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Particle swarm optimization for simultaneous analysis of magnetotelluric

and time-domain electromagnetic data

Alessandro Santilano®, Alberto Godio?, and Adele Manzella®

ABSTRACT

We have developed an innovative, simultaneous 1D opti-
mization of electromagnetic (EM) data. Our scheme is suit-
able for the simultaneous analysis of magnetotelluric (MT)
and time-domain EM (TDEM) data based on the probabilis-
tic and evolutionary particle swarm optimization (PSO)
algorithm. The simultaneous optimization also identifies
and removes the static shift from the MT data. In our
scheme, the static shift of the MT apparent resistivity curve
is considered as an additional parameter S to be optimized.
We tested the suggested method on the synthetic data and
then applied it to the data from an EM geophysical study
carried out in the geothermal area of Larderello-Travale
(Tuscany, Italy). Apart from the novelty of using the PSO
algorithm to estimate the model parameters by joint analysis,
the simultaneous optimization of the static shift parameter
addresses a major problem in MT, i.e., how to define and
remove the galvanic effects on MT curves according to in-
dependent information, such as that provided by TDEM
data. The procedure is expected to strongly influence the ap-
plication of MT, particularly in geothermal exploration,
which commonly relies extensively on EM methods.

INTRODUCTION

We describe an integrated data analysis method for the simultane-
ous optimization of magnetotelluric (MT) and time-domain electro-
magnetic (TDEM) soundings. We demonstrate that the method can
effectively minimize the inherent static shift problem commonly en-
countered in MT data acquisition, while also increasing the accuracy
and resolution of the 1D interpretation of EM soundings. We discuss
the application of the particle swarm optimization (PSO) algorithm, a

heuristic method based on evolutionary and adaptive principles. The
strength of this approach is that the global minimum of the minimi-
zation function can be reached without relying on a starting model
that can influence the model parameters’ estimations. Furthermore,
the direct minimization of the function allows for the easy setting of
simultaneous optimization of different data sets and the use of exter-
nal constraints. The stochastic influence can also be used to retrieve
information on the uncertainties of the results, by analyzing the a
posteriori distribution of solutions.

MT and TDEM are geophysical methods commonly used for the
indirect imaging of subsurface electrical resistivity. For a complete
description of their theoretical basis, readers are referred to Tikho-
nov (1950), Cagniard (1953), Ward and Hohmann (1988), Spies
and Frischknecht (1991), and to the reviews by Chave and Jones
(2012) and Spichak (2015).

The “static shift” galvanic distortion of MT data is caused by
near-surface small-scale heterogeneities or topography. The effect
is a frequency-independent shift of the MT apparent resistivity
curve for an unknown multiplier (constant on a logarithmic scale)
that does not affect the MT phase (Jones, 1988). In a review of the
distortion effects in MT, Jones (2012) considers the distortion of
regional electric fields by local structures to be the greatest problem.
Our work is intended to help overcome this problem by providing a
quantitative estimate of the static shift using PSO optimization.

We first describe the state of the art on the integration of different
EM data sets for overcoming the static shift in MT and a brief in-
troduction to the probabilistic approach for solving the geophysical
inverse problem. We discuss the PSO algorithm and apply it to the
simultaneous optimization of MT and TDEM soundings. We also
discuss the minimization functions implemented for estimating the
model parameters and for removing the static shift of the MT curve.
The novelty of the approach lies in the application of a global opti-
mization algorithm to solve the MT inverse problem with the joint
use of TDEM data and the use of the static shift of the MT apparent
resistivity curve as an additional parameter S to be optimized.
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We begin by testing our approach on synthetic data sets to prop-
erly simulate the static shift effects, and we then apply it to an ex-
perimental data set derived from an EM survey carried out in the
geothermal area of Larderello (Tuscany, Italy) as part of the EU-FP7
IMAGE Project, a European project dedicated to generating inno-
vative and integrated geothermal exploration methods.

