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Highlights

• A study of the stability characteristics of discrete pairwise interaction kernels is done

• An easy-to-use criterium to detect the stability characteristics is applied to selected families

of kernels

• H-stable interaction kernels result in crystalline strictures of cell aggregates

• The proposed study allows to solve the inverse problem (i.e., from experimental to simulation

cell aggregates)

• The proposed study allows to reproduced biological processes (e.g., cell sorting)
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Adhesion and volume constraints via nonlocal interactions determine
cell organisation and migration profiles

José Antonio Carrillo1

Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom

Annachiara Colombi and Marco Scianna3

Department of Mathematical Sciences, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

Abstract

The description of the cell spatial pattern and characteristic distances is fundamental in a wide

range of physio-pathological biological phenomena, from morphogenesis to cancer growth. Discrete

particle models are widely used in this field, since they are focused on the cell-level of abstraction

and are able to preserve the identity of single individuals reproducing their behavior. In particu-

lar, a fundamental role in determining the usefulness and the realism of a particle mathematical

approach is played by the choice of the intercellular pairwise interaction kernel and by the esti-

mate of its parameters. The aim of the paper is to demonstrate how the concept of H-stability,

deriving from statistical mechanics, can have important implications in this respect. For any given

interaction kernel, it in fact allows to a priori predict the regions of the free parameter space that

result in stable configurations of the system characterized by a finite and strictly positive minimal

interparticle distance, which is fundamental when dealing with biological phenomena. The pro-

posed analytical arguments are indeed able to restrict the range of possible variations of selected

model coefficients, whose exact estimate however requires further investigations (e.g., fitting with

empirical data), as illustrated in this paper by series of representative simulations dealing with

cell colony reorganization, sorting phenomena and zebrafish embryonic development.

Keywords: interaction potentials, nonlocal models, H-stability, cell sorting, cell-cell interactions

2010 MSC: 35Q70, 35Q92, 92C17

1. Introduction

An accurate description of the spatial pattern of cell aggregates is a fundamental issue in

theoretical biology. The spatial cell configuration and characteristic distances are in fact at the

basis of a wide range of biological processes, i.e., from morphogenesis to cancer growth and invasion.

1carrillo@imperial.ac.uk
2annachiara.colombi@polito.it
3marco.scianna@polito.it
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For example, defects in the spatial organization of multipotent stem cells in animal embryos lead5

to severe malformations of adult organs [1]. Further, the compact configuration of epithelial

monolayers is fundamental in wound healing scenarios. Finally, the dispersion of highly motile

malignant individuals triggers the metastatic transition of tumor progression [2].

From a mathematical point of view, the spatial distribution of cells forming aggregates can be

well approximated by discrete models, which actually approach the biological problem focusing10

on the cell-level of abstraction and preserve the identity and the behavior of individual elements

(for comprehensive reviews the reader is referred to [3, 4, 5, 6]). In more details, these techniques

represent biological elements as one or a set of discrete units, being individual morphology re-

stricted according to some underlying assumptions. Among discrete approaches, we here focus

on particle-based models, where the biological individual is represented by a material point with15

concentrated mass and identified by its position in space, in contrast to methods that allow for a

description of the cell membrane and its morphology as vertex-based models [7] or Cellular Potts

Models (CPM, see [8, 9]). For particle or agent-based models, the cells move according to ordi-

nary differential equations (ODEs), with the phenomenological postulation of either acceleration

(second-order models) or velocity (first-order models) contributions. In both cases, among the20

possible migratory components that can be included, one of the main important model ingredi-

ents is the term relative to direct intercellular pairwise interactions that can be described by a

proper kernel (potential). This contribution in cell behavior is typically the combination of adhe-

sive/repulsive mechanisms and can lead to unrealistic cell collapse or dispersion or more realistic

patterns with optimal individual spacing.25

The definition of proper interaction kernels, as well as an accurate estimate of the relative

parameters, is therefore mandatory when developing a particle model for biological problems. In

particular, the issue relative to the parameter estimate is very relevant in theoretical biology. In

fact, regardless of the specific implemented approach, a direct one-to-one correspondence between

all the model parameters and experimental quantities is not straightforward (as commented also30

in [8, 9, 62], in the case of CPM). The different model coefficients often interfere with each other

in an intricate way, and therefore simultaneous parameter fittings are typically needed, which can

be done with large-scale massive preliminary simulations.

Objective of the work. The main objective of this paper is indeed to propose a procedure that

improves the strategy to choose proper adhesive/repulsive kernels by identifying a physically ad-35

missible subset of the free parameter space which gives rise to realistic system configurations

in terms of inter-agent spacing. In order to do this, we will take advantage of the concept of H-

stability of particle interaction kernels and potentials, defined in the statistical mechanics [10], and

already used in the modeling of swarming and collective migration of animal population [11, 12].

3
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The determination of the H-stability properties allows in fact to predict the stable configurations,40

in terms of particle spacing, of the system of interest. Of particular relevance is the fact that the

H-stability condition of interaction kernels translates into a constraint involving the values of the

relative interaction parameters, therefore reducing the range of their possible variations if we want

to obtain realistic patterns. It is useful to clarify that the proposed analytical results do not shed

light either on the dynamics of the aggregate or on the exact position of the single agents at the45

equilibrium.

Structure of the work. The rest of the paper is then organized as it follows. In Section 2, we

will present a general first-order particle model (formally derived by a second-order approach)

and discuss some possible velocity contributions that can be included in the modeling framework.

In Section 3, we will focus on the interaction velocity term. In this respect, we will propose a50

class of interaction kernels/potentials, commenting the underlying biological hypothesis and, in

Section 3.2, we will introduce the concept of H-stability of the system and its implications in the

classification (in terms of agent spacing) of the stable configurations of a particle system and on

the estimate of the interaction parameters. In Section 3.3, such analytical results will be supported

by proper sets of simulations. Section 3.4 will instead show that, once restricted the free space55

of the interaction model parameters, a more detailed coefficient estimate can only result by a

data fitting with experimental/biological quantities. Finally, in order to not remain on a pure

conceptual level, we will finally show in Section 4 that the proposed analytical procedure can be

important also in the case of more realistic biological applications: for instance, we will reproduce

the early migration of the zebrafish lateral line primordium, whose dynamics are fundamental for60

the correct embryonic development of the animal, and show how the use of H-stable interaction

potentials is crucial to reproduce typical migration patterns.

2. Basic Mathematical Model

We start by considering a biological system composed byN cells of the same phenotype/lineage,

i.e., characterized by the same biophysical properties (mass and dimension) and behavior. We an-

ticipate that in the following sections, we will extend such a model framework in the case of multiple

differentiated cell populations. As previously introduced, each individual is here represented as

a discrete entity, i.e., as a material particle with concentrated mass, say m, and characterized

by its position in space, xi(t) ∈ R2 with i = 1, . . . , N , assuming a planar cell distribution. The

configuration of the overall system at a given instant t can therefore be given by the vector:

X(t) = {x1(t), . . . ,xN (t)} ∈ R2N , ∀ t ∈ R+.

4
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To approach the dynamics of a generic cell i, we start from a general second-order particle model:

65

m
d2xi

dt2
(t) + λcsi

dxi

dt
(t) +

N∑

j=1
j 6=i

λccij

(
dxi

dt
(t)− dxj

dt
(t)

)
= Fi(t). (1)

The second and the third terms on the left hand side of Eq. (1) describe damping mechanisms

related to the friction forces resulting from the contact of cell i with, respectively, the substrate and

the other individuals, as λcsi and λccij are the corresponding coefficients (which may be, for instance,

constant parameters in common for all cells [13] or time-dependent individually-specific tensors

[69]). These contributions have the effect to slow down individual movement and eventually70

to increase the characteristic time scale of the overall cell collective patterning. On the right

hand side, Fi instead denotes the sum of all forces influencing cell behavior. However, in order

to simplify the picture, we can first notice that cells move in extremely viscous environments,

characterized by very small Reynolds numbers: inertial effects in cell dynamics can therefore be

neglected, if a sufficiently large observation time is considered [69, 70]. In fact, in these conditions,75

biological cells can maintain a persistent ballistic locomotion only for a substantially small time,

giving rise to straight displacements shorter than their typical dimensions. These considerations

allow to drop the inertial term in (1) and to employ a first-order model, where the velocity of an

individual, and not its acceleration, is proportional to the acting forces. Such a relation, called

overdamped force-velocity response, is at the basis of a number of other discrete/IBM approaches80

