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Set-membership errors-in-variables identification

ofMIMO linear systems

Vito Cerone§, Valentino Razza, Diego Regruto

Dipartimento di Automatica e Informatica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

Abstract

In this paper, we consider the problem of set-membership identification of multiple-input multiple-output (MIMO) linear
models when both input and output measurements are affected by bounded additive noise. Firstly, we propose a general
formulation that allows the user to take into account possible a-priori information on the structure of the MIMO model to be
identified. Then, we formulate the problem in terms of a suitable polynomial optimization problem that is solved by means of
a convex relaxation approach. To show the effectiveness of the proposed approach, we test the original MIMO identification
algorithm on a simulation example, as well as on a set of input output experimental data, collected on a multiple-input
multiple-output electronic process simulator.
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1 Introduction

Considerable research efforts have been devoted to
the identification of multiple-input multiple-output
(MIMO) systems in the last decades, and numerous
algorithms have been proposed, including the subspace
approach (see, e.g., Larimore (1983); Verhaegen (1994);
Viberg (1995); Van Overschee and De Moor (1996);
Chiuso (2007)), the approaches based on the maximum
likelihood (ML) principle (see, e.g., Gibson and Nin-
ness (2005); Wills and Ninness (2008)) and the ones
exploiting the instrumental variables method to esti-
mate the parameter of a multivariable transfer function
(see, e.g., Stoica and Jansson (2000)). In particular in
Verhaegen (1994), the author considers the problem of
identifying a state-space multivariable model, when the
system is excited by a known deterministic input and an
unknown process noise, and measurements are affected
by unknown noise. The work reports solutions based
on Multivariable Output-Error State Space (MOESP)
type algorithms. The paper by Viberg (1995) provides
an interesting comparison among different classes of
algorithms (4SID, IV-4SID, PEM, MOESP), for the
identification of MIMO models within the framework of
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subspace-based methods. Interested readers can find ad-
ditional details on subspace-based approaches in several
books (see, e.g., Van Overschee and De Moor (1996)).
The contributions by Gibson and Ninness (2005) and by
Wills and Ninness (2008) consider a ML-based appro-
ach, where the authors focus on two important aspects
of the algorithms exploited for the computation of the
model estimate: the choice of the parameterization and
the numerical robustness. An expectation-maximization
approach is considered in Gibson and Ninness (2005),
while a gradient-based search method is proposed in
Wills and Ninness (2008). A discussion of the compa-
rison between state-space-based and transfer function-
based algorithms is presented in the paper by Stoica
and Jansson (2000), where the authors also propose
an instrumental variable algorithm based on a transfer
function description of the MIMO model.

Interesting results have been reported throughout the li-
terature related to the challenging problem of errors-in-
variables (EIV) identification of MIMO systems. Early
contributions can be traced back to the paper by Green
andAnderson (1986), where identifiability conditions for
such a class of systems are studied. One of the first algo-
rithms for estimating EIV MIMO models has been pro-
posed by Castaldi et al. (1999), where the simultaneous
estimate of the model parameters and the noise cova-
riance matrices are obtained through of a suitable pre-
diction error method. The reader is referred to the sur-
vey paper by Söderström (2007) and the references the-
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rein for a thorough review of EIV identification of both
SISO and MIMO systems proposed in the literature be-
fore 2007. Identification of EIV MIMO models is still a
hot topic, as witnessed by the new algorithms proposed
during recent years. Among the others, we mention the
approach proposed by Diversi and Guidorzi (2012), ba-
sed on the extension of the Frisch scheme to the multi-
variable case, and the generalized instrumental variable
estimation (GIVE) approach proposed by Söderström
(2012). An interesting recursive identification approach
for the estimation of MIMO EIV linear systems with in-
put static nonlinearity has been proposed by Mu and
Chen (2015).

The classical approach to system identification is based
on a statistical description of the experimental data un-
certainty. An alternative to the stochastic description,
inspired by the seminal work of Schweppe (1968), is
the bounded-error or set-membership characterization,
where measurement errors are assumed to be unknown
but bounded (UBB), i.e., the measurement uncertainties
are assumed to belong to a given bounded set. Such a
description can be chosen in those cases where either a
priori statistical information is not available, or the er-
rors are better characterized in a deterministic way (e.g.,
systematic and class errors in measurement equipments,
rounding and truncation errors in digital devices). Ba-
sed on the UBB uncertainty description, a new para-
digm called bounded-error or set-membership identifi-
cation has progressively emerged in the last three deca-
des. Interested readers are referred to the book Milanese
et al. (1996), the special issues Norton (1994, 1995),
the survey papers Milanese and Vicino (1991); Walter
and Piet-Lahanier (1990) and the references therein for
a thorough review of the fundamental principles of the
theory.

The set-membership approach has been successfully
applied to solve different classes of identification pro-
blems: estimation of single-input single-output (SISO)
linear models with equation error (Milanese and Bel-
forte (1982); Fogel and Huang (1982)) and error-in-
variables model structures (Cerone (1993a,b); Cerone
et al. (2011b,a, 2012b)), recursive identification (Chisci
et al. (1998)), H∞ identification (Milanese and Taragna
(2005)), block-oriented (Cerone and Regruto (2006);
Cerone et al. (2012a, 2013a)) and nonparametric nonli-
near identification (Milanese and Novara (2004)), linear
parameter varying model (Cerone and Regruto (2008);
Cerone et al. (2013b)), identification from quantized
data records (Casini et al. (2012); Cerone et al. (2013c))
conditional and robust identification (Garulli (1999);
Garulli et al. (2000); Cerone et al. (2014)) just to cite a
few.

However, most of the works available in the literature
deal with single-input single-output (SISO) linear mo-
dels, while only few papers address the problem of identi-
fication of MIMO linear models in the presence of boun-

ded errors. In particular, identification of MIMO sys-
tems affected by bounded equation error is addressed
in the paper by Wang et al. (2013) by means of an in-
terval analysis-based approach. Since an equation error
model structure is assumed, the problem of estimating
the MIMO model parameters leads to a linear regres-
sion problem where the regressor is not affected by un-
certainty. Therefore, in this case, interval analysis tools
can be profitably applied to compute tight parameter
bounds. The proposed algorithm is shown to outperform
in terms of accuracy the optimal ellipsoidal algorithm
proposed in Fogel and Huang (1982). However, such an
approach does not explicitly cover more complex error
structure (output-error, errors-in-variables) where the
regressor is affected by uncertainty.

An output-error model structure is considered, instead,
in the paper by Pouliquen et al. (2011), under the as-
sumption that a bound on the energy of the output me-
asurement error is known. They derive an optimal boun-
ding ellipsoid algorithm for MIMOmodels, by extending
previous results on ellipsoid algorithms for SISO sys-
tems. Stability and convergence results are presented.
Zaiser and co-workers focus on the problem of computing
parameter bounds for MIMO state-space model (Zaiser
et al. (2014b)) and for MIMO ARX models (Zaiser et al.
(2014a)), by assuming that both the input and the out-
put sequences are corrupted by additive noise (errors-
in-variables) bounded in the ℓ∞ norm, a problem only
apparently close to the one considered in this work. In
fact, the work in Zaiser et al. (2014a) mainly focuses on
the problem of estimating the order of the multivariable
system to be identified; once the order has been estima-
ted, standard interval analysis tools available in the lite-
rature are used to estimate the parameters. However, as
usually done in the interval analysis-based algorithms,
the correlation among different occurrences of the same
uncertainty variable in the regressor are neglected, since
each uncertainty variable is replaced by an independent
interval.