State of the art on TDEM and MT joint analysis

Various schemes have been proposed for the joint analysis of EM
data sets such as MT and controlled-source electromagnetic
(CSEM) (Commer and Newman, 2009; Abubakar et al., 2011),
TDEM and MT data sets (e.g., Sternberg et al., 1988; Pellerin and
Hohman, 1990; Meju, 1996) and for simultaneous inversion of dif-
ferent parameters in EM problems (e.g., Kennet et al., 1988; Lietal.,
2016). Since the late 1980s, the TDEM method has proved to be an
effective means of correcting the static shift of distorted MT data
because TDEM measurements are not affected, or are only affected
very slightly, by such distortions. Among the various approaches for
such correction, the scientific community still relies on joint TDEM
and MT analysis for geothermal exploration (e.g., Arnason, 2015),
the two methods being widely used for imaging geothermal systems
(Spichak and Manzella, 2009; Mufioz, 2014; Santilano et al., 2015).

Pellerin and Hohman (1990) describe a correction scheme for the
MT static shift based on the 1D inversion of TDEM data acquired
from the same MT site. The idea is simple and effective for iden-
tifying the static shift of the 1D MT response. The procedure im-
plies the inversion of the TDEM data (which are not affected by
galvanic distortion) and the computation of the theoretical MT re-
sponse of the TDEM 1D inversion model, to be used as the refer-
ence apparent resistivity for the shallow part of the investigated
earth. The static shift is identified by comparing the reference MT
curve (usually at frequencies >1 Hz) and the measured MT appar-
ent resistivity curve. The shift is then removed by manually shifting
the distorted MT curve to fit the undistorted, reference MT curve.
The authors propose synthetic examples in 1D and 3D settings.

Sternberg et al. (1988) propose a quite different approach that
directly compares the values of apparent resistivity, obtained from
the MT and central-loop TDEM soundings. The method is mainly
based on the correlation between the time-domain diffusion depth
and the frequency-domain skin depth. At a certain site and at the
same depth of penetration, the TDEM time (t) is assumed to be
equivalent to the MT period (T) according to the following equality
(Sternberg et al., 1988):

%, 194 f; )

where tdsb is the TDEM time and foHzb is the MT frequency.
Therefore, the TDEM response is converted into an equivalent
MT period by multiplying the time of the TDEM signal by the con-
version factor, as proposed in equation 1. The MT curve is manually
shifted in accordance with the apparent resistivity curve of the
TDEM. Obviously, the overlapping of the two apparent resistivity
curves (TDEM, MT) occurs only for the longer periods of the
TDEM curve, due to the shallower investigation depth of the con-
verted TDEM with respect to MT.

Meju (1996) proposes a method for constraining the MT sound-
ings in a joint inversion scheme with the TDEM data, which does
not require static shift correction in the preprocessing of the MT
data. The method is based on a joint least-squares solution to the

inverse problem. Briefly, the author took into consideration the ap-
parent resistivity of the TDEM and the phase of MT in the discrep-
ancy vectors and the matrices of partial derivatives, both of which
are unaffected by static shift; the MT apparent resistivity is ne-
glected in the joint inversion being distorted.

THE PROBABILISTIC APPROACH
IN EM OPTIMIZATION

In EM geophysics, a complete understanding of the physics be-
hind the method allows the measured data to be related to the model
parameters of the earth. The inverse problem is to find the model
parameters m, given certain observed data d (Tarantola, 2005;
Menke, 2012; Aster et al., 2013):

FOmP ¥ dgps; (2)

where the forward functional F describes the physical process of
EM induction. By solving the inverse problem, the geophysicist
indirectly estimates the physical parameters of the subsoil (i.e.,
the resistivity model of the investigated earth) from the analysis
of the EM data measured at the surface. The problem in MT is
ill-posed due to its instability (Berdichevsky and Dmitriev, 2002).