(see [6, 14] and references therein for comments). As seen, cell-cell friction is in principle an

important contribution: however, such a damping term is of particular relevance in the case of

three-dimensional settings, where the adhesive surface between cells is significantly large [6]. In

fact, in planar domains, as those considered in this work, cell membranes are instead mainly in

contact with extracellular elements, e.g., flat matrix substrates. It is further not too restrictive to85

assume, at least in a first approximation and in a more conceptual work, that the relative velocity

between pairs of cells is negligible with respect to cell-substrate friction. For these reasons, we opt

to neglect also the third term on the left hand side of Eq. (1), thereby obtaining the following law

of cell motion:

λcsi
dxi

dt
(t) = Fi(t) ⇒ dxi

dt
(t) =

Fi(t)

λcsi
= vi(t)︸ ︷︷ ︸

cell
velocity

. (2)

Eq. (2) implies indeed that cell dynamics can be described by a direct phenomenological postu-90

lation of the velocity contributions, which have to take into account of the cell-substrate friction

coefficient, possibly included within their characteristic parameters. It is finally useful to remark

that, once cells move with constant velocity, the shape of their migration profile is given by the

stationary states of the model (2): they derive from the balance of forces acting on each indi-

vidual (i.e., Fi(t) = 0 for all i) and are exactly the same that would result by the corresponding95
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second-order approach.

We now assume that the velocity of each cell i results from the superimposition of different,

biologically reasonable, contributions:

vi(t) = vdir
i (t) + vint

i (t) + vrand
i (t) + vother

i (t). (3)

In Eq. (3), vdir
i is a directional component in individual motion, that may reflect chemotactic,

haptotactic, or durotactic mechanisms (i.e., cell locomotion towards substrate regions with in-100

creasing concentrations/density of soluble or insoluble chemicals, or of rigid extracellular matrix

components, respectively). vint
i models instead individual dynamics resulting from direct inter-

cellular interactions, which are the main topic of this article and will be dealt in more details

below. vrand
i is a noise term, that takes into account that biological elements (not only cells but

also bacteria and other organisms) explore their surrounding environment and crawl in a random105

fashion. Finally, vother
i possibly includes other cell migratory mechanisms, such as Cucker-Smale

type alignment contributions [15], employed for instance to describe dynamics of swarms [16],

epithelial fronts [17] and zebrafish embryos [13], although in second-order approaches.

3. Intercellular Interaction Velocity Contribution

Of the above-introduced spectrum of cell velocity components, let us now focus on the term110

relative to cell-cell direct interaction instances, i.e., vint. A detailed analysis of its structure and

effects, as well as a reasonable estimate of the relative characteristic parameters, is in fact critical

in the mathematical description of most biological phenomena, since cell-cell interactions are at

the basis of system configuration, patterning, and development [18].

More precisely, we assume that cell behavior due to direct intercellular interactions results115

from the superposition of the contributions of pairwise forces, which consistently depend on the

relative distance between the two individuals involved and result aligned to line ideally connecting

them. Based on these working hypothesis, the cell-cell interaction velocity term can be given by:

vint
i (t) = −

N∑

j=1
j 6=i

K(|xi(t)− xj(t)|)
xi(t)− xj(t)

|xi(t)− xj(t)|
, i = 1, . . . , N, (4)

where | · | identifies the Euclidean norm and K : R+ → R (that has units µm/s) is an interaction

kernel. In (4), we consistently avoid cell self-interactions as well.120

First-order models with nonlocal attractive and repulsive terms to include cell adhesion and

volume effects have been already proposed in the literature of cell interactions for cancer invasion

models [19, 20, 21, 22, 23], zebrafish lateral line patterning [24], and cell sorting in heterogenous

cell populations [25, 26, 27]. Some of this works do not deal with agent-based models but with

6
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Figure 1: Left panels: Repulsive interactions affect the dynamics of two cells when their relative distance is lower
than a mean cell body diameter dr. The repulsive neighborhood of each cell i, with i = 1, . . . , N , then consists of a
round area with radius dr centered at the actual position of particle i. Central panels: Attractive interactions arise
between cells whose relative distance is larger than the mean cell body diameter dr and lower than the maximal
possible extension of cell membrane adhesive structures da. The cell adhesive neighborhood then consists of a
circular ring with inner radius dr and external radius da. Right panel: The radial interaction kernel K is assumed
negative when repulsive, i.e., K(|x− y|) < 0 when |x− y| < dr, and positive when attractive, i.e., K(|x− y|) > 0
if dr < |x − y| < da. Finally, cells whose relative distance is too large do not interact: consistently, we set
K(|x− y|) = 0 if |x− y| > da.

their continuum macroscopic limit or even with an hybridization of both description levels [22, 23].125

For instance, at the macroscopic level, repulsion is taken into account by (nonlinear) diffusion or

drift saturation terms [26, 27, 28, 29, 30, 31], which can be obtained from particle-based nonlocal

repulsive models in the right scaling limit [32, 33].

3.1. Definition of the Intercellular Interaction Kernel

Despite cell-cell direct forces may result from several mechanisms, we hereafter take into ac-130

count only repulsive interactions, which reproduce cell resistance to compression due to size and

mechanical arguments [34, 35], and attractive interactions, which conversely implement cell-cell

adhesiveness, that relies upon the expression and the activity of transmembrane molecules (i.e.,

cadherins). In this respect, denoting as x,y the position in space of a pair of particles, we say

that K implements a cell repulsive behavior when K(|x − y|) < 0 and an attractive one when135

K(|x − y|) > 0, see Fig. 1 (right panel). Coherently, cell resistance to compression enters the

picture if the relative distance between the interacting individuals is lower than a minimal vital

space, i.e., lower than a mean cell diameter, hereafter denoted by dr (see Fig. 1, left panels). On

the other hand, cell-cell adhesiveness is active if the relative distance between two interacting

particles is large enough to avoid cell-cell repulsion, i.e., |x − y| > dr, but sufficiently small to140

allow the formation of bonds between cell membrane protrusions, i.e., smaller than the maximal

possible extension of cell deformable adhesive structures, which is hereafter denoted by da (see

7
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Figure 2: Representation of the family of intercellular pairwise interaction kernels K(r) defined in Eq. (5) and the
corresponding potentials u(r), see Appendix Appendix A. All the proposed functions present a parabolic behavior
in the attractive part and a differentiated shape in the repulsive part. In particular, the repulsive trend near the
origin (i.e., when the distance between the two interacting cells is lower than dn = dr/2) is established by the
parameter s ∈ (0, 2]. In the figure, we show the shape of some representative kernels/potentials obtained by setting
s = 2, 1.75, 1.5, 1.25, 1, 0.75, 0.5, 0.25, we focus on in the following sections.

Fig. 1, central panels). Finally, when two individuals fall too apart one to each other, i.e., their

distance is larger than da, they do not interact: in this case, K(|x−y|) is set equal to 0, see Fig. 1,

right panel.145

In principle, there are many possible choices for the explicit form of the interaction kernel K

introduced in Eq. (4): however, they have to reasonably and accurately describe the biological

phenomenon of interest. In particular, we hereafter consider a set of interaction kernels charac-

terized by a parabolic shape in the positive/attractive part and a differentiated behavior in the

negative/repulsive part [23, 36]. Specifically, the cell repulsive neighborhood accounts for distinct150

compressibility of cell nucleus and cytoplasm, with the former that is typically less squeezable than

the latter, that is conversely highly deformable, as widely proven in the experimental literature

[1, 37]. In this respect, we denote the nucleus diameter by dn (that is reasonably close to cell

radius, i.e., dn = dr/2) and assume a different shape of the repulsive part of interaction kernel

depending on whether the intercellular distance is lower than dn or falls in the range [dn, dr].155

According to all the previous considerations, we indeed hereafter deal with the following family

8
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of interaction kernels:

K(r) =





−Fr

(
dr
2

)3−2s
r2s−3, if 0 < r <

dr
2

= dn;

2Fr (r − dr)
dr

, if dn =
dr
2
≤ r ≤ dr;

−4Fa (r − da) (r − dr)
(da − dr)2

, if dr < r ≤ da;

0, if r > da.

with s ∈ (0, 2], (5)

The functions defined in Eq. (5), and plotted in Fig. 2 (left panel), are intrinsically multiparametric,

since they are characterized by the following set of coefficients:

(Fr, Fa, dr, da, s) ∈ R4
+ × (0, 2].

