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Particle swarm optimization for simultaneous analysis of magnetotelluric
and time-domain electromagnetic data

Alessandro Santilano1, Alberto Godio2, and Adele Manzella1

ABSTRACT

We have developed an innovative, simultaneous 1D opti-
mization of electromagnetic (EM) data. Our scheme is suit-
able for the simultaneous analysis of magnetotelluric (MT)
and time-domain EM (TDEM) data based on the probabilis-
tic and evolutionary particle swarm optimization (PSO)
algorithm. The simultaneous optimization also identifies
and removes the static shift from the MT data. In our
scheme, the static shift of the MT apparent resistivity curve
is considered as an additional parameter S to be optimized.
We tested the suggested method on the synthetic data and
then applied it to the data from an EM geophysical study
carried out in the geothermal area of Larderello-Travale
(Tuscany, Italy). Apart from the novelty of using the PSO
algorithm to estimate the model parameters by joint analysis,
the simultaneous optimization of the static shift parameter
addresses a major problem in MT, i.e., how to define and
remove the galvanic effects on MT curves according to in-
dependent information, such as that provided by TDEM
data. The procedure is expected to strongly influence the ap-
plication of MT, particularly in geothermal exploration,
which commonly relies extensively on EM methods.

INTRODUCTION

We describe an integrated data analysis method for the simultane-
ous optimization of magnetotelluric (MT) and time-domain electro-
magnetic (TDEM) soundings. We demonstrate that the method can
effectively minimize the inherent static shift problem commonly en-
countered in MT data acquisition, while also increasing the accuracy
and resolution of the 1D interpretation of EM soundings. We discuss
the application of the particle swarm optimization (PSO) algorithm, a

heuristic method based on evolutionary and adaptive principles. The
strength of this approach is that the global minimum of the minimi-
zation function can be reached without relying on a starting model
that can influence the model parameters’ estimations. Furthermore,
the direct minimization of the function allows for the easy setting of
simultaneous optimization of different data sets and the use of exter-
nal constraints. The stochastic influence can also be used to retrieve
information on the uncertainties of the results, by analyzing the a
posteriori distribution of solutions.
MT and TDEM are geophysical methods commonly used for the

indirect imaging of subsurface electrical resistivity. For a complete
description of their theoretical basis, readers are referred to Tikho-
nov (1950), Cagniard (1953), Ward and Hohmann (1988), Spies
and Frischknecht (1991), and to the reviews by Chave and Jones
(2012) and Spichak (2015).
The “static shift” galvanic distortion of MT data is caused by

near-surface small-scale heterogeneities or topography. The effect
is a frequency-independent shift of the MT apparent resistivity
curve for an unknown multiplier (constant on a logarithmic scale)
that does not affect the MT phase (Jones, 1988). In a review of the
distortion effects in MT, Jones (2012) considers the distortion of
regional electric fields by local structures to be the greatest problem.
Our work is intended to help overcome this problem by providing a
quantitative estimate of the static shift using PSO optimization.
We first describe the state of the art on the integration of different

EM data sets for overcoming the static shift in MT and a brief in-
troduction to the probabilistic approach for solving the geophysical
inverse problem. We discuss the PSO algorithm and apply it to the
simultaneous optimization of MT and TDEM soundings. We also
discuss the minimization functions implemented for estimating the
model parameters and for removing the static shift of the MT curve.
The novelty of the approach lies in the application of a global opti-
mization algorithm to solve the MT inverse problem with the joint
use of TDEM data and the use of the static shift of the MT apparent
resistivity curve as an additional parameter S to be optimized.
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We begin by testing our approach on synthetic data sets to prop-
erly simulate the static shift effects, and we then apply it to an ex-
perimental data set derived from an EM survey carried out in the
geothermal area of Larderello (Tuscany, Italy) as part of the EU-FP7
IMAGE Project, a European project dedicated to generating inno-
vative and integrated geothermal exploration methods.