The methods for solving the inverse problem can be classified
into deterministic and probabilistic methods. Deterministic methods
are the conventional means of estimating the resistivity models.
Because the MT response is particularly affected by dimensionality,
the literature is rich in deterministic schemes for 1D, 2D, and 3D
inversions, with 3D inversion being the main focus of current sci-
entific research. The joint-inversion problem in geophysics (e.g., De
Nardis et al., 2005; Linde and Doetsch, 2016), and particularly in
MT (e.g., Moorkamp et al., 2011; Bastani et al., 2012), is a current
scientific challenge. In general, the model parameters are solved
iteratively by minimizing a functional operator according to a
derivative approach. The procedure may reach a local minimum of
the functional operator, depending also on how close the starting
model is to the global minimum. Two of the most common schemes
for applying the deterministic approach in EM are Occam’s inver-
sion (Constable et al., 1987; Degroot-Hedlin and Constable, 1990)
and the nonlinear coniugate gradients method (Rodi and Mackie,
2001). Despite theoretical demonstrations, in practice, the MT in-
verse problem is nonunique, mainly due to the effect of noise, the
finite number of frequencies (Grandis et al., 1999), and anisotropy
(Yin, 2003). For a mathematical review of MT inversion algorithms,
see Siripunvaraporn (2012).

Conversely, the probabilistic approach is less conventional and
is still being researched. The probabilistic methods do not imply
any derivative approach, but the model space is sampled randomly
or according to some strategy. Moreover, this approach does not
need a starting model that can influence the success of the inversion
procedure.

In the probabilistic methods, many earth models are proposed
and the theoretical data are compared with the observed data.
The minimization function is directly estimated to retrieve the best
model. The philosophy of the probabilistic approach, which can be
considered as an optimization procedure, is to explore a wider space
solution to seek a global solution to the problem. For instance,
Monte Carlo methods are based on the concept of random sampling
of the model space (Metropolis and Ulam, 1949). Moreover, various
schemes, known as global optimization algorithms, are available in
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the literature; for a complete description of the application of such
methods in geophysics, we refer readers to Sen and Stoffa (2013).
In recent decades, computational intelligence algorithms based
on the concept of adaptive behavior have been proposed to solve
nonlinear problems. Such applications have also been used to solve
the geophysical inverse problem. Common algorithms are (1) ge-
netic algorithms, (2) simulated annealing, and (3) PSO (Holland,
1975; Kirkpatrick et al., 1983; Kennedy and Eberhart, 1995). The
adoption of such global optimization algorithms for solving the MT
inverse problem was proposed in literature (e.g., Dosso and Olden-
burg, 1991; Everett and Schultz, 1993; Shaw and Srivastava, 2007),
mostly by using genetic algorithms and simulated annealing.

The PSO algorithm

Kennedy and Eberhart (1995) present the heuristic PSO method.
Despite its widespread use in engineering, few applications have
been proposed in geophysics (e.g., Fernandez Martinez et al.,
2010a, 2010b) and fewer in MT (e.g., Shaw and Srivastava, 2007).
We adopt the PSO algorithm with the aim of retrieving information
from the simultaneous optimization of TDEM and MT data. We
provide only the basics of the method because a detailed description
of the algorithm and its application to MT is not the focus of this
paper; for further details, we refer readers to Godio et al. (2016) and
Godio and Santilano (2018).

PSO is based on two main concepts: (1) the simulation of swarm
intelligence and the behavior of flocks of bird and fish and (2) evolu-
tionary computation. The swarm represents a population of earth
models. The elements (or “particles”) that make up the swarm explore
the solution space of the problem. At each iteration, the PSO updates
the model parameters of the swarm through adaptive behavior. The
movement of particles in the solution domain is not entirely random.
Each particle is attracted toward its own personal best position, in
terms of the fitness of the solution, and the best particle position
for the swarm. The position of a particle is updated at each iteration
by adding a displacement vector called velocity. Following Engel-
brecht (2007), the velocity consists of three terms: cognitive, social,
and inertia. The cognitive component holds the experience of the indi-
vidual particles, the social component holds shared information about
the swarm’s best solution, and the inertia component represents the
previous position in the space domain (Engelbrecht 2007).

For the 1D optimization of EM (TDEM and MT) data, the N-
dimensional space of admissible earth models j is defined. For
the kth parameter of the jth model, the lower and upper limits I
and u, of the search domain as well as the number of model param-
eters and particles, are set a priori. Depending on the function to be
minimized, the model parameters k may be the resistivities and
thicknesses, or only the resistivities (with fixed thicknesses) of a
layered earth.

