
n = w̄n = ∑i w(i)

n /NW and a configu-
ration x′( j)

n chosen among the NW old configurations {x(i)n }i=1,...,NW with a probability
proportional to their weights: w(i)

n /∑k w(k)
n . This reconfiguration process is called

branching and is applied repeatedly every nB steps of independent walker propaga-
tion. Within this scheme, we can generalize formula (4.38) to the many-walker case.
After or before each reconfiguration process, the local energy is averaged over all the
walkers and this average is used to calculate the ground state energy as in eq. (4.38):

EGS =

1
N̄B−l ∑

NB
n=n̄+l ēL(xn)wl

n

1
N̄B−l ∑

NB
n=n̄+l wl

n
, (4.43)

where now n labels the reconfiguration process, NB is the number of times it is
applied, n̄ is the first reconfiguration process at equilibrium, and N̄B = NB − n̄+1.
If the local energy ēL is computed immediately after the branching, when all the
walkers have the same weights, it is obtained as ēL(xn) =

1
NW

∑
NW
j=1 eL(x

( j)
n ); whereas,

if it is computed just before the branching, it is given by ēL(xn) =
∑

NW
j=1 w( j)

n eL(x
( j)
n )

∑
NW
j=1 w( j)

n
. In

the second case, the statistical error is reduced. Obviously, also the coefficients wl
n
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change. Indeed now they have the form wl
n = ∏

l−1
i=0 w̄n−i

8, thus corresponding to the
application of l ×nB iterations of the power method [98].

Computation of the correlations: forward walking technique

The GFQMC also allows to efficiently compute the expectation values of operators
that are diagonal in the chosen basis. The procedure is similar to that followed for
the energy. However, in this case it is not sufficient to apply the power method to
the right state in ⟨ΦG|Ô|ΦG⟩, since in general |ΦGS⟩ is not an eigenstate of Ô. In
order to get convergence also for the left state ⟨ΦG|, the so called forward walking
technique is applied. It amounts to calculate the weight factor wl

n corresponding to
an equilibrated configuration xn considering not only the l iterations backward but
also m iterations forward, namely

⟨Ô⟩= ∑n Ō(xn)w
(l,m)
n

∑n w(l,m)
n

, (4.44)

with Ō(xn) =
1

NW
∑

NW
j=1⟨x

( j)
n |Ô|x( j)

n ⟩ 9, and w(l,m)
n = ∏

l−1
i=−m w̄n−i. For further details,

see [98].

Summary of the GFQMC algorithm

In summary, the GFQMC algorithm relies on the following steps:

1. Choose a variational wave function Φ ≡ Φ{γ}.

2. Optimize the parameters through the optimization scheme of the VQMC
and define the guiding wave function ΦG as the optimized variational wave
function.

3. Choose an initial set of NW configurations x⃗0 = {x(i)0 }i=1,...,NW , with associated
weights w(i)

0 = 1, i.e., define the initial walkers (⃗x0, w⃗0).

8Usually the mean weight w̄n is stored after each reconfiguration process and the weights of all
the walkers are reset equal to 1 instead than w̄n.

9This follows from the fact that the operator Ô is diagonal in the basis |x⟩, so that O(x( j)
n ) ≡

⟨ΦG|Ô|x⟩
⟨ΦG|x⟩

= ⟨x|Ô|x⟩.
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For each walker:

4. Compute the matrix elements G̃x′,x0 = Gx′,x0
ΦG(x′)
ΦG(x0)

for all the configura-
tions x′ connected to x0; hence compute b̃x0 = ∑x′ G̃x′,x0 and the probabil-

ities ω̃x′,x0 =
G̃x′,x0

b̃x0
.

5. Extract the new configuration x′ = x1 according to the probability ω̃x′,x0 .

6. Calculate the associated weight as w1 = b̃x0w0.

7. Iterate points 4-6 with the new walker, i.e, with the subscripts of x and w
increased by 1.

8. If n = anB −1 (with a ∈ N), compute the local energy ēL(xn) as a weighted
average over the NW walkers. Memorize the local energy and the average
weight.10

9. If n = anB, apply the reconfiguration scheme to redefine the walkers.

10. For each redefined walker, repeat points 4-7.

11. Iterate points 8-10.

12. After many reconfiguration processes, compute the GS energy EGS as in (4.43).

13. Compute the wanted observables as in (4.44).11

4.2.3 Estimation of error bars: the binning technique

At the end of this section, we would like to mention how the errors on the computed
quantities can be estimated. In particular, let’s focus on the energy. In the VQMC
and GFQMC it is computed respectively as

EV QMC
GS =

1
N̄it

Nit

∑
n=n̄

eL(xn) (4.45)

10Alternatively, it is possible to memorize the configurations and weights of the NW walkers and
compute the local energy successively.

11Notice that the computation of the observables require that the configurations and the weights
have been memorized.
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and

EGFQMC
GS =

∑
NB
n=n̄+l ēL(xn)wl

n

∑
NB
n=n̄+l wl

n
. (4.46)

The standard error of the energy could be estimated through the variance. However,
we observe that the variables involved in the calculation of these averages are
correlated to each other. Therefore, the variance would underestimate the error bars.
This issue can be solved by reducing the correlations in two different ways:

a) computing the local energy every nA iterations instead then at each n ≥ n̄;

b) using the binning technique.

While the point a) is computationally much expensive, since it requires a number
of iterations much larger than that effectively used to accumulate statistics for the
computation of the averages, the point b) is very efficient. It consists in dividing the
number of iterations at which the local energy is computed, Ncomp, into Nbin bins
of length Lbin = Ncomp/(Nbin).12 Then, on each bin j one can compute the average
energy Ebin

j . For example, in the case of VQMC, it reads

Ebin
j =

1
Lbin

jLbin

∑
n=( j−1)Lbin+1

eL(xn) . (4.47)

Hence, the ground state energy will be calculated as the average of Ebin
j over many

bins, by discarding the first n̄−1 bins corresponding to the equilibration time:

EGS =
1

N̄bin

Nbin

∑
j=n̄

Ebin
j , (4.48)

with N̄bin = Nbin− n̄+1. The random variables Ebin
j are more and more uncorrelated

with increasing the bin length Lbin. Therefore now the variance of the ground state
energy (4.48) can be estimated as

σ
2
EGS

=
1

N̄bin(N̄bin −1)

Nbin

∑
j=n̄

(
Ebin

j −EGS

)2
, (4.49)

provided that both Lbin and N̄bin are sufficiently large.

12Ncomp = Nit/nA in VQMC and Ncomp = NB/nA in GFQMC.



Chapter 5

Experimental techniques and
applications: cold atom systems

This brief chapter is devoted to illustrate the relevance of Hubbard-like models and
non-local order parameters in the context of cold atoms and possible future applica-
tions. In this regard, we touch upon experimental techniques and measurements.
Ultracold atom experiments allow to mimic condensed matter systems with high
control and tunability of the parameters involved and to reach even new regimes, for
instance, in low dimensions. They rely on the possibility of slowing atoms to very
low temperature, where phase transitions are driven by quantum fluctuations, and
trapping them into optical lattices, where their motion is highly controllable.
In the following we will provide an elementary explanation of how experiments are
carried on and their main achievements.

5.1 Atom cooling and traps

Cold atom experiments exploit laser light to both cool down and trap atoms. That
is typically combined with the application of external magnetic fields, which can
be used either to favor the laser cooling and to produce spatial confinement. Indeed
the most common laser cooling techniques are based on the radiation pressure force,
which is responsible for the transfer of momentum from light to atoms in a resonant
scattering process. When an atom is hit by an incident laser beam, it absorbs photons
and emits them in random directions when decaying back to the ground state. As
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Fig. 5.1 Atoms in a periodic lattice.

a consequence, an average momentum h̄k is transfered (k being the wavevector of
the laser). The application of a spatially varying magnetic field allows to shift the
atomic levels, thus neutralizing the Doppler shift that would accompany the slowing
down of atoms and bring them out of resonance with the laser. On the other hand,
the interaction of an inhomogeneous magnetic field with the atomic magnetic dipole
moment can be used to create magnetic traps for atoms. When the atoms are confined
with both optical and magnetic traps, they are further cooled down by the so-called
evaporative cooling, based on removing the most energetic atoms. In fact, then
the atom-atom collisions cause a thermalization of the remaining atoms at lower
temperature.
One of the main application of the aforementioned techniques is the engineering of
model Hamiltonians to simulate the physics of condensed matter systems. This is
primarily achieved by mimicking the periodic potential generated by the ions of a
crystalline solid that acts upon the motion of electrons (Fig. 5.1). In experiments,
the latter are replaced by cold neutral atoms, while the periodic potential is produced
by the standing waves generating from the interference of two counterpropagating
laser beams in each of the three spatial directions. It is described by the following
expression

Vlat(x,y,z) =V0x sin2(kx)+V0y sin2(ky)+V0z sin2(kz) (5.1)
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U

t

Fig. 5.2 System of cold atoms in an optical lattice described by the Hubbard model plus the
term (5.4) accounting for the harmonic confinement.

where k = 2π/λ is the wave vector of the laser and the wavelength λ determines
the spatial periodicity a = λ/2 of the generated optical lattice. In the optical lattice
atoms experience a potential of the form (5.1) due to the interaction between their
induced electric dipole moment and the laser light. Typically the atomic gas is
transfered into the optical lattice after having been laser cooled and magnetically
trapped. Therefore it is subject to the combined effect of magnetic and optical
potentials. Moreover an adding harmonic confinement is superimposed. It may
be provided by the optical beams themselves or by other magnetic or optical traps.
The parameters of the optical lattice can be tuned. In particular, the height of its
barrier in a given direction V0α (with α = x,y,z) is proportional to the intensity of
the corresponding pair of laser beams, which can be controlled in an experiment.
Therefore that allows to guide the kinetics of atoms. Indeed, an increase of the
potential depth results in a reduction of the atom tunneling. As a consequence, this
tool can be exploited to realize 1D and 2D geometries by suppressing the tunneling
in the orthogonal direction(s).

5.2 Tuning and control of parameters

The experimental setup previously described can be implemented to simulate Hubbard-
like systems (Fig. 5.2). In this case, the hopping term can be controlled through the
intensity of the standing laser waves, as explained above. On the other hand, due to
the low kinetic energy, two atoms lying in the same potential well interact via s-wave
scattering. This process, modeled by the contact interaction of the Hubbard Hamil-
tonian, is governed by the scattering length as, which can be tuned by varying an
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external magnetic field through Feshbach resonances. In particular, for a 1D system,
the hopping amplitude and the on-site interaction can be estimated, respectively, as
[99, 100]

t
ER

=
4√
π

(
V0

ER

)3/4

e−2
√

V0/ER

U
ER

=
2π

λ
as

√
8
π

(
V0

ER

)1/4(V⊥
ER

)1/2
(5.2)

in units of the recoil energy

ER =
h̄2

2m

(
2π

λ

)2

(5.3)

with m the mass of atoms, V0 the maximum amplitude of the potential in the direction
of motion and V⊥ the maximum amplitude of the potential in each of the two
transverse directions. Finally the effect of the confining harmonic potential can be
accounted for by adding a term of the form

∑
i

εini (5.4)

to the Hamiltonian. Here εi ≈VT (xi) is the energy offset experienced by an atom in
the lattice site i due to the harmonic trapping potential [101].
The Hubbard model has first been realized with 87Rb bosonic atoms loaded in a
three dimensional optical lattice [102]. Here the transition has been observed by
tuning the height of the potential barrier and analysing the interference pattern of the
atomic wave functions during free expansion occurring when the combined trapping
potentials are suddenly turned off. Subsequently also fermionic atoms have been
employed to realize ultracold atom systems [103]. In this case, the fermionic atoms
are cooled by thermal contact with an auxiliary bosonic species, which is evaporated
and later removed from the trap. Then, the two spin species are realized by preparing
the atoms in two different magnetic Zeeman sublevels. In the first experiment a
mixture of potassium 40K atoms was used, with either |F =−9/2,mF =−9/2⟩ and
|F =−9.2,mF =−7/2⟩ or |F =−9/2,mF =−9/2⟩ and |F =−9.2,mF =−5/2⟩(F
being the total angular momentum and mF the magnetic quantum number). A similar
mixture was handled to reach, some years later, the strongly interacting MI regime
[104]. Here, informations on the state of the system have been inferred by measuring
the number of double occupancies. Other types of fermionic atoms typically used
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in recent experiments are 6Li and 173Yb. Instead, 168Er bosonic dipolar atoms or
167Er fermionic dipolar atoms can be employed to realize long-range dipole-dipole
interactions [105, 106].
In the context of Hubbard-like models, the relevance of cold atom systems with
respect to solid state materials relies on the fact that they provide a pure realization
of model Hamiltonians, thus motivating the intense theoretical research of hidden
phases. In the next section we will review the latest developments of experimental
techniques to probe (non-local) correlation functions.

5.3 Measurement of correlation functions

In most experiments information about the state of the system has been inferred
by time-of-flight images, where the momentum distribution of the atomic gas is
measured by absorption when it is released from the trap. Recently the detection
techniques have been greatly improved by the possibility of revealing individual
atoms via high-resolution fluorescence imaging [107]. Single-site and single-atom
resolved detection of ultracold quantum gases enables to directly observe all parti-
cle fluctuations in the system, thus giving access to the measurement of non-local
correlation functions. In [108] this technique has been applied to get experimen-
tal observation of parity non-local correlators in a one-dimensional Bose-Hubbard
system. Furthermore, in ref. [109] spin and charge degrees of freedom have been
detected simultaneously in fermionic Hubbard chains. Thus the system has been
fully characterized reconstructing the position of all spins, doublons and holons.
Advancements in this field are very rapid. In fact a particular kind of non-local
Haldane-like correlator has also been measured [110] in hole-doped fermionic Hub-
bard chains. It contains a charge operator in the middle of the string and two spin
operators at the edges. The experiment has provided an evidence for the spin-charge
separation and has unveiled the presence of a hidden magnetic order. The ability to
measure multi-point correlations opens the path to the detection of many non-local
string-like order parameters.



Part II

Our original contributions





Chapter 6

Using NLOPs as a probe for phase
transitions

In the first part of this thesis, we have described in detail all the ingredients needed
for our purposes. Here we start to apply them to develop some original contribution.
Since this thesis mostly concerns with non-local orders, our first aim is to test the
efficiency of non-local order parameters in detecting phase transitions. Therefore, in
this chapter we prove that all the phases encoded in the one dimensional extended
Hubbard model (EHM) can be probed via non-local operators related to charge and
spin fluctuations. The great advantage in using them with respect to usual local
operators consists in the fact that their average value is non-zero in the asymptotic
limit only in the appropriate gapped phases. That makes them powerful and accurate
probes to reveal different quantum phases. Indeed, the results that will be presented
in the following confirm that they capture both the nature and the location of the
phase transitions. Relevantly, this holds also for conducting phases with a spin gap,
thus being able to identify superconducting and paired superfluid regimes.
The content of this chapter has been published in Ref. [111].

6.1 Introduction and motivation

The one-dimensional extended Hubbard model, already introduced in Section 1.3,
presents a rich phase diagram, with a wide spectrum of applications. Indeed, it prop-
erly describes conducting polymers [112] and organic charge-transfer salts [113], as
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well as copper-oxide materials related to the high-Tc cuprate superconductors [114].
Its full phase diagram has been investigated for specific fillings by means of different
techniques [15, 115–118, 25, 24].
In particular, great attention has been devoted to the repulsive interaction regime due
to the presence of a phase with bond-order waves [118, 25], which is not predicted
by single loop bosonization [18–21, 23, 119, 120]. In recent years it has been shown
that this phase is accurately descripted by non-local order parameters [53].
Relevantly, the bosonic EHM [121] with dipolar interaction has been experimentally
realized by using ultracold quantum gases of Er magnetic atoms [105]. Furthermore
many kinds of fermionic particles with strong dipolar momentum [122, 106, 123] are
currently available, thus making just matter of time the simulation of the extended
Hubbard Hamiltonian in cold atom experiments. Motivated by the aformentioned
reasons, theorists have considered the EHM with long-range dipole-dipole interac-
tion [26]. Their results show that the main feature of the phase diagram are captured
also if the dipolar interaction is truncated to nearest neighbors. On the other hand,
in-situ imaging has allowed to measure the non-local parity in the charge degree
of freedom [108], while the others are in principle detectable with the advancing
experimental techniques [124, 109].
These experimental achievements motivated us to show that non-local order parame-
ters are able to detect all the phase transitions occurring in the EHM. In fact, they
provide some crucial information about the system. In particular, they are able to
detect the non-local long-range orders that respect the continuous symmetry of the
Hamiltonian; therefore they recognize the appearance of different phases in one
dimension that do not violate the Mermin-Wagner theorem [47]. Moreover, they can
reveal the presence of topological phases [78], as well as hidden orders which are
not easily distinguishable by looking at the ordinary two-point correlation functions
[49].
In this chapter, we will first review the model and its phase diagram and then we
will discuss the behavior of NLOPs across the phase transitions by means of DMRG
analysis. Our numerical results are in agreement with the previous studies in pre-
dicting both the location and the nature of transitions. That reveals the non-local
character of all phases at zero temperature, with both trivial and exotic [48] orders.
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6.2 Model and phase diagram

We consider a 1D unit density balanced two-component Fermi mixture of N fermions
trapped in L lattice sites. It is described by the Hamiltonian (1.47):

H =−t ∑
j,σ

(
c†

j,σ c j+1,σ +h.c.
)
+U ∑

j
n j,↑n j,↓+V ∑

j
n jn j+1 . (6.1)

The three terms with coefficients t,U,V describe the tunneling processes, on-site
and nearest-neighbor interactions, respectively. This model shows a very rich phase
diagram. A qualitative picture is drawn in Fig. 6.1. Depending on the strength of
the interactions, we observe the appearance of six different phases. This variety is
due to the charge-spin separation, which allows the charge and the spin gaps to open
at different values of the Hamiltonian parameters. We remind that they are defined
respectively as

∆c =
E(N = L+2,S(s),z = 0)+E(N = L−2,S(s),z = 0)−2E(N = L,S(s),z = 0)

2
(6.2)

∆s = E(N = L,S(s),z = 1)−E(N = L,S(s),z = 0) , (6.3)

where E(N,S(s),z) is the energy of a system with N fermions and total unbalance
S(s),z = (N↑−N↓)/2. The phase diagram shows both fully gapped and partly gapped
phases, as well as gapless phases. The strong repulsive nearest-neighbor interaction
favors the alternation of empty and doubly occupied sites. In fact, this kind of phase
takes place for strong V > 0. It is a fully gapped charge density wave (CDW). When
the strength of the interaction is reduced, it survives but is affected by fluctuations
which consist in the appearance of pairs of singly occupied sites with fermions of
opposite spins. On the other hand, the strong repulsive on-site interaction supports
the presence of the Mott insulator (MI) phase, with one particle per site (without a
preferred arrangement of the two species). As the value of U is reduced, fluctuations
produce the formation of holon/doublon pairs. Between the CDW and MI phases, at
intermediate couplings, a thin region characterized by bond ordered wave (BOW)
appears. Here, holon/doublon and and up/down spin pairs localized on bonds coexist.
The fermionic pairing is also present in the strong U < 0 regime, where a phase
separation (PS) or a Luther Emery (LE) phase with dominant singlet superconducting
(SS) correlations occurs, depending on the strength of V . In particular, the last one
appears in the presence of a weak attractive nearest-neighbor interaction, where
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single fermions with opposite spins are coupled in correlated pairs in a background
of holons and doublons. Instead, for strong attractive nearest-neighbor interactions,
holons and doublons coexist in separated regions. Finally, a gapless phase with
dominant triplet superconducting (TS) correlations takes place at small U and V < 0.
An intuitive scheme of all the aformentioned phases can be found in the bottom right
panel of Fig. 6.1.
Most of these phases are predicted by the bosonization approximation at low energies.
Following the procedure described in Chapter 3, one finds that the extended Hubbard
Hamiltonian (6.1) in the weak coupling limit is equivalent to two decoupled sine-
Gordon models, each one entirely expressed by the charge or the spin degree of
freedom :

H = Hc +Hs (6.4)

with

Hν =
1
2

∫
dx
[

vνKν (∇θν(x))
2 +

vν

Kν

(∇φν(x))
2
]
+

2gν

(2πα)2

∫
dxcos(

√
8πφν(x))

(6.5)
and ν = c,s. The Luttinger parameters Kν , the velocities vν and the masses gν =

mνvν contain the physical parameters t,U,V . Their expression are explicitly written
as

vνKν = 2ta

vc

Kc
= 2ta

[
1+

1
2πt

(U +6V )

]
vs

Ks
= 2ta

[
1− 1

2πt
(U −2V )

]
gν =−acν(U −2V )

(6.6)

where a is the lattice spacing and cν =±1 for ν = c,s, respectively. These results can
be found in [81] and in [54] (see also Chapter 7 for the details of the calculation in a
slightly different model). In each of the two sine-Gordon models, the competition
between the kinetic and mass terms establishes the limits in which the interaction
becomes relevant, giving rise to a gapped regime in the corresponding channel.
Within the same sector, different gapped phases can be distinguished, depending on
the sign of gν , which determines the pinning value of the field φν = 0,

√
π/8. In fact,

due to the presence of the SU(2) symmetry in the spin channel, the value
√

π/8 for
the field φs is inhibited. The properties of the different phases are summarized in the
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first four columns of the table in Fig. 6.1. This framework is able to capture all the
ordered phases of Fig. 6.1, except for the BOW and the PS. For weak interactions,
the prediction of bosonization are in agreement with the transition lines obtained
from numerical methods.