In this work, we assume that the order of the system is a-
priori known, and we focus on the derivation of an algo-
rithm for computing tight parameter uncertainty inter-
vals (PUI), by taking explicitly into account the correla-
tion between the uncertainty variables affecting the re-
gressor. We address the problem of computing the PUIs
for MIMO linear models, with both input and output
measurements corrupted by bounded noise. We consi-
der a general description, in transfer function form, that
allows the user to consider possible a-priori knowledge
on the structure of each entry of the matrix transfer
function. The evaluation of the parameter uncertainty
intervals is formulated in terms of a suitable polynomial
optimization problem, solved by a computationally effi-
cient convex relaxation method.

The novelty of the contribution can be summarized as
follows. The results presented in this paper rely on a
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deterministic assumption on the input-output measure-
ment noise (i.e., the noise is assumed to be unknown but
bounded); therefore, although the problem of errors-in-
variables identification for both SISO and MIMO mo-
dels has been widely studied (see, e.g., the survey paper
Söderström (2007)), most of the algorithms available in
the literature and briefly reviewed in this introduction
(see, e.g., Green and Anderson (1986); Castaldi et al.
(1999); Diversi and Guidorzi (2012); Söderström (2012);
Mu and Chen (2015)) are based on the assumption that
the noise affecting the data is a stochastic process. In
this work, a different framework is considered, since the
noise affecting the input and the output sequences is as-
sumed to be bounded, while it is not required, in general,
to be a random variable. Only few works can be found
in the literature addressing the identification of MIMO
systems in the presence of bounded noise (Wang et al.
(2013); Pouliquen et al. (2011); Zaiser et al. (2014a)); all
these works exploit interval analysis-based algorithms,
where the (possible) correlation among different occur-
rences of the same uncertainty variable in the regres-
sor are neglected; the approach presented in this paper
overcomes this limitation. The proposed algorithm is the
first attempt to extend the convex-relaxation based ap-
proach to set-membership identification, previously pro-
posed by the authors for different classes of linear and
nonlinear SISO systems, to the case of MIMO linear sy-
stems.

The paper is organized as follows. The problem to be
solved is formulated in Section 2, while a polynomial
optimization-based solution is proposed in Section 3.
Section 4 provides a motivating example that shows the
main ideas behind the proposed approach. Section 5 des-
cribes a convex relaxation technique to solve the polyno-
mial optimization problem. The effectiveness of the pro-
posed method is shown in Section 6 through a simulation
example, while a further test on the identification of a
MIMO electronic process simulator, from experimental
data, is provided in Section 7. Concluding remarks end
the paper.

2 Problem formulation

Let us consider the multiple-input multiple-output
(MIMO) linear-time-invariant (LTI) system depicted in
Fig. 1, where x(t) is the nx dimensional input and w(t)
is the nw dimensional output. The MIMO LTI system
to be identified is modeled by a discrete time system,
that transforms x(t) into the noise-free output w(t),
according to the following input-output mapping

w(t) = G(q−1)x(t), (1)

where, x(t) = [x1(t) x2(t) . . . xnx
(t)]T ∈ R

nx and
w(t) = [w1(t) w2(t) . . . wnw

(t)]T ∈ R
nw are the sam-

ples of the multivariable input and output respectively,

✲ ✲G(q−1)

❄

x(t) q

❤✲

❄

ξ(t)

u(t)

+

+ ❄

w(t)q

❤

❄

✛η(t)

y(t)

+

+

Fig. 1. Errors-in-variables basic setup for a MIMO linear
dynamic system.

at time instant t = 1, . . . , N ; N is the number of me-
asurements and G(q−1) is the system matrix transfer
function. The entry ofG(q−1) relating the j-th input to
the i-th output, is described by

Gij(q
−1) =

∑mij

k=0 b
(ij)
k q−k

1 +
∑nij

h=1 a
(ij)
h q−h

, (2)

where a
(ij)
h ∈ R, (h = 1, . . . , nij) and b

(ij)
k ∈ R, (k =

0, . . . ,mij) are the unknown parameters to be estimated.
The i-th output of the system can be described by

wi(t) = zi1(t) + zi2(t) . . .+ zinx
(t), (3)

where zij is the contribution given by the j-th input to
the i-th output, i.e.,

zij(t) = Gij(q
−1)xj(t) (4)

Let us call zij the ij-th partial output. On the basis of
equation (4), we can relate zij(t) and xj(t) through the
following difference equation

nij
∑

h=0

a
(ij)
h zij(t− h) =

mij
∑

k=0

b
(ij)
k xj(t− k) (5)

Both input and output data sequences are corrupted by
additive noise ξ and η respectively

u(t) = x(t) + ξ(t), (6)

y(t) =w(t) + η(t), (7)

where the scalar noise variables ξj(t) and ηi(t), acting
on the generic input xj(t) and the generic output wi(t)
respectively, are assumed to range within given bounds
∆ξj and ∆ηi, that is

| ξj(t) | ≤∆ξ, ∀t = 1, . . . , N (8)

| ηi(t) | ≤∆η, ∀t = 1, . . . , N. (9)

The unknown parameter vector θ ∈ R
p to be identified

is

θ = [θ11 . . . θ1nx
θnw1 . . . θnwnx

]
T
, (10)
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where

θij =
[

a
(ij)
0 . . . a(ij)nij

b
(ij)
0 . . . b(ij)mij

]

, (11)

and p =
∑nw

i=1

∑nx

j=1(mij + nij + 1). The feasible para-

meter set (FPS) Dθ is

Dθ =
{

θ ∈ R
p :

nij
∑

h=0

a
(ij)
h zij(τij − h) =

mij
∑

k=0

b
(ij)
k (uj(τij − k)− ξj(τij − k)),

zi1(t) + zi2(t) . . .+ zinx
(t) = (yi(t)− ηi(t)),

τij = nij + 1, . . . , N

i = 1, . . . , nw, j = 1, . . . , nx

| ξj(t) |≤ ∆ξ, | ηi(t) |≤ ∆η, t = 1, . . . , N
}

.
(12)

Equation (12) provides an implicit exact description of
the set of all possible values of the unknown parameter
θ that are consistent with measured data, error bounds
and assumed model structure.

In this work, we address the problem of evaluating the
parameter uncertainty intervals PUIr, defined as

PUIr =
[

θ(r), θ
(r)

]

for r = 1, . . . , p (13)

where θ(r) is the r-th element of the vector θ, while

θ(r) = min
θ∈Dθ

θ(r), (14)

θ
(r)

= max
θ∈Dθ

θ(r). (15)

Thus, the computation of the PUIr requires the solution
to constrained optimization problems (14) and (15).