The algorithm updates positions x;dtp and velocities v;dtp of the
individuals as follows (Engelbrecht, 2007):

Vjat b 1b Y4 VJatD p Clrléljétb Xjétbb
b corydgdt  x;dtep: (3)

X;0t o 1p ¥a v;0t p 1P o x;otP: 4)

At the tth iteration (t ¥4 0::: T, where T is the maximum number
of generations), each particle j of the swarm samples the search

space according to its own misfit history I;5tP and its companions’
search experience gotb. The coefficients , cq, and c, are the inertia
weight, the cognitive attraction, and the social attraction, respec-
tively. The random values r, and r, impose a stochastic influence
on the displacement updating.

PSO minimization function for MT data

The optimization process for estimating the model parameters
from the MT soundings focuses on the discussion of the function
to be minimized. The minimization function  usually consists of
different terms (e.g., Aster et al., 2013; Sen and Stoffa, 2013). The
different functions that can be used for the 1D optimization of MT
data are described in detail by Godio and Santilano (2018).

For every particle of the swarm, at each iteration, the solution of
the forward problem is computed according to a nonlinear forward
functional Fdjb. The PSO optimization process evaluates the pro-
posed models through the minimization function dependent on the
computed theoretical response Fox) and observed data d.

We adapt the approach suggested by Smith and Booker (1988) by
minimizing the structure. In the deterministic schemes, the mini-
mum structure is measured in terms of the derivative of the model.
Herein, we adopt a minimization function that follows the “Occam-
like” regularization proposed by Constable et al. (1987). We aim to
minimize the roughness of the model. To achieve a “smooth”
model, PSO is applied to the MT data by minimizing the following
general function:

dmb ¥4 dak 4.0

a;pkz b bk a0 a;pkzID b k mk23

()

The first term of equation 5 is related to the data misfit, or the
Euclidean (data) norm of the misfits between the observed exper-
imental data - ., and the theoretically predicted data - ,; the
symbols . and , refer to the MT phase and the apparent resistiv-
ity, respectively. The model roughness represents the second term of
equation 5, and it is computed by applying a differencing operator
to the elements of the model vector m; a Lagrangian multiplier is
applied to weight the relevance of the smoothing on the data fitting.
In the Occam optimization, the vector of model parameters m con-
sists only of the electrical resistivity values for a many-layered earth
model with fixed thicknesses. This approach looks for the smooth-
est possible model that fits the observed data. The swarm particles
(i.e., the proposed resistivity models) are evaluated according to
equation 5. The model parameters of the particles are updated at
each iteration, according to equations 3 and 4.

SIMULTANEOUS OPTIMIZATION OF TDEM AND
MT SOUNDINGS: TEST ON SYNTHETIC DATA

Simultaneous TDEM and MT model parameter
estimation from PSO optimization

We first describe a test using synthetic data from a 1D layered
earth without any distortion of the MT data. In this case, we apply
the PSO to a joint data set in the frequency domain composed of the
MT data and the converted TDEM data according to equation 1, as
proposed by Sternberg et al. (1988). We slightly modify the general
minimization function, equation 5, for the Occam-like solution with
PSO by considering an additional term to minimize the Euclidean
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norm of the misfits between the converted TDEM apparent resis-
tivity  a5tpEMmpe and the theoretically predicted data  srpemp:p-
The minimization function for simultaneous optimization is

0mb ¥ 0ak 40  apk, Pk 44
aTDEMppKoP P K mky: (6)

apKy P K asToEMDO

The symbols , and , refer to the MT phase and the apparent
resistivity, respectively. The minimization function allows us to
weight the contributions of the different data, i.e., the MT apparent
resistivity and phase, and the TDEM apparent resistivity, using a, b,
and c coefficients.

We consider a simple four-layered synthetic model (model 1)
with the following thicknesses and resistivity values: 200 m and

PSO Optimization: synthetic model 1

100 m, 100 mand 20 m, 200 m and 200 m, and a half-space
of 1000 m (see the synthetic model in Figure 1). The MT theo-
retical data are computed in the frequency range of 0.1-1000 Hz
using forward modeling based on a recursive formula for computing
the surface impedance Zi at the top of each ith layer, as described by
Sims and Bostick (1969) and Pethick and Harris (2015). The TDEM
forward problem is solved for a central-loop configuration, as pro-
posed by Ingeman-Nielsen and Baumgartner (2006), on the basis of
the Hankel transforms in the field equations. MT and TDEM data
are not perturbed by noise. The TDEM times are converted into MT
frequencies, in the range of 194-19,400 Hz, using the conversion
coefficient of equation 1. We summarize the main features of the
optimization in Table 1.