φ̃c φ̃s ∆c ∆s LRO

LL(TS) u u 0 0 none

LE(SS) u 0 0 ̸= 0 O(s)
P

PS - - 0 ̸= 0 O(s)
P

MI 0 u ̸= 0 0 O(c)
P

BOW 0 0 ̸= 0 ̸= 0 O(c)
P , O(s)

P

CDW π

2 0 ̸= 0 ̸= 0 O(c)
S , O(s)

P

SS

PS

MI

BOW

CDW

Fig. 6.1 Left panel: Phase diagram of the model (6.1) with U and V expressed in unit of
t. Dashed green lines denote KT transitions, blue lines are first order transitions and red
lines indicate continuous Gaussian transitions. Right upper panel: Correspondence between
ground state quantum phases, bosonic fields and non-local operators. The fields have been
expressed as φ̃ν =

√
2πφν . Here the letter u means unlocked. Right lower panel: Schematic

representation of the gapped phases of the model. The blue solid (dashed) lines signal
the presence of the parity order in the form of correlated holon-doublon (up-down spin)
pairs. The green and red circles highlight the charge Haldane string order consisting in the
alternation of diluted holons and doublons.

6.3 Non-Local Order Parameters

Following [49, 51–53], we now use the parity and Haldane string non-local operators
introduced in eqs. (2.15) and (2.16):

O(ν)
P ( j) =

j−1

∏
k=0

ei2πS(ν),zk , O(ν)
S ( j) =

(
j−1

∏
k=0

ei2πS(ν),zk

)
2S(ν),zj , (6.7)
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with S(c),zj = (n j −1)/2, S(s),zj = (n j,↑−n j,↓)/2. In Ref. [53] it has been claimed that
the asymptotic limit of their correlation functions

C(ν)
A = lim

r→∞
< [O(ν)

A ( j)]†O(ν)
A ( j+ r)> , A = P,S (6.8)

should remain finite in the presence of a specific gapped phase in the ν channel.
In particular, according to bosonization, if ∆ν ̸= 0, the parity correlator

C(ν)
P ∝< (cos

√
2πφν)

2 > (6.9)

is non-zero when the field φν pins to the value 0, whereas the Haldane string
correlator

C(ν)
S ∝< (sin

√
2πφν)

2 > (6.10)

is finite if φν =
√

π/8. Therefore, the expectation value of O(ν)
A acts as an order

parameter for a given gapped phase, as reported in the last column of the table in Fig.
6.1. Among the listed phases, those characterized by a non-vanishing C(ν)

S can be
recognized as being non-trivial symmetry protected topological phases [78]. On the
contrary, a finite value of C(ν)

P signals the presence of a trivial SPT order.
In addition to the topological properties, NLOPs are able to unveil the microscopic
structure of the ground state. Indeed, a non-zero Haldane string parameter signals an
antiferromagnetic order of diluted holons and doublons or up and down spins, in the
charge and spin sectors, respectively. Instead, the parity order entails the presence of
virtual excitations in the form of holon/doublon or up/down spin pairs. The bottom
right panel of Fig. 6.1 depicts the microscopic structure of the different gapped
phases.

6.4 Phase Transitions

As seen, the EHM presents a very rich phase diagram, with KT, Gaussian and first
order phase transitions. Approximated methods are not able to capture some of them.
In particular, first order phase transitions are usually not observed within standard
bosonization approaches. Therefore, we investigate the model with quasi-exact
DMRG simulations which can efficiently reveal any type of phase transition. The
regime of repulsive interactions, for weak and intermediate couplings U and V ,
has already been studied by employing NLOPs [53]. Here, it has been shown that
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the non-local order parameters describe very accurately the ground state quantum
phases. However, it remains an open question whether NLOPs can capture the
entire phase diagram. In this section, we tackle this problem. In our analysis
we use both periodic boundary conditions (PBC) and open boundary conditions
(OBC). In particular, OBC are used to detect the phase transitions that involve
the PS phase. Indeed, it is characterized by an high degeneracy, which can be
reduced by OBC. For all the other phase transitions, we employ PBC, which allow
to remove the boundary effects. That is a quite relevant aspect in the computation
of non-local order parameters; thus the adoption of PBC provide a great numerical
accuracy in the extrapolation of the thermodynamic limit also keeping the system
sizes relatively small. More precisely, we extrapolate the thermodynamic limit of the
NLOPs from the finite size values C(ν)

S (L/2) in case of Haldane strings, and from
the averages (C(ν)

P (L/2)+C(ν)
P (L/2+1))/2 in case of parities. These were obtained

for periodic chains with maximum length L = 32, keeping up to 1200 DMRG states
and performing 6 sweeps, or for open chains with up to L = 56 sites and a number
of DMRG states ranging from 768 to 1024 with 5 sweeps. In the latter case, we cut
out the first three sites in the evaluation of finite size NLOPs, in order to minimize
boundary effects.

6.4.1 Attractive U Regime

As typical of lattice models with a Fermi-Dirac statistics, the regime of attractive
on-site interactions is dominated by a trivial singlet-like spin gap associated with the
parity order. Therefore, here we expect a non-zero value of C(s)

P . In one dimension,
this kind of pairing is usually related to fermionic quasi-condensation (q-BEC)
or superconducting (SC) order revealed by a power-law decay of the pair-pair
correlation function. Here we show that C(s)

P behaves as an order parameter for
both the SS and the PS regimes, in the second case unveiling the presence of a
metallic phase without any kind of q-BEC or SC character. Fig. 6.2a shows the
behavior of C(s)

P across the PS-SS transition. Although it remains finite everywhere,
thus signaling the presence of a spin gap, its sudden jump at the transition point
allows to locate the phase transition and to classify it as first order. This is, in fact,
a common feature in transitions involving a PS regime, as confirmed also by the
PS-TS transition occurring at weaker attractive U , where the competition between
nearest-neighbor and on-site interactions makes possible a fully gapless regime. As
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C

C
P

S

(s)

(c)

Fig. 6.2 TDL of the NLOPs for: a) U =−1.5; b) U =−0.1; c) U =−0.9; d) V =−0.1. The
hopping amplitude is set to t = 1.

clearly visible from Fig. 6.2b, the first order phase transition associated to the phase
separation is signaled by an abrupt jump of C(s)

P from zero in the TS to almost one in
the PS.
On the other hand, transitions between gapless and gapped phases not involving the
PS can usually be recognized as KT transitions. In this case, the order parameter
grows slowly from zero to non-zero values, in conjunction with the exponential
opening of the gap [25]. Indeed, that happens also in the TS-SS transition, which is
ones again captured by the spin parity, as shown in Fig. 6.2d.
Finally, in Fig. 6.2c, we plot the behavior of both the spin parity and the charge
Haldane string going from attractive to repulsive nearest-neighbor interactions. Here
C(s)

P remains finite and the transition is signaled by C(c)
S , which shows the features

typical of a Gaussian continuous transition. Indeed, in the positive V region, a fully
gapped phase with singlet-like pairing and charge antiferromagnetic order takes
place.
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6.4.2 Repulsive U Regime

CP
(s)

C

C

S
(c)

(c)
P

C

CP

S
(c)

(c)

Fig. 6.3 TDL of the NLOPs for: a) U = 5.0; b) U = 10; c) U = 1. The hopping amplitude is
set to t = 1.

While the behavior of NLOPs in the weak U,V > 0 case has already been studied
[53], it has not been verified in the U > 0, V < 0 and the strong U,V > 0 regimes.
Here, we take under consideration these regions.
For large U and strongly attractive V the system shows two partly gapped phases:
the MI, with finite charge gap, and the PS, with finite spin gap, both of them
characterized by parity order. Therefore, the transition is detected by two different
order parameters, one in the charge sector and the other in the spin sector. This is
shown in Fig. 6.3a, where it is evident that both C(c)

P and C(s)
P present the typical

features of a first order phase transition.
Similar discontinuities can be observed in the opposite strong coupling limit, i.e. in
the repulsive V regime, where the MI is replaced by a CDW. Indeed here, although
the PS does not appear, the strong values of on-site and nearest-neighbor interactions
drive the system well inside the atomic limit, thus inducing a sort of classical behavior.
As before, this phase transition occurs in both the charge and spin sectors. However,
in this case a fully gapped phase is involved and, as a consequence, three different
order parameters can be identified: C(s)

P for the spin channel and both C(c)
P and C(c)

S

for the charge channel (see Fig. 6.3b).
A rather different situation is established for weak couplings. Indeed, for small V < 0,
we observe a Gaussian transition from MI to TS, as U decreases. This manifests in
the behavior of the charge parity C(c)

P , which is shown in Fig. 6.3c, as a function of
V , for fixed U = 1.
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6.5 Conclusions

In conclusion, we have shown by means of DMRG analysis that all phase transitions
appearing in the extended Hubbard model can be properly described by non-local
order parameters.
While it was already observed that NLOPs behave as expected in transitions involving
insulating states, our results prove that they are able to identify also partly gapped
conducting regimes. That provides a new tool for the detection of superconductivity
and fermionic quasi-condensation.
In particular, the employment of NLOPs could have an important impact on the
experimental detection of phase transitions in 1D systems. Indeed, our numerical
analysis shows that they can be only zero or finite in a given phase, thus providing
a very efficient way of distinguishing different regimes with respect to the local
two-point correlation functions, which only manifest a change of the decay law.
Finally we stress that, since both our probes, i.e. parities and Haldane strings,
have already been measured [108] or are measurable [124] and the EHM can be
simulated with the ongoing experimental technologies, our findings could be tested
in experiments with cold atoms.



Chapter 7

Study of dipolar fermions subject to
correlated hopping processes

After having verified in the previous chapter that non-local order parameters detect
all quantum phases, including those that do not break any symmetry, here we use
them to study an Hubbard-like Hamiltonian with further terms in order to observe
a possible reacher structure of the phase diagram. In particular, we are interested
in finding a model that can be realized in experiments and that is able to reproduce
hidden magnetic phases, i.e. those showing an Haldane string non-local order, which
is typically associated with the presence of protected edge modes. To this purpose,
we consider the effects of correlated hopping processes as well as dipole-dipole
interaction, both in its long-range and truncated forms. Indeed, experiments with
cold atoms allow to simulate this kind of models by using magnetic atoms. However,
as we will see, sometimes the effect of long-range interaction is negligible since
the crucial features are already captured by a truncated Hamiltonian. On the other
hand, the density dependent hopping is a fundamental element to observe hidden
magnetism in the extended Hubbard model. As we will see, it can be induced by
periodically modulated on-site interaction, which is experimentally realizable [125].
The most general Hamiltonian that we will consider is the following

H =− t ∑
j,σ

Q j, j+1,σ

[
1− X

t

(
n j,σ̄ +n j+1,σ̄

)
+

X̃
t

n j,σ̄ n j+1,σ̄

]
+U ∑

j
n j,↑n j,↓+V ∑

j,r>0

n jn j+r

r3 ,
(7.1)
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where Q j, j+1,σ = c†
j,σ c j,σ +h.c. and the coefficients are assumed to be non-negative.

We also provide its expression in terms of Hubbard operators, which will be useful
in the following:

H =−∑
j,σ

[
tAAXσ0

j X0σ
j+1 + tABσ

(
Xσ0

j X σ̄2
j+1 +X2σ̄

j X0σ
j+1

)
+ tBBX2σ̄

j X σ̄2
j+1

]
+h.c.

+∑
j

UX22
j +∑

j,r

V
r3

(
1+X22

j −X00
j
)(

1+X22
j+r −X00

j+r
)
,

(7.2)

with tAA = t, tAB = 1−X and tBB = (1−2X + X̃).
In Section 7.1 we will present the solution for the two-body system with the dipolar
interaction truncated to nearest-neighbors, and we will derive the Yang-Baxter
relations, in order to eventually find the presence of integrability points in the model.
In the following sections we will focus on the particle-hole symmetric case X̃ = 2X
and we will present first an analytical study, by investigating the weak and strong
coupling limits, and then the numerical results. In particular, in Section 7.2 we
will study the weak coupling phase diagram by means of bosonization. Besides the
standard approach, we will explore another route, by including part of the interaction
non-perturbatively in the single species Hamiltonian. In Section 7.3 we will calculate
and compare the energies of the competing phases in the strong coupling limit.
In Section 7.4 we will show the DMRG results for NLOPs and we will derive a
numerical phase diagram. Finally, in Section 7.5 we will use the Floquet analysis
to show that the correlated hopping processes can be induced by a periodically
modulated time-dependent on-site interaction. Therefore, we will regard the static
Hamiltonian as an effective model for the time-dependent Hamiltonian. To validate
this result, we will also compare the NLOPs obtained for the two models.
Most of the contents of this chapter can be found in Refs. [126] and [127].

7.1 Computation of the two-particle scattering ma-
trix and Yang-Baxter relations

In this section we evaluate the integrability of the model by studying the two-body
problem in the case of interactions truncated to nearest neighbors. Moreover we
observe that, since we are dealing with only two particles, the three-body term with
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coefficient X̃ does not act.1 Therefore, we consider the following Hamiltonian

H =−∑
j,σ

Q j, j+1,σ [1−X(n j,σ̄ +n j+1,σ̄ )]+U ∑
j

n j,↑n j,↓+V ∑
j

n jn j+1 (7.3)

where we have assumed t = 1.
The two-particle state can be expressed as

|Ψ⟩= 1
2 ∑

x1,x2

∑
σ1,σ2

ψσ1,σ2(x1,x2) |x2σ2,x1σ1⟩︸ ︷︷ ︸
c†

x2σ2c†
x1σ1 |0⟩

, (7.4)

where xn and σn, with n = {1,2} denote the position and the spin of the first or the
second particle. The problem consists first of all in solving the eigenvalue equation

H|Ψ⟩= E|Ψ⟩. (7.5)

Applying the Hamiltonian (7.3) to the state (7.4), we get the following eigenvalue
equation in first quantization

(Xδx1,x2 −1)[ψσ1,σ2(x1,x2 +1)+ψσ1,σ2(x1,x2 −1)+ψσ1,σ2(x1 +1,x2)+ψσ1,σ2(x1 −1,x2)]+

+Xδx1,x2−1[ψσ1,σ2(x1,x2 −1)+ψσ1,σ2(x1 +1,x2)]+

+Xδx1,x2+1[ψσ1,σ2(x1,x2 +1)+ψσ1,σ2(x1 −1,x2)]+

+[Uδx1,x2 +V (δx1,x2+1 +δx1,x2−1)−E]ψσ1,σ2(x1,x2) = 0 .
(7.6)

We now observe that the wave function can be factorized into a part depending on
the spin and a part depending on the spatial coordinates

ψσ1,σ2(x1,x2) = ψ(σ1,σ2)ψ(x1,x2) , (7.7)

and make the following ansatz for the spatial wave function

ψ(x1,x2) =[A2eı(k1x1+k2x2)+A1eı(k2x1+k1x2)]Θ(x1 − x2)+

+[ΠA2eı(k2x1+k1x2)]+ΠA1eı(k1x1+k2x2)]Θ(x2 − x1)+

+[A0 −
1
2
((A1 +A2)+Π(A1 +A2))]eı(k1+k2)x1δx1,x2 ,

(7.8)

1We will account for this term after having derived the Yang-Baxter relations.
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where Θ(x) is the Heaviside function defined as

Θ(r) =


0 if x < 0
1
2 if x = 0
1 if x > 0

, (7.9)

and A1,A2,ΠA1,ΠA2 are complex amplitudes; in particular, the symbol Π is a
permutation operator which interchanges the positions of the two particles. Thus, we
insert this expression into the eigenvalue equation (7.6) and consider four different
cases:

1) |x1 − x2|> 1

2) x1 = x2

3) x1 = x2 +1

4) x1 = x2 −1 .

For each of them we should impose that the eigenvalue equation is satisfied. These
conditions will provide the unknown informations. In particular, the case 1) will
give us the expression for the energy eigenvalues, while the others will give the
relations between the coefficients of the wave function. In the following we write
the eigenvalue equation for each of the four aforementioned cases:

1) |x1 − x2|> 1

−[ψ(x1,x2+1)+ψ(x1,x2−1)+ψ(x1+1,x2)+ψ(x1−1,x2)]−Eψ(x1,x2)= 0

⇒ E =−2[cosk1 + cosk2] (7.10)

2) x1 = x2 = x

(X−1)[ψ(x+1,x)+ψ(x−1,x)+ψ(x,x+1)+ψ(x,x−1)]+[U−E]ψ(x,x)= 0

(X −1)[(A2 +ΠA2)(eık1 + e−ık2)+(A1 +ΠA1)(eık2 + e−ık1)]+

[U +2(cosk1 + cosk2)]A0 = 0

⇒ A0 =−(X −1)[(A2 +ΠA2)(eık1 + e−ık2)+(A1 +ΠA1)(eık2 + e−ık1)]

U +2(cosk1 + cosk2)
(7.11)
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3) x1 = x2 +1

− [ψ(x2 +2,x2)+ψ(x2,x2)+ψ(x2 +1,x2 +1)+ψ(x2 +1,x2 −1)]+

+X [ψ(x2 +1,x2 +1)+ψ(x2,x2)]+(V −E)ψ(x2 +1,x2) = 0

⇒ A1(1+ eı(k1+k2)+Veık2)+A2(1+ eı(k1+k2)+Veık1)+

+(X −1)(1+ eı(k1+k2))A0 = 0
(7.12)

4) x1 = x2 −1

− [ψ(x2,x2)+ψ(x2 −2,x2)+ψ(x2 −1,x2 +1)+ψ(x2 −1,x2 −1)]+

+X [ψ(x2 −1,x2 −1)+ψ(x2,x2)]+(V −E)ψ(x2 −1,x2) = 0

⇒ ΠA1(1+ e−ı(k1+k2)+Ve−ık1)+ΠA2(1+ e−ı(k1+k2)+Ve−ık2)+

+(X −1)(1+ e−ı(k1+k2))A0 = 0 .
(7.13)

Finally, inserting the expression of A0 (7.11) into equations (7.12) and (7.13), we get
the following system of equations{

(1+ eı(k1+k2))[A1 +A2 − (X −1)2ξ ]+V [A2eık1 +A1eık2] = 0
(1+ e−ı(k1+k2))[ΠA1 +ΠA2 − (X −1)2ξ ]+V [ΠA2e−ık2 +ΠA1e−ık1] = 0

(7.14)
with

ξ =
(A2 +ΠA2)(eık1 + e−ık2)+(A1 +ΠA1)(eık2 + e−ık1)

U +2(cosk1 + cosk2)
. (7.15)

Before facing the most general case, in the following subsections we solve the system
in the two cases with V = 0 and X = 0.

7.1.1 The case V = 0

In absence of nearest-neighbor interaction (V = 0) the previous two equations sim-
plify into the following: {

A1 +A2 − (X −1)2ξ = 0
ΠA1 +ΠA2 − (X −1)2ξ = 0 ,

(7.16)
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from which we get the simple relation

ΠA2 = A1 +A2 −ΠA1 . (7.17)

Eliminating ΠA2 from the first equation of (7.16), we obtain

[U +2(c1 + c2)](A1 +A2)

− (X −1)2[2A2(eık1 + e−ık2)+2A1(c1 + c2)−2ıΠA1(s1 − s2)] = 0
(7.18)

where ci = coski and si = sinki.
Before going on, we observe that by setting X = 0 we recover the Hubbard model.
In this case we find

A2 =−
1
2 ıU

1
2 ıU + s1 − s2

A1 +
s1 − s2

1
2 ıU + s1 − s2

ΠA1 , (7.19)

which, after having defined the operator

Y12 =
−1

2 ıU +(s1 − s2)Π
1
2 ıU + s1 − s2

= (u12 −1)+u12Π , (7.20)

yields the following relation between the coefficients

A2 = Y12A1 . (7.21)

This relation holds also when X ̸= 0; however in this case the quantity u12 is expressed
as

u12 =
(X −1)2(s1 − s2)

1
2 ı[U −2X(X −2)(c1 + c2)]+(X −1)2(s1 − s2)

, (7.22)

and consequently

u12 −1 =
−1

2 ı[U −2X(X −2)(c1 + c2)]
1
2 ı[U −2X(X −2)(c1 + c2)]+(X −1)2(s1 − s2)

. (7.23)

In general, we can define the operator Y ab
i j as

Y ab
i j = (ui j −1)I +ui jΠab , (7.24)
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where Πab interchanges the positions of particles a and b. The operator (7.24)
represents the two-particle scattering matrix and can be used to establish whether
the model is integrable. Indeed, a sufficient (but not necessary) condition for the
integrability consists in the two-particle scattering matrix satisfying the Yang-Baxter
relation, which reads

Y 12
23 Y 23

13 Y 12
12 = Y 23

12 Y 12
13 Y 23

23 (7.25)

or, equivalently,
Y ab

jk Y bc
ik Y ab

i j = Y bc
i j Y ab

ik Y bc
jk . (7.26)

The latter is satisfied if

(ui j −1)(uik −1)u jk +ui j(uik −1)(u jk −1) = (ui j −1)uik(u jk −1) (7.27)

that is

(X −1)2(s j − sk)

[
U
2
−X(X −2)(ci + c j)

][
U
2
−X(X −2)(ci + ck)

]
+(X −1)2(si − s j)

[
U
2
−X(X −2)(ci + ck)

][
U
2
−X(X −2)(c j + ck)

]
=(X −1)2(si − sk)

[
U
2
−X(X −2)(ci + c j)

][
U
2
−X(X −2)(c j + ck)

]
.