To decrease the complexity of the problem, we can first restrict the dimension of the free parameter

space with phenomenological arguments and observations. The values relative to cell dimensions,

i.e., dr and da, can be in fact easily taken from the experimental literature according to the

phenomenon of interest and to the specific type of cells involved. This reduces the set of free

parameters to

(Fr, Fa, s) ∈ R2
+ × (0, 2].

In this respect, Fr and Fa (that have both units µm/s) are related to the repulsion and adhesive

strengths of cell-cell interactions, respectively, being also scaled by the cell-substrate friction coeffi-

cient (see before). In more details, Fr is proportional to an intrinsic cell incompressibility/stiffness,160

that is necessary to allow the single individuals to realistically preserve their dimensions and to

avoid overlaps; Fa is instead correlated to the cell-cell adhesiveness which, from a molecular view-

point, is locally regulated by the expression and the activation of specific cadherin molecules.

Finally, the parameter s characterizes the kernel behavior near the origin (see Fig. 2), being

broadly related to the nucleus stiffness. The values of Fr, Fa and s do not indeed have a clear165

and direct biological counter part and are therefore difficult to estimate, although they have to

result in realistic cell velocities. However, an analysis based on arguments deriving from statistical

mechanics is able to a priori predict the regions of remaining free parameter space that give rise

to stable system configurations characterized by optimal cell spacing, fundamental when modeling

of biological phenomena. The proposed study indeed facilitate the parameter estimate, at least170

by reducing the possible variations of selected model coefficients.

9
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3.2. H-Stabilty of the Intercellular Interaction Kernel: Analytical Results

With this aim, and in order to simplify, let us start by neglecting all the other velocity contri-

butions, except from the one deriving from direct intercellular interactions. We remark that the

inclusion of other cell behavior is possible, as it will be shown in the following sections. Taking175

into account of (4), Eq. (2) can be rewritten in the following form

dxi(t)

dt
= vint

i (t) = −
N∑

j=1
j 6=i

K (|xi(t)− xj(t)|)
xi(t)− xj(t)

|xi(t)− xj(t)|
i = 1, . . . , N. (6)

To discuss some the theoretical results concerning the stationary states of problem (6), notice that

the family of interaction kernels K introduced in Eq. (5) can always be considered as being derived

from a scalar interaction potential u : R+ → R such that u′(r) = K(r) and that it is possible

to define a vector potential U : R2 → R such that U(x) = u(|x|) (cf. Appendix Appendix A).

Accordingly, we can write

dxi(t)

dt
= vint

i (t) = −
N∑

j=1
j 6=i

K (|xi(t)− xj(t)|)
xi(t)− xj(t)

|xi(t)− xj(t)|

= −
N∑

j=1
j 6=i

u′ (|xi(t)− xj(t)|)
xi(t)− xj(t)

|xi(t)− xj(t)|
= −

N∑

j=1
j 6=i

∇U(xi(t)− xj(t)), (7)

for all i = 1, ...N . The system of equations (7) has the structure of a gradient flow of the total

potential energy

EN (t) =
N∑

i,j=1
j 6=i

U(xi(t)− xj(t)) .

In particular, EN is a Liapunov functional for (7) and therefore the stable stationary states of

the problem are among (local or global) minimizers of the interaction energy. Let us now discuss

some of the qualitative properties known for these (local) minimizers.

The first important theoretical result is that the behavior of the solution at the equilibrium180

is regulated by the repulsive part of the interactions, i.e., by the singularity of the interaction

potential/kernel at the origin. This fact was studied in [38, 39] where it was shown that, as

the potential gets more and more repulsive at the origin, the particles distribute in larger and

larger regions. In other words, while mild repulsion may allow for clustering of particles, singular

repulsion leads to regular distributions of particles in the plane and a well defined minimum185

interparticle distance.

The second theoretical aspect is relative to the concept of H-stable potentials, introduced in

statistical mechanics, see [10], and intimately related to the emergence of crystal-like behavior in

ensembles of interaction particles. Assume u is a potential essentially negligible for large distances,

10
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i.e., such that lim
r→+∞

u(r) = 0: if u is H-stable, we have that at the equilibrium the minimal190

interparticle distance is bounded below by a finite fixed positive value regardless of the total

amount of individuals N . On the opposite, if the potential u is not H-stable, sometimes also

called catastrophic in the statistical mechanics literature, the minimal interparticle distance at the

equilibrium collapses to 0 as N → ∞. An easy-to-check criterium to detect the H-stability of a

potential is given in [10] and summarized in the next Theorem, see also [40, 41, 42] for further195

discussions and results in the not H-stable cases.

Theorem 1.

If

∫ +∞

0

u(r) r dr > 0, then the potential is H-stable.

If

∫ +∞

0

u(r) r dr < 0, then the potential is catastrophic or not H-stable.

Basing on this characterization, we can state the following:200

Corollary 2. The family of interaction potentials defined in Eq. (5) is H-stable when

Fr

Fa
>

32 s (da − dr) (3 d2a + 4 da dr + 3d2r )

5 (11 s+ 6) d3r
:= F ∗. (8)

For the sake of completeness the proof of the Corollary is given in Appendix A.

Taking into account that, as seen, the values of the interaction radii dr and da are defined

according to cell phenotype, the above analytical result states that the H-stability (and therefore

the overall system behavior) translates into a constraint on the ratio between the repulsive and205

adhesive interactions strengths (i.e., Fr and Fa), fixed the value of s. In other words, for any

given interaction kernel, only pairs of values Fr and Fa satisfying (8) will give a stable system

configuration characterized by a finite and strictly positive interparticle distance, i.e., a biologically

realistic model.

3.3. H-Stability of the Intercellular Interaction Kernel: Computational Results210

Let us devote the rest of this section to computationally support our previous analytical con-

siderations, i.e., to showcase how the final pattern of pairwise interacting particles is governed by

the H-stability of the interaction kernel and its behavior at the origin. To do this, we hereafter

perform numerical tests that reproduce the evolution of aggregates of N component cells, whose

dynamics are regulated by model (7) with interaction kernels K defined as in Eq. (5). In more215

details, our strategy is to vary the values of the free interaction parameters, i.e., s, Fr, and Fa and

to explore the discrete stationary states of N -cell populations. In particular, the system behavior

11
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Figure 3: Initial configuration of the system in the case of variations in the overall number of cells. The component
individuals are initially randomly distributed within a round area of radius equal to 60 µm (i.e., dmax(0) = 120 µm).
The initial minimal intercellular distance is not null to avoid overlapping and such that each cell is able to interact
at least with another individual, i.e., dmax(0) ∈ (0, da].

will be classified according to the following quantities

dmin(t) = min
i,j=1,...,N

i6=j

|xi(t)− xj(t)|; (9)

dmax(t) = max
i,j=1,...,N

i6=j

|xi(t)− xj(t)|, (10)

which will be evaluated at the beginning of the simulation, i.e., at t = 0 (initial condition)

and after tF , i.e., an observation time sufficiently large to allow the component cells to reach220

a stable equilibrium configuration. We remark that the measures introduced in (9)-(10) have a

well-defined biological meaning: dmin is the minimal intercellular distance, whereas dmax gives

in fact the extension of the overall particle distribution. If its value is above a threshold value

(consistently close to the nucleus diameter dn), all cells have a sufficient space to remain viable and

survive. Otherwise, they can be considered overlapped or dramatically compressed and therefore225

suppressed.

Variations of N in the cases of different values of s and Fr/Fa. We first investigate the effect

on the equilibrium configuration of cell colonies of variations in the overall number of agents

in the case of either H-stable or not interaction kernels K. A series of numerical realizations is

indeed performed on systems formed by N = 50, 100, 200 particles which evolves following (6) with230

interaction kernel defined in (5). Regardless of their number, the agents are initially distributed in

an almost round area of radius equal to 60 µm (i.e., dmax(0)= 120 µm), see Fig. 3. In particular,

in all cases, the initial configuration of the aggregates is such that for each cell i = 1, . . . , N

the minimal interparticle distance dmin(0), defined in Eq. (9), is not zero (in order to avoid that

distinct individuals are initially located at the same position) and lower than da (so that each235

cell is initially able to interact at least with another cell). According to [22, 23] and biological
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Figure 4: Equilibrium configuration of cell aggregates formed by an increasing number of component cells, observed
for selected representative choices of the shape of the interaction kernel at the origin (i.e., s = 1.75, 1, 0.25) and of
the ratio between the interaction strengths parameters (i.e., Fr/Fa, which makes the interaction kernels H-stable
or not). In the sake of completeness, in each panel, we indicate the stable values of dmax(tF ) and dmin(tF ).

references therein, the cell typical dimensions are finally taken as dr = 20 µm (so that dn = 10 µm)

and da = 60 µm.