The earth model is discretized as a function of the frequency of
the measured EM fields. It includes 19 layers that increase in thick-
ness in logarithmic increments, according to the
skin depth concept. The model parameters to be
optimized are the resistivities of each layer. The

> 1 10 Legend
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B == Synthetic MT data

gE Synthetic TDEM data

e E Theoretical data from
L zox

[oaNe) 10 optimized model

52

(& 102 = Optimized model

""" Synthetic model

lower and upper boundaries of resistivity for each
layer are properly set in the range of 1-2000 m,
i.e., the space domain to be sampled for the sol-
ution of the inverse problem. The inertia weight,
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> )
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©
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a
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Figure 1. Optimization results of the synthetic data from model 1. The joint data set is
composed of apparent resistivities and phases of the MT and the apparent resistivities of

the TDEM.

Table 1. Main settings for the PSO-Occam optimization
of the synthetic data set (model 1).

PSO (Occam-like): lower boundary (LB)/upper boundary (UB)

Number of layers Resistivity
to be optimized (ohm m) Thickness
19 LB ¥4 1, Log. increase
UP % 2000 from 35 m
PSO: Settings
Initial population 300
Particle inertia 0.9
Cognitive attraction 0.75
Social attraction 1.75
Generations (iterations) 200
Trials 1
PSO: Objective function
a, weight on , 0.8
b, weight on 0.2
¢, weight on  z5tpEMD 1
(Lagrangian multiplier) 10 3

the cognitive attraction, and social attraction are
0.9, 0.75, and 1.75, respectively, whereas the La-
grangian multiplier s set to equal 10 3. We
consider a population size of 300 for the swarm,
which means that 300 earth models are tested and
optimized every 200 iterations. The best model,
i.e., the model toward which the swarm con-
verges, emerges at the end of the procedure.
The procedure runs for many trials with the same
features. This leads to the evaluation of the a pos-
teriori distributions of the model parameters, and
it provides a useful data set to test the statistical
validity of the results (as described in the follow-
ing sections). A single trial is enough to test model 1 due to the
absence of noise. The resulting model, shown in Figure 1, validates
the effectiveness of PSO for simultaneous optimization. The overlap
between the two data sets is satisfactory (Figure 1).

Static shift removal and model parameter estimation
from simultaneous PSO optimization

An important application of the simultaneous PSO of EM data is
the resulting innovative method for identifying and removing the
static shift from the MT data.

Considering MT and TDEM soundings measured at a certain site,
the joint data set in the frequency domain is initially created by con-
verting the TDEM data according to equation 1. Basically, the earth
resistivity models are evaluated on the basis of the misfit between
(1) the predicted MT phase and resistivity data ,, ,p and
TDEM apparent resistivity srpemp;p and (2) the observed TDEM
apparent resistivity, the MT phase, and the MT apparent resistivity,
the latter multiplied by the shift parameter S, which is a parameter to
be optimized. The concept behind equation 7 is that the resistivity
models are also tested with the measured MT apparent resistivity
shifted for S (in the operation S ,.,). That means a strong influence
of this operation on the minimization, i.e., static shift S not in accor-
dance with the TDEM curve causes worse values of the minimiza-
tion functions. Being that S is continuously optimized according to
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the PSO algorithm, the parameter is stochastically sampled with an
evolutionary strategy to find the value of S that properly shifts the
MT curve in accordance with the reference TDEM apparent resis-
tivity (obviously fixed in the procedure). The best solution that pro-
vides the smoothest model and the proper static shift value in
accordance with the reference TDEM converted curve is then ob-
tained. The minimization function is described as

apkaPOK a0 apky
atDEMpK PP K mkyr (7)

To test the scheme on a synthetic data set that properly simulates
the MT static shift, we use the synthetic MT data from Sternberg
et al. (1988) that modeled the MT response for

dmp¥40akdS ,.0P

bck arpemb:o

we apply the proposed method to an EM data set from a survey
carried out in the geothermal area of Larderello-Travale (Tuscany,
Italy). The acquisition of MT and TDEM soundings was carried out
in the frame of a European project (EU FP7) called IMAGE Project
aimed at developing integrated and novel methods for geothermal
exploration (Santilano et al., 2016). The TDEM soundings in the
area were acquired at the same sites as the selected MT soundings.
We briefly describe the data set before focusing on the joint analysis
of the EM data.