State of the art on TDEM and MT joint analysis

Various schemes have been proposed for the joint analysis of EM
data sets such as MT and controlled-source electromagnetic
(CSEM) (Commer and Newman, 2009; Abubakar et al., 2011),
TDEM and MT data sets (e.g., Sternberg et al., 1988; Pellerin and
Hohman, 1990; Meju, 1996) and for simultaneous inversion of dif-
ferent parameters in EM problems (e.g., Kennet et al., 1988; Li et al.,
2016). Since the late 1980s, the TDEM method has proved to be an
effective means of correcting the static shift of distorted MT data
because TDEM measurements are not affected, or are only affected
very slightly, by such distortions. Among the various approaches for
such correction, the scientific community still relies on joint TDEM
and MT analysis for geothermal exploration (e.g., Arnason, 2015),
the two methods being widely used for imaging geothermal systems
(Spichak and Manzella, 2009; Muñoz, 2014; Santilano et al., 2015).
Pellerin and Hohman (1990) describe a correction scheme for the

MT static shift based on the 1D inversion of TDEM data acquired
from the same MT site. The idea is simple and effective for iden-
tifying the static shift of the 1D MT response. The procedure im-
plies the inversion of the TDEM data (which are not affected by
galvanic distortion) and the computation of the theoretical MT re-
sponse of the TDEM 1D inversion model, to be used as the refer-
ence apparent resistivity for the shallow part of the investigated
earth. The static shift is identified by comparing the reference MT
curve (usually at frequencies >1 Hz) and the measured MT appar-
ent resistivity curve. The shift is then removed by manually shifting
the distorted MT curve to fit the undistorted, reference MT curve.
The authors propose synthetic examples in 1D and 3D settings.
Sternberg et al. (1988) propose a quite different approach that

directly compares the values of apparent resistivity, obtained from
the MT and central-loop TDEM soundings. The method is mainly
based on the correlation between the time-domain diffusion depth
and the frequency-domain skin depth. At a certain site and at the
same depth of penetration, the TDEM time (t) is assumed to be
equivalent to the MT period (T) according to the following equality
(Sternberg et al., 1988):

t ¼ 194∕f; (1)

where tðsÞ is the TDEM time and fðHzÞ is the MT frequency.
Therefore, the TDEM response is converted into an equivalent
MT period by multiplying the time of the TDEM signal by the con-
version factor, as proposed in equation 1. The MT curve is manually
shifted in accordance with the apparent resistivity curve of the
TDEM. Obviously, the overlapping of the two apparent resistivity
curves (TDEM, MT) occurs only for the longer periods of the
TDEM curve, due to the shallower investigation depth of the con-
verted TDEM with respect to MT.
Meju (1996) proposes a method for constraining the MT sound-

ings in a joint inversion scheme with the TDEM data, which does
not require static shift correction in the preprocessing of the MT
data. The method is based on a joint least-squares solution to the

inverse problem. Briefly, the author took into consideration the ap-
parent resistivity of the TDEM and the phase of MT in the discrep-
ancy vectors and the matrices of partial derivatives, both of which
are unaffected by static shift; the MT apparent resistivity is ne-
glected in the joint inversion being distorted.

THE PROBABILISTIC APPROACH
IN EM OPTIMIZATION

In EM geophysics, a complete understanding of the physics be-
hind the method allows the measured data to be related to the model
parameters of the earth. The inverse problem is to find the model
parameters m, given certain observed data d (Tarantola, 2005;
Menke, 2012; Aster et al., 2013):

FðmÞ ¼ dobs; (2)

where the forward functional F describes the physical process of
EM induction. By solving the inverse problem, the geophysicist
indirectly estimates the physical parameters of the subsoil (i.e.,
the resistivity model of the investigated earth) from the analysis
of the EM data measured at the surface. The problem in MT is
ill-posed due to its instability (Berdichevsky and Dmitriev, 2002).
The methods for solving the inverse problem can be classified

into deterministic and probabilistic methods. Deterministic methods
are the conventional means of estimating the resistivity models.
Because the MT response is particularly affected by dimensionality,
the literature is rich in deterministic schemes for 1D, 2D, and 3D
inversions, with 3D inversion being the main focus of current sci-
entific research. The joint-inversion problem in geophysics (e.g., De
Nardis et al., 2005; Linde and Doetsch, 2016), and particularly in
MT (e.g., Moorkamp et al., 2011; Bastani et al., 2012), is a current
scientific challenge. In general, the model parameters are solved
iteratively by minimizing a functional operator according to a
derivative approach. The procedure may reach a local minimum of
the functional operator, depending also on how close the starting
model is to the global minimum. Two of the most common schemes
for applying the deterministic approach in EM are Occam’s inver-
sion (Constable et al., 1987; Degroot-Hedlin and Constable, 1990)
and the nonlinear coniugate gradients method (Rodi and Mackie,
2001). Despite theoretical demonstrations, in practice, the MT in-
verse problem is nonunique, mainly due to the effect of noise, the
finite number of frequencies (Grandis et al., 1999), and anisotropy
(Yin, 2003). For a mathematical review of MT inversion algorithms,
see Siripunvaraporn (2012).
Conversely, the probabilistic approach is less conventional and