Specifically, we focus only on three possible choices for the behavior of the interaction kernel

near the origin, determined by s = 1.75 (more regular than hyperbolic, which results in F ∗ =240

37, 26), s = 1 (hyperbolic, which results in F ∗ = 31, 32), and s = 0.25 (more singular than

hyperbolic, which results in F ∗ = 15, 36). Simultaneously, we consider two representative values

of the ratio Fr/Fa, i.e., Fr/Fa = 10 and 100, that respectively makes the considered interaction

kernels not H-stable and H-stable.

The computational results, summarized in Fig. 4, show that in the case of not H-stable kernels:245

- the minimal intracellular distance at the equilibrium, i.e., dmin(tF), dramatically decreases

upon increments in N ;

- the overall extension of the cell aggregate, i.e., dmax(tF), remains almost constant regardless

of the number of particles forming the population.

In more details, for any fixed value of N , if the interaction kernel is not H-stable, the individuals250

tend to collapse, towards a colony of dmax(tF) ≈ 70 µm. Slightly differences can be however

observed due to the characterization of K near the origin. In particular, we have that, for any

tested N , by setting s = 1.75, cells organize into several compressed clusters, with consistent

cell overlapping, i.e., dmin(tF) < 2 µm. A more homogeneous spatial distribution of cells at the

equilibrium is then observed for lower values of s (i.e., for interaction kernels more singular near255

the origin): however, also in these cases, the stable intercellular distance is still too small to have
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a realistic individual survival (dmin(tF) < dn). From an applicative/biological perspective, this

system behavior corresponds, for instance, to the fact that if we culture more and more cells

within the same, say, Petri dish, they would organize into increasingly denser colonies, collapsing

and overlapping one from each other. That would be obviously an unrealistical situation.260

On the opposite, in the case of H-stable particle systems, increments in N result in increments

in the overall dimension of the cell aggregate at the equilibrium (i.e., of dmax(tF)) whereas the

characteristic intercellular minimal distance dmin(tF) does not vary: it remains close to the re-

pulsive radius dr, being independent from N . In particular, in all H-stable cases, we have cell

colony re-organization and enlargement (i.e., dmax(tF) > dmax(0)), with the stable configuration265

characterized by a minimum intercellular distance that allows individuals to have a sufficient vital

space, which does not significantly change upon variations of s. Biologically, it is a reasonable

behavior, since, if we add more cells, then an aggregate tends to enlarge and to occupy extended

parts of the substrate to allow each individual to have a sufficient vital space.

Variations of s and Fr/Fa. Now, we consider the representative cell aggregate constituted by270

N = 100 individuals, with the initial configuration defined in the previous section and shown in

Fig. 4, middle panel, and investigate its stable configuration for a wider range of ratios Fr/Fa,

in the case of the following values of s (and of F ∗ which, for any given s, defines the minimum

ratio between the repulsive and adhesive interactions strengths that makes the interaction kernel

K H-stable, see Eq. (8)):275

s 2 1.75 1.5 1.25 1 0.75 0.5 0.25

F ∗ 38.40 37.26 35.26 34.02 31.32 28.29 23.37 15.36

To avoid overcomplications, in all realizations, we keep the strength of cell-cell adhesiveness Fa

constantly equal to 1 µm/s and vary the value of the intrinsic cell resistance to compression Fr.

This means that we are fixing the adhesive characteristics of cell-cell interactions, focusing on the

repulsive part. This is not a shortcoming, since the discriminating quantity is the ratio Fr/Fa. In280

particular, we test the following values: Fr = 1, 10, 20, 30, 40, 50, 100, 1000 µm/s.

In agreement with the above theoretical and computational considerations, the graphs in Fig. 5

clearly show that the H-stability of the interaction kernel K determines the characteristic measures

of the final configuration of the system. In fact, for any fixed value of s, a biologically realistic

crystalline-like cell pattern, where the component individuals enlarge and stabilize at a sufficiently285

large distance without collapsing, can be obtained only for Fr/Fa > F ∗, i.e., if K is H-stable. In

particular, in all these cases, dmin(0) < dn < dmin(tF) < dr, i.e., the minimal intercellular distance

at equilibrium is larger than cell nuclear dimensions and, when Fr/Fa is sufficiently higher than

F ∗, close to the repulsion radius dr (the cell body diameter), regardless of the value of s. From

a biological view point, this means that the aggregate stabilizes in a colony where the component290
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Figure 5: Characteristic dimensions of a 100-cell population at the equilibrium, i.e., minimal intercellular dmin(tF)
(left panel) and overall aggregate extension dmax(tF) (right panel), resulting from different values of s and Fr/Fa

(cf. Eq. (5)). In particular, the adhesive coefficient Fa is constantly assumed equal to 1 µm/s, so that the value
of the ratio Fr/Fa results equal to the value of the repulsive parameter Fr. According to Corollary 2, for each
value of s, the interaction kernel/potential is not H-stable when Fr/Fa < F ∗ and H-stable when Fr/Fa > F ∗. In
this respect, the triangles indicate for each curve (i.e., for each s) the projection of corresponding value of F ∗. We
remark that values of dmin(tF) lower than dn results in unrealistic cell overlapping.

cells have a sufficient vital space. On the opposite, for all values of s, ratios of Fr/Fa lower than

F ∗ lead to cell aggregate dramatic collapse, as we constantly have dmin(tF) < dmin(0) < dn, with

dmin(tF) close to 0 for Fr/Fa substantially low.

The above described system behavior is confirmed by the value of dmax(tF) as well. The overall

aggregate diameter is in fact much larger in the cases of H-stable interaction kernels. It is finally295

useful to remark that the simulation results are not dependent on the exact initial distribution of

cells, satisfying the conditions on the initial interparticle distance (i.e., dmin(0) ∈ (0, da]).

The different sets of numerical realizations presented in this section allow to claim that for

any given interaction kernel, only sets of parameters satisfying the H-stability criterium results in

realistic (in terms of particle spacing) stable cell configurations. This is of some help in reducing300

the possible variations of the model interaction coefficients.

3.4. H-stable systems and Parameter Estimate

Once restricted with analytical arguments the space of the possible variations of the free

coefficients relative to adhesive/repulsive cell behavior, a more detailed parameter estimate can be

obtained only by focusing on a specific application and comparing critical quantities characterizing305

the virtual cell system with the proper experimental counterparts.

In this respect, let us deal with a quiescent spheroid of 817 ovarian cancer cells (OVCAR:39)

plated on a two dimensional Petri dish, see Fig. 6, where the cell nuclei have been colored in

yellow. The aim of the following study it to find a parameter setting that allows a computational

15



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

-300 -200 -100 0 100 200 - 300

-300

-200

-100

0

100

200

300

[ m]

[
m
]

Figure 6: Left panel: Round colony of ovarian cancer cells (OVCAR:39) plated on a two dimensional Petri dish in
physiological liquid. The yellow circles identifies cell nuclei. Experimental image kindly provided by Prof. Luca
Munaron of the Department of Life Sciences and Systems Biology, Università degli Studi di Torino (Italy). Right
panel: Map of the spatial distribution of the experimental cell colony.

aggregate formed by the same number of individuals, which evolves following (7) with interaction310

kernel K belonging to the family defined in Eq. (5), to stabilize in a configuration reasonably close

to the experimental one. As done in the previous section, we take again dr = 20 µm, da = 60 µm

(these measures are also consistent with ovarian malignant cells, see [43]) and Fa = 1 µm/s, so

that the free coefficients again remain the pair (Fr, s). The computational particle are initially

randomly disposed in a round area of radius 120 µm, with dmin(0) ∈ (0, da] (see the comments in315

Section 3.3).