In 2016, 22 broadband MT soundings were acquired using the
Zonge system (Figure 4). Due to various cultural sources of noise
that perturbed the naturally occurring MT signals, in particular
those created by DC electrified railways, a remote reference tech-

a shallow 3D body at a small scale in a 1D lay- a) b) Synthetic model 2
ered earth (hereafter, model 2). Figure 2 shows s MT and TDEM synthetic response

the features of the synthetic model and the gal- 10 g . 7
vanic distorted and undistorted MT curves that g | T undlstmedf om | "
simulate the acquisition above a surface inhomo- 2= 102; e s 1 600 m|_100 (Qm)
geneity and at an infinite distance (i.e., the 1D S (converted) curve

response). The TDEM synthetic data are com- gﬁ 10", Static shifted

puted for a 150-m central-induction sounding us- § ; curve

ing the algorithm proposed by Ingeman-Nielsen 100'4, e e e Bt ] 2000 m|_ 10 @m)

and Baumgartner (2006). The MT data set is 100 100 100 100 100 100 10" 10

forward modeled in the frequency range of Freguency (Ha) —

100-0.001 Hz. The TDEM data set is modeled 1000 (2m)

in a time range of 0.1-1000 ms because the re-
sponse is unaffected by the inhomogeneity in this
time range, as pointed out by Sternberg et al.
(1988).

The static-shifted MT apparent resistivity
curve is shifted by about a decade in the logarithmic scale compared
with the undistorted curve. We test the effectiveness of the PSO
procedure by considering the minimization function in equation 7.
The main features of the optimization of model 2 are summarized in
Table 2.

The upper and lower boundaries for setting the search domain of
S are in the range of 0.001-10, whereas the search domain of the
resistivity of layers is in the range of 1-2000 m. With respect
to model 1, in this optimization we increase the weight of the phase
in the minimization function to 0.5. The procedure is repeated for
25 trials using the same settings to test the repeatability of the re-
sults. The resulting a posteriori distribution is very useful for iden-
tifying layers with scattered results that indicate poor quality results.

Figure 3 shows the results of the optimization and the reference
model among the 25 trials, which is the model with the lowest nor-
malized rms. In addition to the validity of the resulting resistivity
model, we underline the proper optimization of the static shift by
retrieving the correct value with reference to the TDEM “converted”
curve (Figure 3).

APPLICATION OF THE SIMULTANEOUS
OPTIMIZATION TO THE MEASURED DATA:
A CASE STUDY OF THE LARDERELLO
GEOTHERMAL FIELD (ITALY)

TDEM and MT data sets

To test the stochastic simultaneous analysis of the TDEM and
MT data sets on real data contaminated by galvanic distortion,

Figure 2. Synthetic model 2 for simulating the static shift of MT curves. (a) The theo-
retical data for a central-loop (150 m) TDEM sounding and the MT data. (b) The 1D
model and the surface thin 3D volume that causes the inhomogeneity and produces the
static-shifted MT curves. The model and the MT data are from Sternberg et al. (1988).

Table 2. Main setting for the PSO-Occam optimization of the
synthetic data set (model 2).