(7.28)

It can be easily seen that this is verified in the three cases X = 0, X = 1 and X = 2.
We observe that the first one corresponds to the Hubbard model. Regarding the
other two cases, instead, from symmetry considerations we may deduce that they
are integrable points also in the presence of three-body bond-charge interaction
X̃ = 2X . In particular, when this term is added to the Hamiltonian, the case X = 2
can be mapped into the case X = 0. That is achieved through the transformation
c j,σ → (1− 2n j,σ̄ )c j,σ , which changes the sign of the amplitude tAB: tAB →−tAB,
and consequently X → 2−X , X̃ → X̃ − 4X + 4 [128, 129]. On the other hand,
when X = 1, the amplitude of hopping processes that alter the number of doublons
vanishes (tAB = 0). In this case, the two conditions X̃ = 0 and X̃ = 2X are obtained
for tBB = ∓1, respectively. They can be mapped into each other by the canonical
transformation c j,σ → [1− (1− (−) j)n j,σ̄ ]c j,σ , which instead preserves the sign of
tAA. Therefore, after the mapping, we get X̃ → 2− X̃ , while X is still equal to 1
[130, 31].
We would like to mention that the scattering matrix is sometimes written in the
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following alternative form:

Y ab
i j ≡ Rab(ki,k j) =

f (ki,k j)Πab + ı
f (ki,k j)− ı

(7.29)

with

f (ki,k j) =
(si − s j)(X −1)2

X(X −2)(ci + c j)−U/2
. (7.30)

With this notation, the Yang-Baxter relation reads

R23(k1,k2)R12(k1,k3)R23(k2,k3) = R12(k2,k3)R23(k1,k3)R12(k1,k2) (7.31)

that is
[ f (k1,k2)Π23 + ı][ f (k1,k3)Π12 + ı][ f (k2,k3)Π23 + ı]

=[ f (k2,k3)Π12 + ı][ f (k1,k3)Π23 + ı][ f (k1,k2)Π12 + ı] .
(7.32)

This is satisfied if
f (k1,k2)+ f (k2,k3)− f (k1,k3) = 0 . (7.33)

The explicit form of equation (7.33) is

(s1 − s2)(X −1)2

X(X −2)(c1 + c2)−U/2
+

(s2 − s3)(X −1)2

X(X −2)(c2 + c3)−U/2

− (s1 − s3)(X −1)2

X(X −2)(c1 + c3)−U/2
= 0

(7.34)

that is satisfied for X = 1 and for X = 0 (as well as X = 2). Finally, we observe that,
if X ̸= 0,1,2, the equation reduces to

− U
2
[s1(c3 − c2)+ s2(c1 − c3)+ s3(c2 − c1)]︸ ︷︷ ︸

b

+X(X −2) [s1(c2
3 − c2

2)+ s2(c2
1 − c2

3)+ s3(c2
2 − c2

1)]︸ ︷︷ ︸
a

= 0 .
(7.35)

This is a second degree equation of the form

aX2 −2aX − U
2

b = 0 (7.36)
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whose roots are

X = 1±
√

1+
Ub
2a

, (7.37)

which depend on the momenta k1, k2, k3 through the parameters a and b; therefore
they are not acceptable solutions for our problem.
We conclude that the only integrable points emerging from the Yang-Baxter relations
are X = 0 and X = 1.

7.1.2 The case X = 0

In the case X = 0 the system of equations (7.14) becomes{
(1+ eı(k1+k2))[A1 +A2 −ξ ]+V [A2eık1 +A1eık2] = 0
(1+ e−ı(k1+k2))[ΠA1 +ΠA2 −ξ ]+V [ΠA2e−ık2 +ΠA1e−ık1 ] = 0

(7.38)

and the problem is much more complicated with respect to the previous case. Indeed
we have

ΠA2 = A2 +
1+ eı(k1+k2)+Veık2

1+ eı(k1+k2)+Veık1︸ ︷︷ ︸
−
(

A2
A1

)triplet
:=−Rtr

(A1 −ΠA1) (7.39)

instead of (7.17).
Let us insert expression (7.39) into ξ (formula (7.15)) and hence into the first
equation of the system. We obtain

(1+ eı(k1+k2))

{
A1 +A2 −

2(eık1 + e−ık2)

U +2(cosk1 + cosk2)
A2

− (eık2 + e−ık1 − (eık1 + e−ık2)Rtr)

U +2(cosk1 + cosk2)
A1 −

(eık2 + e−ık1 +(eık1 + e−ık2)Rtr)

U +2(cosk1 + cosk2)
ΠA1

}
+V (A2eık1 +A1eık2) = 0

(7.40)
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which can be reordered as{
1+ eı(k1+k2)+Veık1 − 2(1+ eı(k1+k2))(eık1 + e−ık2)

U +2(cosk1 + cosk2)

}
A2

+

{
1+ eı(k1+k2)+Veık2 − (1+ eı(k1+k2))(eık2 + e−ık1 − (eık1 + e−ık2)Rtr)

U +2(cosk1 + cosk2)

}
A1

−(1+ eı(k1+k2))(eık2 + e−ık1 +(eık1 + e−ık2)Rtr)

U +2(cosk1 + cosk2)
ΠA1 = 0 .

(7.41)
In order to have a more symmetric form, we multiply this equation by e−ık1:{

e−ık1 + eık2 +V − 2(e−ık1 + eık2)(eık1 + e−ık2)

U +2(cosk1 + cosk2)

}
A2

+

{
e−ık1 + eık2 +Veı(k2−k1)− (e−ık1 + eık2)2 − (eık2 + e−ık1)(eık1 + e−ık2)Rtr

U +2(cosk1 + cosk2)

}
A1

−(e−ık1 + eık2)2 +(eık2 + e−ık1)(eık1 + e−ık2)Rtr

U +2(cosk1 + cosk2)
ΠA1 = 0 .

(7.42)
If now we define

z := e−ık1 + eık2 (7.43)

the previous equation becomes{
z+V − 2|z|2

U +2(cosk1 + cosk2)

}
A2 +

{
z+Ve−ı(k1−k2)− z2 −|z|2Rtr

U +2(cosk1 + cosk2)

}
A1

− z2 + |z|2Rtr

U +2(cosk1 + cosk2)
ΠA1 = 0

(7.44)
where

|z|2 = zz∗ = (e−ık1 + eık2)(eık1 + e−ık2) = 2+ eı(k1+k2)+ e−ı(k1+k2) =

= (1+ e−ı(k1+k2))(1+ eı(k1+k2)) = (2cos(K/2))2 = J2
K .

(7.45)
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From (7.44) we obtain the following ratio

Y12 =
A2

A1
=−

z+Ve−ı(k1−k2)− z2−|z|2Rtr

U+2(cosk1+cosk2)
− z2+|z|2Rtr

U+2(cosk1+cosk2)
Π

z+V − 2|z|2
U+2(cosk1+cosk2)

. (7.46)

It can be easily verified that for the triplet state (ΠA =−A), one recovers the formula

Y triplet
12 = Rtr (7.47)

while for the singlet state (ΠA = A) one obtains

Y singlet
12 =−

z+Ve−ı(k1−k2)− 2z2

U+2(cosk1+cosk2)

z+V − 2|z|2
U+2(cosk1+cosk2)

=
Rtr + 2z2

E ′

1− 2|z|2
E ′

=−
JK +Ve−ık/2 − 2J2

Ke−ık/2

U+2JK cosk/2

JK +Veık/2 − 2J2
Keık/2

U+2JK cosk/2

(7.48)

where E ′ =−[z+V ]E = [z+V ][U +2(cosk1+cosk2)], JK = 2cosK/2, K = k1+k2,
k = k1 − k2.
Expression (7.46) can be rewritten in a more compact way as

1
2
(Rsi +Rtr)+

z2 + |z|2Rtr

E ′−2|z|2
Π (7.49)

with Rsi = (A2/A1)
singlet .

In order to verify the Yang-Baxter relation, we observe that for the Hubbard model
with V = 0, the two-particle scattering matrix takes the form

Y12 =
−ıU

2 +(s1 − s2)Π

ıU
2 +(s1 − s2)

. (7.50)

Thus we expect the following form for the extended Hubbard model with V ̸= 0

Y12 =
−ı(U

2 + f1(V ))+(s1 − s2 + f2(V ))Π

ı(U
2 + f3(V ))+(s1 − s2 + f4(V ))

(7.51)
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with fi(V = 0) = 0.
If we rewrite (7.46) in order to obtain this expression, we obtain

f2(V ) =−V
s1 − s2

e−ık1 + eık2 +V

f3(V ) =V (c1 + c2)
U +2(c1 + c2)

4(1+ cos(k1 + k2))

f4(V ) =−V (s1 − s2)
U +2(c1 + c2)

4(1+ cos(k1 + k2))

f1(V ) = f3(V )+ ı( f4(V )− f2(V )) .

(7.52)

Hence

Y12 =
−ı(U

2 + f3(V )+ ı( f4(V )− f2(V )))+(s1 − s2 + f2(V ))Π

ı(U
2 + f3(V ))+(s1 − s2 + f4(V ))

=
−ı(U

2 + f3(V ))+ f4(V )− f2(V )+(s1 − s2 + f2(V ))Π

ı(U
2 + f3(V ))+ f4(V )− f2(V )+(s1 − s2 + f2(V ))

=
F(k1,k2)Π+a1 −a2

F(k1,k2)+a1 +a2
,

a1 = a1(k1,k2)

a2 = a2(k1,k2)

}
∈C

=
F(k1,k2)Π+a(k1,k2)

F(k1,k2)+a′(k1,k2)
, a = a1 −a2,a′ = a1 +a2

=
F ′(k1,k2)Π+1

F ′(k1,k2)+a′′(k1,k2)
, a′′ = a′/a .

(7.53)

Finally we write the Yang-Baxter equation and obtain

[F ′(k1,k2)+F ′(k2,k3)−F ′(k1,k3)](Π23 −Π12) = 0 (7.54)

with
F ′(k1,k2) =

F(k1,k2)

a(k1,k2)
. (7.55)

Thus we recover the relation (7.33). The only solution of this equation that is
independent of k1, k2 and k3 is V = 0, which corresponds to the Hubbard model.
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7.1.3 The general case

In this section, we finally review the general case, with both X ̸= 0 and V ̸= 0. Here
the two-particle scattering matrix is given by

Y12 =−
z+Ve−ı(k1−k2)− (X−1)2(z2−|z|2Rtr)

U+2(cosk1+cosk2)
− (X−1)2(z2+|z|2Rtr)

U+2(cosk1+cosk2)
Π

z+V − 2(X−1)2|z|2
U+2(cosk1+cosk2)

=
−ı(U

2 +g2(X ,V ))+g1(X ,V )+G(k1,k2)Π

ı(U
2 +g2(X ,V ))+g1(X ,V )+G(k1,k2)

=
G(k1,k2)Π+b(k1,k2)

G(k1,k2)+b′(k1,k2)

=
G′(k1,k2)Π+1

G′(k1,k2)+b′′(k1,k2)

(7.56)

with

g1(X ,V ) = f4(V )−g0(X ,V ) = f4(V )− (X −1)2 f2(V )

g2(X ,V ) = f3(V )−X(X −2)(c1 + c2)

G(k1,k2) = (X −1)2F(k1,k2) = (X −1)2[s1 − s2 + f2(V )] = (X −1)2(s1 − s2)+g0(X ,V )

b(k1,k2) = g1(X ,V )− ı
(

U
2
+g2(X ,V )

)
b′(k1,k2) = g1(X ,V )+ ı

(
U
2
+g2(X ,V )

)
b′′(k1,k2) =

b′(k1,k2)

b(k1,k2)

G′(k1,k2) =
G(k1,k2)

b(k1,k2)
.

(7.57)
Clearly all these quantities depend on the momenta and on the parameters X , U , V .
However we have explicitly written only the dependence on X and V in g1 and g2 to
point out that g1(X = 0,V = 0) = g2(X = 0,V = 0) = 0; and the dependence on the
momenta in G and b because it is important for the Yang-Baxter relations.
The Yang-Baxter relation takes the usual form:

[G′(k1,k2)+G′(k2,k3)−G′(k1,k3)](Π23 −Π12) = 0 . (7.58)
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Explicitly, we have

G(k1,k2) = (X −1)2(s1 − s2)

{
1− V

e−ık1 + eık2 +V

}
b(k1,k2) =−ı

{
U
2
+

V (c1 + c2 − ı(s1 − s2))(U +2(c1 + c2))

4(1+ cos(k1 + k2))
−X(X −2)(c1 + c2)

}
+

+
V (X −1)2(s1 − s2)

e−ık1 + eık2 +V
,

(7.59)
from which we conclude that the case X = 1 is integrable also if V ̸= 0. The
considerations done in Section 7.1.1 about the three-body term X̃ are still valid in
the presence of finite V .

7.2 Weak coupling limit: two bosonization approaches

Established that, except for the case X = 1, the model is not integrable, in this section
we give some insights into the ground state phase diagram by exploring the weak
coupling regime with the bosonization technique.
In addition to the standard approach, we also derive the low energy phase diagram
by embodying part of the interaction non-perturbatively in the single species Hamil-
tonians. In this case we find that the Luttinger liquid regime becomes unstable with
respect to some gapped phases, such as the bond ordered wave and the Haldane
insulator, the latter with degenerate edge modes.
As we have seen in Chapter 3, the standard bosonization description for spinfull
fermions relies on the existence of two non-interacting single species Luttinger
liquids that serve as starting points for the discovery of possible gapped phases
promoted by the interaction, which effect is included in a perturbative way.
In fact, in Ref. [81] it has been noticed that in some cases part of the interaction
can be embodied non-perturbatively in the single species Hamiltonian, as long as
it remains in a Luttinger liquid regime. This alternative approach has been applied,
for instance, in [26] to show that the dipolar interaction can stabilize a bond ordered
wave phase, which existence is predicted already within one-loop bosonization.
Here we compare the zero-temperature phase diagram obtained from the latter
method with that derived from the standard bosonization for the model (7.1) with
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particle-hole invariance (X̃ = 2X), i.e.,

H =−∑
j,σ

Q j, j+1,σ
[
1−X(n j,σ̄ −n j+1,σ̄ )

2]+U ∑
j

n j,↑n j,↓+V ∑
j,r>0

n jn j+r

r3 ,

(7.60)
where we have set t = 1. Upon normal ordering of the operators,

Q j, j+1,σ =: Q j, j+1,σ : +⟨Q j, j+1,σ ⟩=: Q j, j+1,σ : +
2
π

(7.61)

n j,σ =: n j,σ : +⟨n j,σ ⟩=: n j,σ : +
1
2
, (7.62)

and omitting the constant terms, the Hamiltonian reads

H =−
(

1− X
2

)
∑
j,σ

: Q j, j+1,σ : +∑
j,σ

∑
r

V∥(r) : n j,σ :: n j+r,σ : +

+∑
j,σ

∑
r

V⊥(r) : n j,σ :: n j+r,σ̄ : +U ∑
j

: n j,↑ :: n j,↓ :

−2X ∑
j,σ

: Q j, j+1,σ :: n j,σ̄ :: n j+1,σ̄ :

(7.63)

where we have defined

V∥(r) =
V
r3 −

4X
π

δr,1 and V⊥(r) =
V
r3 . (7.64)

7.2.1 Standard approach

Within the standard procedure of bosonization, the starting point is given by the
non-interacting Hamiltonian, upon which the effect of interactions is considered in a
perturbative manner. As explained in Chapter 3, after having done the continuum
limit

∑
j
−→ 1

a

∫
dx , c j,σ −→

√
a
[
eıkF x

ΨRσ (x)+ e−ıkF x
ΨLσ (x)

]
, (7.65)

with kF = π/(2a) for n = 1, one can express the fermionic fields Ψχσ for left (χ = L)
and right (χ = R) movers in terms of the bosonic ones φσ and θσ :

Ψχσ (x) =
ηχσ√
2πα

eı
√

π[χφσ (x)+θσ (x)] . (7.66)
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Within this framework, the kinetic operator : Q j, j+1,σ : and the density operator
: n j,σ : appearing in Hamiltonian (7.63) are expressed in the following way

: Q j, j+1,σ :=− 2
π
(−1) j cos(2

√
πφσ (x))−a2

[
(∇φσ (x))

2 +(∇θσ (x))
2
]
+ ...

(7.67)

: n j,σ := a
[

1√
π

∇φσ (x)−
(−1) j

πa
sin(2

√
πφσ (x))

]
+ ... (7.68)

where dots denote the higher order terms in expansion with respect to a, which will
be neglected in the derivation of the bosonized Hamiltonian. For the demonstration
of formula (7.67) and (7.68) see Appendix E. The two- and three-body terms in the
Hamiltonian (7.63) are constructed by the product of operators of the form (7.67) and
(7.68). The calculation of such a product is straightforward when this is given by two
factors acting on different fermionic species. Instead, when operators acting on the
same species are involved, the operator product expansion is needed. In particular,
we make use of the following fusion rules

sin(2
√

πφσ (x))sin(2
√

πφσ (x+R)) =

=
a2

2R2 −
1
2

cos(4
√

πφσ (x))−πa2 (∇φσ (x))
2 + ... , R = ra

(7.69)

∇φσ (x)sin(2
√

πφσ (x+a)) =−sin(2
√

πφσ (x))∇φσ (x+a) =

=
1√
πa

cos(2
√

πφσ (x))+ ...

(7.70)

in deriving the bosonized expression for the product of two density operators. Thus
we get

: n j,σ :: n j+r,σ : ≃ a2
{

1− (−1)r

π
(∇φσ (x))

2 − (−1)r

2π2a2 cos(4
√

πφσ (x))

+
(−1)r

2π2R2 +(−1) j...

} (7.71)
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and

: n j,σ :: n j+1,σ : ≃ a2
{

2
π
(∇φσ (x))

2 +
1

2π2a2 cos(4
√

πφσ (x))

− 1
2π2α2 +(−1) j 2

π2a2 cos
(
2
√

πφσ (x)
)} (7.72)

where, in the last case, we have evaluated also the oscillating part since it contributes
in the three-body term. The derivation of the previous formula is reported in Ap-
pendix E. Now we can proceed to calculate the bosonized expression of the various
terms of the Hamiltonian.

The kinetic term

−
(

1− X
2

)
∑
j,σ

: Q j, j+1,σ : (7.73)

By using eq. (7.67) and eliminating the oscillating part which vanishes after integra-
tion, we immediately get(

1− X
2

)
a
∫

dx
[(

∇φ↑
)2

+
(
∇φ↓

)2
+
(
∇θ↑

)2
+
(
∇θ↓

)2
]
=

=

(
1− X

2

)
a
∫

dx
{[

(∇φc)
2 +(∇θc)

2
]
+
[
(∇φs)

2 +(∇θs)
2
]}

.