is still being researched. The probabilistic methods do not imply
any derivative approach, but the model space is sampled randomly
or according to some strategy. Moreover, this approach does not
need a starting model that can influence the success of the inversion
procedure.
In the probabilistic methods, many earth models are proposed

and the theoretical data are compared with the observed data.
The minimization function is directly estimated to retrieve the best
model. The philosophy of the probabilistic approach, which can be
considered as an optimization procedure, is to explore a wider space
solution to seek a global solution to the problem. For instance,
Monte Carlo methods are based on the concept of random sampling
of the model space (Metropolis and Ulam, 1949). Moreover, various
schemes, known as global optimization algorithms, are available in
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the literature; for a complete description of the application of such
methods in geophysics, we refer readers to Sen and Stoffa (2013).
In recent decades, computational intelligence algorithms based

on the concept of adaptive behavior have been proposed to solve
nonlinear problems. Such applications have also been used to solve
the geophysical inverse problem. Common algorithms are (1) ge-
netic algorithms, (2) simulated annealing, and (3) PSO (Holland,
1975; Kirkpatrick et al., 1983; Kennedy and Eberhart, 1995). The
adoption of such global optimization algorithms for solving the MT
inverse problem was proposed in literature (e.g., Dosso and Olden-
burg, 1991; Everett and Schultz, 1993; Shaw and Srivastava, 2007),
mostly by using genetic algorithms and simulated annealing.

The PSO algorithm

Kennedy and Eberhart (1995) present the heuristic PSO method.
Despite its widespread use in engineering, few applications have
been proposed in geophysics (e.g., Fernández Martínez et al.,
2010a, 2010b) and fewer in MT (e.g., Shaw and Srivastava, 2007).
We adopt the PSO algorithm with the aim of retrieving information
from the simultaneous optimization of TDEM and MT data. We
provide only the basics of the method because a detailed description
of the algorithm and its application to MT is not the focus of this
paper; for further details, we refer readers to Godio et al. (2016) and
Godio and Santilano (2018).
PSO is based on two main concepts: (1) the simulation of swarm

intelligence and the behavior of flocks of bird and fish and (2) evolu-
tionary computation. The swarm represents a population of earth
models. The elements (or “particles”) that make up the swarm explore
the solution space of the problem. At each iteration, the PSO updates
the model parameters of the swarm through adaptive behavior. The
movement of particles in the solution domain is not entirely random.
Each particle is attracted toward its own personal best position, in
terms of the fitness of the solution, and the best particle position
for the swarm. The position of a particle is updated at each iteration
by adding a displacement vector called velocity. Following Engel-
brecht (2007), the velocity consists of three terms: cognitive, social,
and inertia. The cognitive component holds the experience of the indi-
vidual particles, the social component holds shared information about
the swarm’s best solution, and the inertia component represents the
previous position in the space domain (Engelbrecht 2007).
For the 1D optimization of EM (TDEM and MT) data, the N-

dimensional space of admissible earth models j is defined. For
the kth parameter of the jth model, the lower and upper limits lk
and uk of the search domain as well as the number of model param-
eters and particles, are set a priori. Depending on the function to be
minimized, the model parameters k may be the resistivities ρ and
thicknesses, or only the resistivities (with fixed thicknesses) of a
layered earth.
The algorithm updates positions xjðtÞ and velocities vjðtÞ of the

individuals as follows (Engelbrecht, 2007):

vjðtþ 1Þ ¼ ϖvjðtÞ þ c1r1ðljðtÞ − xjðtÞÞ
þ c2r2ðgðtÞ − xjðtÞÞ: (3)

xjðtþ 1Þ ¼ vjðtþ 1Þ þ xjðtÞ: (4)

At the tth iteration (t ¼ 0 : : : T, where T is the maximum number
of generations), each particle j of the swarm samples the search

space according to its own misfit history ljðtÞ and its companions’
search experience gðtÞ. The coefficients ω, c1, and c2 are the inertia
weight, the cognitive attraction, and the social attraction, respec-
tively. The random values r1 and r2 impose a stochastic influence
on the displacement updating.