Remark 1 It is worth noting that the formulation pro-
posed in this section is quite general since it allows the
user to take into account possible a-priori information on
the structure of the MIMO system to be identified, i.e.,
the order of the numerator (mij) and denominator (nij)
of each single transfer function Gij .
In the case such structural information is not available,
according to the approach proposed in Stoica and Jansson
(2000), all the scalar transfer functions Gij are assumed
to share the same denominator, and the order mij of the
numerators of the transfer functions Gij are assumed to
satisfy mij = n ∀i = 1, . . . , nw and ∀j = 1, . . . , nx where
n is the order of the multivariable system to be identi-
fied. However, this approach may lead to overestimation
of the degree of the denominators of some transfer functi-
ons Gij . On the contrary, by exploiting the approach des-
cribed in Zaiser et al. (2014a), the actual order of each
single transfer function can be estimated.

3 Parameter bounds computation

In this section, we introduce an algorithm for the solu-
tion of problems (14) and (15).

The key idea of the proposed methodology is that the
system parameters and the partial unmeasurable output
signals zij can be simultaneously estimated through the
solution of the following optimization problem



















































































min
θ,z,η,ξ

J(θ)

s.t.
nij
∑

h=0

a
(ij)
h zij(τij − h) =

=

mij
∑

k=0

b
(ij)
k (uj(τij − k)− ξj(τij − k)),

τij = nij + 1, . . . , N,

zi1(t) + zi2(t) . . .+ zinx
(t) = (yi(t)− ηi(t)),

i = 1, . . . , nw, j = 1, . . . , nx,

| ξj(t) |≤ ∆ξ, | ηi(t) |≤ ∆η, t = 1, . . . , N

(16)

where also the samples of the unmeasurable partial out-
put signals zij appear as decision variables of problem
(16), together with the system parameters θ to be es-
timated. The functional J(θ) to be minimized is set to

J(θ) = θ(r) for the computation of θ(r), and to J(θ) =

−θ(r) when the computation of θ
(r)

is of interest.

Although problem (16) is a hard nonconvex optimiza-
tion problem, it is worth noting that it falls into the
class of the constrained semialgebraic optimization pro-
blems, for which some effective convex relaxations have
been proposed in recent years. More specifically, it has
been shown that, at least in principle, the global op-
timum of a constrained semialgebraic program can be
approximated arbitrarily well by exploiting either the
sum-of-squares-based decomposition approach propo-
sed in Chesi et al. (2003) and Parrilo (2003), or the
moment-based-approach in Lasserre (2001). The re-
sults presented in (Lasserre (2001); Chesi et al. (2003);
Parrilo (2003)), allow the user to set up a hierarchy
of convex linear matrix inequality (LMI) problems,
guaranteed to converge to the global optimum of the
original nonconvex polynomial problem as the order of
relaxation goes to infinity (see the book Lasserre (2010)
and the references therein for details). Further, in view
of the recent results by Marshall (2009) and Nie (2014),
it can be shown the convergence is finite, provided the
problem satisfies a set of mild conditions (see Nie (2014)
and the references in it for details).

However, direct application of such methods to large-
scale identification problems (large number of parame-
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ters to be estimated and/or large set of experimental
input-output data) might lead to intractable LMI pro-
blems, due to the requirements of memory storage
and/or computational time. In order to overcome this
limitation, ad-hoc approaches have been proposed in
(Cerone et al. (2011b, 2012b,a, 2013a)), to reduce the
computational complexity by exploiting some peculiar
features of the polynomial optimization problems ari-
sing from the context of system identification. In the
next section, we show that problem (16) enjoys the
same sparsity structure of the problems considered in
(Cerone et al. (2011b, 2012b,a, 2013a)) and, therefore,
computationally effective implementation can be app-
lied to solve MIMO identification problems with several
hundreds of input-output data. However, we remark
that set-membership approaches are particularly moti-
vated for the case of small data set, i.e., when classical
stochastic approaches cannot provide reliable results.

Remark 2 It is worth noting that the problem of com-
puting the PUIs could be directly formulated as a poly-
nomial optimization problem, along the lines of our pre-
vious works for SISO systems (see, e.g., Cerone et al.
(2012b)), by deriving a set of equality constraints directly
from (1). However, such a formulation would lead to an
optimization problem with polynomial constraints of or-
der nx + 1 and, therefore, it would require higher com-
putational efforts. On the contrary, the original formu-
lation proposed in the paper, thanks to the inclusion of
the partial output samples among the decision variables,
leads to the polynomial optimization problem (16) where
all the equality constraints are of order 2 (bilinear). In
order to better clarify such an important fact, a simple
motivating example is presented in the next section.

4 A motivating example

To explain the strength of the approach proposed here
for the computation of parameter bounds for MIMO li-
near systems, we consider the following simple four in-
puts, single output LTI model, where the output mea-
surements are corrupted by bounded noise

w(t) =

4
∑

i=1

Gi(q
−1)xi(t)

y(t) = w(t) + η(t), |η(t)| ≤ ∆η

(17)

where

G1(q
−1) =

b
(1)
0 + b

(1)
1 q−1

1 + a
(1)
1 q−1 + a

(1)
2 q−2

,

G2(q
−1) =

b
(2)
0 + b

(2)
1 q−1

1 + a
(2)
1 q−1 + a

(2)
2 q−2 + a

(2)
3 q−3

,

G3(q
−1) =

b
(3)
2 q−2

1 + a
(3)
1 q−1 + a

(3)
2 q−2 + a

(3)
3 q−3

,

G4(q
−1) =

b
(4)
0

1 + a
(4)
2 q−2

x4(t).

(18)

At least in principle, parameters bounds could be com-
puted by straightforward generalization of the results
for SISO systems proposed in our previous papers (see,
e.g., Cerone et al. (2012b)). Such an approach, would
lead to a set of polynomial optimization problems with
a linear functional and polynomial constraints of order
nx+1 = 5. As an example, we consider the computation

of the lower bound on b
(1)
0



























































































min
θ,η

b
(1)
0

s.t.

(1 + a
(1)
1 q−1 + a

(1)
2 q−2)

(1 + a
(2)
1 q−1 + a

(2)
2 q−2 + a

(2)
3 q−3)

(1 + a
(3)
1 q−1 + a

(3)
2 q−2 + a

(3)
3 q−3)

(1 + a
(4)
2 q−2)(y(t)− η(t)) =

(b
(1)
0 + b

(1)
1 q−1)x1(t)+

+ (b
(2)
0 + b

(2)
1 q−1)x2(t)+

+ (b
(3)
2 q−2)x3(t) + b

(4)
0 x4(t),

| ηi(t) |≤ ∆η, t = 1, . . . , N

(19)

The equality constraints in problem (19) are polynomial
of degree 5. Indeed, the higher-order terms are obtained
through the multiplication of four parameters and the
variables η. In general, the constraints have degree nx+
1, which depend on the number of inputs.

On the contrary, the original approach proposed in this
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paper leads to the following alternative formulation















































































min
θ,z,η

b
(1)
0

s.t.