(7.74)

The three-body term

−2X ∑
j,σ

: Q j, j+1,σ :: n jσ̄ :: n j+1σ̄ : (7.75)

By multiplying the right hand sides of equations (7.67) and (7.72) and retaining only
the non-oscillating lower-order contributions, we get the following two terms:

a)

−2X
a2

2π2α2
a2

a

∫
dx∑

σ

[
(∇φσ (x))

2 +(∇θσ (x))
2
]
=

=− X
π2 a

∫
dx
{[

(∇φc)
2 +(∇θc)

2
]
+
[
(∇φs)

2 +(∇θs)
2
]} (7.76)
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b)

−2X
(
− 4

π3

)
1
a

∫
dx∑

σ

cos(2
√

πφσ (x))cos(2
√

πφσ̄ (x)) =

=
−2X

a

(
−8
π3

)∫
dxcos(2

√
πφ↑(x))cos(2

√
πφ↓(x)) =

=
−2X

a

(
−2
π3

)∫
dx
[
eı2

√
π(φ↑+φ↓)+ e−ı2

√
π(φ↑+φ↓)+ eı2

√
π(φ↑−φ↓)+ e−ı2

√
π(φ↑−φ↓)

]
=

=
−2X

a

(
−4
π3

)∫
dx
[
cos(

√
8πφc(x))+ cos(

√
8πφs(x))

]
=

=
8X
π3a

∫
dx
[
cos(

√
8πφc(x))+ cos(

√
8πφs(x))

]
.

(7.77)

The on-site interaction

U ∑
j

: n j,↑ :: n j,↓ : (7.78)

The double occupation number operator can be bosonized in the following way

: n j,↑ :: n j,↓ := a2
[

1
π

∇φ↑(x)∇φ↓(x)+
1

π2α2 sin(2
√

πφ↑(x))sin(2
√

πφ↓(x))+(−1) j...

]
.

(7.79)
Therefore, the on-site interaction generates the following two contributions in the
bosonized Hamiltonian:

a)

U
a2

π

1
a

∫
dx∇φ↑(x)∇φ↓(x) =

=U
a2

π

1
a

∫
dx

1
2

∇(φc(x)+φs(x))∇(φc(x)−φs(x)) =

=
Ua
2π

∫
dx
[
(∇φc(x))

2 − (∇φs(x))
2
] (7.80)
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b)

U
a2

π2α2
1
a

∫
dxsin(2

√
πφ↑(x))sin(2

√
πφ↓(x)) =

=U
a2

π2α2
1
a

∫
dx
(
−1

4

)(
eı2

√
πφ↑ − e−ı2

√
πφ↑
)
·
(

eı2
√

πφ↓ − e−ı2
√

πφ↓
)
=

=U
a2

π2α2
1
a

∫
dx
(
−1

4

)[
eı2

√
π(φ↑+φ↓)+ e−ı2

√
π(φ↑+φ↓)− eı2

√
π(φ↑−φ↓)− e−ı2

√
π(φ↑−φ↓)

]
=

=− U
2π2a

∫
dx
[
cos(

√
8πφc(x))− cos(

√
8πφs(x))

]
.

(7.81)

The parallel-spin-nearest-neighbor interaction

∑
j,σ

∑
r

V∥(r) : n j,σ :: n j+r,σ : (7.82)

Neglecting the constant term in eq. (7.71), this interaction gives rise to the following
two contributions:

a)

a2
∑
r

(
V∥(r)

1− (−1)r

π

)
1
a

∫
dx∑

σ

(∇φσ )
2 =

=
a
π

∑
r

(
V
r3 −

V (−1)r

r3 − 4X
π

(1− (−1)r)δr,1

)∫
dx∑

σ

(∇φσ )
2 =

=
a
π

(
ζ (3)V +

3
4

ζ (3)V − 8X
π

)∫
dx∑

σ

(∇φσ )
2 =

=

(
7
4

ζ (3)
V
π
− 8X

π2

)
a
∫

dx∑
σ

(∇φσ )
2 =

=

(
7
4

ζ (3)
V
π
− 8X

π2

)
a
∫

dx
[(

∇φ↑
)2

+
(
∇φ↓

)2
]
=

=

(
7
4

ζ (3)
V
π
− 8X

π2

)
a
∫

dx
[
(∇φc)

2 +(∇φs)
2
]

(7.83)

where ζ (n) = ∑r
1
rn is the Zeta Riemann function and η(n) = −∑r

(−1)r

rn =

∑r
(−1)r−1

rn is the Dirichlet eta function, related to the zeta function by η(n) =
(1−21−n)ζ (n);
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b)

− a2

2π2α2

(
∑
r

V∥(r)(−1)r
)

1
a

∫
dx∑

σ

cos(4
√

πφσ (x)) =

=
1

2π2a ∑
r

(
−V (−1)r

r3 +
4X
π

(−1)r
δr,1

)∫
dx∑

σ

cos(4
√

πφσ (x)) =

=
1

2π2a

(
3
4

ζ (3)V − 4X
π

)∫
dx
[
cos(4

√
πφ↑)+ cos(4

√
πφ↓)

]
=

=
1

2π2a

(
3
4

ζ (3)V − 4X
π

)∫
dx
[
cos(

√
8π(φc +φs))+ cos(

√
8π(φc −φs))

]
=

=

(
3
4

ζ (3)
V

π2a
− 4X

π3a

)∫
dxcos(

√
8πφc)cos(

√
8πφs) .

(7.84)

The opposite-spin-nearest-neighbor interaction

∑
j,σ

∑
r

V⊥(r) : n j,σ :: n j+r,σ̄ : (7.85)

In this case, the product of the two density operators is given by

: n j,σ :: n j+r,σ̄ :=

= a2
[

1
π

∇φσ (x)∇φσ̄ (x+R)+
(−1)r

π2α2 sin(2
√

πφσ (x))sin(2
√

πφσ̄ (x+R))+(−1) j...

]
=

≃ a2
[

1
π

∇φσ (x)∇φσ̄ (x)+
(−1)r

π2α2 sin(2
√

πφσ (x))sin(2
√

πφσ̄ (x))+(−1) j...

]
.

(7.86)

Notice that, unlike the case of parallel spins (eq. (7.71)), here we can replace
φσ̄ (x + R) with φσ̄ (x) in the product of the two sine functions since, using the
exponential notation, we get φσ ± φσ̄ in the exponent, which does not vanish at
lowest order. The two terms in eq. (7.86) can be rewritten as
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a)

a2

π
∑
r

V⊥(r)
1
a

∫
dx∑

σ

∇φσ ∇φσ̄ =

=
2Va
π

∑
r

1
r3

∫
dx∇φ↑∇φ↓ =

= 2ζ (3)
Va
π

∫
dx∇φ↑∇φ↓ =

= ζ (3)
Va
π

∫
dx
[
(∇φc)

2 − (∇φs)
2
]

(7.87)

b)

a2

π2α2 ∑
r

V⊥(r)(−1)r 1
a

∫
dx∑

σ

sin(2
√

πφσ )sin(2
√

πφσ̄ ) =

=
V

π2a ∑
r

(−1)r

r3

∫
dx∑

σ

sin(2
√

πφσ )sin(2
√

πφσ̄ ) =

=−3
4

ζ (3)
V

π2a

∫
dx∑

σ

sin(2
√

πφσ )sin(2
√

πφσ̄ ) =

=
3
8

ζ (3)
V

π2a

∫
dx∑

σ

[
cos(2

√
π(φσ +φσ̄ ))− cos(2

√
π(φσ −φσ̄ ))

]
=

=
3
4

ζ (3)
V

π2a

∫
dx
[
cos(2

√
π(φσ +φσ̄ ))− cos(2

√
π(φσ −φσ̄ ))

]
=

=
3
4

ζ (3)
V

π2a

∫
dx
[
cos(

√
8πφc)− cos(

√
8πφs)

]
.

(7.88)
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The full Hamiltonian and RG flow

Now, by summing all the previous contributions, we obtain the following bosonized
form of Hamiltonian (7.63)

H =

(
1− X

2
− X

π2

)
a
∫

dx
[
(∇θc)

2 +(∇θs)
2
]
+

+

(
1− X

2
− X

π2 −
8X
π2 +

U
2π

+
11ζ (3)V

4π

)
a
∫

dx(∇φc)
2+

+

(
1− X

2
− X

π2 −
8X
π2 − U

2π
+

3ζ (3)V
4π

)
a
∫

dx(∇φs)
2+

+

(
8X
π3a

− U
2π2a

+
3ζ (3)V

4π2a

)∫
dxcos(

√
8πφc)+

+

(
8X
π3a

+
U

2π2a
− 3ζ (3)V

4π2a

)∫
dxcos(

√
8πφs)+

+

(
− 4X

π3a
+

3ζ (3)V
4π2a

)∫
cos(

√
8πφc)cos(

√
8πφs) .

(7.89)

We can easily notice that, as expected, it has the form (3.83), i.e., it is the sum of two
independent sine-Gordon models plus a coupling Hamiltonian. Here the coefficients
are given by

vνKν =

(
1− X

2
− X

π2

)
2a (7.90)

vc

Kc
=

(
1− X

2
− X

π2 −
8X
π2 +

U
2π

+
11ζ (3)V

4π

)
2a (7.91)

vs

Ks
=

(
1− X

2
− X

π2 −
8X
π2 − U

2π
+

3ζ (3)V
4π

)
2a (7.92)

gc = mcvc =

(
16X

π
−U +

3
2

ζ (3)V
)

a (7.93)

gs = msvs =

(
16X

π
+U − 3

2
ζ (3)V

)
a (7.94)

gcs =

(
−8X

π
+

3
2

ζ (3)V
)

a , (7.95)
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from which we can extrapolate the Luttinger parameters and the velocities. At first
order in the interaction parameters they read

Kν = 1+
1

4π

[
16X

π
− cνU − 3ζ (3)V

2
−4ζ (3)V δν ,c

]
(7.96)

vν = 2a
[

2− X
2
− X

π2 −Kν

]
(7.97)

where cc = 1 and cs = −1. We also notice that, as a consequence of the SU(2)
symmetry in the spin channel, the Luttinger parameter is related to the mass by

Ks = 1+
gs

4πa
= 1+

ms

2π
. (7.98)

As mentioned in Chapter 3, if the charge-spin coupling is neglected, the RG analysis
of the sine-Gordon model in the ν sector predicts the presence of a gapped phase
when

2π(Kν −1)< |mν | . (7.99)

In the spin sector, since the relation (7.98) holds, the condition for obtaining a
non-zero gap reduces to ms < |ms|, which implies ms < 0 or, equivalently, Ks < 1.
Therefore, we get the following critical line:

Us =
3
2

ζ (3)V − 16
π

X . (7.100)

For U <Us, the spin field φs is pinned to 0 and ∆s ̸= 0; whereas for U >Us, φs is
unpinned and ∆s = 0. We stress that here the case ms > 0, which corresponds to
φs =

√
π/8 is forbidden by the SU(2) symmetry.

In the charge sector, the solution of equation (7.99) provides the following transition
line

Uc =
3
2

ζ (3)V +
16
π

X , (7.101)

corresponding to gc = 0. It separates two insulating regimes (∆c ̸= 0 everywhere),
characterized by φc = 0 for U >Uc and φc =

√
π/8 for U <Uc.

Therefore, according to the classification furnished in Chapter 3 (Tab. 3.1), the
ground state of Hamiltonian (7.63) in the weak coupling approximation presents
three different phases in the repulsive regime: a Mott insulator with localized holon-
doublon fluctuations in a uniform unit-density background for U >Uc; an Haldane
insulator with “dilute” hidden antiferromagnetic order of holons and doublons for
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Table 7.1 Correspondence between ground state quantum phases, bosonic fields and non-
local order parameters from one-loop bosonization for a model with SU(2) spin symmetry.
We have indicated the unpinned fields with the letter u.

√
2πΦc

√
2πΦs ∆c ∆s LRO

LL u u 0 0 none
LE u 0 0 open C(s)

P

MI 0 u open 0 C(c)
P

HI π/2 u open 0 C(c)
S

BOW 0 0 open open C(c)
P , C(s)

P

CDW π/2 0 open open C(c)
S ,C(s)

P

Us < U < Uc; and a charge density wave for U < Us (see Fig. 7.1). In general,
further phases are possible. For example, when the dipolar interaction vanishes,
the η−symmetry is restored and the relation (7.98) holds also in the charge sector,
preventing the pinning of the field to the value φc =

√
π/8 and the subsequent

formation of antiferromagnetic order of holons and doublons. Therefore the Haldane
insulator is replaced by a Luttinger liquid phase and the charge density wave is
reduced to a metallic Luther Emery phase. Finally, in case both fields are locked to
the value 0, a bond ordered wave takes place. A summary of the possible phases
allowed by the sine-Gordon model and the symmetries of the original fermionic
Hamiltonian is reported in Table 7.1. In the last column, each phase is characterized
by means of non-local order parameters, signaling the presence of a parity order
when φν = 0 and an Haldane string order when φν =

√
π/8.

7.2.2 Including interaction non-perturbatively

In this section, we present an alternative approach to bosonization. To this purpose,
we split the Hamiltonian (7.63) into the sum of two single-species Hamiltonians,
already containing part of the interaction non perturbatively, plus an inter-species
contribution:

H = ∑
σ

Hσ +H↑↓ , (7.102)

where ∑σ Hσ contains the first row of (7.63). Up to the coefficient (1− X
2 ), each

of the two single-species Hamiltonians, Hσ , is a long-range “t-V ” model, which
is known to show a gapless Luttinger liquid behavior for small enough interaction
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Fig. 7.1 Weak coupling phase diagram of Hamiltonian (7.63) from standard bosonization
analysis. The dotted line signals the transition in the charge sector, while the dashed line
signals the transition in the spin sector.

strength. Its Luttinger parameter K(X ,V ) can be estimated numerically with high
precision [131, 132]; whereas the two limits for X = 0 and V = 0 can be derived
analytically (see [133] and [81], respectively). In this case, one obtains:

K(0,V ) =

[
1+

6ζ (3)V
π2

]−1/2

, K(X ,0) =

[
2
π

arccos
2X

π
(
1− X

2

)]−1

. (7.103)

Obviously, K can also be calculated within the standard bosonization approximation
[134], obtaining

K(X ,V )≃ 1+
1

4π

[
16X

π
− 7ζ (3)V

2

]
. (7.104)

At this point, we proceed to bosonize the inter-species Hamiltonian H↑↓. This
procedure produces a fully decoupling between the charge and spin channels:

H = H ′
c +H ′

s (7.105)

with

H ′
ν =

v′ν
2

∫
dx
[

K′
ν (∇θν)

2 +
1

K′
ν

(∇φν)
2
]
+

mνvν

2π2a2

∫
dxcos

(√
8πφν

)
(7.106)

and 
v′ν K′

ν

2 = vK
2 − Xa

π2

v′ν
2K′

ν

= v
2K +

[
− X

π2 +
cν

2π
(U +2ζ (3)V )

]
a .

(7.107)
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Fig. 7.2 Phase diagram at V = 0 from bosonization analysis of Section 7.2.2. The dashed
line signals the transition in the spin sector, while the dotted lines indicate transitions in the
charge sector. In case of standard bosonization, the Haldane insulator phase HI would still
be a LL.

Now, using the relation vK = (1− X
2 )2a, one gets

(K′
ν)

2 =
1− X

2 − X
π2(

1− X
2

) 1
K2 − X

π2 +
cν

2π
(U +2ζ (3)V )

, v′ν = vν

Kν

K′
ν

(7.108)

which, upon linearization, gives

K′
ν = K

{
1− X

2π2 +
K2

4π

[
2X
π

− cν (U +2ζ (3)V )

]}
(7.109)

where cc = 1, cs =−1.
Now the renormalization group analysis can be done by considering the expression
of K with non-perturbative dependence on V (or X), and approximating to first
order the remaining interaction in K, K′

ν and mν . This approach has already been
applied to the case X = 0 in [26], where it has been shown that a BOW phase, not
predicted within the standard bosonization, can appear. As an application of our
results at generic X and V , here we derive the phase diagram in the case V = 0,
where K ≡ K(X ,0) is given by eq. (7.103). The outcome is plotted in Fig. 7.2. From
the comparison with the result of the standard approach, we observe the appearance
of a non-trivial HI phase in the range 4π

3 X ≤U ≤ 16
π

X . As described in Table 7.1,
this corresponds to the presence of an Haldane string order in the charge sector, with
degenerate edge modes [78].
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7.3 Strong coupling limit

The bosonization approach is known to work for small values of interaction strengths.
Here we want to study the opposite limit. Let’s start by considering the model with
short-range interaction, described by the Hamiltonian

H =−∑
j,σ

Q j, j+1,σ
[
1−X(n j,σ̄ −n j+1,σ̄ )

2]+U ∑
j

n j,↑n j,↓+V ∑
j

n jn j+1 . (7.110)

If the interactions are strong enough, we can neglect the kinetic term and the phase
diagram reduces to just two phases, the MI and the CDW, emerging from the
competition between the on-site and the nearest-neighbor interactions. The contact
interaction is minimized when there are no double occupations. Since we are working
at half-filling, this means that a situation in which all the sites are singly occupied is
favoured. Hence the system behaves as a Mott insulator and its energy is

EMI

L
=V . (7.111)

Meanwhile the nearest-neighbor interaction is minimized by a CDW configuration
in which empty sites alternate with doubly occupied sites:

ECDW

L
=

U
2
. (7.112)

Requiring the condition EMI = ECDW , one obtains the transition line between the
two phases:

U = 2V. (7.113)

In the case in which the nearest-neighbor interaction is replaced by the dipolar
interaction (as in Hamiltonian (7.60)), the energies of these two phases change into

EMI

L
=

V
L ∑

i, j>i

1
|i− j|3

=V ζ (3) (7.114)

and
ECDW

L
=

U
2
+

4V
2 ∑

k

1
(2k)3 =

U
2
+

V
4

ζ (3) , (7.115)
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respectively. Requiring the condition EMI = ECDW , one gets

U =
3
2

ζ (3)V . (7.116)

Since the numerical analysis shows the appearance of a further BOW phase for X = 0
[26], here we also consider the possibility of its existence in our model. In fact, it
seems to disappear at least in the strong coupling limit. In the following we calculate
the energy of the particular BOW configuration shown in figure 7.3 and verify that it
is always grater than the energy of the MI or that of the CDW considered above.

Fig. 7.3 A particular BOW configuration, which has both charge and spin parity orders.

Its energy is given by

EBOW

L
=

1
4

{
U +V

(
3∑

n

1
(4n−3)3 +4∑

n

1
(4n−2)3 +3∑

n

1
(4n−1)3 +6∑

n

1
(4n)3

)}
=

U
4
+

101
128

ζ (3)V .

(7.117)
It is easily verified that the condition EBOW < EMI ∧EBOW < ECDW is never satisfied.
Thus a direct MI-CDW phase transition is expected in the strong coupling limit also
in the presence of dipolar interaction.

7.4 Numerical analysis

Here we study the phase diagram of Hamiltonian (7.60) by using DMRG simula-
tions. In fact, for appropriate range of parameters we find the evidence of a further
underlying order in the spin channel with respect to the bosonization predictions.
This is revealed by the Haldane string non-local order parameter, thus showing the
presence of protected edge modes.
As a first step we investigate the charge sector by evaluating the thermodynamic
limit of the charge gap

∆c =
E(L+2)+E(L−2)−2E(L)

2
, (7.118)
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where E(N) is the ground state energy of the system with N particles. Our results are
reported in Fig. 7.4, as a function of the interaction parameter U , for fixed X = 0.2
and V = 0.5. Although ∆c is very small in the intermediate region, our results show

SMI MISHICHICDW
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KS

C

CP
(c)

CP
(s)

CS
(c)

CS
(s)

Fig. 7.4 Thermodynamic limit of charge gap, spin Luttinger constant and NLOPs of Hamil-
tonian (7.60) for t = 1, V = 0.5 and X = 0.2 as a function of U . ∆c is extrapolated from
finite size values up to L = 44 obtained with OBC. Ks and the NLOPs are extrapolated
from finite size values up to L = 36 obtained with PBC. The value of the Haldane strings
is extrapolated from the finite size values C(ν)

S (L/2), while the value of the parities is ex-
trapolated from (C(ν)

P (L/2) +C(ν)
P (L/2+ 1))/2. In our DMRG simulations we cut r to

three nearest-neighbors keeping up to 1600 DMRG states and performing up to 6 finite size
sweeps.

that it vanishes only in one point. Therefore, the system is always insulating; however
the nature of the insulating behavior changes at the transition point, where ∆c = 0.
The numerical analysis becomes more crucial when analyzing the behavior in the
spin degree of freedom, where the presence of correlated hopping processes is known
to make bosonization less predictive [29, 135]. In this case, as a fist step we evaluate
the thermodynamic limit of the Luttinger parameter

Ks = lim
q→0

π
Ss(q)

q
(7.119)
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where
Ss(q) =

1
L ∑

k,l
eıq(k−l)

(
⟨S(s),zk S(s),zl ⟩−⟨S(s),zk ⟩⟨S(s),zl ⟩

)
(7.120)

is the spin structure factor. Luttinger liquid theory predicts Ks = 1 or Ks = 0 de-
pending on whether the spin gap is closed (∆s = 0) or open (∆s ̸= 0), where ∆s is
defined as the energy variation in flipping one spin. When the Luttinger constant is
computed numerically, both logarithmic corrections and finite size effects make very
hard to get sharp 0,1 values. Nevertheless a well established and accurate method
for distinguishing gapless and gapped phases, based on Ks, is to recognize a gapless
phase in case Ks > 1 and a gapped phase when Ks < 1 [20, 23]; consequently the
point Ks = 1 can be identified as the transition point. As shown in Fig. 7.4, the
analysis based on the TDL of Ks surprisingly finds two different spin gapped phases,
the first one close to U = 0 and the second one around the point ∆c = 0. In particular,
the latter is not predicted within the bosonization approximation.
After having identified the gapped and gapless regions in the two sectors, we observe
the behavior of NLOPs, in order to characterize the different phases. Based on
their values, we find a charge density wave order (with C(c)

S ,C(s)
P ̸= 0) for large V ,

in analogy with the extended Hubbard model described in the previous chapter.
The similarities extend also to the strong U region where the system behaves as
a Mott insulator, characterized by the presence of a finite C(c)

P . Instead, for inter-
mediate values of the parameters, we find three different phases characterized by
the presence of hidden magnetism. In particular, as U increases from very small
values, the spin gap closes and the CDW order is replaced by an Haldane insulator,
characterized solely by the charge Haldane string order parameter C(c)

S , as predicted
by bosonization. This partly gapped phase reproduces in a two-species fermionic
system the charge hidden antiferromagnetic order that characterizes the well known
topological Haldane insulator found in the context of spin-1 chains [48] and extended
Bose-Hubbard model [136, 137, 121]. Finally, according to our DMRG analysis, the
two remaining phases are fully gapped and share the same antiferromagnetic order
in the spin channel (signaled by finite C(s)

S ), while the charge order changes from
hidden antiferromagnetism (C(c)

S ̸= 0) to the formation of localized holons/doublons
pairs (C(c)

P ̸= 0). These two phases have been called spin Haldane insulator (SHI)
and spin Mott insulator (SMI), respectively. Figure 7.4 shows the identification
of phase transitions based on the observation of ∆c, Ks and the NLOPs for fixed
X = 0.2, V = 0.5 and with varying U . In addition, we show the finite size scaling of
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the Haldane string operators in Figure 7.5 for the three intermediate regions, i.e, the
HI, SHI and SMI phases.