PSO minimization function for MT data

The optimization process for estimating the model parameters
from the MT soundings focuses on the discussion of the function
to be minimized. The minimization function Ψ usually consists of
different terms (e.g., Aster et al., 2013; Sen and Stoffa, 2013). The
different functions that can be used for the 1D optimization of MT
data are described in detail by Godio and Santilano (2018).
For every particle of the swarm, at each iteration, the solution of

the forward problem is computed according to a nonlinear forward
functional FðjÞ. The PSO optimization process evaluates the pro-
posed models through the minimization function dependent on the
computed theoretical response Fðx) and observed data d.
We adapt the approach suggested by Smith and Booker (1988) by

minimizing the structure. In the deterministic schemes, the mini-
mum structure is measured in terms of the derivative of the model.
Herein, we adopt a minimization function that follows the “Occam-
like” regularization proposed by Constable et al. (1987). We aim to
minimize the roughness of the model. To achieve a “smooth”
model, PSO is applied to the MT data by minimizing the following
general function:

ΨðmÞ ¼ ðakρa;o − ρa;pk2 þ bkϕa;o − ϕa;pk2Þ þ λk∂mk2:
(5)

The first term of equation 5 is related to the data misfit, or the
Euclidean (data) norm of the misfits between the observed exper-
imental data ϕ-ρa;o and the theoretically predicted data ϕ-ρa;p; the
symbols ϕa and ρa refer to the MT phase and the apparent resistiv-
ity, respectively. The model roughness represents the second term of
equation 5, and it is computed by applying a differencing operator
to the elements of the model vector m; a Lagrangian multiplier λ is
applied to weight the relevance of the smoothing on the data fitting.
In the Occam optimization, the vector of model parameters m con-
sists only of the electrical resistivity values for a many-layered earth
model with fixed thicknesses. This approach looks for the smooth-
est possible model that fits the observed data. The swarm particles
(i.e., the proposed resistivity models) are evaluated according to
equation 5. The model parameters of the particles are updated at
each iteration, according to equations 3 and 4.

SIMULTANEOUS OPTIMIZATION OF TDEM AND
MT SOUNDINGS: TEST ON SYNTHETIC DATA

Simultaneous TDEM and MT model parameter
estimation from PSO optimization

We first describe a test using synthetic data from a 1D layered
earth without any distortion of the MT data. In this case, we apply
the PSO to a joint data set in the frequency domain composed of the
MT data and the converted TDEM data according to equation 1, as
proposed by Sternberg et al. (1988). We slightly modify the general
minimization function, equation 5, for the Occam-like solution with
PSO by considering an additional term to minimize the Euclidean

Joint geophysical EM analysis: The PSO E153
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norm of the misfits between the converted TDEM apparent resis-
tivity ρaðTDEMÞ;o and the theoretically predicted data ρaðTDEMÞ;p.
The minimization function for simultaneous optimization is

ΨðmÞ ¼ ðakρa;o − ρa;pk2 þ bkϕa;o − ϕa;pk2 þ ckρaðTDEMÞ;o

− ρaðTDEMÞ;pk2Þ þ λk∂mk2: (6)

The symbols ϕa and ρa refer to the MT phase and the apparent
resistivity, respectively. The minimization function allows us to
weight the contributions of the different data, i.e., the MT apparent
resistivity and phase, and the TDEM apparent resistivity, using a, b,
and c coefficients.
We consider a simple four-layered synthetic model (model 1)

with the following thicknesses and resistivity values: 200 m and

100 Ωm, 100 m and 20 Ωm, 200 m and 200 Ωm, and a half-space
of 1000 Ωm (see the synthetic model in Figure 1). The MT theo-
retical data are computed in the frequency range of 0.1–1000 Hz
using forward modeling based on a recursive formula for computing
the surface impedance Zi at the top of each ith layer, as described by
Sims and Bostick (1969) and Pethick and Harris (2015). The TDEM
forward problem is solved for a central-loop configuration, as pro-
posed by Ingeman-Nielsen and Baumgartner (2006), on the basis of
the Hankel transforms in the field equations. MT and TDEM data
are not perturbed by noise. The TDEM times are converted into MT
frequencies, in the range of 194–19,400 Hz, using the conversion
coefficient of equation 1. We summarize the main features of the
optimization in Table 1.
The earth model is discretized as a function of the frequency of

the measured EM fields. It includes 19 layers that increase in thick-
ness in logarithmic increments, according to the
skin depth concept. The model parameters to be
optimized are the resistivities of each layer. The
lower and upper boundaries of resistivity for each
layer are properly set in the range of 1–2000 Ωm,
i.e., the space domain to be sampled for the sol-
ution of the inverse problem. The inertia weight,
the cognitive attraction, and social attraction are
0.9, 0.75, and 1.75, respectively, whereas the La-
grangian multiplier λ is set to equal 10−3. We
consider a population size of 300 for the swarm,
which means that 300 earth models are tested and
optimized every 200 iterations. The best model,
i.e., the model toward which the swarm con-
verges, emerges at the end of the procedure.
The procedure runs for many trials with the same
features. This leads to the evaluation of the a pos-
teriori distributions of the model parameters, and
it provides a useful data set to test the statistical
validity of the results (as described in the follow-

ing sections). A single trial is enough to test model 1 due to the
absence of noise. The resulting model, shown in Figure 1, validates
the effectiveness of PSO for simultaneous optimization. The overlap
between the two data sets is satisfactory (Figure 1).