We then compare the stable particle configurations resulting for different parameter values,

which however satisfy the H-stability criterium of Corollary 2, with the experimental colony by

using the following critical quantities:

∆dmin =
dmin(tF )− dexmin

dr
, ∆dmax =

dmax(tF )− dexmax

dr
, (11)

where dmin(tF ) and dmax(tF ) are defined in Eqs. (9)-(10). dexmin and dexmax denote instead the320

minimal and maximal intercellular distance measured in the biological system (by a post-processing

technique able to map position and center of mass of the cell nuclei, see Fig. 6). In particular,

dexmin ≈ 7.43 µm and dexmax ≈ 600.62 µm. From Eq. 11, it is clear that if ∆dmin (rsp., ∆dmax)

> 0, then the numerical results overestimate the real minimal intercellular distances (rsp., overall

aggregate extension). On the opposite, if ∆dmin (rsp., ∆dmax) < 0, the corresponding experimental325

value is underestimated. Moreover, if |∆dmin| and |∆dmax| are both smaller than 1, the discrepancy

between the numerical configuration and experimental one is lower than a cell diameter. The values

of ∆dmin and ∆dmax obtained from selected parameter sets are finally summarized in Fig. 7. It is
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Figure 7: Left panels: Representation of the values of ∆dmin and ∆dmax resulting by the comparison between the
experimental cell distribution and the stable configuration of the computational particle system obtained by solving
Eq. (4) with K defined in Eq. (5) for different values of s and of the ratio Fr/Fa. In both plots, the minimum
(in blue) and maximum (in red) values of ∆dmin and ∆dmax are indicated. Right panels: Graphical comparison
between the spatial distribution of the experimental cells (yellow circles) and the position of the numerical particles
at the equilibrium (grey circles of radius dr centered at the equilibrium positions), in the case of the best and the
worst parameter fitting.

first possible to observe that, in all cases, the experimental minimal intercellular distance is slightly

overestimated, i.e., 0.3 < ∆dmin < 0.6, for any choice of s and Fr. In particular, in accordance330

with the results proposed in Section 3.2, ∆dmin is not dependent on the behavior of the kernel

near the origin (i.e., on s, which as seen is a sort of a measure of the nucleus compressibility) and

slowly increases upon increments in Fr/Fa.

On the opposite, the discrepancy of the overall extension between the experimental and the

virtual colony significantly varies according to the specific set of parameters. In particular, re-335

gardless the value of s, we have an overestimation of the aggregate diameter for Fr/Fa > 200,

with increment in the error upon increments in Fr/Fa. An increasing underestimation of the

colony diameter is instead observed upon decrements in the ratio Fr/Fa starting from the value

of Fr/Fa = 75. Interestingly, in the case of Fr/Fa = 100 we have both types of error depending

on the value of s, although their are acceptable (i.e., |∆dmax| < 0.75 for any tested s).340

Taking all these results together, we can state that there is not a set of parameters that

simultaneously minimizes both ∆dmin and ∆dmax. The minimal intercellular distance of the

experimental population is in fact best approximated with s = 0.5 and Fr/Fa = 50, while the

overall extension of the OVCAR colony by the pair of values s = 1 and Fr/Fa = 100.

The proposed series of simulations shows that the H-stability theory is necessary to predict the345

realism of stable cell configurations, but not sufficient to derive a specific parameter setting. In

particular, in this case, even a data fitting with empirical quantities is not completely satisfactory
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since distinct groups of interaction coefficients optimize distinct experimental measures. In similar

situations, the choice of the values to be given to the free model coefficients can be however

suggested by the problem of interest. If, as in this case, we are dealing with tumor growth, the350

most critical measure (i.e., the one that has to be approximated in more details) is typically the

overall extension of the lesion: this implies to opt for the parameter setting that gives the minimal

error ∆dmax. Otherwise, if we are deling, for instance, with epithelial sheets for biomedical scaffolds

in the case of wound healing, we may be instead interested in the compactness of cell aggregates,

i.e., in the approximation of the minimal intercellular distance and therefore in minimizing ∆dmin.355

4. Biological applications

This section will be devoted to show how the application of our theoretical procedure can help in

modeling more complex biological phenomena, if it is supported by proper empirical considerations

and data comparison. One one hand, we will deal with cell sorting phenomena, where different

cell types are involved. On the other hand, we will analyse the embryonic development of the360

zebrafish posterior lateral line primordium, where the main goal will be to capture the migration

of two types of mesenchymal cells, i.e., leader and follower individuals, that can crawl with different

speeds along the myoseptum.

4.1. Cell sorting

In multicellular organisms, the relative adhesion of various cell types one to another or to365

noncellular components surrounding them is also fundamental. From the late 1950s, it has been

widely noticed that during embryonic development the behavior of cell aggregates resembles that of

viscous fluid. A random mixture of two types of embryonic cells, in fact, spontaneously reorganizes

to reestablish coherent homogeneous tissues [44, 45]. A similar process is a key step also in

the regeneration of normal animal from aggregates of dissociated cells of adult hydra [46]. It370

also explains the layered structure of the embryonic retina. These phenomena, commonly called

cell sorting, involve neither cell division nor differentiation, but are entirely caused by spatial

rearrangements of cell positions due to differences in the specific adhesiveness, see also [45, 47]

and references therein. In particular, specific hierarchies of adhesive strengths lead to specific

configurations of the cellular aggregate.375

A simple and intuitive simulation reproducing biological cell sorting deals with a particle

aggregate formed by two types of individuals, namely, light “L” and dark “D” (that hereafter will

be graphically represented by white and black circles, respectively, see Fig. 8). The dynamics of

each individual (regardless of its type) are then assumed to be entirely due to adhesive/repulsive

18



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 8: Initial distribution of the two- population aggregate (i.e., composed of light “L” and dark “D” particles)
employed to reproduce cell sorting phenomena. The aggregate is constituted by 800 cells divided in two groups
equal in number, represented by circles of radius dr. The initial condition has been randomly generated such that
the minimal intercellular distance at the initial instant is greater than 0 (i.e., cell overlapping is initially avoided)
and lower than the maximal extension of cell filopodia.

interactions. In this respect, the evolution in time of the spatial distribution of the particle system380

is given by the extension to two populations of model (4):

dxL
i

dt
= −

NL∑

j=1
j 6=i

KLL(|xL
i (t)− xL

j (t)|)
xL
i (t)− xL

j (t)

|xL
i (t)− xL

j (t)| −
ND∑

j=1

KLD(|xD
i (t)− xL

j (t)|)
xD
i (t)− xL

j (t)

|xD
i (t)− xL

j (t)| ;

dxD
h

dt
= −

ND∑

j=1
j 6=h

KDD(|xD
h (t)− xD

j (t)|)
xD
h (t)− xD

j (t)

|xD
h (t)− xD

j (t)| −
NL∑

j=1

KDL(|xL
h(t)− xD

j (t)|)
xL
h(t)− xD

j (t)

|xL
h(t)− xD

j (t)| .

(12)

xL
i (t) and xD

h (t), with i = 1, . . . , NL and h = 1, . . . , ND denote the actual positions of the “L”

and “D” cells, respectively; while the interaction kernels Kpq : R+ 7→ R, with p, q ∈ {L,D},
define how a cell of phenotype p reacts to the presence of a cell of phenotype q. The absence of

other mechanisms involved in cell behavior is consistent with previous works on cell sorting based385

on different types of mathematical approaches [25, 47, 48]. Each kernel Kpq introduced in (12)

is then assumed to belong to the family of functions proposed in Eq. (5). In this respect, for

any p, q ∈ {L,D}, we have the following set of characteristic parameters: F pq
a , F pq

r , spq, dpqa , d
pq
r .

However, as usual, some simplifications can be made following experimental arguments. First of

all, cells involved in sorting phenomena typically belong to the same lineage or have the same390

embryonic origin. It is indeed consistent to assume common dimension, intrinsic compressibility

and nuclear stiffness. This allows to set, for any p, q ∈ {L,D}, F pq
r = Fr, s

pq = s, dpqa = da,
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dpqr = dr. The pairwise interaction kernels in Eq. (12) can therefore be rewritten as

Kpq(r) =





−Fr

(
dr
2

)3−2s
r2s−3, if 0 < r ≤ dr

2
;

2Fr (r − dr)
dr

, if
dr
2
< r ≤ dr;

−4F pq
a (r − da) (r − dr)

(da − dr)2
, if dr < r ≤ da;

0, if r > da,

with p, q ∈ {L,D}, (13)

where the coefficients F pq
a are a measure of homotypic, i.e., for p = q, or heterotypic, i.e., for

p 6= q, cell-cell adhesiveness. Fixed cell dimensions according to the problem of interest, the395

possible variations of the remaining free parameters, s, Fr, F
LL
a , FDL

a = FLD
a (due to reciprocity

of interactions) and FDD
a can be further reduced following the analytical and numerical analysis

proposed in the previous sections. To have biologically realistic stable configurations, the cell

system has to satisfy the H-stability condition. This translates into a series of constraints between

the interaction parameters: for each pair (pq) ∈ {LL, DL, DD} we have in fact that the ratio400

Fr/F
pq
a has to be lower than the threshold F ∗ deriving from the choice of the value of s (cf.