CS
(c)

C S
(s)

Fig. 7.5 Scaling of Haldane string correlators at X = 0.2 and V = 0.5 for different values of
U , namely in the HI, SHI and SMI phases.

In Figure 7.6 we draw the full phase diagram of Hamiltonian (7.60) at fixed X = 0.2,
by comparing the results obtained from DMRG simulations (points and dotted/dashed
lines) with the predictions of bosonization (solid lines). In this regard, we observe
that the one-loop bosonization is not able to capture the presence of the spin Haldane
string order, since the spin SU(2) symmetry prevents the mass ms from assuming a
positive value and consequently the field φs from pinning to

√
π/8. Moreover we

would like to highlight the fact that both SHI and SMI regimes cannot be detected
by means of a local order, although they are fully gapped, as would suggest the
one-loop bosonization. Indeed a non-zero local parameter would entail the presence
of a long-range order that breaks a continuous symmetry of the Hamiltonian, thus
violating the Mermin-Wagner theorem. Therefore, SHI and SMI phases cannot be
identified with BSDW and SDW of Table 3.1. In fact, these phases go beyond the
one-loop bosonization treatment. Nevertheless, the bosonization approach could
be corrected by releasing the requirement of spin-charge separation and/or by in-
cluding the effect of higher order harmonics, as done in [135]. In particular, an
approximative method to take into account the effect of spin-charge coupling con-
sists in considering an effective spin sine-Gordon model with renormalized mass
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Fig. 7.6 DMRG (symbols) and bosonization (solid lines) phase diagram of (7.60) as a
function of U and V with t = 1 and X = 0.2. The dotted line signals the transition in the
charge sector, while the dashed lines indicate transitions in the spin sector. The dotted-dashed
line is a transition involving both channels. The red points mark the new transition lines with
respect to the previous results.

m∗
s = ms +Mcs < cos

√
8πφc >, where φc = 0 or φc =

√
π/8. Hence, depending

on the sign of Mcs, one can find m∗
s > 0 even for a negative ms. That happens for

Mcs > 0 if φc = 0, thus generating a SMI phase, and for Mcs < 0 if φc =
√

π/8,
thus producing a SHI phase. The same approach could also be applied to justify the
deviation of the CDW-HI transition line from the one-loop bosonization predictions,
exploring the case m∗

s < 0.
Finally, we checked the stability and robustness of the phase diagram with respect
to varying X . In particular, as X is increased, the shape of the entire region with
spin Haldane string order (finite C(s)

S ) is preserved, whereas the region with charge
Haldane string order (finite C(c)

S ) expands, thus increasing the size of the SHI phase.
The crucial point is that the spin Haldane order persists also for very weak X , as
shown in Figure 7.7. This fact suggests that hidden spin orders are generated by the
only presence of correlated hopping terms, thus producing a new scenario. Indeed,
previous discoveries of (metallic) phases with spin Haldane string orders [76, 77]
were induced by explicitly breaking the full rotational spin symmetry. Instead, our
results support the presence of insulating regimes with hidden spin magnetic orders
generated by interaction.
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Fig. 7.7 Thermodynamic limit of spin Luttinger constant Ks and NLOPs for t = 1, V = 0.3
and X = 0.05 as a function of U . Data are extrapolated from finite size values up to L = 24
with PBC. The Haldane string is extrapolated from C(ν)

S (L/2) with varying L while the the
parity is extrapolated as (C(ν)

P (L/2)+C(ν)
P (L/2+1))/2. In our DMRG simulations we cut r

to three nearest-neighbors keeping up to 1200 DMRG states and performing up to 6 finite
size sweeps.

7.5 Correspondence with a time-dependent model: Flo-
quet analysis

In this last section we show the equivalence between the model (7.60) and the
effective static model corresponding to a time-periodic extended Hubbard model of
the form

H =−∑
j,σ
(c†

j,σ c j+1,σ +h.c.)+Ū(t)∑
j

n j,↑n j,↓+V ∑
j,r≥1

n jn j+r

r3 . (7.121)

The study of time-dependent models is of great interest to understand how equi-
librium states can be reached through local dynamics and related phenomena like
transport or many-body localization. Besides that, periodically driven systems open
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the way to the observation of topologically non-trivial orders. In particular, they
can be described by an effective Hamiltonian. That is achieved by means of the
Floquet analysis, which plays an important role for quantum simulation. Indeed
in cold-atom experiments all the couplings, i.e., the hopping amplitude t, the short
range interaction U and the long-range dipolar repulsion V can be independently
controlled. On the other hand, the time dependence in Ū(t) can be induced by a
rapid variation of the scattering length [138]. In fact, this can generate a periodic
modulation of the form Ū(t) = U +U1 cos(ωt), which consequently makes the
Hamiltonian time-periodic H(t) = H(t+tP) with period tP = 2π/ω . Therefore, in
the regime of high frequencies ω >>V/h̄,U/h̄, t/h̄, Floquet theory can be applied
[139] to reduce Hamiltonian (7.121) to an effective static model with the hopping
processes renormalized by the density, namely eq. (7.60), with the rate X determined
by the strength of the interaction U1 and the frequency ω . In the following, we
provide the details of the calculation, by starting from the case V = 0 [100].
Let us consider the Hamiltonian

H =− ∑
⟨i, j⟩,σ

(
c†

i,σ c j,σ +h.c.
)
+Ū(t)∑

i
ni,↑ni,↓ , (7.122)

with
Ū(t) =U +U1 cos(ωt) . (7.123)

Following the Floquet theory, we observe that solutions of the Schroedinger problem
have the form

|ψn(t)⟩= e−ıEnt/h̄|un(t)⟩ , (7.124)

where |un(t)⟩ are the so-called Floquet modes and are periodic with the same period
tP of the driving force [100, 140, 141]. They can be regarded as the eigenstates of
the so-called Floquet Hamiltonian

H̃(t) = H(t)− ih̄∂t , (7.125)

while En are the corresponding eigenvalues:

H̃(t)|un(t)⟩= En|un(t)⟩ . (7.126)

The solutions |ψn(t)⟩ are unique up to a shift of the quasienergies En by an integer
multiple m of h̄ω . Thus this system, being periodically time-dependent, possesses a
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Brillouin zone-like structure.
The eigenvalue problem (7.126) is defined in the Hilbert space H ′ = H ⊗HT ,
where H is the standard Fock space and HT is the Hilbert space of time-periodic
functions. Hence, if we indicate the Fock states with |n j,σ ⟩ and label the basis of the
periodic functions with m, we can define the following Floquet basis

|n j,σ ,m⟩= |n j,σ ⟩e−α(t)D̂+ımωt (7.127)

with
α(t) = ıK sin(ωt) = ı

U1

h̄ω
sin(ωt) (7.128)

and D̂ = ∑ j n j,↑n j,↓ is the double-occupation operator.
We can obtain the quasienergies by computing the matrix elements

⟨⟨n j,σ ,m|H̃(t)|n′j,σ ,m′⟩⟩tP = ⟨⟨n j,σ |eα(t)D̂e−ımωtH̃(t)eım′ωte−α(t)D̂|n′j,σ ⟩⟩tP

(7.129)
where the symbol ⟨⟨...⟩⟩tP means that the scalar product is time-averaged:

⟨⟨...⟩⟩tP =
1
tP

∫ tP

0
dt⟨...⟩ . (7.130)
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Let us compute this expectation value

⟨⟨n j,σ |eα(t)D̂e−ımωt(−ıh̄∂t)eım′ωte−α(t)D̂|n′j,σ ⟩⟩tP =

=m′h̄ω
1
tP

∫ tP

0
e−ı(m−m′)ωt︸ ︷︷ ︸
δm,m′

⟨n j,σ |n′j,σ ⟩︸ ︷︷ ︸
δn,n′

−ıh̄⟨⟨n j,σ |eα(t)D̂e−ı(m−m′)ωt

(
−ı

U1

h̄
cos(ωt)D̂

)
e−α(t)D̂|n′j,σ ⟩⟩tP

=mh̄ωδm,m′δn,n′ −U1⟨⟨n j,σ |e−ı(m−m′)ωt cos(ωt)D̂|n′j,σ ⟩⟩tP

⟨⟨n j,σ |eα(t)D̂e−ımωtH(t)eım′ωte−α(t)D̂|n′j,σ ⟩⟩tP =

=⟨⟨n j,σ |e−ı(m−m′)ωteα(t)D̂T̂ e−α(t)D̂|n′j,σ ⟩⟩tP

+⟨⟨n j,σ |e−ı(m−m′)ωteα(t)D̂UD̂e−α(t)D̂|n′j,σ ⟩⟩tP

+⟨⟨n j,σ |e−ı(m−m′)ωteα(t)D̂U1 cos(ωt)D̂e−α(t)D̂|n′j,σ ⟩⟩tP

=⟨⟨n j,σ |e−ı(m−m′)ωteα(t)D̂(T̂ +Û)e−α(t)D̂|n′j,σ ⟩⟩tP

+U1⟨⟨n j,σ |e−ı(m−m′)ωt cos(ωt)D̂|n′j,σ ⟩⟩tP .

(7.131)

Hence

⟨⟨n j,σ ,m|H̃(t)|n′j,σ ,m′⟩⟩tP =

=mh̄ωδm,m′δn,n′ +
1
tP

∫ tP

0
dte−ı(m−m′)ωt⟨n j,σ |eα(t)D̂HHubbarde−α(t)D̂|n′j,σ ⟩

(7.132)

with HHubbard = T̂ +UD̂. Clearly D̂ commutes with the exponential operator. Thus,
this term gives δm,m′⟨n j,σ |UD̂|n′j,σ ⟩. Let us compute the expectation value of T̂ . To
do this, we use the formula

eBAe−B =
∞

∑
n=0

1
n!
[B,A]n (7.133)

which entails

eα(t)D̂T̂ e−α(t)D̂ =
∞

∑
n=0

α(t)n

n!
[D̂, T̂ ]n . (7.134)
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The commutator gives

[D̂, T̂ ] =− ∑
⟨i, j⟩σ

(c†
i,σ c j,σ −h.c.)(ni,σ̄ −n j,σ̄ ) (7.135)

and in terms of the X-operators it is

− ∑
⟨i, j⟩σ

(X2σ̄
i X0σ

j −Xσ0
i X σ̄2

j )+h.c.= T+−T− (7.136)

where we have indicated with T+ the first term and with T− the second one. Then,
we have

[D̂, T̂ ]2 = T++T−

[D̂, T̂ ]3 = T+−T−
(7.137)

and so on. Consequently

∑
n

α(t)n

n!
[D̂, T̂ ]n =

= T̂ +(T++T−)
∞

∑
n=1

α(t)2n

(2n)!
+(T+−T−)

∞

∑
n=0

α(t)2n+1

(2n+1)!

= T̂ +(T++T−)

(
∞

∑
n=0

(−1)n(K sin(ωt))2n

(2n)!
−1

)
+ ı(T+−T−)

∞

∑
n=0

(−1)n(K sin(ωt))2n+1

(2n+1)!

= T̂ +(T++T−)(cos(K sin(ωt))−1)+ ı(T+−T−)sin(K sin(ωt)) .

(7.138)

Finally we average these quantities on time. If we assume that the frequency is
sufficiently high, we can neglect the non-diagonal blocks and consider only m = m′.
Thus, we have

1
T

∫ T

0
cos(K sin(ωt))dt=

1
π

∫
π

0
cos(K sinx)dx = J0(K)

1
T

∫ T

0
sin(K sin(ωt))dt=

1
2π

∫ 2π

0
sin(K sinx)dx = 0

(7.139)

where J0 is the first kind Bessel function. Hence, our result is the following

⟨⟨n j,σ ,m|H̃(t)|n′j,σ ,m′⟩⟩tP = δm,m′
(
⟨n j,σ |He f f |n′j,σ ⟩+mh̄ωδn,n′

)
. (7.140)
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where
He f f = T̂ − (1−J0(K))(T++T−)+Û (7.141)

is an effective time-independent Hamiltonian. Thus we have reduced the original
time-dependent Hamiltonian to an effective static Hamiltonian. We observe that

T++T− =− ∑
⟨i, j⟩σ

(c†
i,σ c j,σ +h.c.)(ni,σ̄ +n j,σ̄ −2ni,σ̄ n j,σ̄ ) (7.142)

and the effective Hamiltonian can be written in the following form

He f f =− ∑
⟨i, j⟩σ

(c†
i,σ c j,σ +h.c.)[1−X(ni,σ̄ +n j,σ̄ −2ni,σ̄ n j,σ̄ )]+U ∑

i
ni,↑ni,↓.

(7.143)
with X = 1−J0(K). This can be easily recognized as the particle-hole invariant
correlated-hopping model (7.60), at V = 0.
Now suppose to add a (time-independent) dipolar interaction to Hamiltonian (7.122).
Since this extra-term commutes with D̂, we can repeat the same procedure and obtain

He f f =− ∑
⟨i, j⟩σ

(c†
i,σ c j,σ +h.c.)[1−X(ni,σ̄ +n j,σ̄ −2ni,σ̄ n j,σ̄ )]+

+U ∑
i

ni,↑ni,↓+V ∑
⟨i,r⟩

nini+r

r3 ,
(7.144)

which coincides with Hamiltonian (7.60).

In order to check the validity of the Floquet theory we compute with numerical
simulations the finite size NLOPs for both the time dependent model (7.121) and
the effective one (7.144). In the first case, the simulations are performed by means
of Exact Diagonalization starting from an initial state with given parameters t,U,V ;
while at t> 0 a time periodic interaction Ū(t) is applied in order to get correlated
hopping processes with amplitude X = 0.2. Then, we monitor the time evolution
and we evaluate the time-averages of the NLOPs. The results are shown in Figure
7.8. Here the red-dashed lines represent the time averaged values of NLOPs, while
black-dotted lines are the NLOPs computed in the ground state of the effective model,
with couplings t,U,V,X . The comparison shows a perfect agreement, thus validating
the possibility of investigating the model (7.144) in order to get information about
the system described by Hamiltonian (7.121).
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Fig. 7.8 Blue continuous lines are the time evolution of NLOPs in Hamiltonian (7.121), red
dashed lines are their time-averaged values and black dotted lines are the NLOPs given by
the effective Hamiltonian (7.144). The Haldane strings are computed as C(ν)

S (L/2) while
the parities are computed as (C(ν)

P (L/2)+C(ν)
P (L/2+1))/2 for a system of L = 8 sites, with

couplings U = 0.6, V = 0.6 and U1/(h̄ω) = 0.918 (the latter corresponding to an amplitude
of the correlated hopping processes X = 0.2).

We finally would like to highlight that the regimes characterized by the presence of
hidden magnetism can be reached by means of the currently available experimental
setups and probes. In fact proposals for the observation of hidden charge magnetism
[50, 142–145] have been carried out. At the same time, investigations of periodically
modulated quantum systems [146] have stimulated the realization of particle-hole
symmetric Hubbard-like Hamiltonians with correlated hopping processes [125].
Our results could be verified by using a mixture of Erbium isotopes. In particular
fermionic 167Er [106] and bosonic 168Er [105] isotopes are currently available in
laboratories. In the second case, the scattering length can be tuned in order to
reach an hard-core regime. That would allow to get an effective two-component
Fermi mixture. An appropriate lattice depth should allow to easily obtain the regime
0.5 ≲V/t ≲ 2, where hidden magnetism is predicted. On the other hand, Feshbach
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resonance to tune the on-site interaction between the two Er isotopes should become
available [147]. Finally, the correlated hopping processes can be realized by applying
a rapid time dependent modulation, as described in [125]. Doing measurements in a
dynamical environment is very challenging. Nevertheless, recently local correlations
have been probed for a system of periodically modulated fermions [148]. The
technique is based on a sudden freeze of the system and subsequent application of
procedures used in static configurations.

7.6 Conclusions

In this Chapter we have studied both the effect of correlated hopping processes and
long-range interaction on the phase diagram of the Hubbard model. We have used
both analytical and numerical techniques. In particular, by comparing the ground
state phase diagrams obtained from one-loop bosonization in the weak coupling limit
and DMRG simulations, we have found good agreement for the charge sector, while
numerical data support the presence of a further hidden order in the spin channel,
which is not predicted by bosonization. In fact, although this hidden magnetism
emerges inside fully gapped phases, it can be solely detected by the non-vanishing
of Haldane string-like non-local order parameters.
Finally we have shown that the phases found could be observed also in a periodically
modulated two-component fermionic system and experimentally detected in cold-
atom gases.



Chapter 8

Two-dimensional non-local parity
operator

Our next task is to generalize the non-local order parameters defined in 1D to higher
dimensions. In particular, we focus on the 2D charge parity order, which we expect
to characterize the Mott insulator. The latter has a number of particles in each site
equal to the (integer) filling n, with small deviations, i.e., pairs of sites with n−1
and n+1 particles forming bound states. In 1D this effect is captured by a non-zero
value of the non-local string of parities given in eq. (2.15), with ν = c. Here we
explore the behavior of generalized brane parity operators from 1D to 2D in the
superfluid-Mott insulator transition occurring in the Bose-Hubbard model at n = 1.
Indeed, the parity order parameter is expected to be zero in the superfluid (SF) and
finite in the Mott insulator. In fact, in ref. [149] it has been conjectured that in two
dimensions the average of the parity operator should decay to zero also in the MI, if
defined in a way similar to that adopted in the one dimensional lattice. We confirm
this prediction by means of GFQMC simulations and show that the introduction of a
further phase makes the parameter non-zero in the MI while still vanishing in the SF.
The content of this chapter has been published in Ref. [150].