PSO (Occam-like): LB/UB

Number of layers Resistivity
to be optimized (ohm m) Thickness
19 LB % 1; Log. increase
UB ¥, 2000 from 112 m
Additional parameter Value of shift
to be optimized
Static shift S LB % 0.001;
UB % 10

PSO: Settings
Initial population 300
Particle inertia 0.9
Coghnitive attraction 0.75
Social attraction 1.75
Generations (iterations) 200
Trials 25
PSO: Objective function
a, weight on , 0.5
b, weight on 0.5
c, weight on  a5tpEMD 1

(Lagrangian multiplier) 10 3
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nique (Gamble et al., 1979) was used to process data. The remote
site was installed on the volcanic Isle of Capraia (ltaly). The MT
stations were laid out in an L-shaped configuration to measure
the four components of the MT fields (Ex, Ey, Hx, Hy), with a di-
pole length of 100 m. The MT tensor was further decomposed as
proposed by LaTorraca et al. (1986). The dimensionality analysis,
as proposed by Marti et al. (2005), highlighted a complex 3D struc-

loop of wire and pulsing it with a controlled current. The configuration
was a coincident loop; i.e., the same loop was used for transmitting
and receiving. The acquisition system was set to transmit a current of
up to 3 Awith active time gates from 4 sto 2.024 or 4.048 ms and a
stacking time of a few minutes. The ratio of “current on” to “current
off” time was 3 to 1. The time window (current off time) extended
from 4 s to 4 ms with 48 signal integration channels.

ture for these soundings.

After estimating the transfer function of the MT soundings, we se-
lected 10 sites that showed clear static shift effects, for the acquisition
of TDEM data. The equipment was a TEM-FAST 48 (AEMR com-
pany; for details, see Ranieri, 2000; Barsukov et al. 2015). The TDEM
soundings were acquired by laying out a 100 x 100 m rectangular
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Figure 3. The PSO optimization of synthetic model 2. The resulting 25 models are
shown in red, and the minimum normalized rms model is shown in blue. The theoretical
MT data are shown (on the left) for the minimum normalized rms model and compared
with the synthetic MT and TDEM data. The MT apparent resistivity curve multiplied by
the optimized S is also shown.

Figure 4. Location of the MT and TDEM soundings of previous (S-Tuscany_92) and
new data sets available for the study area: (1) quaternary deposits, (2) neoautochthonous
terrigenous deposits (Miocene-Pliocene), (3) Ligurian and sub-Ligurian Flysch complex
(Jurassic-Eocene), (4) Tuscan Nappe formations (Upper Trias-Miocene), (5) Calcare
Cavernoso and anhydrites, (6) metamorphic units (Paleozoic), (7) remote MT site on
the Island of Capraia, and (8) surveyed area within the Larderello geothermal field.

Results of the simultaneous optimization from
selected sites

We apply the proposed simultaneous optimization to the analysis
of the real data set and to correct the static shift of MT data while

retrieving 1D preliminary information on the re-
sistivity distribution. The optimization is also
challenging because of the particularly high level
of noise in the data. Many of the acquired MT
curves show a strong static shift, probably due
to the shallow heterogeneities and the topogra-
phy. The geology of the area is quite complex
due to the polyphased tectonics that affects this
sector of the Apennine belt; the high-temperature
hydrothermal circulation in this long-lived geo-
thermal system also influences the geophysical
response.

Here, we refer to one MT site, “Lard_16.” The
MT sounding resulted noisy and the frequency
range of 256-3 x 10 2 Hz was considered. The
TDEM data acquired from the same site in the
time range of 5.26x10 5 to 4.7x10 3s showed
a very low level of noise.

We follow the procedure described above and
minimize equation 7 to optimize the resistivities
of a smooth model and the static shift parameter
S. Our aim in this third case was to solve the
static shift problem of a real MT sounding and
retrieve preliminary resistivity information, al-
beit limited to 1D in a 3D environment.

In the third optimization, we maintain the
same number (25) of trials as in the second test
and enlarge the search domain of the static shift S
to guarantee a global search. The value of cog-
nitive attraction is increased, while reducing that
of social attraction. We also increase the number
of model layers from 19 to 29. We show the re-
sults for the yx component of the “Lard 16”
sounding in Figure 5.

Figure 5 shows the optimal fit of the MT and
TDEM curves after retrieving the S (static shift)
parameter.

We evaluate the a posteriori distribution by
running the procedure several times. The a pos-
teriori analysis could be useful for identifying
poor results related to the optimized model
parameters (static shift S or layer resistivities),
in terms of a scattered versus normal distribution.
For example, the a posteriori analysis of the
25 trials shows a normal distribution of the
parameter S (Figure 6) and the resistivities of
the shallow layers (Figure 7 shows the third layer












