
19 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Countering the false myth of democracy: Boosting compressed sensing performance with maximum-energy approach /
Mangia, Mauro; Pareschi, Fabio; Rovatti, Riccardo; Setti, Gianluca. - STAMPA. - (2017), pp. 1-4. (Intervento presentato
al  convegno 50th IEEE International Symposium on Circuits and Systems, ISCAS 2017 tenutosi a usa nel 2017)
[10.1109/ISCAS.2017.8050532].

Original

Countering the false myth of democracy: Boosting compressed sensing performance with maximum-
energy approach

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ISCAS.2017.8050532

Terms of use:

Publisher copyright

©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2702314 since: 2018-02-28T19:56:33Z

Institute of Electrical and Electronics Engineers Inc.



Countering the False Myth of Democracy:
Boosting Compressed Sensing Performance

with Maximum-energy Approach
Mauro Mangia‡, Fabio Pareschi∗‡, Riccardo Rovatti†‡ and Gianluca Setti∗‡
∗ENDIF, University of Ferrara, Italy - Email: {fabio.pareschi, gianluca.setti}@unife.it

†DEI, ‡ARCES, University of Bologna, Italy - Email: {mauro.mangia2, riccardo.rovatti}@unibo.it

Abstract—Compressed Sensing (CS) is an effective way to sample a
signal at a sub-Nyquist rate, i.e., by using a number of measurements
smaller than the number of samples required when using the standard
Nyquist approach. Measurements are obtained as linear projections of
input signals along random sensing vectors. CS has been often regarded
as a democratic method, in the sense that each measurement contributes
to signal reconstruction with a similar amount of information.

In this paper, by combining empirical observations with results from
recent papers, we propose a different point of view, and show that
CS is an oligarchic approach where performance is basically set by
the measurements with the highest energy. This allows us to propose a
new CS-based approach that bases the reconstruction on the maximum-
energy measurements only and improves the compression performance
with respect to classical approaches.

I. INTRODUCTION

The recently introduced signal acquisition paradigm known as
Compressed Sensing (CS) [1] is capable to add signal compression
capabilities directly at the acquisition phase. This paves the way
to the design of analog-to-information conversion stages that match
the resource they need with the actual information content of the
signal [2], [3], [4], with a possible reduction in power consumption.
In addition a limited form of lossy compression is obtained almost
for free [5]. From this last point of view, the most peculiar aspect
of CS, is the radical shift in the complexity balancing. In fact,
compression becomes a computationally simple task, being based on
the linear projection of the input signal over a set of typically random
sensing vectors. On the contrary, signal recovery from compressed
measurements requires the solution of a computationally hard convex
optimization problem [6]. This makes CS particularly appealing in
scenarios like Body Area Sensor Networks (BASNs) [7], [8] where
many simple, miniaturized, battery-powered sensor nodes used for
the acquisition of biological signals, can take advantage from the
compression capabilities available at reduced cost offered by CS
techniques, while the more power-hungry decoding stage is executed
on the gateway where energy issues are less relevant.

The aim of this paper is to focus on the compression performance
offered by CS. In particular we will consider the role played by
measurements. CS has been many times considered a democratic
system in the sense that each measurement carries the same amount
of information to the signal reconstruction algorithm. This is certainly
true in the theoretical setting in which the concept is developed, i.e.,
when definitions and derivations concern with worst-case analyses
to deliver mathematical guarantees, and no system optimization is
sought. Yet, it is well known that such an approach gives only
extremely loose bounds on real performance and that actual design
of effective CS systems should follow different guidelines.

As an example, as already observed in recent papers, in practical
cases the higher the magnitude of a measurement, the higher the
amount of information it brings to the final reconstruction [9]. Hence,
CS is actually an oligarchic system, where the measurements with
the highest energy decide reconstruction quality.