(1 + a
(1)
1 q−1 + a

(1)
2 q−2)z1(t) = (b

(1)
0 + b

(1)
1 q−1)x1(t),

(1 + a
(2)
1 q−1 + a

(2)
2 q−2 + a

(2)
3 q−3)z2(t) =

(b
(2)
0 + b

(2)
1 q−1)x2(t),

(1 + a
(3)
1 q−1 + a

(3)
2 q−2 + a

(3)
3 q−3)z3(t) = b

(3)
2 q−2x3(t),

(1 + a
(4)
2 q−2)z4(t) = b

(4)
0 x4(t),

z1(t) + z2(t) + z3(t) + z4(t) = (y(t)− η(t)),

| ηi(t) |≤ ∆η, t = 1, . . . , N
(20)

that is a polynomial optimization problem with linear
functional and bilinear constraints, independently from
the actual number of inputs nx.

Remark 3 For the sake of simplicity, in this paper we
focus on the case where the input and output data are
corrupted by noise whose magnitude is bounded accor-
ding to equations (8) and (9). This kind of a-priori infor-
mation is a natural choice since it is in agreement with
the case, quite common in practice, where the errors af-
fecting the experimental measurements are known to be
bounded, while are not biased. However, the proposed ap-
proach can be straightforwardly generalized to consider
the case of noise sequences that belong to any bounded
set described by semialgebraic inequalities. In fact, such
a case can be straightforwardly addressed by simply re-
placing the constraints | ηi(t) |≤ ∆η, t = 1, . . . , N in
problem (20) with the constraints describing the semi-
algebraic set, since such a replacement does not modify
the mathematical form of the optimization problem to be
solved, which still remains semialgebraic.

Remark 4 By applying the available convex relaxation
techniques that solve polynomial/semialgebraic optimi-
zation problems (see next section and the references the-
rein for details), problem (19) would require a minimum
relaxation order (maximum degree of the constraints di-
vided by 2 and rounded to the next integer) δmin = 3,
while problem (20) would require δmin = 1. More gene-
rally, application to the MIMO case of the approach pre-
sented in our previous works leads to δmin = (nx +1)/2,
which depends on the number of inputs nx.

Remark 5 The computational complexity of the convex
relaxation techniques exploited for solving both problems
(19) and (20) depends exponentially on the order of re-
laxation δ. Therefore, since for problem (19) we have
δmin = (nx + 1)/2, the approach presented in our previ-
ous works, when applied to the MIMO case leads to re-
laxed problems whose computational complexity depends
exponentially on the number of inputs nx. On the con-
trary, this is not true for the original approach presented
in this paper. In fact, the minimum order of relaxation

for problem (20) is δmin = 1, i.e. δmin does not depend
on nx.

Remark 6 In the case the same order of relaxation is
used for solving problems (19) and (20) (e.g., δ = 3), the
obtained relaxed solution is expected to be significantly
less conservative for (20) than for (19), since in the first
case the selected order of relaxation is significantly larger
than the minimum value δmin = 1, while it is just the
minimum δ = δmin = 3 for (19).

The comparison between problems (19) and (20) shows
that the approach proposed in the paper reduces both
the computational complexity and the degree of con-
servativeness when the solution is obtained by applying
convex relaxation techniques (as described in details in
the next Section).

5 A convex relaxation approach

Since (16) is a semialgebraic optimization problem, at
least in principle an approximation of its global optimal
solution can be computed by directly applying the dense
semidefinite (SDP) relaxation techniques proposed in
Lasserre (2001); Chesi et al. (2003); Parrilo (2003). Such
techniques are based on the solutions of a hierarchy of
convex SDP problems, whose solution is guaranteed to
monotonically converge to the exact parameters bounds
defined in (16). However, it is worth noting that, for a gi-
ven relaxation order δ, the application of the dense SDP-
relaxation to problem (16) leads to convex optimization
problems where the number of variables is O(N2δ), and
the size of the largest linearmatrix inequality (LMI) defi-
ning the feasible region of the relaxed problem is O(N δ).
Thus, in practice, the application of the proposed ap-
proach is limited to the cases with a small number N of
measurements (less than 10). In order to handle a lar-
ger number of measurements, the particular structure
of the identification problem (16) has been analyzed to
apply the sparse SDP-relaxation approach presented in
the works Kojima et al. (2005); Lasserre (2006); Waki
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et al. (2008). In the following, we analyse the problem



















































































































































































































min
θ,z,η,ξ

J(θ)

s.t.

ht+(i−1)N (θ, zij, η, ξ) =

2
∑

k=1

zik(t)− (yi(t)− ηi(t)) ≥ 0,

ht+(1+i)N (θ, zij, η, ξ) = (yi(t)− ηi(t))−

2
∑

k=1

zik(t) ≥ 0,

ht+(3+i)N (θ, zij, η, ξ) = ∆η − ηi(t) ≥ 0,

ht+(5+i)N (θ, zij, η, ξ) = ∆η + ηi(t) ≥ 0,

ht+(7+j)N (θ, zij , η, ξ) = ∆ξ − ξj(t) ≥ 0,

ht+(9+j)N (θ, zij , η, ξ) = ∆ξ + ξj(t) ≥ 0,

hτij+[11+2(i−1)+j]N (θ, zij , η, ξ) =
nij
∑

k=1

a
(ij)
k zij(τij − k)−

mij
∑

l=0

b
(ij)
l uj(τij − l)+

+

mij
∑

l=0

b
(ij)
l ξj(τij − l) + zij(τij) ≥ 0,

hτij+[15+2(i−1)+j]N (θ, zij , η, ξ) =

−

nij
∑

k=1

a
(ij)
k zij(τij − k)−

mij
∑

l=0

b
(ij)
l ξj(τij − l)+

+

mij
∑

l=0

b
(ij)
l uj(τij − l)− zij(τij) ≥ 0,

τij = nij + 1, . . . , N,

i = 1, 2, j = 1, 2, t = 1, . . . , N
(21)

that is equivalent to (16), where, for the sake of sim-
plicity and without loss of generality, nw = nx = 2 is
considered. More specifically, the result presented in
Property 1 reported below proves that problem (21) en-
joys the peculiar structured sparsity considered in the
Kojima et al. (2005); Lasserre (2006);Waki et al. (2008).

Property 1 Problem (21) enjoys the following features:

P 1.1 The functional involves only the variable θ(r).

P 1.2 For all r = 1, . . . , N , i = 1, 2, the linear con-
straints hr+(i−1)N ≥ 0 and hr+(i+1)N ≥ 0 depend only
on the variables zik(r) and the noise sample ηi(r).

P 1.3 For all r = 1, . . . , N , i = 1, 2, constraints
hr+(3+i)N ≥ 0 and hr+(5+i)N ≥ 0 depend only on the
noise sample ηi(r).

P 1.4 For all r = 1, . . . , N , i = 1, 2, constraints
hr+(7+i)N ≥ 0 and hr+(9+i)N ≥ 0 depend only on the
noise sample ξi(r).

P 1.5 For all i = 1, 2, j = 1, 2, τij = nij , . . . , N , con-
straintshτij+[11+2(i−1)+j]N ≥ 0 and hτij+[15+2(i−1)+j]N ≥
0 depend only on the system parameters θij, the variables
zij(τij − k) and the noise samples ξi(τij − l).