8.1 The SF-MI transition in the Bose-Hubbard model

A non-vanishing value of the charge parity order parameter introduced in Chapter 2,
eq. (2.15), signals the presence of a MI phase, in both fermionic and bosonic models.
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Indeed, this phase, which is induced by interaction, is a paradigmatic example of a
quantum phase that has no classical counterparts and cannot be detected by a local
order parameter. The general picture of the MI is described by a state with a uniform
distribution of particles (n per site), with quantum fluctuations consisting of bound
pairs of holons and doublons, i.e., sites with n−1 and n+1 particles, respectively
(see Fig. 8.1). The correlation length of these pairs is finite, so that their presence

r

+1 −1 −1

Fig. 8.1 Picture of the MI phase in the case n = 1. The on-site parity PR (eq. 8.2) is equal to
+1 for single occupations and to −1 for fluctuations (i.e., doublons and holons). The order
parameter for the one-dimensional MI phase is given by the product of on-site parities on a
string of length r (eq. (8.3)).

does not affect the overall parity of a string of sites unless for those straddling its
boundary, which amount to a zero-measure set. As the correlation length of the
pairs grows to infinity, the system transits from the MI phase to a gapless one. In
order to check the validity of generalized parity operators in higher dimensions, here
we analyze their behavior in the SF-MI transition occurring in the Bose-Hubbard
model on M-leg ladders, with M ranging from 1 (corresponding to the 1D case) to ∞

(corresponding to the 2D case). The Bose-Hubbard model, introduced in equation
(1.55), on ladders with L×M sites, reads

H =− t
2 ∑
⟨R,R′⟩

b†
RbR′ +h.c.+

U
2 ∑

R
nR(nR −1) (8.1)
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Fig. 8.2 Formation of doublons through the MI-SF transition. The data have been computed
on a 2-leg ladder with L = 30.
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where we have renormalized the amplitude of the hopping term and have relabeled
each site i with its coordinates R = (x,y) on the rectangular lattice. As always,
⟨R,R′⟩ indicates nearest-neighbor sites, b†

R (bR) creates (destroys) a boson on the
site R, and nR = b†

RbR is the density on the site R. The density per site is fixed
to be n = N/(L×M), where N is the number of bosons and L×M is the number
of lattice sites. In the following, we concentrate on the case with n = 1. We first
consider finite systems. As an example, in Figure 8.2, we show the formation of
doublons as the interaction strength U/t decreases, for a ladder with M = 2 and
L = 30. Then we study the properties of the ladders with M legs by extrapolating
the L → ∞ limit of the parity operators computed on lattices with finite number of
sites and periodic-boundary conditions in both directions. Finally, in order to assess
the properties of the two-dimensional lattice, we vary the number of legs M and
extrapolate the M → ∞ limit, which provides insights into the two-dimensional case.

8.2 Brane parities

In order to achieve the goal of finding a proper order parameter for the MI, we
consider the density fluctuations with respect to the average value n = 1 on a single
site R, namely δnR = nR − 1. They can be described through an on-site parity
operator PR defined as

PR = eıπδnR . (8.2)

Depending on the parity of the boson density nR this operator assumes one of the
two possible values PR =±1. Then, the 1D non-local parity introduced in equation
(2.15) can be regarded as a string of on-site parity operators (from x = 0 to x = r):

OP(r,M = 1) = ∏
0≤x<r

Px,0 (8.3)

(see Fig. 8.1). With respect to the notation used in the previous chapters, here we omit
the index ν (since it is always referred to the charge), and explicit the dependence
on M. In case M = 1 we recover the definition given for the one-dimensional case.
This definition can be extended to the case with M > 1 in different ways. The most
natural generalization consists in introducing a brane of on-site parity operators, or
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equivalently, a string of rung parity operators, in the following way:

OP(r,M) = ∏
0≤x<r

∏
0≤y<M

Px,y = ∏
0≤x<r

P rung
x (M) , (8.4)

where the role of the single site in the 1D chain is replaced by the entire rung (see
Fig. 8.3). Therefore, P rung

x is defined in terms of the rung density fluctuations
δnrung

x = nrung
x −M = ∑

M−1
y=0 nx,y −M, namely

P rung
x (M) = eıπδnrung

x . (8.5)

In one dimension (M = 1), the MI phase can be distinguished from the SF by looking

rung rung

r

L

M

r

P rung
0 P rung

r

∏x P
rung
x

Fig. 8.3 Left: Schematic representation of the 2D lattice with single occupations (red circles)
and holons/doublons pairs (white and blue circles). The orange area represents a brane
enclosed between two delimiting rungs. Right: Schematic representation of the brane parity
operator (8.4).

at the ground-state expectation value of OP(r,M):

CP(r,M)≡ ⟨OP(r,M)⟩= ⟨ΦGS|OP(r,M)|ΦGS⟩ , (8.6)

which coincides with the correlation function ⟨O†
P(0,M)OP(r,M)⟩. Indeed, CP(r,1),

in the limit r → ∞, is known to stay finite in the MI, while it is vanishing in the SF
phase [51], thus playing the role of an order parameter for the MI phase. For higher
spatial dimensions, that is less obvious. In fact, it has been argued [149] that CP(r,M)

should decay to zero with M,r → ∞ (i.e., in the two dimensional case) in both the
SF and the MI, even though a different asymptotic behavior should appear in the two
phases (see below). Recently it has been suggested [151] to generalize the brane
parity operator (8.4) by normalizing the phase in Prung

x (M) with the number of legs
M, in order to obtain a non-vanishing expectation value in the MI also for M → ∞.
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In this regard, we observe that, if we consider only small density fluctuations on
each site, namely δnR =±1, we get that the rung density fluctuates between 0 and
2M, implying that δnrung

x can assume the 2M+1 integer values ranging from −M
and +M. Thus, the density fluctuation on a rung of length M can be associated
with the z-component of a spin-M and the Hamiltonian on the M-leg ladder with a
spin-M model on a chain. Hence, in analogy with the choice made in the latter case
for the Haldane string operator, [152, 153] we redefine the brane parity operator by
introducing an arbitrary phase θ :

O(θ)
P (r,M)≡ [OP(r,M)]

θ

π , (8.7)

where θ may depend on M and on the model Hamiltonian. In particular, in case of
the Heisenberg model, one obtains that θ = (π/M) maximizes the average value of
the non-local operator. The same result is found in [151] for the MI on a fermionic
ladder.
More generally, we suggest that, for convenient values of θ , the expectation value of
the generalized parity operator

C(θ)
P (M) = lim

r→∞
⟨O(θ)

P (r,M)⟩ (8.8)

could work as an order parameter for the SF-MI transition also in the 2D-limit (i.e.,
for M → ∞), decaying to zero only in the superfluid phase. In order to test this
conjecture, first we investigate the behavior of C(θ)

P (M) for the Bose-Hubbard model
within a Gaussian approximation. That gives

⟨O(θ)
P (r,M)⟩ ≈ e−

θ2
2 ⟨(δnbrane)2⟩ , (8.9)

with δnbrane = ∑
r−1
x=0 δnrung

x . This quantity represents the fluctuation of bosonic
density on the brane of size r×M and can be evaluated by following the procedure
used in Ref. [149]. Then, one obtains

C(θ)
P (M)≈

limr→∞ r−aMθ 2
SF,

e−bMθ 2
MI,

(8.10)

where a and b are positive constants depending on the physical parameters. At this
point, if we assume θ ∝ M−α , in order to get a finite value of C(θ)

P = limM→∞C(θ)
P (M)
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in the MI we should claim α ≥ 1
2 . This calculation also shows that, by contrast,

the standard parity operator (i.e., θ = π , or α = 0), decays with a “perimeter-law”,
as found in Ref. [149]. In any case, the SF phase is characterized by a zero value
of C(θ)

P (M) for arbitrary θ at any finite M, and thus in the 2D limit. However, we
observe that, if the two limits M → ∞ and r → ∞ (i.e., L → ∞) are inverted, C(θ)

P

vanishes only for α ≤ 1
2 .

8.3 Numerical results

In the following we test the behavior of the generalized parity operator with θ =

πM−α and α = 0,1,1/2 through the SF-MI transition in the Bose-Hubbard model
by means of Monte Carlo simulations on ladders with different values of M. For the
sake of simplicity, hereinafter we adopt the following notation

Cα(r,M)≡ ⟨O(π/Mα )
P (r,M)⟩ , (8.11)

for the expectation value of the parity operator at finite values of r and M, and

Cα(M)≡ lim
r→∞

Cα(r,M) , Cα ≡ lim
M→∞

Cα(M) (8.12)

for its limiting values.
The ground state properties of the Hamiltonian are extracted by employing the
GFQMC technique, with the following optimized Jastrow function used as the
guiding wave function:

|ΦG⟩= e−
1
2 ∑R,R′ vR,R′nRnR′ |Φ⟩U=0 , (8.13)

where vR,R′ are the optimized variational parameters and

|Φ⟩U=0 =
1√
N!

(
b†

k=0

)N
|0⟩ (8.14)
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Fig. 8.4 Ground state energy and standard parity C0(L/2 = 15,M = 1) as a function of the
number of correcting weight factors used respectively in the backward- and forward-walking
reconfiguration processes of GFQMC. The calculation refers to the point U/t = 2.

is the BEC1 state introduced in Section 1.6. The basis used for simulating the Markov
chain is the following

|x⟩= ∏
{R}

(
b†

R

)nR

√
nR!

|0⟩ . (8.15)

The observables, such as generalized brane parities, are computed by implementing
the forward-walking technique. As an example, in Figure 8.4 we show the con-
vergence of the energy and the standard parity C0(L/2,M) for L = 30 and M = 1
at U/t = 2 as a function of the number of correcting weight factors used in the
backward- and forward-walking reconfiguration processes, respectively.

1Bose-Einstein condensate
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We start by analyzing the behavior of the standard parity, i.e., the case α = 0. In
Figure 8.5a, we show its behavior as a function of the interaction strength U/t for a
rectangular lattice with a finite number of sites. In particular, the graph refers to a
ladder with two legs (M = 2) of length L = 120. Since periodic boundary conditions
are applied, we evaluate the expectation value between two rungs separated by a dis-
tance r = L/2. We observe that C0(L/2 = 60,M = 2) is vanishing for small values of
the interaction parameter and becomes non-zero when increasing U/t. That signals
the transition from the gapless SF phase to the gapped MI phase. We notice that
L = 120 is great enough to give a zero value of the parity operator in the superfluid;
however the transition point marked in the figure has been located after having
performed the asymptotic limit L → ∞, i.e., after having computed C0(M = 2). In
fact, C0(M) is zero in the superfluid and remains finite in the MI. We have evaluated
this quantity for different values of M. Then, based on the results for C0(M), we
located the transition point Uc/t with increasing M. The outcome is displayed in the
phase diagram of Figure 8.5b. We would like to point out that the transition point
increases monotonically with M and converges quite rapidly to the value obtained
in two dimensions [154, 155]. Indeed, we find Uc/t = 1.8(1) for M = 1, while it is
already Uc/t = 8.1(1) for M = 4, thus approaching the value of Uc/t = 8.5(1) that
has been obtained in two dimensions. These results would suggest that C0(M) is a
good order parameter for the MI on a ladder with M legs. However, that holds only
for finite values of M. In fact, we find that C0(M) decreases with growing M and
decays exponentially to zero for M → ∞, as shown in Figure 8.5c for U/t = 12, deep
inside the MI. Those data have been obtained for fixed L = 30, after having verified
that the calculations do not change sensibly for larger values of L. Our findings are
in agreement with the predictions of Ref. [149]. In particular, we can recognize that
our data lie on the exponential curve given in eq. (8.10), with b = t2/(2U2).
Therefore, we conclude that C0 is not an order parameter for the two-dimensional
MI. A totally different scenario appears in the case of the brane parity C1.
The trend of C1(r,M) as a function of U is similar to that obtained for C0(r,M), for
any finite value of M. As an example, in the upper panel of Figure (8.6), we show the
behavior of C1(r = L/2,M = 2) for different values of L. We observe that, within the
SF phase, it shows very large size effects with varying L. In fact, they are much larger
than those observed in the case α = 0. That is clearly visible by comparing Figs 8.5a
and 8.6 (upper panel). On the other hand, our observations are in agreement with the
prediction of eq. (8.10). The finite size scaling with increasing L shows that C1(M)
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Fig. 8.5 Numerical results for the generalized brane parity operator with α = 0 and the
derived phase diagram.



150 Two-dimensional non-local parity operator

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  1  2  3  4  5  6  7  8

MISF

α=1

C
1(

L/
2,

M
)

U/t

L=30
L=60

L=120

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0  0.01  0.02  0.03

C1(L/2,M)

SF

1/L

 0.96

 0.97

 0.98

 0.99

 1

 0  0.1  0.2  0.3  0.4

C1(M)

MI

1/M

Fig. 8.6 Numerical results for the generalized brane parity operator with α = 1. Upper panel:
Brane parity correlator C1(r,M) (i.e. θ = π/M), evaluated at r = L/2, for a ladder with
M = 2 and different lengths L, as a function of U/t. Left lower panel: Finite-size scaling
of C1(L/2,M = 2) with increasing L, in the SF phase (i.e., U/t = 2) . Right lower panel:
Finite size-scaling of C1(M) with increasing M, in the MI phase (i.e., U/t = 12). Here, the
simulations have been performed for systems with L = 30, after having verified that the
results do not change sensibly for larger values of L.
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.

is zero in the superfluid (see left lower panel of Fig. 8.6), while it is non-zero in the
MI phase. Therefore, C1(M), as well as C0(M), is an order parameter for the MI
on a ladder. Moreover, contrary to the previous case, it remains an order parameter
also in the 2D limiting case M → ∞, as shown in the right lower panel of Fig. 8.6,
where C1 is extrapolated. In fact, our numerical results confirm that C1 = 1 for each
value of U > Uc, as suggested again by the Gaussian approximation. Finally, for
α = 1/2, the latter predicts that the brane parity behaves again as an order parameter
for the two-dimensional MI, in this case with a non-trivial dependence on U through
the parameter b: C1/2 = e−π2b. Our numerical simulations support this guess. In
Figure 8.7, we report the main results about the behavior of Cα(M) in the MI as M
is increased to the two-dimensional limit, for the three cases α = 0,1,1/2. In all the
cases, our results agree with the prediction of the Gaussian approximation. Indeed,
the numerical data of Fig. 8.7 can be fitted by the curve

Cα(M) = e−bα π2M1−2α

, (8.16)

with the fitting coefficient bα depending, in general, on the specific case. In particular,
for the case α = 1, the exponential curve can be linearized at large M: C1(M) ≈
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1−b1π2 1
M . We find the following values for the fitting parameter:

b0 =
t2

2U2 , b1 = 2.5b0 , b1/2 = 2b0 . (8.17)

In Figure 8.8 we show the behavior of the two order parameters C1 and C1/2 for the
two-dimensional MI, as a function of U/t.
We finally checked the robustness of our results when the microscopic details of
the band structure change. In particular, we have performed few calculations in
the presence of a second-neighbor hopping t ′ (with t ′/t = 0.8) and found similar
qualitative results. Those are shown in Figure 8.9: although the transition to the
MI phase is moved to higher U values, we observe that at U/t = 20, hence within
the MI phase, C1 is already 1 whereas C1/2 ≈ 0.9. Therefore, we expect that Cα ,
with appropriate values of α , is a good order parameter for many different 2D Mott
insulators, independently on the microscopic details of the band structure.

8.4 Conclusions

In conclusion, in this chapter we have addressed the issue of characterizing the MI
in more than one-dimensional systems. In particular, we probed the efficiency of
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generalized brane parity operators in capturing the order underlying the MI phase.
By means of GFQMC simulations, we have studied the SF-MI transition in the
Bose-Hubbard model on ladders with L rungs and M legs. In particular, we have
investigated the asymptotic limit L → ∞, when passing from one dimension (M = 1)
to two dimensions (M → ∞). Our results have shown that the average value of the
standard brane parity operator C0(M) behaves as an order parameter for the MI at any
finite M. However, it decays to zero with a “perimeter law” in the two-dimensional
limit, thus being hardly detectable in experiments. By contrast, exploiting the fact
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Fig. 8.9 Behavior of Cα(M) for α = 1/2 (left panel) and α = 1 (right panel) with varying M,
in the MI phase of the Bose-Hubbard model with second-neighbor hopping. The evaluation
has been done at t ′/t = 0.8 and U/t = 20.

that in the MI the boson density undergoes only small fluctuations around its average
value n, we have argued that a generalized brane parity operator Cα is non-zero in
the 2D-Mott insulator for any α ≥ 1/2. In fact, the Gaussian approximation suggests
that Cα = 1 in the MI for α > 1/2; whereas C1/2 assumes a finite value depending on
the Hamiltonian parameter U/t, thus enlightening the role of interaction in driving
the transition. Moreover, in the SF, C1/2 = 0, regardless of which of the two limits
L → ∞ and M → ∞ is considered first. These predictions, which have been confirmed
by our numerical calculations, suggest that the proper order parameter to describe
the MI-SF transition could be C1/2. Our findings supply a unique tool to probe
the appearance of the MI phase in cold atom systems. Indeed, with the currently
available experimental setups, it is possible to measure in-situ density fluctuations
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by means of high-resolution imaging [108].
In conclusion of this chapter, we would like to suggest as a near future perspective
the application of generalized brane parity - and possibly brane string - operators
for the investigation of two dimensional fermionic phases, in both density and spin
channels. In fact, we expect they will help to detect many different phases, including
magnetic states, spin liquids, and superconductors.



Conclusions and outlook

We have approached the problem of detection of hidden and symmetry-breaking
phases in strongly correlated systems, focusing on Hubbard-type models. As found
in recent years [49–53], the solution of this issue deals with non-local order pa-
rameters. Here, we have studied their behavior in the ground state phase diagram
of different Hamiltonians. After having introduced, in the first part of the thesis,
the fundamental concepts for the development of our research activity, in Chapter
6 we have shown the results of our DMRG simulations to compute the non-local
order parameters across all the ground state phase transitions of the one-dimensional
extended Hubbard model. Our results have shown that they are able to capture all of
them, including those that involve partly gapped conducting phases, thus establishing
themselves as efficient probes for the detection of many - known and novel - quantum
regimes. Their strength relies especially on two main points: on one hand, they
allow to characterize each quantum phase in its microscopic picture and topological
nature, and locate it inside an unambiguous classification; on the other hand, they
are observables which would enable experimentalists to distinguish clearly different
phases. In light of our first results, in Chapter 7 we have used this powerful tool to
investigate a more complex model, with bond-charge interaction. This was partic-
ularly interesting since, from bosonization predictions and previous literature, we
expected to observe a charge Haldane insulator, which is known to have non-trivial
topological order. With respect to the model studied in previous works, we also
considered the effect of long-range dipolar interaction which can be implemented in
cold atom experiments. Besides the expected non-trivial charge Haldane insulator,
our numerical analysis supports the evidence of further two phases with non-trivial
behavior in the spin channel. Interestingly, the correlated hopping processes we
considered can be generated dynamically through the Floquet mapping, starting from
a time-periodic on-site interaction. Our simulations also show a perfect agreement
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between the values of the order parameters computed in the static model and those,
time-averaged, obtained for the time-dependent model. Finally, our interest was to
find a proper generalization of non-local order parameters to the two-dimensional
case. In this regard, we considered one of them: the charge parity. In Chapter 8 we
illustrated how to attain such generalization by redefining the phase of the operator
in order to take into account the growth of the system in the transverse direction.
Then, we tested our conjectures in the well-known SF-MI transition occurring in
the Bose-Hubbard model, by exploiting the quantum Monte Carlo technique. The
generalization of the parity operator was a remarkable result, since it opens the way
to the investigation of two-dimensional hidden phases with a unique tool.
At this point, the next natural step will be to extend to higher dimensions the defini-
tion of the spin parity and, most notably, that of the Haldane strings, which should
provide a deeper understanding of non-trivial topological phases. Indeed, as we have
seen, non-local orders are strictly connected to topological phases, specifically the
symmetry protected topological phases. In this context, we think that a key element
to deepen the comprehension of such systems is the mapping between fermion and
spin models, expressed in terms of spin and pseudo-spin operators, i.e., the generators
of symmetries. That should enable us to depict non-local orders in terms of triplets
and singlets [156], at least in the strong coupling limit, thus providing a simple and
intuitive picture of exotic orders to be exported in the fermionic language. In par-
ticular, we expect that the Hubbard Hamiltonian with adding exchange interactions
is the natural context in which the presence of a metallic phase with spin Haldane
order could be observed [157].
Another possible route for future investigations might be to explore the possible
presence of other types of non-local orders, at first in one dimension. In particular,
as we have seen that the parity and Haldane string in the bosonization approximation
are related to the field φν , it would be interesting to study the emergence of possible
new non-local orders due to the locking of the dual field θν . The latter may take
place in different physical scenarios in which spin/charge conservation does not hold
[158].
In summary, in this thesis we have shown new results on both hidden phases in
strongly correlated systems and non-local order parameters, that should be con-
sidered an essential tool to investigate the arising novel quantum physics in low
dimensionality, and offer a fascinating and still widely unexplored field of research.



References

[1] M. C. Gutzwiller. Effect of correlation on the ferromagnetism of transition
metals. Phys. Rev. Lett., 10:159–162, 1963.

[2] J. Hubbard. Electron Correlations in Narrow Energy Bands. Proc. of the
Royal Soc. A, 276:238–257, 1963.

[3] J. Hubbard. Electron Correlations in Narrow Energy Bands. II. The Degenerate
Band Case. Proc. of the Royal Soc. A, 277:237–259, 1964.

[4] J. Hubbard. Electron Correlations in Narrow Energy Bands. III. An Improved
Solution. Proc. of the Royal Soc. A, 281:401–419, 1964.

[5] J. Hubbard. Electron Correlations in Narrow Energy Bands. IV. The Atomic
Representation. Proc. of the Royal Soc. A, 285:542–560, 1965.