This paper is to proposes a new compression strategy named
maximum-energy CS based on this property. The encoder computes
a large number of candidate measurements, but transmits to the
decoder only those with the largest energy. This ensures a boost
in compression performance. To apply this method one has to cope
with the fact that both the measurements and the indication of which
measurements among all candidates are used has to be encoded and
transmitted, with a clear overhead. Even considering this, in practical
cases, performance in terms of bit required for a given reconstruction
quality improves with respect to standard CS.

The paper is organized as follows. In Sec. II the CS theory will be
briefly reviewed, along with the concept of CS democracy and CS
oligarchy. Then, in Sec. III the new coding approach is described,
while some experimental results are proposed in Sec. IV. Finally, we
draw the conclusion.

II. COMPRESSED SENSING FRAMEWORK

Let us assume that x ∈ Rn is an instance of the input signal
composed by the n samples x0, x1, . . . , xn−1 collected at Nyquist
frequency fN . Roughly speaking, x is a discrete-time representation
of the input signal, but could also stands for its digital representation
if assuming that the xj are actually defined in the subspace of R
created by a quantization function. The entire CS framework is based
on the sparsity assumption, i.e., each instance x can be represented
by a linear combination of few vectors of a proper basis Ψ ∈ Rn×n
such that x = Ψα, where α ∈ Rn is a coefficients vector with
no more then κ � n non-zero elements. In this case we say that
the class of input signals is κ-sparse. The CS encodes information
by projecting x on a set of m usually randomly generated sensing
sequences aj ∈ Rn, j = 0, 1, . . . ,m − 1 (with m < n in order to
enable signal compression), and arranged as the rows of a sensing
matrix A ∈ Rm×n.

Mathematically, m measurements y0, y1, . . . , ym−1 are generated
and collected in a measurement vector y ∈ Rm as

y = Ax = AΨα. (1)

Recovers x from y is an ill-posed inverse problem, i.e., it has an
infinite number of solutions. The decoder stage, given y (sent by
the encoder stage) and both A and Ψ (where A is a priori shared
knowledge), reconstruct the input signal as x̂ = Ψα̂ exploiting the
sparsity assumption: over the infinite set of vectors α̂ mapped by
AΨ on y, we select the sparsest one. To this aim, the most common
approach is the solution of the convex optimization problem given by
the following basic pursuit denoising (BPDN) formulation [1], [6].

min
α̂
‖α̂‖1

s.t. ‖AΨα̂− y‖22 ≤ ε2
(2)

where ‖ · ‖p stands for standard p-norm, and ε is used to take into
account possible source of noise in the process such as non-idealities



in the sensing circuit, or even the quantization noise when assuming
the xj belong to a quantized set.

Guarantees on the correct reconstruction of x are based on some
properties of A. In particular the CS theory states that the reconstruc-
tion error x̂ − x is vanishing with probability one if A satisfies the
so called Restricted Isometry Property (RIP) [10], [11] and when the
number of measurements m > O(κ log(n/κ)) [6]. The easiest way
to ensure RIP is to generate the rows of A as instances of independent
and identically distributed (i.i.d.) Gaussian (or Sub-Gaussian) random
variables.

Based on this framework, many papers advocate an alleged
democratic behavior of the CS based on the (correct) mathematical
observation that, by replacing the generic random aj sensing vector
with another random one, the RIP property is still verified. The
(wrong) conclusion is that any sensing vector can be replaced with
another, similar one without any change in system performance.

This myth of democracy, however, has been countered by many
empirical observation. In [9] authors observe that, indicating with yj
the generic j-th element of y, performance in terms of reconstructed
signal quality increases when replacing measurements presenting a
low energy (i.e., that for which ‖yj‖2 is small) with new ones with
increased ‖yj‖2. In [12] a statistical matching between x and yj
is proposed with the aim of increasing ‖yj‖2, on the average. This
approach, known as rakeness-based CS, relies on the knowledge of
the second-order statistic of the signal to acquire and has been proven
to be very effective in increasing reconstruction quality. This reveals
that CS is an oligarchic system: measurements with high energy have
an important role in signal reconstruction.