Static shift removal and model parameter estimation
from simultaneous PSO optimization

An important application of the simultaneous PSO of EM data is
the resulting innovative method for identifying and removing the
static shift from the MT data.
Considering MTand TDEM soundings measured at a certain site,

the joint data set in the frequency domain is initially created by con-
verting the TDEM data according to equation 1. Basically, the earth
resistivity models are evaluated on the basis of the misfit between
(1) the predicted MT phase and resistivity data ϕa;p − ρa;p and
TDEM apparent resistivity ρaðTDEMÞ;p and (2) the observed TDEM
apparent resistivity, the MT phase, and the MT apparent resistivity,
the latter multiplied by the shift parameter S, which is a parameter to
be optimized. The concept behind equation 7 is that the resistivity
models are also tested with the measured MT apparent resistivity
shifted for S (in the operation S ρa;o). That means a strong influence
of this operation on the minimization, i.e., static shift S not in accor-
dance with the TDEM curve causes worse values of the minimiza-
tion functions. Being that S is continuously optimized according to

Figure 1. Optimization results of the synthetic data from model 1. The joint data set is
composed of apparent resistivities and phases of the MT and the apparent resistivities of
the TDEM.

Table 1. Main settings for the PSO-Occam optimization
of the synthetic data set (model 1).

PSO (Occam-like): lower boundary (LB)/upper boundary (UB)

Number of layers
to be optimized

Resistivity
(ohm m) Thickness

19 LB ¼ 1;
UP ¼ 2000

Log. increase
from 35 m

PSO: Settings

Initial population 300

Particle inertia 0.9

Cognitive attraction 0.75

Social attraction 1.75

Generations (iterations) 200

Trials 1

PSO: Objective function

a, weight on ρa 0.8

b, weight on Φ 0.2

c, weight on ρaðTDEMÞ 1

λ (Lagrangian multiplier) 10−3

E154 Santilano et al.
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the PSO algorithm, the parameter is stochastically sampled with an
evolutionary strategy to find the value of S that properly shifts the
MT curve in accordance with the reference TDEM apparent resis-
tivity (obviously fixed in the procedure). The best solution that pro-
vides the smoothest model and the proper static shift value in
accordance with the reference TDEM converted curve is then ob-
tained. The minimization function is described as

ΨðmÞ¼ðakðSρa;oÞ−ρa;pk2þbkϕa;o−ϕa;pk2
þckρaðTDEMÞ;o−ρaðTDEMÞ;pk2Þþλk∂mk2: (7)

To test the scheme on a synthetic data set that properly simulates
the MT static shift, we use the synthetic MT data from Sternberg
et al. (1988) that modeled the MT response for
a shallow 3D body at a small scale in a 1D lay-
ered earth (hereafter, model 2). Figure 2 shows
the features of the synthetic model and the gal-
vanic distorted and undistorted MT curves that
simulate the acquisition above a surface inhomo-
geneity and at an infinite distance (i.e., the 1D
response). The TDEM synthetic data are com-
puted for a 150-m central-induction sounding us-
ing the algorithm proposed by Ingeman-Nielsen
and Baumgartner (2006). The MT data set is
forward modeled in the frequency range of
100–0.001 Hz. The TDEM data set is modeled
in a time range of 0.1–1000 ms because the re-
sponse is unaffected by the inhomogeneity in this
time range, as pointed out by Sternberg et al.
(1988).
The static-shifted MT apparent resistivity

curve is shifted by about a decade in the logarithmic scale compared
with the undistorted curve. We test the effectiveness of the PSO
procedure by considering the minimization function in equation 7.
The main features of the optimization of model 2 are summarized in
Table 2.
The upper and lower boundaries for setting the search domain of

S are in the range of 0.001–10, whereas the search domain of the
resistivity of layers is in the range of 1–2000 Ωm. With respect
to model 1, in this optimization we increase the weight of the phase
in the minimization function to 0.5. The procedure is repeated for
25 trials using the same settings to test the repeatability of the re-
sults. The resulting a posteriori distribution is very useful for iden-
tifying layers with scattered results that indicate poor quality results.
Figure 3 shows the results of the optimization and the reference

model among the 25 trials, which is the model with the lowest nor-
malized rms. In addition to the validity of the resulting resistivity
model, we underline the proper optimization of the static shift by
retrieving the correct value with reference to the TDEM “converted”
curve (Figure 3).