Thanks to Property 1, whose statement can be proved
by direct inspection of equations (21), a peculiar sparsity
pattern has been detected in problem (21). Therefore, by
exploiting the results presented in Kojima et al. (2005);
Lasserre (2006); Waki et al. (2008), we can formulate a
sparse SDP-relaxed problem for (21) as described in the
following.
Let Ξ ∈ R

p+8N be the collection of the optimization
variables for the identification problem (21), i.e. Ξ =
[

Ξ(11) Ξ(12) Ξ(21) Ξ(22) η1 η2 ξ1 ξ2
]T

, where the entries

of Ξ(ij) ∈ R
nij+mij+1+N are given by the parameters

θij and the samples of the partial outputs zij of the

transfer function Gij , i.e. Ξ
(ij) = [θij zij ]. In such a way,

the first p + 4N components of Ξ are the parameters
θij and the samples of the partial estimated output zij
∀i, j, while the components from position p + 4N + 1
to p+ 6N are the output noise variables η, and the last
2N components from position p+6N +1 to p+8N are
the input noise variables ξ. Let us define the index sets
Ir ⊂ {1, 2, . . . , p+ 8N} and Sr ⊂ {1, . . . , 20N} as

Ir = {n11 +m11 + r, n11 +m11 + n12 +m12 +N + r,

n11 +m11 + n12 +m12 + n21 +m21 + 2N + r,

p+ 3N + r, p+ 4N + r, p+ 5N + r}

for r = 1, . . . , N
(22)

Ir+N = {p+ 6N + r, p+ 7N + r} , for r = 1, . . . , N
(23)

Ir+2N = {1, . . . , n11 +m11,

n11 +m11 + r, . . . , n11 +m11 + r + n11

p+ 6N + r, . . . , p+ 6N + r +m11 + 1}

for r = 1, . . . , N − n11

(24)

Ir+3N = {s+ 1, . . . , s+ n12 +m12,

s+ n12 +m12 + r, . . . , s+ n12 +m12 + r + n12

p+ 7N + r, . . . , p+ 7N + r +m12 + 1}

for r = 1, . . . , N − n12,

s = n11 +m11 +N
(25)

Ir+4N = {s+ 1, . . . , s+ n21 +m21,

s+ n21 +m21 + r, . . . , s+ n21 +m21 + r + n21

p+ 6N + r, . . . , p+ 6N + r +m21 + 1}

for r = 1, . . . , N − n21,

s = n11 +m11 + n12 +m12 + 2N
(26)
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Ir+5N = {s+ 1, . . . , s+ n22 +m22,

s+ n22 +m22 + r, . . . , s+ n22 +m22 + r + n22

p+ 7N + r, . . . , p+ 7N + r +m22 + 1}

for r = 1, . . . , N − n22,

s = n11 +m11 + n12 +m12 + n21 +m21 + 3N
(27)

Sr = {r,N + r, 2N + r, 3N + r, 4N + r, 5N + r, 6N + r,

7N + r}

for r = 1, . . . , N
(28)

Sr+N = {8N + r, 9N + r, 10N + r, 11N + r}

for r = 1, . . . , N
(29)

Sr+2N = {12N + r, 16N + r} , for r = 1, . . . , N (30)

Sr+3N = {13N + r, 17N + r} , for r = 1, . . . , N (31)

Sr+4N = {14N + r, 18N + r} , for r = 1, . . . , N (32)

Sr+5N = {15N + r, 19N + r} , for r = 1, . . . , N (33)

By inspecting equations (22)-(33), it is possible to check
that index sets Ir and Sr satisfy the following property,
known in the literature as running intersection property
(see, e.g., Lasserre (2006) for details).

Property 2 For all r = 1, . . . , 6N , the index sets Ir and
Sr are such that:

P 2.1 The set of the variables indexes

I0 = {1, 2, . . . , p+ 8N}

is the union of the sets Ir, that is I0 =
⋃6N

r=1 Ir.

P 2.2 The set of the constraints indexes S0 = {1, . . . , 6N}
defining Dθzηξ is the union of the sets Sr, that is

S0 =
⋃6N

r=1 Sr.

P 2.3 The sets Sr are mutually disjoint.

P 2.4 For every s ∈ Sr, the polynomial constraint
hs(θ, zij , η, ξ) ≥ 0 defining Dθzηξ depends only on the
variables Ξ(Ir) = {Ξi : i ∈ Ir}.

P 2.5 The functional of identification problem (16) de-
pends only on the variables Ξ(Ir) = {Ξi : i ∈ Ir}.

P 2.6 For every r = 1, . . . , 6N − 1,

Ir+1 ∩

r
⋃

j=1

Ij ⊆ Ir.

�

For a given relaxation order δ ≥ 1, let us consider the
SDP problems

θδj = min
p∈Dδ

θzηξ

∑

α∈A2δ

Θjαpα, θ
δ

j = max
p∈Dδ

θzηξ

∑

α∈A2δ

Θjαpα,

(34)
where Θj = {Θjα}α∈A2δ

is the coefficient vector of the

function θ(j) in the basis h = {Ξα}α∈A2δ
, which is the

canonical basis of the real-valued polynomials of degree
2δ in the variables vector Ξ. The feasible region Dδ

θzηξ is
a convex set defined as

Dδ
θzηξ = {p : Mδ(p, Ir) � 0, r = 1, . . . , 6N

Mδ−1(gs, p, Ir) � 0, s ∈ Sr, r = 1, . . . , 6N } ,
(35)

where Mδ(p, Ir) is the moment matrix of order δ associ-
ated to the variables Ξ(Ir), andMδ−1(hs, p, Ir) is the lo-
calizing matrix (associated to the variables Ξ(Ir)) obtai-
ned by taking into account the constraint hs ≥ 0, that
defines the original semialgebraic feasible region Dθzηξ.
The δ-relaxed uncertainty intervals, defined as PUIδθj =
[

θδj ; θ
δ

j

]

, enjoy the following properties.

Property 3 For all k = 1, . . . , p and relaxation order
δ ≥ 1, the δ-relaxed uncertainty interval PUIδθj satisfies

the following properties.

P 3.1 The interval PUIδθj is guaranteed to contain the

true parameter θj to be estimated, i.e. θj ∈ PUIδθj .

P 3.2 The interval PUIδθj becomes tighter as the relax-

ation order δ increases, that is PUIδ+1
θj

⊆ PUIδθj . Besi-

des, PUIδθj converges to the tight interval PUIθj as the

LMI relaxation order goes to infinity, that is

lim
δ→∞

θδj = θj , lim
δ→∞

θ
δ

j = θj . (36)

�

The proof of Property 3 follows from the structure of
the index sets Ir and Sr highlighted in Property 2, the
direct application of the results presented in Lasserre
(2006) to problems (14)-(15) and the corresponding
SDP-relaxed problems (34). Similar results to Property
3 hold for the relaxed intervals PUIδθj .