Corollary 2).

Taking all these considerations into account, it is now possible to show how the H-stability

theory is crucial to assure realistic cell spacing, but the exact individual distribution and pattern is

completely determined by the specific parameter setting. In this respect, we start with a population405

formed by 800 cells, equally distributed between dark and light individuals (i.e., NL = ND = 400).

They are initially placed within a round area with initial interparticle distances that avoid overlaps

and allow each individual to interact at least with another one. Given again da = 60 µm and

dr = 20 µm, this time we fix the repulsive coefficient Fr = 1 µm/s and vary F pq
a for any pair

(pq) ∈ {LL, LD, DD} within the range of values permitted by the H-stability criterium. This is an410

appropriate research hypothesis, since cell sorting phenomena mainly rely on variations in cell-cell

adhesiveness. Finally we focus on the following values of s: 1.75 (F ∗=37.26), 1 (F ∗=31.32), 0.25

(F ∗=15.36).

The numerical results collected in the left column of Fig. 9 show that a proper interagent

spacing is consistent in all realizations. Moreover, if the heterotypic adhesiveness between the415

two cell types is higher than the two homotypic ones (i.e., FLD
a = FDL

a > FLL
a = FDD

a ), cells

heterogeneously mix to form a checkerboard pattern. Conversely, if the homotypic adhesions are

stronger than the heterotypic ones (i.e., FLL
a = FDD

a > FLD
a = FDL

a , see the central column of

Fig. 9), we find a spontaneous cell sorting, with the formation of small clusters of cells of the same

type within the domain.420

If, further, the adhesion between the light cells is larger than than the heterotypic contact
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Figure 9: Final distribution of the two-population aggregate (i.e., composed of light “L” and dark “D” cells and
identified by circles of radius dr) for distinct choices both of the behavior of the interaction kernel at the origin,
i.e., the value of s in Eq. (5) and of the values of adhesion strengths. All the tested parameter settings satisfy
the H-stability condition. The stable pattern is mainly dependent by the hierarchy of homotypic and heterotypic
cell-cell adhesiveness, whereas the value of s does not have a substantial impact.

interactions, which is in turn larger than the adhesion between the dark cells (i.e., FLL
a > FLD

a =

FDL
a > FDD

a , see the right column of Fig. 9), we observe the autonomous emergence of little island

of light individuals surrounded by a crew of dark cells: this phenomenon is called engulfment.

From these numerical results, it further emerges that variations in the explicit form of the425

repulsive part of the interaction kernels, i.e., variations in the value of the parameter s, do not

significantly affect the final configuration of the system, as it is possible to see by comparing the
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Figure 10: Final distribution of the two-population aggregate (i.e., composed of light “L” and dark “D” cells and
identified by circles of radius dr) for distinct choices both of the behavior of the interaction kernel at the origin, i.e.,
the value of s in Eq. (5) and of the values of adhesion strengths. All the tested parameter settings no longer satisfy
the H-stability condition. The stable pattern is mainly dependent by the hierarchy of homotypic and heterotypic
cell-cell adhesiveness, whereas the value of s does not have a substantial impact.

different rows in Fig. 9.

For the sake of completeness, we finally test the same hierarchies of intercellular adhesive/repulsive

parameters, in the case of specific values no longer satisfying the H-stability criterium. As repro-430

duced in Fig. 10, some features of the above-observed patterns still emerge (e.g., a clusterization

in little homotypic islands for FLL
a = FDD

a > FLD
a = FDL

a ): however, they are not significant

from a biological point of view due to dramatic individual overlapping and aggregate collapse.
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Summing up, we can therefore claim that, for any given interaction kernel (i.e., for any given

value of s), the stable minimal intercellular distance is determined by the H-stability of the system,435

whereas the exact cell distribution by the specific parameter setting.

These phenomena were investigated also with other types of models, see [25, 47, 48], where the

dynamics of the system are mainly driven by the hierarchy of intercellular adhesive forces, rather

by their exact values.

The cell configurations obtained by our simulations are consistent with the experimental lit-440

erature as well. For instance, Katsamba and coworkers in [49] demonstrated that two identical

populations of Chinese hamster ovary (CHO) cells exhibit homotypic cell sorting and form separate

aggregates when express different cadherins (have different adhesive affinity) . This corresponds to

the numerical outcomes shown in the middle column of Fig. 9. In other cases, i.e., when all CHO

cells express the same cadherin (i.e., have the same adhesive affinity), intermixed/checkerboard445

aggregates are formed, in agreement with our simulations proposed in Fig. 9, left column. Stein-

berg [45] instead combined two populations of L cells transfected with P-cadherin cDNA and

expressing this homophilic adhesion molecule in substantially different amounts. He then found

that, when allowed to fuse, the cell population expressing more P-cadherin was enveloped by its

partner, which formed an external “cortex”: it is the experimental counterpart of the engulfment450

phenomenon observed in our results with comparable parameter setting (cf. Fig. 9, right column).

Consistently, Curtis and colleagues proposed in [50] that the formation of internal and external

cell layers during sorting results from the timing of postulated changes in cellular adhesive and

motile properties.

4.2. Early migration of the zebrafish posterior lateral line (pLL) primordium455

The lateral line is a sense organ, present in fish and amphibians, that is formed by a set of

mechanosensory hair cells distributed in a species-specific pattern over the surface of the animal’s

body. These multicellular structures, named neuromasts, have the function to detect displacements

and vibrations of the surrounding water: the lateral line is indeed involved in several aspects

of the individual life as, for instance, prey detection, predator avoidance, and sexual courtship460

[51, 52]. In zebrafish, the biological system of our interest, the lateral line extends from the head

to the caudal fin and divides in two major components: the so-called anterior lateral line (aLL),

which comprises the neuromasts present on the head, and the posterior lateral line (pLL), which

conversely includes the neuromasts on the trunk and the tail along each side of the animal [51, 52].

During the embryonic stage of life of the zebrafish, the pLL consists of a primordium, i.e., a proto-465

organ which is first recognized around 18 hpf (hours-post-fertilization), located just posterior of

the otic vesicle and formed by nearly 100 epithelial cells [51, 53]. In particular, these component

cells present several mesenchymal determinants, i.e., loss in apicobasal polarity, reduced expression

23



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

of adhesive proteins and increased numbers of activated dynamic filopodia [54]. In this respect,

they are hereafter termed pseudo-mesenchymal individuals.470

The development of the zebrafish primordium consists of two processes: (i) few hours after

the formation, the proto-organ begins to migrate from the head to the tail of the embryo through

the horizontal myoseptum, a connective tissue separating the dorsal and ventral body muscles

masses. In particular, biological evidences show that the primordium moves along a stripe of

the chemokine stromal-derived factor 1 (SDF-1). This chemical is detected only by the pseudo-475

mesenchymal cells located at the leading region the primordium though the expression of receptors

CXCR4, while the rest of the aggregate moves upon dragging [52, 53, 55]; (ii) at the same time,

the activation of fibroblast growth factor (FGF) signaling pathways within the rear part of the

migrating placode regulates a complex cycling process of receptor activation/differentiation that

induces the organization of small groups of pseudo-mesenchymal cells into compact rosette-like480

structures, by increasing their epithelial character also by a loss of the migratory determinants.

These clusters are then deposited at regular intervals along the horizontal myoseptum and will

mature into full active neuromasts. The rest of the primordium (still constituted by pseudo-

mesenchymal cells) eventually continues its migration [56, 57, 58].

Our aim is to demonstrate that the study of the characterization of H-stable intercellular inter-485

action kernels, and of the estimate of the relative parameters, is mandatory also in the description

of selected features of first of the two above-described processes, i.e., of the head-to-tail crawl of

the primordium. In order to do this, let us take into account in our theoretical approach two

subgroups of pseudo-mesenchymal cells:

• those that express the chemokine receptors CXCR4b, i.e., sensitive to Sdf-1. They are490

hereafter called leader cells (and labeled by “L”) and identified by the position vector

XL(t) = {xL
1 (t), . . . ,xL

NL
(t)} ∈ ΩNL , being NL = 60 their total amount;

• those that do not express the chemokine receptors CXCR4b, i.e., not sensitive to Sdf-1.