APPLICATION OF THE SIMULTANEOUS
OPTIMIZATION TO THE MEASURED DATA:

A CASE STUDY OF THE LARDERELLO
GEOTHERMAL FIELD (ITALY)

TDEM and MT data sets

To test the stochastic simultaneous analysis of the TDEM and
MT data sets on real data contaminated by galvanic distortion,

we apply the proposed method to an EM data set from a survey
carried out in the geothermal area of Larderello-Travale (Tuscany,
Italy). The acquisition of MT and TDEM soundings was carried out
in the frame of a European project (EU FP7) called IMAGE Project
aimed at developing integrated and novel methods for geothermal
exploration (Santilano et al., 2016). The TDEM soundings in the
area were acquired at the same sites as the selected MT soundings.
We briefly describe the data set before focusing on the joint analysis
of the EM data.
In 2016, 22 broadband MT soundings were acquired using the

Zonge system (Figure 4). Due to various cultural sources of noise
that perturbed the naturally occurring MT signals, in particular
those created by DC electrified railways, a remote reference tech-

Figure 2. Synthetic model 2 for simulating the static shift of MT curves. (a) The theo-
retical data for a central-loop (150 m) TDEM sounding and the MT data. (b) The 1D
model and the surface thin 3D volume that causes the inhomogeneity and produces the
static-shifted MT curves. The model and the MT data are from Sternberg et al. (1988).

Table 2. Main setting for the PSO-Occam optimization of the
synthetic data set (model 2).

PSO (Occam-like): LB/UB

Number of layers
to be optimized

Resistivity
(ohm m) Thickness

19 LB ¼ 1;
UB ¼ 2000

Log. increase
from 112 m

Additional parameter
to be optimized

Value of shift

Static shift S LB ¼ 0.001;
UB ¼ 10

PSO: Settings

Initial population 300

Particle inertia 0.9

Cognitive attraction 0.75

Social attraction 1.75

Generations (iterations) 200

Trials 25

PSO: Objective function

a, weight on ρa 0.5

b, weight on Φ 0.5

c, weight on ρaðTDEMÞ 1

λ (Lagrangian multiplier) 10−3
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nique (Gamble et al., 1979) was used to process data. The remote
site was installed on the volcanic Isle of Capraia (Italy). The MT
stations were laid out in an L-shaped configuration to measure
the four components of the MT fields (Ex, Ey, Hx, Hy), with a di-
pole length of 100 m. The MT tensor was further decomposed as
proposed by LaTorraca et al. (1986). The dimensionality analysis,
as proposed by Marti et al. (2005), highlighted a complex 3D struc-
ture for these soundings.
After estimating the transfer function of the MT soundings, we se-

lected 10 sites that showed clear static shift effects, for the acquisition
of TDEM data. The equipment was a TEM-FAST 48 (AEMR com-
pany; for details, see Ranieri, 2000; Barsukov et al. 2015). The TDEM
soundings were acquired by laying out a 100 × 100 m rectangular

loop of wire and pulsing it with a controlled current. The configuration
was a coincident loop; i.e., the same loop was used for transmitting
and receiving. The acquisition system was set to transmit a current of
up to 3 Awith active time gates from 4 μs to 2.024 or 4.048 ms and a
stacking time of a few minutes. The ratio of “current on” to “current
off” time was 3 to 1. The time window (current off time) extended
from 4 μs to 4 ms with 48 signal integration channels.

Results of the simultaneous optimization from
selected sites

We apply the proposed simultaneous optimization to the analysis
of the real data set and to correct the static shift of MT data while

retrieving 1D preliminary information on the re-
sistivity distribution. The optimization is also
challenging because of the particularly high level
of noise in the data. Many of the acquired MT
curves show a strong static shift, probably due
to the shallow heterogeneities and the topogra-
phy. The geology of the area is quite complex
due to the polyphased tectonics that affects this
sector of the Apennine belt; the high-temperature
hydrothermal circulation in this long-lived geo-
thermal system also influences the geophysical
response.
Here, we refer to one MT site, “Lard_16.” The