Property 4 Computational complexity of the
SDP-problems (34)
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(i) The number of free optimization variables q is

2(6N)





p+ 8N + 2δ

2δ



+

−2(6N − 1)





p+ 8N − 1 + 2δ

2δ



 .

(ii) The feasible region Dδ
θzηξ is described by:

• 2(6N) moment matrixes, each one of size




p+ 8N + δ

δ



 ,

• 20N localizing matrixes, each one of size




p+ 8N − 1 + δ

δ − 1



 . �

For technical details on the computation of the number
of optimization variables q and dimension of the LMIs,
which describe the SDP relaxation of a sparse semialge-
braic optimization problem, the reader is referred, e.g.,
to the book Lasserre (2010) and the references therein.

6 A simulation example

In order to show the effectiveness of the proposed algo-
rithm, a numerical example is given.
We consider the following proper, fully observable and
controllable state-space system, described by

ψ(t+ 1) =Aψ(t) +Bx(t)

w(t) =Cψ(t)
(37)

where ψ(t) is the system state, x(t) is the input, w(t)
the output and

A =















0.7 0.1 0.55 0

−0.6 0.9 0.6 −0.8

0 0 0.5 1

0.1 0 0 −0.9















B =















2 0

0 0

0 0

0 1















, C =









1 0 1 −1

1 0 0 1

2 1 0 1









.

(38)

The MIMO transfer function is

G(q−1) = C(q−1I −A)−1B, (39)

Table 1
PUI’s for the parameters of the simulation example for
SNR = 15 dB.

Parameter PUI’s True Value ∆%PUIr

a1 [-1.247 -1.145] -1.2 4.3

a2 [-0.4434 -0.3573] -0.4 11

a3 [0.9082 0.9778] 0.949 3.7

a4 [-0.3014 -0.234] -0.271 13

b
(1,1)
1 [1.896 2.109] 2 5.3

b
(1,1)
2 [-1.4 -1.022] -1.2 16

b
(1,1)
3 [-1.257 -1.019] -1.14 10

b
(1,1)
4 [0.3995 0.6703] 0.54 25

b
(1,2)
1 [-1.088 -0.9335] -1 7.6

b
(1,2)
2 [2.912 3.291] 3.1 6.1

b
(1,2)
3 [-2.883 -2.378] -2.62 9.6

b
(1,2)
4 [0.5209 0.7677] 0.64 19

b
(2,1)
1 [1.893 2.088] 2 4.9

b
(2,1)
2 [-0.967 -0.6332] -0.8 21

b
(2,1)
3 [-2.017 -1.783] -1.9 6.1

b
(2,1)
4 [0.7722 1.039] 0.9 15

b
(2,2)
1 [0.8659 1.038] 1 9.1

b
(2,2)
2 [-2.183 -1.907] -2.1 6.8

b
(2,2)
3 [1.81 2.152] 1.96 8.6

b
(2,2)
4 [-0.8826 -0.6651] -0.74 14

b
(3,1)
1 [3.836 4.135] 4 3.7

b
(3,1)
2 [-3.256 -2.664] -3 10

b
(3,1)
3 [-4.379 -3.944] -4.16 5.2

b
(3,1)
4 [2.154 2.682] 2.45 11

b
(3,2)
1 [0.8476 1.083] 1 12

b
(3,2)
2 [-3.077 -2.685] -2.9 6.8

b
(3,2)
3 [3.793 4.205] 3.99 5.2

b
(3,2)
4 [-2.293 -2.05] -2.165 5.6

where I is the unit matrix of order 4. Since G(q−1)
is obtained from a state-space representation, all the
transfer functions share the same denominator. Thus the
transfer function from the j-th input to the i-th output is

Gij(q
−1) =

∑4
k=1 b

(ij)
k q−k

1 +
∑4

h=1 ahq
−h

, (40)
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Table 2
PUI’s for the parameters of the simulation example for
SNR = 20 dB.

Parameter PUI’s True Value ∆%PUIr

a1 [-1.219 -1.18] -1.2 1.6

a2 [-0.4167 -0.3832] -0.4 4.2

a3 [0.9344 0.9618] 0.949 1.4

a4 [-0.2834 -0.2572] -0.271 4.9

b
(1,1)
1 [1.953 2.05] 2 2.4

b
(1,1)
2 [-1.278 -1.119] -1.2 6.6

b
(1,1)
3 [-1.198 -1.083] -1.14 5.1

b
(1,1)
4 [0.4784 0.5972] 0.54 11

b
(1,2)
1 [-1.035 -0.9682] -1 3.3

b
(1,2)
2 [3.03 3.17] 3.1 2.3

b
(1,2)
3 [-2.72 -2.531] -2.62 3.6

b
(1,2)
4 [0.5922 0.6947] 0.64 8

b
(2,1)
1 [1.954 2.048] 2 2.4

b
(2,1)
2 [-0.8778 -0.7205] -0.8 9.8

b
(2,1)
3 [-1.96 -1.848] -1.9 2.9

b
(2,1)
4 [0.8476 0.9608] 0.9 6.3

b
(2,2)
1 [0.9486 1.023] 1 3.8

b
(2,2)
2 [-2.145 -2.028] -2.1 2.8

b
(2,2)
3 [1.892 2.035] 1.96 3.6

b
(2,2)
4 [-0.7903 -0.7047] -0.74 5.7

b
(3,1)
1 [3.944 4.053] 4 1.4

b
(3,1)
2 [-3.097 -2.88] -3 3.6

b
(3,1)
3 [-4.241 -4.077] -4.16 2

b
(3,1)
4 [2.338 2.544] 2.45 4.2

b
(3,2)
1 [0.9448 1.043] 1 5

b
(3,2)
2 [-2.972 -2.819] -2.9 2.6

b
(3,2)
3 [3.916 4.065] 3.99 1.9

b
(3,2)
4 [-2.211 -2.121] -2.165 2.1

where the terms ah do not depend on i and j. The system
parameter θ = [θ11 θ12 θ21 θ22 θ31 θ32]

T
, where

θ11 =
[

a1 a2 a3 a4 b
(1,1)
1 b

(1,1)
2 b

(1,1)
3 b

(1,1)
4

]T

θ12 =
[

a1 a2 a3 a4 b
(1,2)
1 b

(1,2)
2 b

(1,2)
3 b

(1,2)
4

]T

θ21 =
[

a1 a2 a3 a4 b
(2,1)
1 b

(2,1)
2 b

(2,1)
3 b

(2,1)
4

]T

θ22 =
[

a1 a2 a3 a4 b
(2,2)
1 b

(2,2)
2 b

(2,2)
3 b

(2,2)
4

]T

θ31 =
[

a1 a2 a3 a4 b
(3,1)
1 b

(3,1)
2 b

(3,1)
3 b

(3,1)
4

]T

θ32 =
[

a1 a2 a3 a4 b
(3,2)
1 b

(3,2)
2 b

(3,2)
3 b

(3,2)
4

]T

(41)

Table 3
PUI’s for the parameters of the simulation example for
SNR = 30 dB.