They are hereafter called trailing cells (and labeled by “T”) and identified by the position

vector XT (t) = {xT
1 (t), . . . ,xT

NT
(t)} ∈ ΩNT , being NT = 60 their total amount.495

The computational domain Ω = [0, 400] × [0, 40] µm2 represents a small portion of the zebrafish

horizontal myoseptum, which is usually 3000 µm long. According to the above-described experi-

mental considerations, the general particle model described in (2) can be in this case specified as
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follows





dxL
i (t)

dt
= vdir −

NL∑

k=1
k 6=i

KLL(|xL
i (t)− xL

k (t)|) xL
i (t)− xL

k (t)

|xL
i (t)− xL

k (t)|

−
NT∑

k=1

KLT (|xL
i (t)− xT

k (t)|) xL
i (t)− xT

k (t)

|xL
i (t)− xT

k (t)| , i = 1, . . . , NL;

dxT
j (t)

dt
= −

NT∑

k=1
k 6=j

KTL(|xT
j (t)− xT

k (t)|)
xT
j (t)− xT

k (t)

|xT
j (t)− xT

k (t)|

−
NL∑

k=1

KTT (|xT
j (t)− xL

k (t)|)
xT
j (t)− xL

k (t)

|xT
j (t)− xL

k (t)| , j = 1, . . . , NT .

(14)

The directional velocity characterizing the dynamics of leading cells is given by500

vdir = vLnx = vL

(
1

0

)
, (15)

where vL is the mean migration velocity of the zebrafish proto-organ, which is approximatively

69 µm/h [53], while nx is the horizontal unit vector. In this respect, we are assuming, for the sake

of simplicity, that the right border of the domain identifies the tail of the animal (i.e., the target

destination of the primordium) and that the myoseptum is characterized by a uniform and fixed

distribution of Sdf-1, which results in a constant and persistent velocity contribution. For any pair505

(pq) ∈ {LL, LT, TL, TT}, the interaction kernels Kpq introduced in (14) belong to the family of

functions defined in Eq. (13). Again, we can do some simplifications according to biological argu-

ments: all cells forming the primordium have the same dimensions and repulsive characteristics,

since they differ only for the expression of membrane receptors which have an effect only on their

chemical sensitivity and adhesive properties. In this respect, we can assume F pq
r = Fr, s

pq = s,510

dpqr = dr = 7 µm and dpqr = da = 20 µm for any p, q ∈ {L, T}. In particular, cell dimensions

are taken from the biological literature [51]. Assuming the symmetry of FLT
a = FTL

a and fixed

the representative value s = 1 (which implies hyperbolic repulsion at small enough inter-particle

distances), we have the following set of free parameters: Fr, F
LL
a , FLT

a , FTT
a ∈ R. According to

the theoretical and numerical studies presented in Section 3, realistic cell configurations can be515

obtained only if all the intercellular interaction kernels are H-stable, i.e., if the relative param-

eters satisfy the criterium of Corollary 2. In this case, given the above-defined coefficients and

hypothesis, it is indeed necessary that

Fr/F
pq
a > F ∗ = 27.21, ∀ p, q ∈ {L, T}, (16)

which results in a substantial restriction of the free parameter space. A further fitting with pLL
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Figure 11: Migration of the zebrafish pLL wild type primordium, in the case of a parameter setting that satisfies
the H-stable condition for all interaction kernels Kpq , i.e., for any p, q ∈ {L,T}. Cell positions are identified by
colored circles with radius dr.

experimental velocity and behavior allows, after a series of preliminary simulations (not shown), to520

opt for the following set of values Fr = 1.12 µm/s, FLL
a = 0.032 µm/s, FLT

a = FTL
a = 0.04 µm/s,

FTT
a = 0.032 µm/s. As reproduced in Fig. 11, the proposed particle model is able to reproduce

a representative part of head-to-tail migration of the wild-type primordium (i.e., from the left to

the right region of the domain). In particular, the leader cells guide the movement of the rest of

the proto-organ only through the heterotypic adhesive interactions. In this respect, we remark525

that our minimal model shows good qualitative agreement with experimental outcomes without

including other velocity components, successfully employed in other more specific works [13].

To highlight the importance of the H-stability properties of the system, we then analyze the

development of the computational primordium in the case of disruptions of relation (16) for one or

more kernels Kpq, with (pq) ∈ {LL,TT, LT}. This can be done either by decreasing the common530

particle compressibility (Fr) or by increasing selected homotypic and/or heterotypic intercellular

cell adhesiveness. The results, summarized in Fig. 12, show that a normal collective motion of

the proto-orgain is no longer obtained in the case of not completely H-stable systems. Entering in

more details, we can observe that if the heterotypic interaction kernels result not H-stable (i.e.,

if FLT
a = FTL

a < Fr/27.21 or FLT
r = FTL

r < 27.21FLT
a ) then leader and follower cells overlap in535

central region of the aggregate. Conversely, if the H-stability is not satisfied from the homotypic

interaction kernels, then the embryonic zebrafish pLL divides in several clusters, characterized by

the collapse of particles of the same type (i.e., see the cases FLL
a < Fr/27.21 and FLL

r < 27.21FLL
a

for the shrink of the leading region of the aggregate and the cases FTT
a < Fr/27.21 and FTT

r <

27.21FTT
a for the shrink of the trailing area).540

5. Conclusions

Mathematical approaches applied to biological problems embody a wide range of techniques,

which depend on the particular spatio-temporal scale of interest. However, most of them fall in

two broad categories: continuous and discrete models. Continuous models approach biological
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Figure 12: Evolution of the system with the same interaction parameters as in Fig. 11 except the ones in red, which
result in disruptions of the H-stability of one or more interaction kernels. In all cases, the normal migration of the
primordium is inhibited. Cell positions are identified by colored circles with radius dr.

phenomena in terms of variation of fields. Characteristic of a macroscopic point of view, these545

methods represent populations of biological individuals as densities, which evolve satisfying sets of

balance laws or diffusion equations. This type of approach includes the multiphase models, devel-

oped under the simple observation that biological systems are made of several constituents and are

then treated with classical concepts of continuum mechanics. On the other hand, discrete models,

widely known as Individual Cell-Based Models (IBMs) or Cellular Automata (CA), approach the550

biological problem with a phenomenological point of view, focusing on the cell-level of abstraction

and preserving the identity and the behavior of individual elements (for comprehensive reviews

the reader is referred to [3, 4, 5, 6])). Indeed, these techniques represent biological individuals,

with the typical length scale of a cell, as one or a set of discrete units, with rules that describe

their movements and interactions. Within this family of approaches, we can further distinguish555

particle-based methods, where the biological individual is represented by a material point with

concentrated mass and identified by its position in space, and methods that allow for extended

description of cell membrane and morphology. These latter subgroup typically relies on specific

discretizations of the simulation domain with meshes can be either regular (such as square or

cubic grids, as in Cellular Potts Models) or irregular (Voronoi tassellations) since each biological560

element is typically modelled by an ensemble of elements of the mesh.

All the above-introduced families of mathematical models have their own merits and limits. For

instance, continuous techniques overlook the behavior of single individuals and also fail to describe

their mutual interactions. They may therefore be unsatisfactory since, in order to deal with

biological processes, it is fundamental what occurs at the scale of the single element. On the other565
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hand, particle models are computationally efficient and easily to analyze experimentally: however,

they do not allow the inclusion of intercellular chemical pathways as well as the description of

morphological evolutions. Finally, methods reproducing extended and detailed cell shapes are

expensive from a numerical point of view and they can only simulate several individuals at once,

being inefficient in providing a general outlook of the system as a whole. In this respect, the570

trend of the last two decades is to create computational frameworks able to span a wide range of

spatio-temporal scales with a sufficient level of accuracy, offering the advantages brought by the

different methods by interface and hybridization of the different models, see [59, 60, 61] for few

examples.

In the perspective of the above-considerations, in this work we have dealt with a particle model575

set to reproduce the dynamics of selected cell systems. In particular, each individual has been

assumed to move according to a first-order ODE, in the overdamped force-velocity response limit.