The approach proposed here does not need the second-order prior,
it is not adapted offline to the average features of the signal, but
it automatically adjusts measurement choice to the characteristic of
each individual signal instance. From this point of view it is much
more flexible than the rakeness-based approach though this comes at
the cost of an overhead that may limit compression performance.

III. BOOSTING CS PERFORMANCE: THE MAXIMUM-ENERGY
APPROACH

The proposed maximum-energy approach is described as follows,
starting from a shared knowledge of M different (random) sensing
vectors aj ∈ A, j = 0, 1, . . . ,M − 1 between encoder and decoder
stage.

1) The encoder computes M candidate measurements by using all
the M sensing vector in A.

2) Among the M candidate measurements, the m ones (with m <
M ) with the highest energy are identified and selected. Let J
be the set of indexes j corresponding to the sensing vectors
generating them.

3) Both J and the m selected measurements are sent to the
decoder.

4) The decoder stage solves (2) by composing y as the vector
of selected measurement, and A as the collection (ordered
accordingly to y) of the sensing vector aj identified by J .

The proposed system is that depicted in Fig. 1, where A is an
a priori shared information (e.g., it is generated by two replicas of
the same Pseudo-Random Number Generator initialized by the same
seed), while actual information transferred from the encoder to the
decoder is given by the values of y as in the standard CS, but also
by the encoding of side-information J .

Note that the presence of this overhead has consequences when
testing the performance of the proposed algorithm, since the amount
of information in J and in y should be measured by using the same
unit and added the each other.

x
CS

ENCODER

a-priori info

side
info

y

CS
DECODER

a-priori info

x̂

Fig. 1. The encoder-channel-decoder model with additional signal path.

Let us indicate with bx the number of bit required to code each
sample of x. In particular, if x is already a quantized signal, bx is the
number of bit used; if x is an analog signal affected by noise (due,
for example, to the analog stage processing it) and with an estimated
signal-to-noise ratio SNR, we can consider bx by using the classic
equivalence SNR = 6.02bx + 1.76dB. We define this SNR as the
target SNR we would like to achieve in reconstruction.

In conclusion, the value of bx is enough to fully characterize
a Nyquist system, since from it, it is possible to get both signal
reconstruction quality in terms of SNR, and the total number of bit
used as n bx.

In a CS system, signal is reconstructed by using (2) given y and
A. Signal retrieval is characterized by a reconstruction SNR (RSNR)
as

RSNR =

(
‖x‖2
‖x− x̂‖2

)
dB

.

To assess the amount of information transmitted note that coding
the side information means identifying one out of

(
M
m

)
possible

subsets of m elements out of a larger set of M elements. By means
on combinatorial encoding one may do so using

⌈
log2

(
M
m

)⌉
bit [13,

p. 27–30].
Accuracy required for the quantization of y is still an open problem

in CS theory [14]. In standard CS, it is known that measurements, due
to the central limit theorem, have a zero-mean Gaussian distribution,
whose standard deviation is

√
n times that of x. This means that,

in standard CS system, a conservative choice to get a measurement
quantization noise aligned with the input signal one could be the
value by = bx + log2

√
n.

Though the proposed approach modifies the measurements distri-
bution by choosing maximum magnitude values, in the following we
consider the conservative assumption to use the same by that allow in
a standard CS system to align measurement with input signal SNR.

This said Nyquist acquisition, standard CS, and the maximum-
energy CS can be compared by using the following figures of merit:
• average RSNR for a proper class of signal (ARSNR);
• probability of correct reconstruction (PCR), defined as the

probability the a generic instance x is reconstructed with a
quality at least equal to the target SNR;

• compression ratio CRbit in terms of number of bits. This is
defined as the ratio between the number of bits used in the
encoder (that is mby for a standard CS, mby +

⌈
log2

(
M
m

)⌉
for

the proposed maximum-energy CS) to achieve the target SNR,
and the number of bit used by a pure Nyquist system (n bx).