Parameter PUI’s True Value ∆%PUIr

a1 [-1.211 -1.187] -1.2 0.98

a2 [-0.4086 -0.3919] -0.4 2.1

a3 [0.9389 0.9578] 0.949 1

a4 [-0.2779 -0.2637] -0.271 2.6

b
(1,1)
1 [1.984 2.013] 2 0.74

b
(1,1)
2 [-1.233 -1.164] -1.2 2.9

b
(1,1)
3 [-1.159 -1.126] -1.14 1.4

b
(1,1)
4 [0.5213 0.5687] 0.54 4.3

b
(1,2)
1 [-1.009 -0.9833] -1 1.3

b
(1,2)
2 [3.064 3.122] 3.1 0.95

b
(1,2)
3 [-2.663 -2.574] -2.62 1.7

b
(1,2)
4 [0.6107 0.6662] 0.64 4.3

b
(2,1)
1 [1.977 2.015] 2 0.96

b
(2,1)
2 [-0.8199 -0.7603] -0.8 3.8

b
(2,1)
3 [-1.923 -1.882] -1.9 1.1

b
(2,1)
4 [0.8685 0.9237] 0.9 3.1

b
(2,2)
1 [0.9812 1.018] 1 1.9

b
(2,2)
2 [-2.132 -2.063] -2.1 1.6

b
(2,2)
3 [1.931 1.995] 1.96 1.6

b
(2,2)
4 [-0.7593 -0.7254] -0.74 2.3

b
(3,1)
1 [3.946 4.052] 4 1.3

b
(3,1)
2 [-3.059 -2.915] -3 2.4

b
(3,1)
3 [-4.221 -4.101] -4.16 1.4

b
(3,1)
4 [2.36 2.51] 2.45 3.1

b
(3,2)
1 [0.9509 1.041] 1 4.5

b
(3,2)
2 [-2.966 -2.84] -2.9 2.2

b
(3,2)
3 [3.912 4.052] 3.99 1.8

b
(3,2)
4 [-2.22 -2.109] -2.165 2.5

are the following

θ11 = [−1.2, −0.4, 0.949, −0.271, 2, −1.2, −1.14, 0.54]

θ12 = [−1.2, −0.4, 0.949, −0.271, −1, 3.1, −2.62, 0.64]

θ21 = [−1.2, −0.4, 0.949, −0.271, 2, −0.8, −1.9, 0.9]

θ22 = [−1.2, −0.4, 0.949, −0.271, 1, −2.1, 1.96, −0.74]

θ31 = [−1.2, −0.4, 0.949, −0.271, 4, −3, −4.16, 2.45]

θ32 = [−1.2, −0.4, 0.949, −0.271, 1, −2.9, 3.99,−2.165]
(42)

The system is excited by a random input sequence x(t)
uniformly distributed in the interval [−2, +2]. The
output measurements are corrupted by random addi-
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tive noise η(t), uniformly distributed in the interval
[−∆η, +∆η]. The error bounds ∆η are chosen in order
to obtain three different values of the signal to noise

ratio SNRw = 10 log
{

N
∑

t=1

w2
t

/

N
∑

t=1

η2t

}

, namely 30 dB,

20 dB and 15 dB. The length of the data sequence is
N = 100. The parameters are estimated by solving pro-
blem (16) according to the method presented in section
3. The software SparsePOP (Waki et al. (2008)) is used
to convert the identification problem (16) into a corre-
sponding SDP relaxed problem, solved numerically by
the solver SeDuMi (Sturm (1999)).
Results on the evaluation of the system parameters
bounds are reported in Tables 1-3, which show the pa-
rameter uncertainty intervals together with the true pa-
rameter values and the percentage relative error defined
as

∆%PUIr =
θ
(r)

− θ(r)

θ
(r)

+ θ(r)
100. (43)

It is worth noting that the true parameter value is always
contained in the PUI, as expected. Furthermore, the per-
centage relative error is small (typically less than 15%)
also for a significantly large amount of noise (SNR =
15dB).

7 Identification of a test bench MIMO electro-
nic filter

The algorithm presented in Section 3 has been tested
also on the experimental input-output data collected on
a test bench MIMO electronic filter, with 2 inputs and
2 outputs, that is to be considered as an Electronic Pro-
cess Simulator (EPS). This EPS is a purposely self-built
electronic process simulator, with the aim of highlighting
the main features of the MIMO identification procedure
proposed in this paper, as described in Section 4. Indeed,
although the channels of the MIMO system are charac-
terized by completely different transfer functions (i.e.,
with different zeros and poles), through our approach
we can formulate the identification problem in terms of
linear and bilinear constraints only. The EPS, as such,
is a real plant that can be easily connected to a labo-
ratory data acquisition equipment to collect the mea-
surements. Furthermore, this self-built EPS is an open
system in the sense that the partial outputs are availa-
ble for measurements, which can be used to perform an
accurate validation of the identified model. Fig. 2 shows
the experimental setup to collect the measurements.
The system structure is reported in the block-diagram
depicted in Fig. 3, whereG11 is the transfer function of a
second order low–pass filter with two complex-conjugate
poles, characterized by a natural frequency of 95 Hz and
a damping factor of 0.6. The transfer function has been
practically built in the form of a Sallen–Key circuit. G12

is the transfer function of a high–pass filter with a pair
of complex conjugated zeros with a natural frequency

of 17 Hz and damping factor 0.2, and a pair of com-
plex conjugated poles with a natural frequency of 83 Hz
and damping factor 0.5. The transfer function was im-
plemented by means of a Tow–Thomas circuit. G21 is a
transfer function of a third order low–pass filter, with a
couple of complex conjugated poles with a natural fre-
quency of 120 Hz and damping factor 0.5, and a real
pole at 160 Hz. The physical realization has been done
by means of a Sallen–Key circuit, which implements the
complex conjugated poles pair, and an RC circuit, for
the additional real pole. G22 is the transfer function of a
first order low–pass filter with a real pole at 80 Hz built
in the form of a standard RC filter.

Here we assume that a-priori information on the struc-
ture of the single entries of the matrix transfer function
are available. More precisely, the degrees of the nume-
rators and denominators of all the transfer functions
G11(s), G12(s), G21(s) and G22(s) are assumed to be
known.
It is worth noting that, although the electronic circuit
under study is a continuous-time system, the proposed
identification procedure provides a discrete-time approx-

Fig. 2. The experimental MIMO system used as test bench.

✲
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✲
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r

r

x1

x2

G21(q
−1)

G22(q
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✻
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+

+
✲
y1

✻

❄❤
+

+

✲
y2

Fig. 3. Block-diagram description of the MIMO process si-
mulator considered in the experimental test bench section.
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imation of such a system.

On the basis of the a-priori information available on the
transfer functions of the physical system, the following
discrete-time model structure has been considered for
the model to be identified

G11(q
−1) =

∑2
k=1 b

(11)
k q−k

1 +
∑2

h=1 a
(11)
h q−h

G12(q
−1) =

∑2
k=0 b

(12)
k q−k

1 +
∑2

h=1 a
(12)
h q−h

G21(q
−1) =

∑3
k=1 b

(21)
k q−k

1 +
∑3

h=1 a
(21)
h q−h

G22(q
−1) =

b
(22)
1 q−1

1 + a(22)q−1
.