Of the possible cell velocity components we have then focused on the term relative to direct pairwise

intercellular interactions, which account for nonlocal adhesive and repulsive contributions, the

former including long-range cadherin-mediated mechanisms, the latter modeling cell and nucleus580

resistance to compression. According to us, this is a crucial velocity contribution since the analysis

of cell patterning, as well as the description of the characteristic large-time configurations of cell

aggregates, is a relevant issue in developmental biology. The spatial distribution of cells mediates

in fact a wide range of physio-pathological phenomena, i.e., from morphogenesis to cancer invasion

[1, 2]. In this respect, the main aim of the work has been to give a consistent method that allows585

to facilitate the estimate of the characteristic parameters of the intercellular interaction velocity.

In more details, the intercellular interactions have been described by a proper family of pairwise

interaction kernels, and relative potentials. These kernels are characterized by a repulsive part,

which have different slopes according to the differentiated stiffness of cell nucleus and cytsol [1, 2],

and by a positive parabolic trend in the attractive part. The proposed kernels are intrinsically590

multiparametric, being determined by a set of free coefficients relative to the extension of the

interaction regions, to the intensity of the interaction forces and to the specific repulsive behavior

of the particles when close enough. After some simplifications that can be made according to the

problem of interest (e.g., cell dimensions), a crucial help in the analysis of the effect on the system

behavior of the choice of the specific kernel (and relative coefficients) has been demonstrated595

to be given by the concept of H-stability. It derives from statistical mechanics and allows to

predict the interparticle spacing characterizing the asymptotic configuration of a cell population.

In particular, our analytical results have shown that a biologically realistic crystalline pattern of

a cell aggregate can be obtained if the underlying intercellular interaction kernel, and relative

potential, satisfies a proper H-stability condition. On the opposite, not H-stable kernels result in600

unrealistic particle collapse in our setting of cells with fixed mass.
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It is however fundamental to underly that the H-stability theory is only able to reduce, for any

given adhesive/repulsive kernel, the range of possible simultaneous variations of the characteristic

parameters. To have a specific parameter setting, it is still necessary to perform data fitting (when

experimental data are available) or proper sensitivity analysis. In this respect, we recall that the605

definition of H-stable kernels has implications only in the minimal distance at the equilibrium of

the system particles, whose dynamics and exact distribution is entirely determined by the specific

parameter values. Such considerations have been confirmed by the series of simulations proposed

in this work. For instance, having the confirmation that biologically reasonable patterns of a round

cell colony derive only from H-stable kernels, we have then used, in Section 3.3, a representative610

experimental OVCAR spheroid to have a better coefficient setting (via data fitting).

The H-stability theory is able to assure consistent cell spacing also when dealing with more

complex biological processes, involving multispecies aggregates and/or different cell velocity con-

tributions (e.g., directional locomotion), as we have shown in Section 4. Also in this cases, the

exact cell dynamics are then determined by the specific tuning of the values of different model615

coefficients.

It is useful to notice that the minimal system of first-order ODEs with a given interaction

potential that we have used in (4) has a well-defined limit as N → ∞ when the potential and

the total mass of the system are suitably rescaled. This is usually called the mean-field limit in

statistical mechanics. In fact, the mass of each point in the mean-field limit becomes negligible620

as N → ∞. However, in our particle-based present approach, each agent represents a cell with a

fixed mass and we are only interested in the equilibrium configurations for a fixed number of cells

N . Therefore, the mean-field limit equation in our present setting of particles with fixed mass is

not biologically meaningful in contrast to the topic of other works, see for instance [63, 64, 65, 66,

67, 68].625

Our present work is based on the assumption that cell adhesive/repulsive behavior is described

by the family of kernels defined in Eq. (5). However, the analytical results hold for any other

pairwise interaction functions satisfying the hypothesis of Theorem 1. For instance, Morse-like

potentials or kernels characterizing by a Gaussian profile in the repulsive part and/or by a Hooke

law in the attractive one can be used. Further, except from a constant directional velocity in630

the last application, we have substantially focused on intercellular adhesive/repulsive interactions.

This is of course an oversimplification of the biological picture. Cell migration is in fact a quite

complex process involving several other mechanisms and stimuli, such as chemotaxis (i.e., cell

locomotion up to gradients of a diffusible chemical field) or durotaxis (i.e., cell locomotion towards

stiffer regions of the matrix environment). However, as shown in Section 4, the inclusion of other635

velocity components does not change the qualitative asymptotic behavior resulting from particle

interaction forces.
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As main conclusion, we have demonstrated that the H-stability concept is key to choose rea-

sonable intercellular pairwise interaction kernel and relative parameters for agent-based models

with real biological implications.640
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Appendix A. Analytical results: H-stability650

In this Appendix, we provide the algebraic calculations that allow to obtain the criterium given

in Corollary 2 to establish the stability properties of the family of intercellular interaction kernels

introduced in Eq. (5). In particular, we distinguish two cases according to the value of s (i.e., to

the slope of K in the repulsive part nearer to the origin).

Interaction kernel with s 6= 1. From Eq. (7), by setting s 6= 1, the interaction potential reads

as:

u(r) =





−Fr

2

(
dr
2

)3−2s
r2s−2

(s− 1)
+ C1, if 0 < r ≤ dr

2
;

Fr r
2

dr
− 2Fr r + C2, if

dr
2
< r ≤ dr;

− 4Fa

(da − dr)2
(
r3

3
− (da + dr) r

2

2
+ da dr r

)
+ C3, if dr < r ≤ da;

C4, if r > da.

where the constants of integration C1, C2, C3, C4 ∈ R are estimated in order to guarantee the655

continuity of the potential u(r) and such that lim
r→0

u(r) = 0. In this respect, C4 can be taken equal

to 0 and the other constants result

C1 =
Fr dr s

4 (s− 1)
− 2

3
Fa(da − dr);

C2 = Fr dr −
2

3
Fa (da − dr);

C3 =
2Fa d

2
a (3 dr − da)

3 (da − dr)2
,
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by setting the continuity at dr/2, dr and da. The interaction potential therefore writes as

u(r) =





− Fr

2 (s− 1)

(
dr
2

)3−2s
r2s−2 +

Fr dr s

4 (s− 1)
− 2

3
Fa(da − dr), if 0 < r ≤ dr

2
;

Fr r
2

dr
− 2Fr r + Fr dr −

2

3
Fa (da − dr), if

dr
2
< r ≤ dr;

−2Fa

(
2 r3 − 3 (da + dr) r

2 + 6 da dr r − d2a(3 dr − da)
)

3 (da − dr)2
, if dr < r ≤ da;

0, if r > da.

Due to Theorem 1, the above interaction potential is H-stable when
∫ +∞
0

u(r) r dr > 0. In this

respect, with some simple algebraic calculations, we obtain

∫ +∞

0

u(r) r dr =
Fr d

3
r (11 s+ 6)

192 s
− Fa

30
(da − dr) (3 d2a + 4 da dr + 3d2r ) > 0,

which implies
Fr

Fa
>

32 s (da − dr) (3 d2a + 4 da dr + 3d2r )

5 (11 s+ 6) d3r

i.e., the thesis of Corollary 2. In particular, as already explained, the values of the interaction radii

dr and da can defined according to cell phenotype: indeed, the H-stability of the system translates

into a constraint on the ratio between the repulsive and adhesive interactions strengths (i.e., Fr660

and Fa), for each value of s (for each behavior of the interaction kernel near the origin).

Interaction kernel with s = 1 (hyperbolic case) When the interaction kernel at the origin is

characterized by s = 1, the formulas can be obtained from the previous case with s 6= 1 by taking

the limit as s 7→ 1. This gives the following potential

u(r) =





− Fr dr
2

log r +
Fr dr

2

(
1

2
+ log

(
dr
2

))
− 2

3
Fa (da − dr), if 0 < r ≤ dr

2
;

Fr r
2

dr
− 2Fr r + Fr dr −

2

3
Fa (da − dr), if

dr
2
< r ≤ dr;

−2Fa

(
2 r3 − 3 (da + dr) r

2 + 6 da dr r − d2a(3 dr − da)
)

3 (da − dr)2
, if dr < r ≤ da;

0, if r > da.

In this case, following the same calculation as in the previous case, we have that the H-stability

Theorem 1 results in the the constraint:

Fr

Fa
>

32 (da − dr) (3 d2a + 4 da dr + 3d2r )

85 d3r
,

which is a particular case of the thesis of Corollary 2.
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