MT sounding resulted noisy and the frequency
range of 256–3 × 10−2 Hz was considered. The
TDEM data acquired from the same site in the
time range of 5.26×10−5 to 4.7×10−3 s showed
a very low level of noise.
We follow the procedure described above and

minimize equation 7 to optimize the resistivities
of a smooth model and the static shift parameter
S. Our aim in this third case was to solve the
static shift problem of a real MT sounding and
retrieve preliminary resistivity information, al-
beit limited to 1D in a 3D environment.
In the third optimization, we maintain the

same number (25) of trials as in the second test
and enlarge the search domain of the static shift S
to guarantee a global search. The value of cog-
nitive attraction is increased, while reducing that
of social attraction. We also increase the number
of model layers from 19 to 29. We show the re-
sults for the yx component of the “Lard 16”
sounding in Figure 5.
Figure 5 shows the optimal fit of the MT and

TDEM curves after retrieving the S (static shift)
parameter.
We evaluate the a posteriori distribution by

running the procedure several times. The a pos-
teriori analysis could be useful for identifying
poor results related to the optimized model
parameters (static shift S or layer resistivities),
in terms of a scattered versus normal distribution.
For example, the a posteriori analysis of the
25 trials shows a normal distribution of the
parameter S (Figure 6) and the resistivities of
the shallow layers (Figure 7 shows the third layer

Figure 3. The PSO optimization of synthetic model 2. The resulting 25 models are
shown in red, and the minimum normalized rms model is shown in blue. The theoretical
MT data are shown (on the left) for the minimum normalized rms model and compared
with the synthetic MT and TDEM data. The MTapparent resistivity curve multiplied by
the optimized S is also shown.

Figure 4. Location of the MT and TDEM soundings of previous (S-Tuscany_92) and
new data sets available for the study area: (1) quaternary deposits, (2) neoautochthonous
terrigenous deposits (Miocene-Pliocene), (3) Ligurian and sub-Ligurian Flysch complex
(Jurassic-Eocene), (4) Tuscan Nappe formations (Upper Trias-Miocene), (5) Calcare
Cavernoso and anhydrites, (6) metamorphic units (Paleozoic), (7) remote MT site on
the Island of Capraia, and (8) surveyed area within the Larderello geothermal field.
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results), whereas the central layers of the model show a more scat-
tered resistivity distribution, indicating poor results (Figure 8 shows
the results for layer 15). The standard deviations are 0.4 and 136 for
layers 3 and 15, respectively.

DISCUSSION

We tuned the PSO settings in various tests, to check the effective-
ness of the evolutionary approach for the simultaneous optimization
of TDEM and MT data and to obtain a quantitative estimate of the
MT static shift. The tests on synthetic data sets
proved the suitability of the PSO algorithm for
optimizing the model parameters of a 1D layered
earth and for identifying and removing the static
shift effects in MT data based on the converted
TDEM apparent resistivity curves.
In the first test on synthetic model 1, we mini-

mized equation 6 by adding a term related to the
TDEM apparent resistivity, to obtain the best sol-
ution for a smooth earth model, similar to the Oc-
cam inversion. At very high frequencies, higher
than 1000 Hz, the data misfit refers only to the
TDEM curve converted into the frequency do-
main according to equation 1. At frequencies
in the range of 194–1000 Hz, the data refer to
TDEM and MT apparent resistivity and also to
the MT phase. The coefficients a, b, and cweight
the single contribution. In the absence of noise
in the case of model 1, the test results using dif-
ferent coefficients are similar and consistent;
here, we present the results according to the set-
tings summarized in Table 1. The match between the emerged earth
resistivity model obtained by PSO optimization and the synthetic
model we proposed for the test is striking. The reduced sensitivity
to match the depth of the half-space was on the order of a few
meters.
In the second test on synthetic model 2, we minimized equation 7

by adding the static shift of the MT curve as a parameter S to be
optimized. The synthetic data, obtained by simulating the effects of
shallow conductive inhomogeneity in a 1D earth, represent an ideal
context for testing the quality of the proposed method. Conceptu-
ally, the approach is quite simple in the sense that the predicted MT
apparent resistivities of the thousands of computed models are com-
pared with the “measured” MT curve multiplied by a static shift
parameter that is continuously updated based on the adaptive
PSO behavior. The results in Figure 3 clearly show that, at least
for a 1D earth structure, the proposed procedure is very effective
for optimizing the resistivity of a smooth model and the static shift
by the simultaneous analysis of TDEM and MT soundings. Similar
to the first test model, we observe a lower sensitivity to sharply de-
fine the depth of the half-space, which is a layer with high resis-
tivity. The parameter S, related to the galvanic shift of the MT
data, is perfectly retrieved according to the reference TDEM curve.
It is worth underlining that at the end of the optimization, the algo-
rithm provides the best model, i.e., the model toward which the
swarm converges. It is good practice to run several trials so that
the a posteriori distribution can be analyzed to identify scattered
distributions of single parameters (e.g., the resistivity of a layer),
which indicate poor results. In our case, we ran the PSO 25 times