[6] J. Hubbard. Electron Correlations in Narrow Energy Bands. V. a Perturbation
Expansion About the Atomic Limit. Proc. of the Royal Soc. A, 296:82–99,
1967.

[7] J. Hubbard. Electron Correlations in Narrow Energy Bands. VI. the Con-
nection with Many-Body Perturbation Theory. Proc. of the Royal Soc. A,
296:100–112, 1967.

[8] F. H. L. Essler, H-Frahm, F. Göhmann, A. Klümper, and V. E. Korepin. The
One-Dimensional Hubbard Model. Cambridge University Press, 2005.

[9] J. E. Hirsch. Two-dimensional Hubbard model: Numerical simulation study.
Phys. Rev. B, 31:4403–4419, 1985.

[10] J. E. Hirsch. Simulations of the three-dimensional hubbard model: Half-filled
band sector. Phys. Rev. B, 35:1851–1859, 1987.

[11] A. Montorsi. The Hubbard Model: A Reprint Volume. World Scientific Pub
Co Inc, 1992.

[12] D. Baeriswyl, D. K. Campbell, J. M. P. Carmelo, F. Guinea, and E. Louis.
The Hubbard Model: Its Physics and Mathematical Physics. Springer Sci-
ence+Business Media, LLC, 1995.



158 References

[13] A. M. Tsvelik. Quantum Field Theory in Condensed Matter Physics. Cam-
bridge University Press, 2003.

[14] M. Mancini. Fermionization of Spin Systems. Master’s thesis, Università
degli studi di Perugia, Facoltà di Scienze Matematiche, Fisiche e Naurali,
2008.

[15] J. E. Hirsch. Charge-Density-Wave to Spin-Density-Wave Transition in the
Extended Hubbard Model. Phys. Rev. Lett., 53:2327–2330, 1984.

[16] P. G. J. van Dongen. Extended Hubbard model at strong coupling. Phys. Rev.
B, 49:7904–7915, 1993.

[17] R. T. Clay, A. W. Sandvik, and D. K. Campbell. Possible exotic phases in
the one-dimensional extended Hubbard model. Phys. Rev. B, 59:4665–4679,
1999.

[18] M. Tsuchiizu and A. Furusaki. Phase Diagram of the One-Dimensional
Extended Hubbard Model at Half Filling. Phys. Rev. Lett, 88:056402, 2002.

[19] E. Jeckelmann. Ground-State Phase Diagram of a Half-Filled One-
Dimensional Extended Hubbard Model. Phys. Rev. Lett, 89:236401, 2002.

[20] P. Sengupta, A. W. Sandvik, and D. K. Campbell. Bond-order-wave phase and
quantum phase transitions in the one-dimensional extended Hubbard model.
Phys. Rev. B, 65:155113, 2002.

[21] A. W. Sandvik, L. Balents, and D. K. Campbell. Ground State Phases of the
Half-Filled One-Dimensional Extended Hubbard Model. Phys. Rev. Lett.,
92:236401, 2004.

[22] S.-J. Gu, S.-S. Deng, Y.-Q. Li, and H.-Q. Lin. Entanglement and Quantum
Phase Transition in the Extended Hubbard Model. Phys. Rev. Lett., 93:086402,
2004.

[23] S. Ejima and S. Nishimoto. Phase Diagram of the One-Dimensional Half-
Filled Extended Hubbard Model. Phys. Rev. Lett., 99:216403, 2007.

[24] F. Iemini, T. O. Maciel, and R. O. Vianna. Entanglement of indistinguishable
particles as a probe for quantum phase transitions in the extended Hubbard
model. Phys. Rev. B, 92:075423, 2015.

[25] M. Nakamura. Tricritical Behavior in the Extended Hubbard Chains. Phys.
Rev. B, 61:16377–16392, 2000.

[26] M. Di Dio, L. Barbiero, A. Recati, and M. Dalmonte. Spontaneous Peierls
dimerization and emergent bond order in one-dimensional dipolar gases. Phys.
Rev. A, 90:063608, 2014.

[27] L. Arrachea and A. A. Aligia. Exact Solution of a Hubbard Chain with
Bond-Charge Interaction. Phys. Rev. Lett., 73:2240–2243, 1994.



References 159

[28] A. Schadschneider. Superconductivity in an exactly solvable hubbard model
with bond-charge interaction. Phys. Rev. B, 51:10386–10391, 1995.

[29] A. A. Aligia, A. Anfossi, L. Arrachea, C. Degli Esposti Boschi, A. O. Dobry,
C. Gazza, A. Montorsi, F. Ortolani, and M. E. Torio. Incommensurability and
Unconventional Superconductor to Insulator Transition in the Hubbard Model
with Bond-Charge Interaction. Phys. Rev. Lett., 99:206401, 2007.

[30] M. E. Simón and A. A. Aligia. Brinkman-Rice transition in layered per-
ovskites. Phys. Rev. B, 48:7471–7477, 1993.

[31] A. A. Aligia, L. Arrachea, and E. R. Gagliano. Phase diagram of an extended
hubbard model with correlated hopping at half filling. Phys. Rev. B, 51:13774–
13777, 1995.

[32] J. I. Japaridze and A. P. Kampf. Weak-coupling phase diagram of the extended
hubbard model with correlated-hopping interaction. Phys. Rev. B, 59:12822–
12829, 1999.

[33] G. Japaridze and E. Müller-Hartmann. Electrons with correlated hopping
interaction in one dimension. Ann. Phys. (Berlin), 3:163–180, 1994.

[34] D. Rossini, V. Lante, A. Parola, and F. Becca. Phase diagram of hard-core
bosons on a zigzag ladder. Phys. Rev. B, 83:155106, 2011.

[35] M. Capello, F. Becca, M. Fabrizio, and S. Sorella. Superfluid to Mott-Insulator
Transition in Bose-Hubbard Models. Phys. Rev. Lett., 99:056402, 2007.
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Appendix A

Fermionic and (pseudo)spin
operators under different formalisms

Here we introduce different formalisms to express the states (1.22) and the creation
and annihilation operators in order to better understand the properties of the local
Hilbert space and the relation with spin formalism. In this part we will deal with
local operators only and we will omit the site index.

A.1 Matrix expressions for local states and fermion
operators

The four states (1.22) that form a basis for the local Hilbert space can be expressed
as 4-dimensional vectors

|0⟩=


1
0
0
0

 , | ↑⟩=


0
1
0
0

 , | ↓⟩=


0
0
1
0

 , | ↑↓⟩=


0
0
0
1

 . (A.1)
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Then the operators acting on these states can be written as 4 × 4 matrices. In
particular, the creation and annihilation operators for each species read

c†
↑ =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

 , c↑ =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 (A.2)

c†
↓ =


0 0 0 0
0 0 0 0
1 0 0 0
0 −1 0 0

 , c↓ =


0 0 1 0
0 0 0 −1
0 0 0 0
0 0 0 0

 (A.3)

and the particle number operators are

n↑ = c†
↑c↑ =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

 , n↓ = c†
↓c↓ =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 . (A.4)

A.1.1 Matrix expressions for spins and pseudospins

This formalism can be used to clarify the action of the spin operators (1.30). One
can easily see that the following expressions are valid

S(s),+ = c†
↑c↓ =


0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 , S(s),− = c†
↓c↑ =


0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

 (A.5)

S(s),x =
S(s),++S(s),−

2
=

1
2


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 (A.6)
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S(s),y =
S(s),+−S(s),−

2ı
=

1
2


0 0 0 0
0 0 −ı 0
0 ı 0 0
0 0 0 0

 (A.7)

S(s),z =
1
2
(n↑−n↓) =

1
2


0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

 . (A.8)

Now it is clear that these spin operators act with non-zero entries only on the subspace
spanned by the two states | ↑⟩ and | ↓⟩. Indeed the first and the last columns/rows are
null vectors. We also observe that the 2×2 central blocks of these matrices turn out
to be the Pauli matrices.
While the spin representation of SU(2) acts only on the spin degrees of freedom, we
analogously expect that the pseudospin representation of SU(2) (1.37) acts only on
the charge degrees of freedom, i.e. on the subspace spanned by the two states |0⟩ and
| ↑↓⟩. In fact, the matrix representations of the charge operators are the following

S(c),+ = (−) j


0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

 , S(c),− = (−) j


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 (A.9)

S(c),x =
S(c),++S(c),−

2
=

(−) j

2


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 (A.10)

S(c),y =
S(c),+−S(c),−

2ı
=

(−) j

2


0 0 0 ı
0 0 0 0
0 0 0 0
−ı 0 0 0

 (A.11)

S(c),z =
1
2
(n↑+n↓−1) =

1
2


−1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 (A.12)
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and we can see that they have non-zero elements only on the first and the last
columns/rows.

A.2 Hubbard operators

Sometimes it is useful to write the fermion operators in terms of projectors onto the
local basis states. These are the Hubbard operators. The local projector from a state
|β ⟩ to a state |α⟩ can be represented as

Xαβ = |α⟩⟨β | . (A.13)

Then the creation and annihilation operators can be rewritten in the following way

c†
σ = Xσ0 +σX2σ̄ = |σ⟩⟨0|+σ | ↑↓⟩⟨σ̄ |

cσ = X0σ +σX σ̄2 = |0⟩⟨σ |+σ |σ̄⟩⟨↑↓ |
(A.14)

where the label 2 at the exponent indicates the state with two fermions and the
coefficient σ assumes the value +1 for the up spin and the value −1 for the down
spin.
We notice that in general the projector operators have the following property

Xαβ X γδ = |α⟩⟨β |γ⟩⟨δ |= δβ ,γXαδ . (A.15)

When the states involved are those spanning the local Hilbert space of the Hubbard
Hamiltonian, another important property holds:

X↑↑+X↓↓+X22 +X00 = 1 . (A.16)

By using these properties, one can see that the local number operators are

n↑ = X↑↑+X22

n↓ = X↓↓+X22

n = X↑↑+X↓↓+2X22 = 1+X22 −X00 .

(A.17)
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We finally give the inverse relations of (A.14) and (A.17)

Xσ0 = (1−nσ̄ )c†
σ

X2σ = σ̄nσ c†
σ̄

Xσσ = (1−nσ̄ )nσ

X00 = (1−n↑)(1−n↓)

X22 = n↑n↓

(A.18)

and observe that the Hubbard operators obey the following commutation rules

[Xab,Xcd]± = Xad
δbc ±Xcb

δad (A.19)

where the plus sign denotes the anticommutator and has to be taken when both
operators are fermionic, i.e. change the particle number by 1 (e.g. Xσ0 or X2σ ).
When acting on different lattice sites, the right hand side is zero.

A.2.1 Spin operators in terms of Hubbard operators

Using Hubbard operators is another way to identify immediately the subspace on
which the spin (and pseudospin) operators act. Let’s start with the spin sector. Here
we get

S(s),α =
1
2 ∑

σ ,σ ′

(
Xσ0 +σX2σ̄

)
(σα)

σσ ′

(
X0σ ′

+σ
′X σ̄ ′2

)
(A.20)

which implies

S(s),x =
1
2

[(
X↑0 +X2↓

)(
X0↓−X↑2

)
+
(

X↓0 −X2↑
)(

X0↑+X↓2
)]

=
1
2

(
X↑↓+X↓↑

)
S(s),y =

1
2

[(
X↑0 +X2↓

)
(−ı)

(
X0↓−X↑2

)
+
(

X↓0 −X2↑
)
(ı)
(

X0↑+X↓2
)]

=
1
2ı

(
X↑↓−X↓↑

)
S(s),z =

1
2

[(
X↑0 +X2↓

)(
X0↑+X↓2

)
−
(

X↓0 −X2↑
)(

X0↓−X↑2
)]

=
1
2

(
X↑↑−X↓↓

)
.

(A.21)
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From eqs. (A.21) we see that the spin operators depend only on the projectors on
the states | ↑⟩ and | ↓⟩. For completeness we also give the expressions for S(s),+ and
S(s),−

S(s),+ = X↑↓ , S(s),− = X↓↑ (A.22)

In a similar manner we can verify that the charge (or pseudospin) operators can be
expressed in terms of projectors on the states |0⟩ and | ↑↓⟩ only:

S(c),+ =±X20 , S(c),− =±X02

S(c),x =±1
2
(
X20 +X02)

S(c),y =± 1
2ı

(
X20 −X02)

S(c),z =
1
2
(
X22 −X00)

(A.23)

where the plus sign refers to even sites and the minus sign refers to odd sites.



Appendix B

Derivation of bosonization formula
and adding details to Chapter 3

B.1 Derivation of bosonization formula

Formula (3.19):

φ(x) =
ı√
2L ∑

q>0

e−αq/2
√

q

(
e−ıqxbqL − eıqxbqR − eıqxb†

qL + e−ıqxb†
qR

)
=

= ı ∑
q>0

e−αq/2
√

2qL

[
e−ıqx

(
b†

q +b−q

)
− eıqx

(
b†
−q +bq

)]
=

= ı

{
∑
q>0

e−α|q|/2√
2|q|L

e−ıqx
(

b†
q +b−q

)
− ∑

q<0

e−α|q|/2√
2|q|L

e−ıqx
(

b†
q +b−q

)}
=

= ı

{
∑
q>0

e−α|q|/2
√

2L

√
|q|
q

e−ıqx
(

b†
q +b−q

)
+ ∑

q<0

e−α|q|/2
√

2L

√
|q|
q

e−ıqx
(

b†
q +b−q

)}
=

= ı ∑
q̸=0

e−α|q|/2−ıqx

q

(
|q|
2L

)1/2(
b†

q +b−q

)
(B.1)

where in the second line we have used bqL = b−q.
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Formula (3.28):
In order to derive the last equality in eq. (3.28), let us calculate the commutator:

[ϕ(x),ϕ†(y)] =−∑
qq′

e−
α

2 (|q|+|q′|)−ıqx−ıq′y

2Lqq′
√

|qq′| [b−q,b
†
q′]︸ ︷︷ ︸

δ−q,q′

=

=
1

2L ∑
q ̸=0

e−α|q|−ıq(x−y)

|q|
=

=
1

2L

{
∑
q>0

e−αq−ıq(x−y)

q
+ ∑

q<0

eαq−ıq(x−y)

−q

}
=

=
1

2L ∑
q>0

e−ıq(x−y−ıα)+ eıq(x−y+ıα)

q
=

=
1

4π

∑
n

(
eı 2π

L (ıα+R)
)n

n
+∑

n

(
eı 2π

L (ıα−R)
)n

n

=

=
1

4π

{
∑
n

zn

n
+∑

n

(z†)n

n

}

(B.2)

where, in the last two lines, we have used q = 2πn
L , R = y− x and z = eı 2π

L (ıα+R).
The series in eq. (B.2) converges to the logarithmic function

∞

∑
n=1

zn

n
=− ln(1− z) = ln

1
1− z

if |z|= 1 and z ̸= 1 . (B.3)

Thus

[ϕ(x),ϕ†(y)] =− 1
4π

ln
(

1− eı 2π

L (ıα+R)
)
− 1

4π
ln
(

1− eı 2π

L (ıα−R)
)
=

L→∞
= − 1

4π
ln
(

1−1− ı
2π

L
(ıα +R)

)
− 1

4π
ln
(

1−1− ı
2π

L
(ıα −R)

)
=

=− 1
4π

ln
(
−ı

2π

L
(ıα +R)

)(
−ı

2π

L
(ıα −R)

)
=

=− 1
4π

ln

((
2π

L

)2 (
α

2 +R2))
(B.4)
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and

e2π[ϕ(x),ϕ†(y)] =e−
1
2 ln
[
( 2π

L )
2
(α2+R2)

]
=

=

[(
2π

L

)2 (
α

2 +R2)]−1/2

=

=
L

2π

1√
α2 +R2

α→0−−−→ L
2πR

.

(B.5)

In the special case R = 0, eq. (B.2) becomes

[ϕ(x),ϕ†(x)] =
1

4π
·2∑

n

(
e−

2πα

L

)n

n
=

=− 1
2π

ln
(

1− e−
2πα

L

)
→

L→∞−−−→− 1
2π

ln
(

2πα

L

) (B.6)

and
e−2π[ϕ(x),ϕ†(x)] = eln( 2πα

L ) =
2πα

L
(B.7)

so that eq. (3.28) yields

eı
√

4πφ(x) =: eı
√

4πφ(x) :
2πα

L
. (B.8)

Formula (3.31):

eı
√

4π[φ(x+R)−φ(x)] =eı
√

4π[φ(y)−φ(x)] =

=eı
√

4π[ϕ†(y)+ϕ(y)−ϕ†(x)−ϕ(x)] =

=eı
√

4π[ϕ†(y)−ϕ†(x)]+ı
√

4π[ϕ(y)−ϕ(x)] =

=eı
√

4π[ϕ†(y)−ϕ†(x)]eı
√

4π[ϕ(y)−ϕ(x)]e2π[ϕ†(y)−ϕ†(x),ϕ(y)−ϕ(x)] =

= : eı
√

4π[φ(x+R)−φ(x)] : e−2π[ϕ(y)−ϕ(x),ϕ†(y)−ϕ†(x)]︸ ︷︷ ︸
↓

e−2π[ϕ(y),ϕ†(y)]e−2π[ϕ(x),ϕ†(x)]e2π[ϕ(x),ϕ†(y)]e2π[ϕ(y),ϕ†(x)]︸ ︷︷ ︸
2πα

L
2πα

L
L

2πR
L

2πR=(
α

R )
2

.

(B.9)
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Formula (3.32):

[φ(x),θ(y)] =− ∑
q,q′ ̸=0

e−
α

2 (|q|+|q′|)e−ı(qx+q′y)

q|q′|

√
|qq′|
2L

[b†
q +b−q,b

†
q′ −b−q′]︸ ︷︷ ︸

2δq′,−q

=

=− 1
L ∑

q̸=0

e−α|q|−ıq(x−y)

q|q|
|q|=

=− 1
L ∑

q̸=0

e−α|q|+ıqR

q
=

=− 1
L ∑

q>0

e−α|q|+ıqR

q
− 1

L ∑
q<0

e−α|q|+ıqR

q
=

=− 1
L ∑

q>0

e−α|q|+ıqR

q
+

1
L ∑

q>0

e−α|q|−ıqR

q
=

=− 2ı
L ∑

q>0

e−α|q|

q
eıqR − e−ıqR

2ı
→

L→∞−−−→− 2ı
L∆q

∫
∞

0

dq
q

sin(qR)e−α|q| =

[
q =

2πn
L

=⇒ ∆q =
2π

L

]
=− ı

π

∫
∞

0

dq
q

sin(qR)e−α|q| →

α→0−−−→− ı
π

∫
∞

0

dq
q

sin(qR) =

=− ı
2

sgn(R) =

=
ı
2

sgn(x− y) .

(B.10)
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Formula (3.55):

ρχ(x) = : Ψ
†
χ(x)Ψχ(x) := lim

a→0

[
Ψ

†
χ(x+a)Ψχ(x)−⟨Ψ†

χ(x+a)Ψχ(x)⟩
]
=

= lim
a→0

[
η

†
χηχ

2πα
eıχ

√
4πφχ (x+a)e−ıχ

√
4πφχ (x)−⟨...⟩

]
=

= lim
a→0

 1
2πα

eıχ
√

4π(φχ (x+a)−φχ (x)) e
4π

2 [φχ (x+a),φχ (x)]︸ ︷︷ ︸
ıχ

−⟨...⟩

=

= lim
a→0

[
1

2πα
: eıχ

√
4π(φχ (x+a)−φχ (x)) : ıχ −⟨...⟩

]
=

≃ lim
a→0

[ ıχ
2πα

: eıχ
√

4πa∇φχ (x) : −⟨...⟩
]
=

≃ lim
a→0

[ ıχ
2πα

(
1+ ıχ

√
4πa∇φχ(x)

)
−⟨...⟩

]
=

=
ıχ

2πα
ıχ
√

4πa∇φχ(x) =

≃− 1√
π

∇φχ(x) =

=
1

2
√

π
(∇φ(x)+χ∇θ(x))

(B.11)

where we have used equations (B.9) and (3.34).

B.2 Consistency of notation

Here we would like to clarify some technical aspects of bosonization. In particular,
we show the consistency of the formula expressed in Section 3.11 with those of
the previous sections. We notice that we have two equivalent ways of defining the
fermionic operator acting on the left branch:

A) ckL = c−kF+k

B) ckL = c−kF−k .