IV. EXPERIMENTAL RESULTS

With the aim of testing performance of the identified algorithm,
we propose in this section results from Montecarlo simulation of a
synthetic CS system. Each input signal instance x is randomly drawn
with a sparsity level κ = 6 using a sparsity basis Ψ given by the
discrete-cosine transform (DCT) with n = 128. Each x has been
perturbed by a white noise whose power is such that signal-to-noise
ratio (SNR) is 60 dB to emulate non-idealities of the sensing stage
or a ≈ 10 bit quantization noise. Due to this, we set a target quality
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Fig. 2. Montecarlo comparison for 6-sparse signals with n = 128 between performance of standard CS (dashed) and maximum-energy CS (solid) in terms
of both ARSNR (top) and PCR (bottom) for zero localization signals (a), medium localization LP signals (b) and for high localization HP signals (c).

equal to 55 db. This corresponds to bx = 9 bit. The total number of
bit used in a Nyquist system is given by n bx = 1152 bit.

Tree different input signal classes have been considered. In the first
one (referred to as no-localization) each x is generated by randomly
drawn κ column of Ψ with associated amplitudes as instances of
zero-mean unity-variance Gaussian process.

Additionally, two localized classes, a high-pass (HP) one and low-
pass (LP) one, have been considered. In details, a synthetic κ-sparse
localized vector is generated starting from an n-dimensional random
Gaussian vector x′ with zero mean and correlation matrix Cx. Then,
being α′ = Ψ−1x′, a κ-sparse coefficient vector α is generating by
considering the κ largest modulus entries of α′ and setting all others
to zero. Finally, we set x = Ψα.

This is based on the observation that, if the eigenvalues of Cx are

TABLE I
BITWISE COMPRESSION RATIOS OF MAXIMUM-ENERGY CS AND

STANDARD CS WHERE STRAIGHTFORWARD ENCODING OF n = 128
SAMPLES WOULD REQUIRE 1152 bit.

ARSNR = 55dB

maximum-energy CS standard CS

m M mby +
⌈
log2

(M
m

)⌉
CRbit m mby CRbit

26 64 372 3.10 38 456 2.53
22 128 346 3.33 38 456 2.53
20 256 338 3.41 38 456 2.53
19 512 342 3.37 38 456 2.53

PCR = 0.9

maximum-energy CS standard CS

m M mby +
⌈
log2

(M
m

)⌉
CRbit m mby CRbit

34 64 469 2.46 46 552 2.01
28 128 430 2.68 46 552 2.01
25 256 415 2.78 46 552 2.01
24 512 425 2.71 46 552 2.01

not identical, then x′ is localized and this property is approximately
propagated through sparsification since the n−κ smallest components
of α′ are discarded. We consider here an exponential correlation
profile with Cxi,j = r|i−j| with two different value of r. One is
r = 0.81 corresponding to a medium localization LP and one,
r = −0.96, for high localization HP behavior.

Each random instance x generated in one of the aforementioned
ways is encoded by (1) and decoded with the BPDN problem in (2)
by using the SPGL1 tool1. Both the standard CS and the maximum-
energy CS are considered. In the first case, A is generated by
collecting m sensing vectors randomly drawn as instances of an i.i.d.
Gaussian random variables; in the second one, A is composed by
M random vectors, of which only m are used for computing y in
according to the largest modulus observed. In both cases we assume
that by = 12.

Figure 2 shows system performance in terms of both ARSNR (top
plots) and PCR (bottom plots) for all considered classes of signals as a
function of the measurement vector cardinality m where for the PCR
figure of merit the target SNR is fixed to 55 dB. Two target values,
equal to ARSNR = 55 dB and PCR = 0.9 are highlighted to help
performance comparison. It is clear from the plots how the maximum-
energy CS outperforms standard CS in terms of signal reconstruction
quality given m, or equivalently, in terms of m required to get a target
signal reconstruction quality, for all considered cases. This is more
evident when considering the two localized examples, and confirms
the non-democratic behavior of CS systems.