using the same settings as summarized in Table 2 and found that the
distribution of the optimized parameters was normal.
The application of the procedure to the analysis of a real mea-

sured EM data set acquired as part of a scientific geothermal project
in the Larderello geothermal field (Italy) was quite challenging.
The level of data noise was high, as is often the case in geothermal
exploration. Although the lowest periods of the MT sounding were
neglected in our test, the merged MT/TDEM apparent resistivity
curve covered a broad band ranging from 8 × 10−1 to almost
4 × 103 Hz. To overcome the uncertainties due to the noise in

Figure 5. The PSO optimization of the Lard_16 measured MT sounding (YX mode).
The resulting 25 models are shown in red, and the minimum normalized rms model
is shown in blue. The theoretical MT data are shown (on the left) for the minimum
normalized rms model and compared with the measured MT and TDEM data. The mea-
sured MT curve multiplied by the optimized S is also shown.

Figure 6. A posteriori distribution of the optimized parameter S
(static shift) among 25 PSO trials on the Lard_16 measured MT
sounding.

Figure 7. A posteriori distribution of the resistivity of layer 3 from
the simultaneous PSO on the Lard_16 measured MT sounding.
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the data, it was possible to increase the swarm population and the
generations (see Table 3), despite the higher computation time. The
results of our third test, shown in Figure 5, confirm the efficacy of
our method for identifying and removing the static shift in the MT
data. The best of the 25 models, i.e., the one with the lowest nor-
malized rms, was obtained when S ¼ 7.02. The a posteriori distri-
bution in Figure 6 shows very good results for the optimization of
the static shift parameter S, with values in the range of 7.02–7.72 for
a search domain in the range of 0.001–100. The a posteriori analysis
also showed very consistent results when retrieving the resistivity
of the shallow layers (Figure 7) and poor-quality results for the cen-
tral layers (Figure 8). This latter scattered distribution may be due to
the propagation of the data noise that was evident, for example, in
the MT phase that could not be properly fitted. The difference be-
tween the distributions is evident in Figures 7 and 8: the resistivity

distribution for layer 3 is confined in the range of approximately
9–11 Ωm, whereas that for layer 15 is in the range of approximately
10–500 Ωm. Due to the higher dimensionality of the investigated
earth’s structure, the resulting optimized resistivity model should
only be considered as preliminary information.
In the various tests on synthetic and real data sets, we acted on the

population size (the number of particles in the swarm), on the social
and cognitive attraction parameters and on the weight of the data
(TDEM, MT apparent resistivity and phase) in the optimization.
Setting these parameters allowed us to control the speed of conver-
gence versus the capability to widely explore the solution search
domain. Considering that an Occam optimization usually requires
more than 20 parameters to be solved, the population and genera-
tion sizes must be carefully chosen. In our case, we achieved good
convergence by selecting a population size of between 200 and 500
with 150–250 iterations, depending on the adopted number of
layers (25–30).
Finally, it should be mentioned that this procedure is more time

consuming than deterministic ones. Each test lasted approximately
4 min using a laptop with 8 GB of RAM and an Intel Core i7, which
is a longer time with respect to a deterministic inversion taking
a few seconds to be computed. However, this is just a temporary dis-
advantage that will be solved by computational technology progress,
and it is concurrent to the many advantages already described.

CONCLUSION

The scheme proposed in this paper is suitable for the simultane-
ous analysis of MT and TDEM data based on PSO, a probabilistic
and evolutionary algorithm.
In addition to the novelty of using the PSO algorithm to estimate

the model parameters in a joint analysis, the method is also able to
simultaneously optimize the static shift parameter, and hence to re-
move the galvanic effects on MT curves with reference to the in-
dependent TDEM data. Considering that TDEM and MT methods
are commonly used in geothermal exploration due to the peculiar
resistivity features of geothermal systems, this procedure could be
very influential on geothermal exploration activity.
The application of simultaneous PSO optimization for obtaining

an optimized earth resistivity model has been up till now limited to
the one dimension. The possibility of analyzing the a posteriori dis-
tribution is a highly important development in the analysis of MT
data. This kind of analysis is suitable for identifying resistivity
layers that are poorly resolved due to high levels of noise or to in-
trinsic lower sensitivity of the EM method to the specific features.
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