(44)

Therefore, the parameter θ = [θ11 θ12 θ21 θ22]
T ∈

R17, where

θ11 =
[

a
(11)
1 a

(11)
2 b

(11)
1 b

(11)
2

]T

θ12 =
[

a
(12)
1 a

(12)
2 b

(12)
0 b

(12)
1 b

(12)
2

]T

θ21 =
[

a
(21)
1 a

(21)
2 a

(21)
3 b

(21)
1 b

(21)
2 b

(21)
3

]T

θ22 =
[

a
(22)
1 b

(22)
1

]T

.

(45)

The system has been excited by 2 uncorrelated random
input sequences of 130 samples, uniformly distributed
in the interval [−1,+1]. A National–Instruments PXI,
equipped with a NI–6221 DAQ board, has been used to
generate the input signal x(t) and to collect the signals
u(t) and y(t), through a custom software developed in
LabVIEW.

We have chosen a sampling frequency (fs) of 4 kHz,
which is suitably larger than the largest bandwidth of
the frequency response of the transfer functions to be
identified. More precisely, if we call f i

b the bandwidth of
the i− th transfer function frequency response, then

fmax
b = max

i
f i
b = 160 Hz. (46)

A practical choice of the sampling frequency (taken from
van den Bosch and van der Klauw (1994)) is

10fmax
b < fs < 30fmax

b . (47)

In our case, fs = 4 kHz satisfies the constraints
1600 Hz < fs < 4800 Hz. By choosing the sampling fre-
quency too low leads to loss of information, thus the
lower bound 10fmax

b = 1600 Hz is set in order to observe

the main dynamics of the process. On the other hand,
by choosing the sampling frequency too high leads to
numerical problems, since the poles of the discrete-time
system to identify cluster around the point z = 1 in the
complex plane, which in turn makes it difficult to relia-
bly determine the model. Furthermore, A system with a
pole excess of two or more becomes nonminimum phase
when sampled too fast (see Åström et al. (1984)).

From the precision of the measurement equipment, we
have derived the upper bounds on the measurement er-
rors, which are taken as ∆ξ = ∆η = 0.003 V. The es-
timation algorithm presented in Section 3 has been ap-
plied to the collected dataset. The software SparsePOP
and SeDuMi have been used to solve the optimization
problems. The parameter uncertainty intervals, the cen-
tral estimate

θ(r)c =
θ
(r)

+ θ(r)

2
(48)

and the percentage relative estimation errors are repor-
ted in Table 4, from which it can be seen that the es-
timation errors are relatively small (typically less than
1%) for almost all of the parameters. However, we draw
the reader’s attention on the fact that the optimization
problem of this experimental example is ill-conditioned;
indeed the parameters to be identified have significantly
different magnitude. In fact, by looking at the central
estimate values, the ratio between the largest parame-

ter, a
(21)
1 , and the smallest one, b

(21)
3 , is close to 1000.

It is known that, in general for ill-conditioned problems,
the accuracy of the solution provided by numerical opti-
mization algorithms may decrease and larger estimation
error for small valued parameters may be obtained. This
explains the occurrence of the larger estimation errors

that can be noticed in Table 4 about parameters b
(11)
1 ,

b
(11)
2 , b

(21)
1 , b

(21)
2 and b

(21)
3 .

Since the proposed MIMO identification algorithm is
applied to derive a discrete-time model of a real world
continuous-time system, the quality of the obtained es-
timate is evaluated by comparing both the frequency
domain and the time domain responses of the two sys-
tems, in accordance with the guidelines suggested in the
literature (see, e.g., Schoukens et al. (2009) where the
authors describe the 2009 SYSID benchmark problem).

The frequency response of the identified MIMO model,
obtained by setting the value of the parameter to the cen-

tral estimate θ
(r)
c , has been compared with the frequency

response of the electronic filter, obtained through a suit-
able frequency domain measurement procedure made
available by the exploited National Instrument setup.
The comparison presented in Fig. 4 shows that all the
estimated frequency responses accurately match the me-
asured ones.

The time-domain comparison between the measured

12



Table 4
PUI’s and central estimates of the test bench transfer functi-
ons parameters.

Parameter PUI’s θ
(r)
c ∆%PUIr

a
(11)
1 [-1.8211 -1.7941] -1.8076 0.7461

a
(11)
2 [0.8153 0.8401] 0.8277 1.4931

b
(11)
1 [0.0239 0.0313] 0.0276 13.3985

b
(11)
2 [-0.0119 -0.0030] -0.0074 59.6638

a
(12)
1 [-1.8567 -1.8448] -1.8508 0.3210

a
(12)
2 [0.8628 0.8731] 0.8679 0.5902

b
(12)
0 [0.9285 0.9467] 0.9376 0.9723

b
(12)
1 [-1.8790 -1.8453] -1.8621 0.9053

b
(12)
2 [0.9168 0.9336] 0.9252 0.9102

a
(21)
1 [-2.7230 -2.7123] -2.7177 0.1973

a
(21)
2 [2.4778 2.4975] 2.4877 0.3968

a
(21)
3 [-0.7704 -0.7613] -0.7658 0.5933

b
(21)
1 [0.0055 0.0069] 0.0062 10.9790

b
(21)
2 [0.0015; 0.0042] 0.0028 48.0829

b
(21)
3 [-0.0057 -0.0041] -0.0049 15.7041

a
(22)
1 [-0.8676 -0.8660] -0.8668 0.0918

b
(22)
1 [0.1324 0.1340] 0.1332 0.5973

(yi(t)) and the estimated (ŵi(t)) outputs has been per-
formed on a validation set, which does not include the
data exploited for performing the identification. The
estimated signals ŵi(t) have been computed as the out-
put of the numerical model (44), whose parameters are

the central estimate θ
(r)
c , excited by the same inputs

sequence ui(t) collected in the validation set. The obtai-
ned results, reported in Fig. 5 and 6, show that the
estimated discrete-time system accurately reproduces
the behaviour of the real-world continuous system.

8 Concluding remarks

Set-membership identification of MIMO systems from
input-output measurements corrupted by bounded noise
has been considered in the paper. We have proposed
an algorithm for computing tight bounds on the system
parameters, through the formulation of a suitable poly-
nomial optimization problem, where the uncertainty af-
fecting the data is properly handled. More precisely, we
explicitly take into account the intrinsic correlation bet-
ween successive occurrences of the same uncertain varia-
bles in the constraints that implicitly describe the feasi-
ble parameter set. The problem is then solved through a
computationally efficient convex relaxation approach, by
exploiting the peculiar sparsity structure of the problem.

The effectiveness of the proposed approach is shown by
means of a simulation example, where the percentage
relative estimation error is quite small (typically less
than 15%) also for a significantly large amount of noise
(SNR = 15dB). We have applied also the presented al-
gorithm to experimental data, obtained from a two in-
put two output electronic circuit. The obtained discrete-
time model, accurately reproduces both the frequency
response and the time-domain behaviour of the real-
world continuous-time electronic process simulator used
to generate the data.
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