In Section 3.11 we used the notation A). The definition B) would change formula
(3.70) and (3.71), expressing the fermionic field in terms of the discrete fermionic
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operators, into the following ones

Ψ
B
χ(x) =

1√
L ∑

k
eıχkxcB

kχ , cB
kχ =

1√
L

∫
dxe−ıχkx

Ψ
B
χ(x) , (B.12)

where we have used the letter B to distinguish this notation from that used in the
rest of the thesis (corresponding to the case A)). Consequently, the density operator
(3.72), neglecting the q = 0 contribution, becomes

ρ
B
χ (x) =: Ψ

†B
χ (x)ΨB

χ(x) :
1
L ∑

q ̸=0
e−ıχqx

ρ
B
χ (q) =

1
L ∑

q̸=0
e−ıqx

ρ
B
χ (χq) . (B.13)

However, this notation would also be possible and consistent with the definition of
the fermionic field in terms of the discrete bosonic operators (equations (3.12) and
(3.11)). In fact, the difference in the sign of k, affects the density operator ρL(q)
and its commutation rules (3.68), implying different relation between bχq and ρχ(q)
with respect to (3.69). In the case B), ρL(q) is given by

ρ
B
L (q) = ∑

k
c†
−kF−k−qc−kF−k = ∑

k
c†
−kF+k−qc−kF+k = ρL(−q) . (B.14)

From this relation we can already see the consistence of the two notations in equation
(B.13), which has been obtained from (B.12). It also implies that now the density
operators satisfy the following commutation rules

[ρB
χ (q),ρ

B
χ ′(q′)] = [ρχ(χq),ρχ ′(χq′)] =−qL

2π
δq,−q′δχ,χ ′ (B.15)

and, therefore, in order to obtain [bqχ ,b
†
q′χ ′] = δq,q′δχ,χ ′ , one has to define

bqχ =

√
2π

Lq
ρ

B
χ (−q) , b†

qχ =

√
2π

Lq
ρ

B
χ (q) . (B.16)

Finally, we check that the choice of notation A) rather than B) does not affect the
definition of Ψχ(x) in terms of bχq, given in equations (3.12), (3.11), and that this
definition is consistent with (3.70) or with (B.12), as long as the proper relations
between bqχ and ρχ(q) are taken. To this extent, we compare the definition of
ρχ(x) obtained in terms of bosonic operators from (3.12), (3.11) and (3.55) with that
obtained in terms of fermionic operators from (3.70) and (3.72) or from (B.12) and
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(B.13). From equations (3.12), (3.11) and (3.55), we get

ρχ(x) =− 1√
π

∇φχ(x) =
1√
2πL ∑

q>0
e−αq/2√q

[
e−ıχqxb†

qχ + eıχqxbqχ

]
. (B.17)

In the case A), this should be equaled to (3.72), which can be rearranged as

ρχ(x) =
1
L ∑

k,q ̸=0
e−ıqxc†

k+qχ
ckχ =

=
1√
2πL ∑

k
∑
q>0

√
q

√
2π

Lq

[
e−ıqxc†

k+qχ
ckχ + eıqxc†

k−qχ
ckχ

]
=

=
1√
2πL ∑

q>0

√
q

√
2π

Lq

[
e−ıqx

ρχ(q)+ eıqx
ρχ(−q)

]
.

(B.18)

The two expressions are equivalent if the relations (3.69) hold.
In the case B), equation (B.17) must be equal to (B.13)

ρ
B
χ (x) =

1
L ∑

k
∑
q̸=0

e−ıχqxc†B
k+qχ

cB
kχ =

=
1√
2πL ∑

k
∑
q>0

√
q

√
2π

Lq

[
e−ıχqxc†B

k+qχ
cB

kχ + eıχqxc†B
k−qχ

cB
kχ

]
=

=
1√
2πL ∑

q>0

√
q

√
2π

Lq

[
e−ıχqx

ρ
B
χ (q)+ eıχqx

ρ
B
χ (−q)

]
,

(B.19)

thus reproducing the relations (B.16).



Appendix C

Bosonization dictionary

∑ j −→ 1
a
∫

dx
c j,σ −→

√
a
[
eıkF xΨRσ (x)+ e−ıkF xΨLσ (x)

]
=
√

a
[
(ı) jΨRσ (x)+(−ı) jΨLσ (x)

]
——————————————————————–
Ψχσ (x)=

ηχσ√
2πα

e−ıχ
√

4πΦχσ (x)=
ηχσ√
2πα

eı
√

π[χφσ (x)+θσ (x)]=
ηχσ√
2πα

eı
√

π

2 [χφc(x)+θc(x)+σ(χφs(x)+θs(x))]

ϕχ(x) =
ıχ√
2L ∑k>0

eıχkx
√

k
e−αk/2bkχ

φχ(x) = ϕχ(x)+ϕ
†
χ(x) =

ıχ√
2L ∑k>0

e−αk/2
√

k

(
eıχkxbkχ − e−ıχkxb†

kχ

)
.

ϕ(x) = ı∑k ̸=0
e−α|k|/2−ıkx

k

(
|k|
2L

)1/2
b−k

φ(x) = ϕ(x)+ϕ†(x) =− [φR(x)+φL(x)] = ı∑k ̸=0
e−α|k|/2−ıkx

k

(
|k|
2L

)1/2(
b†

k +b−k

)
θ(x) =− [φR(x)−φL(x)] = ı∑k ̸=0

e−α|k|/2−ıkx

|k|

(
|k|
2L

)1/2(
b†

k −b−k

)
∇φ(x) = ∑k ̸=0 e−α|k|/2−ıkx

(
|k|
2L

)1/2(
b†

k +b−k

)
∇θ(x) = ∑k ̸=0 e−α|k|/2−ıkx k

|k|

(
|k|
2L

)1/2(
b†

k −b−k

)
φc = (φ↑+φ↓)/

√
2 θc = (θ↑+θ↓)/

√
2

φs = (φ↑−φ↓)/
√

2 θs = (θ↑−θ↓)/
√

2
——————————————————————–
ρχ(x) = 1

2
√

π
(∇φ(x)+χ∇θ(x))

ρ = ρR +ρL = 1√
π

∇φ

j̃ = ρR −ρL = 1√
π

∇θ

ρχσ =− 1√
π

∇φχσ = 1
2
√

π
(∇φσ +χ∇θσ )

ρσ = ρRσ +ρLσ = 1√
π

∇φσ
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j̃σ = ρRσ −ρLσ = 1√
π

∇θσ

ρc =
ρ↑+ρ↓√

2
= 1√

π
∇φc j̃c =

j̃↑+j̃↓√
2

= 1√
π

∇θc

ρs =
ρ↑−ρ↓√

2
= 1√

π
∇φs j̃s =

j̃↑−j̃↓√
2

= 1√
π

∇θs

——————————————————————–
[ϕ(x),ϕ†(y)] =− 1

4π
ln
((2π

L

)2 (
α2 +R2)) α→0−−−→− 1

4π
ln
(2πR

L

)2

[ϕ(x),ϕ†(x)] =− 1
2π

ln
(

1− e−
2πα

L

)
L→∞−−−→− 1

2π
ln
(2πα

L

)
[φ(x),φ(y)] = [θ(x),θ(y)] = 0
[φ(x),θ(y)] = ı

2sgn(x− y)
[φχ(x),φχ(y)] = χ

ı
4sgn(x− y)

[φR(x),φL(y)] = 0
[∇φ(x),∇φ(y)] = [∇θ(x),∇θ(y)] = 0
[φ(x),∇φ(y)] = [θ(x),∇θ(y)] = 0
[∇φ(x),θ(y)] = ıδ (x− y)
[φ(x),∇θ(y)] =−ıδ (x− y)
[φσ (x),φσ ′(y)] = [θσ (x),θσ ′(y)] = 0
[φσ (x),θσ ′(y)] = δσ ,σ ′ ı

2sgn(x− y)
[φc(x),φs(y)] = [θc(x),θs(y)] = [φc(x),θs(y)] = 0
[φc(x),θc(y)] = [φs(x),θs(y)] = ı

2sgn(x− y)
——————————————————————–
e2π[ϕ(x),ϕ†(y)] = L

2π

1√
α2+R2

α→0−−−→ L
2πR

e−2π[ϕ(x),ϕ†(x)] = 2πα

L
eı2

√
πφ(x) =: eı2

√
πφ(x) : 2πα

L
: eı

√
4πR∇φ(x) :≃ 1+ ı

√
4πR∇φ(x)

eı
√

4π[φ(x+R)−φ(x)] =: eı
√

4π[φ(x+R)−φ(x)] :
(

α

R

)2



Appendix D

Computation of the ground state
energy in the GFQMC

Here we show the proof of some formula used in Chapter 4. In particular the ground
state energy in equation (4.33) is obtained in the following way:

EGS = H|ΦGS⟩=
∑x⟨x|H|ΦGS⟩

∑x⟨x|ΦGS⟩
=

∑x,x′⟨x|Hx′⟩⟨x′|ΦGS⟩
∑x⟨x|ΦGS⟩

=

=
∑x′
(
∑x Hx,x′

)
ΦGS(x′)

∑x ΦGS(x)
=

∑x′ (Λ−bx′)ΦGS(x′)
∑x ΦGS(x)

=

=
∑x
∫

dw(Λ−bx)wP(x,w)
∑x
∫

dwwP(x,w)
=

1
#I ∑(x,w)∈I(Λ−bx)w

1
#I ∑(x,w)∈I w

=

=
⟨(Λ−bx)w⟩

⟨w⟩
.

(D.1)
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If the importance sampling is applied and the guiding wave function is real, the
energy can be computed as in equation (4.36). Here we provide the proof:

EGS =
⟨ΦGS|H|ΦGS⟩
⟨ΦGS|ΦGS⟩

=
⟨ΦG|H|ΦGS⟩
⟨ΦG|ΦGS⟩

=

=
∑x⟨ΦG|H|x⟩⟨x|ΦGS⟩

∑x⟨ΦG|x⟩⟨x|ΦGS⟩
=

∑x
⟨ΦG|H|x⟩
⟨ΦG|x⟩ ⟨ΦG|x⟩⟨x|ΦGS⟩
∑x ΦG(x)ΦGS(x)

=

=
∑x eL(x)ΦG(x)ΦGS(x)

∑x ΦG(x)ΦGS(x)
=

∑x eL(x)Φ̃GS(x)
∑x Φ̃GS(x)

=

=
∑x
∫

dweL(x)wP̃(x,w)
∑
∫

dwwP̃(x,w)
=

1
#Ĩ ∑(x,w)∈Ĩ eL(x)w

1
#Ĩ ∑(x,w)∈Ĩ w

=

=
1
#Ĩ ∑(x,w)∈Ĩ(Λ− b̃x)w

1
#Ĩ ∑(x,w)∈Ĩ w

=
⟨
(
Λ− b̃x

)
w⟩

⟨w⟩

(D.2)

where the second to last equality follows from

eL(x) =
⟨ΦG|H|x⟩
⟨ΦG|x⟩

= ∑
x′

⟨ΦG|x′⟩⟨x′|H|x⟩
⟨ΦG|x⟩

= ∑
x′

ΦG(x′)Hx′,x

ΦG(x)
=

= ∑
x′

(
Λδx,x′ −Gx,x′

)ΦG(x′)
ΦG(x)

= Λ−∑
x′

G̃x,x′ = Λ− b̃x

. (D.3)



Appendix E

Derivation of the bosonization
formula of Chapter 7

This Appendix is devoted to the derivation of some formula used in Section 7.2.

Formula (7.67):

: Q j, j+1,σ := : c†
j,σ c j+1,σ +h.c. :=

=a :
[
(−ı) j

Ψ
†
Rσ

(x)+(ı) j
Ψ

†
Lσ
(x)
][
(ı) j+1

ΨRσ (x+a)+(−ı) j+1
ΨLσ (x+a)

]
: +h.c.=

=aı
[
: Ψ

†
Rσ

(x)ΨRσ (x+a) : − : Ψ
†
Lσ
(x)ΨLσ (x+a) : +

− (−1) j
(

Ψ
†
Rσ

(x)ΨLσ (x+a)−Ψ
†
Lσ
(x)ΨRσ (x+a)

)]
+h.c.

(E.1)

At first order

: Ψ
†
Rσ

(x)ΨRσ (x+a) :=: Ψ
†
Rσ

(x)ΨRσ (x) := ρRσ (x) =
1

2
√

π
(∇φσ (x)+∇θσ (x))

(E.2)
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(see eq. (3.55)). In fact

: Ψ
†
Rσ

(x)ΨRσ (x+a) :=

=
η

†
Rσ

ηRσ

2πα
e−ı

√
π[φσ (x)+θσ (x)]eı

√
π[φσ (x+a)+θσ (x+a)]−⟨...⟩=

=
1

2πα
eı
√

π([φσ (x+a)−φσ (x)]+[θσ (x+a)−θσ (x)])e
π

2 C −⟨...⟩

(E.3)

where C is the commutator

[φσ (x)+θσ (x),φσ (x+a)+θσ (x+a)] =−ı . (E.4)

By replacing φσ (x+a)−φσ (x) with a∇φσ (x) and θσ (x+a)−θσ (x) with a∇θσ (x)
in eq. (E.3), and approximating the exponential by a first-order Taylor expansion,
we get

(E.3) =− ı
2πα

[
��1+ ı

√
πa∇φσ (x)+ ı

√
πa∇θσ (x)

]
−

�
��⟨...⟩

=
1

2
√

π
[∇φσ (x)+∇θσ (x)] =

=ρRσ(x) =: Ψ
†
Rσ

(x+a)ΨRσ (x) :=: Ψ
†
Rσ

(x)ΨRσ (x) :

(E.5)

Analogously

: Ψ
†
Lσ
(x)ΨLσ (x+a) := ρLσ =

1
2
√

π
[∇φσ (x)−∇θσ (x)] . (E.6)

Thus

: Ψ
†
Rσ

(x)ΨRσ (x+a)−Ψ
†
Lσ
(x)ΨLσ (x+a) := ρRσ −ρLσ =

1√
π

∇θσ (x) (E.7)

which is the current (see Section 3.10), and it vanishes when adding its hermitian
conjiugate.
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At second order, we obtain

(E.3) =− ı
2πα

[
��1+ ı

√
πa(∇φσ (x)+∇θσ (x))−

πa2

2
(∇φσ (x)+∇θσ (x))

2
]
−

�
��⟨...⟩

=
1

2
√

π
[∇φσ (x)+∇θσ (x)]+

ıa
4
[∇φσ (x)+∇θσ (x)]

2

(E.8)

and

: Ψ
†
Lσ
(x)ΨLσ (x+a) :=

ı
2πα

eı
√

πa(−∇φσ (x)+∇θσ (x))−⟨...⟩=

=
ı

2πα

[
��1+ ı

√
πa(−∇φσ (x)+∇θσ (x))

−πa2

2
(−∇φσ (x)+∇θσ (x))

2
]
−

�
��⟨...⟩ =

=
1

2
√

π
[∇φσ (x)−∇θσ (x)]−

ıa
4
[−∇φσ (x)+∇θσ (x)]

2

(E.9)

so that

: Ψ
†
Rσ

(x)ΨRσ (x+a)−Ψ
†
Lσ
(x)ΨLσ (x+a) :=

1√
π

∇θσ (x)+
ıa
2

[
(∇φσ (x))

2 +(∇θσ (x))
2
] (E.10)

and

aı
(

: Ψ
†
Rσ

(x)ΨRσ (x+a)−Ψ
†
Lσ
(x)ΨLσ (x+a)

)
: +h.c.=

−a2
[
(∇φσ (x))

2 +(∇θσ (x))
2
]
.

(E.11)

Now let’s calculate the oscillating part in eq. (E.1). We obtain

Ψ
†
Rσ

(x)ΨLσ (x+a) =
η

†
Rσ

ηLσ

2πα
e−ı

√
π[φσ (x)+θσ (x)]eı

√
π[−φσ (x+a)+θσ (x+a)] =

=
−ı

2πα
e−ı

√
π[φσ (x)+φσ (x+a)−θσ (x+a)+θσ (x)]e

π

2 C
(E.12)

with
C = [φσ (x)+θσ (x),−φσ (x+a)+θσ (x+a)] = 0 . (E.13)
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Thus

(E.12)≃− ı
2πα

e−ı2
√

πφσ (x) =
1

πα

e−ı2
√

πφσ (x)

2ı
. (E.14)

Analogously, its hermitian conjugate is

Ψ
†
Lσ
(x)ΨRσ (x+a) =

η
†
Lσ

ηRσ

2πα
e−ı

√
π[−φσ (x)+θσ (x)]eı

√
π[φσ (x+a)+θσ (x+a)] =

≃− 1
πα

eı2
√

πφσ (x)

2ı
.

(E.15)

Hence

Ψ
†
Rσ

(x)ΨLσ (x+a)−Ψ
†
Lσ
(x)ΨRσ (x+a) =

1
παı

cos(2
√

πφσ (x)) (E.16)

and

−aı(−1) j
[
Ψ

†
Rσ

(x)ΨLσ (x+a)−Ψ
†
Lσ
(x) ΨRσ (x+a)]+h.c.=

− 2(−1) j

π
cos(2

√
πφσ (x)) .

(E.17)

Summing (E.11) and (E.17), we finally get

: Q j, j+1,σ :≃− 2
π
(−1) j cos(2

√
πφσ (x))−a2

[
(∇φσ (x))

2 +(∇θσ (x))
2
]

(E.18)

where the last contribution is second order and we include it only when the oscillating
one is vanishing (i.e., in the kinetic-like terms).

Formula (7.68):

: n j,σ := : c†
j,σ c j,σ :=

=a :
[
(−ı) j

Ψ
†
Rσ

(x)+(+ı) j
Ψ

†
Lσ
(x)
][
(+ı) j

ΨRσ (x)+(−ı) j
ΨLσ (x)

]
:=

=a
[
: Ψ

†
Rσ

(x)ΨRσ (x) : + : Ψ
†
Lσ
(x)ΨLσ (x) : +

+ (−) j
(

Ψ
†
Rσ

(x)ΨLσ (x)+Ψ
†
Lσ
(x)ΨRσ (x)

)]
=

=a
[
ρRσ (x)+ρLσ (x)+(−) j

(
Ψ

†
Rσ

(x)ΨLσ (x)+Ψ
†
Lσ
(x)ΨRσ (x)

)]
.

(E.19)
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We know that ρRσ +ρLσ = 1√
π

∇φσ (see Section 3.10); whereas

Ψ
†
Rσ

(x)ΨLσ (x) =
η

†
Rσ

ηLσ

2πα
e−ı

√
π[φσ (x)+θσ (x)]eı

√
π[−φσ (x)+θσ (x)]

=
−ı

2πα
e−ı2

√
πφσ (x)

(E.20)

and its hermitian conjugate is

Ψ
†
Lσ
(x)ΨRσ (x) =

ı
2πα

eı2
√

πφσ (x) (E.21)

hence
Ψ

†
Rσ

(x)ΨLσ (x)+Ψ
†
Lσ
(x)ΨRσ (x) =− 1

πα
sin(2

√
πφσ (x)) (E.22)

and

: n j,σ := a
[

1√
π

∇φσ (x)−
(−1) j

πα
sin(2

√
πφσ (x))

]
. (E.23)

Formula (7.71):

: n j,σ :: n j+r,σ = a2
[

1
π

∇φσ (x)∇φσ (x+R)+

(−1)r

(πα)2 sin(2
√

πφσ (x))sin(2
√

πφσ (x+R))+�����
(−1) j...

]
.

(E.24)

We approximate ∇φσ (x)∇φσ (x+R)≃ (∇φσ (x))2 and sin(2
√

πφσ (x))sin(2
√

πφσ (x+
R)) by using formula (7.69). So we get

(E.24) =
a2

π
(∇φσ (x))2 +

(−1)r

π2

[
−1

2
cos(4

√
πφσ (x))−πα

2(∇φσ (x))2
]
=

=
a2

π
(1− (−1)r)(∇φσ (x))2 − (−1)r

2π2 cos(4
√

πφσ (x)) .

(E.25)
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Formula (7.72):

By using eq. (7.68), we get

: n j,σ :: n j+1,σ :≃ a2
{

1
π

∇φσ (x)∇φσ (x+a)+

− 1
(πα)2 sin(2

√
πφσ (x))sin(2

√
πφσ (x+a))+

+
(−1) j

π
√

πα

[
∇φσ (x)sin(2

√
πφσ (x+a))+

−sin(2
√

πφσ (x))∇φσ (x+a)
]}

.

(E.26)

The single terms appearing in the previous expression can be approximated in the
following way

∇φσ (x)∇φσ (x+a)≃ (∇φσ (x))
2

sin(2
√

πφσ (x))sin(2
√

πφσ (x+a))≃ 1
2 −

1
2 cos(4

√
πφσ (x))−πa2 (∇φσ (x))

2

[see eq. (7.69)]

∇φσ (x)sin(2
√

πφ(x+a))− sin(2
√

πφσ (x))∇φσ (x+a)≃ 2√
πa cos(2

√
πφσ (x))

[see eq. (7.70)] ;

thus

(E.26)≃ a2 2
π
(∇φσ (x))

2− 1
2π2 +

1
2π2 cos(4

√
πφσ (x))+(−) j 2

π2 cos(2
√

πφσ (x)) .
(E.27)
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