However, since the maximum-energy CS take advantage from an
information overhead given by J , the only fair comparison can be
made in terms of amount of information required for a target quality.
To keep this into account, Table I proposes, limited to the medium
localized LP signal, a comparison for different M values of the
proposed method performance with that of the standard CS in terms
of CRbit, accordingly to the definition of the previous section. The
considered value of m is the one, accordingly to Figure 2, that ensures
the target figure of merit ARSNR = 55 dB or PCR = 0.9.

1online available at https://www.math.ucdavis.edu/ mpf/spgl1/
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Accordingly to this point of view, optimal performance is achieved
for an intermediate value of M . This is actually expected. If M is
too low, it is clear that the number of candidate measurements is not
enough to take full advantage from the maxim-energy approach. As
M increases, also performance in terms of signal quality reconstruc-
tion increases due to the higher probability to include high-energy
measurements in y. However, when M is too large, the overhead
to encode J is too large with respect to the gain in signal quality
reconstruction, and performance in terms of CRbit drops.

As a final step, we propose the comparison between the maximum-
energy approach and the rakeness approach proposed in [12]2.
Both methods aim at maximizing performance (i.e., maximizing
reconstruction quality given m, or minimizing m given a target
reconstruction quality) based on the maximization of the energy
measurements. However, the first one is based on an a-posteriori
maximization: independently of the input signal, many measurements
are taken, and only the most useful ones are considered. On the
contrary, the second approach is based on an a-priori maximization:
the sensing vectors aj are randomly generated by a stochastic process
maximizing the expected energy of (1). The advantage of the first
approach is to be signal-agnostic: it can be applied without any a-
priori knowledge on x, but has the drawback of the encoding of J .
The disadvantage of second approach is that it can be applied only
to input signal that are localized, and also to require to known in
advance its statistical characterization, but no additional information
needs to be encoded.

In Figure 3 the two approaches, along with the standard CS,
are compared in terms of ARSNR for a LP localized signal where
κ = 25 and n = 512. Both rakeness CS and maximum-energy
CS clearly outperform standard CS due to the localization of the
signal. Furthermore, assuming M large enough, maximum-energy
CS has better performance, being an a-posteriori maximization much
easier to do and effective than an a-priori one. Indeed, the advantage

2Matlab code online available at http://cs.signalprocessing.it

TABLE II
BITWISE COMPRESSION RATIOS OF MAXIMUM-ENERGY CS,

RAKENESS-BASED CS AND STANDARD CS FOR ARSNR ≥ 55 dB.

maximum-energy CS standard CS rakeness CS

m M CRbit m CRbit m CRbit

100 256 3.19 149 2.58 87 4.41
87 512 3.35 149 2.58 87 4.41
81 1024 3.35 149 2.58 87 4.41
75 4096 3.21 149 2.58 87 4.41

of the maximum-energy CS of not requiring any information on
the input signal in advance is paid in terms of CRbit. System
performance in terms of CRbit to reach the target figure of merit
ARSNR = 55 dB is compared in Table II. Despite the fact that
the number of measurement m required to reach the target quality
is (almost) always lower with the maximum-energy approach, the
required information overhead makes, for this particular case, the
rakeness approach more convenient.

V. CONCLUSION

In this paper we have introduced a new approach for optimizing
CS performance based on the computation of a large number of
candidate measurements, and on the transmission/storage only of that
with the higher energy. This maximum-energy CS approach is proved
to be extremely effective in inreasing reconstruction performance
with respect to standard CS approach. Furthermore, even considering
the overhead given by the transmission to the decoder stage of the
information on which candidate measurements have been actually
used, this system could greatly improve performance in terms of
signal compression.
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