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This paper concerns the dynamic characterization of rubber O-rings used to introduce damping in high speed gas bearing systems.
O-shaped rubber rings composed of high temperature rubber compounds are characterized in terms of stiffness and damping
coefficients in the frequency range 100–800Hz. Simple formulas with frequency independent coefficients were identified to express
the viscoelastic properties of the O-rings. The formulas proposed approximate the stiffness and damping coefficients of O-rings of
general size.

1. Introduction

Air bearings at very high speeds can suffer the unstable
whirl. A method to overcome this problem is to modify the
bearings geometry and increase the stability threshold. An
alternative method is to introduce external damping in the
system by using a bush supported on rubber O-rings or other
elastomeric material. The first experimental work in which
the half-speed whirl was avoided by mounting the bushes
flexibly goes back 50 years [1]. O-rings were used in gas
bearings to improve the static stiffness [2], but in most cases
their main function is to overcome the whirl instability in
journal bearings [3, 4] or the pneumatic hammer [5]. In [6, 7]
an analytical model is developed to predict the restoring and
hysteresis characteristics of elastomer O-rings mounted in
squeeze film dampers. Stiffness and damping coefficients of
the elastic supports which ensure the stability of the rotor are
theoretically studied in [8], where it is shown that it is possible
to avoid the half-speed whirl. In order to select the support
parameters in an optimal way, a stability study is performed
in paper [9], in which design guidelines are given.

Literature shows that real viscoelasticmaterials have to be
characterized bymore than one relaxation time [12]. Anyway,

for the sake of simplicity, a simple Kelvin Voigt model can
be sufficiently accurate to predict the dynamic characteristics
of rubber O-rings [13]. Finite element method can be used
to predict characteristics of rubber rings in static conditions
[14–16]. However, the experimental characterization of these
O-rings is essential for predicting the threshold speed and
calculating the rotor runout in case they are used as damping
supports.

The stiffness and damping coefficients of these rubber ele-
ments depend on several parameters: temperature, amplitude
and frequency of the excitation, preload, material, and size of
the O-ring [17]. In [18] axial forces transmitted by O-rings
subjected to a reciprocating drag were measured for various
amplitudes and frequencies. Papers [10, 19] describe some
test benches used to measure the viscoelastic properties of
O-rings. In paper [20] a simplified approach for the proper
selection of elastomers is proposed.

In a previous work [11] dynamic stiffness and damp-
ing coefficients of O-rings composed of NBR and Viton�
materials were measured. Analogous O-ring properties were
found in [3]. In the present paper O-rings composed of high
temperature resistant rubber are tested with a test rig for
the purpose developed in University of Leuven. The aim is
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Figure 1: Test setup.

to identify stiffness and damping properties of O-rings of
general size which could be used to study the stability of
gas bearings, which are prone to whirl instability [21] or to
pneumatic hammer instability. These coefficients could be
inserted in lumped parameters models of gas bearings [22–
24] to evaluate their increased stability thanks to the use of
the O-rings.

2. Materials and Methods

In literature two test methods can be found to measure the
elastomer O-rings properties: the indirect method, named
resonant mass method [17, 19], and the direct method.

In the first method (see [17]), the O-ring is compressed
between a shaft, connected to the shaker base, and a bush,
attached to a suspended mass. The displacements of the two
elements that compress theO-ring aremeasured and no force
transducers are needed.

The direct method, adopted in the present paper, consists
in measuring directly the force transmitted by the O-ring.
A test bench was set up as depicted in Figure 1. The O-ring
under test (1) is compressed between bushing (2), connected
to the stinger of shaker (7), and shaft (3), fixed to support (5).
The load cell (4) is placed between support (5) and the fixed
frame (6). By means of the shaker a sinusoidal displacement
is imposed to the bushing. This displacement is detected
by sensors (8), mounted on support (5). The signals from

Figure 2: Photo of the test setup.

the load cell and the displacement transducers are sent to a
DAQ system and then elaborated. Table 1 shows a list of the
instrumentation used and Figure 2 shows a photo of the test
bench.

The fixed frame was designed with FEM software to avoid
resonance in the frequency range of the tests.The first natural
frequency of the fixed frame is about 1.2 kHz, which is above
the frequency range of tests.
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Table 1: List of instrumentation.

Device Model Sensitivity, range

Shaker Type 4809, Brüel & Kjær 45N, 10Hz to 2KHz,
736ms−1

Load cell Type 9256C1, KISTLER 13 pC/N, 250N
Displacement
transducer

capaNCDT 600,
Micro-Epsilon 20 nm–20𝜇m

DAQ system PXI 1100, National
Instruments

The O-rings were compressed with a small excitation
amplitude (2.5 𝜇m), so their behavior can be assumed to be
linear. They were preloaded with various squeeze levels (5%,
10%, 15%, and 20%). The squeeze is defined by

𝑆 = (1 − 𝐷𝑖 − 𝐷𝑒2Φ ) ⋅ 100, (1)

where Φ is the cross section diameter of the O-ring and 𝐷𝑖
and𝐷𝑒 are the inside diameter of bushing (2) and the external
diameter of shaft (3), respectively (see Figure 1).
2.1. O-Rings under Test. Rubber materials are used for
different purposes, for example, vibration isolation, shock
absorption, and sealing. Some compounds are designed for
high temperatures, likeKalrez� andViton.O-rings composed
with such materials can be useful to increase the stability of
high speed rotors supported by gas bearings. In literature it
is difficult to find experimental data about O-rings of such
compounds. For this reason, O-rings made in Viton, Kalrez
4079, and Kalrez 6375 were selected to be tested.

Viton is a fluoropolymer elastomer categorized under
the ISO 1629 designation of FKM. Its density (1800 kg/m3)
is significantly higher than that of most types of rubber. It
is used in a broad range of applications for its low cost.
Compounds of Shore hardness of 75 and 90 were designated
in this paper.

Kalrez is a perfluoroelastomermaterial (FFKM)with high
chemical resistance; it has a temperature stability comparable
with that of PTFE. It ismostly used in highly aggressive chem-
ical processing, pharmaceutical, and aerospace applications.
In particular, Kalrez 4079 is a carbon black filled compound
with amaximumoperating temperature of 315∘C. Kalrez 6375
has maximum operating temperature of 275∘C. Their Shore
hardness is 75.

Table 2 shows details of the O-rings tested.Themaximum
temperature of the materials, the inner diameter 𝑑, and the
cross section diameter Φ are indicated.

2.2. Test Procedure. In this section the procedure used to
measure the dynamic stiffness of the O-rings is described.
All tests were performed at constant ambient temperature
of 20∘C. Each O-ring was tested at different frequencies
by imposing the sinusoidal displacement 𝑥 (the input) and
measuring the transmitted force 𝐹 (the output). For each fre-
quency, the shaker amplitude was adjusted in open loop until
displacement sensors indicated the required value (small
displacement). On the base of the time functions 𝐹(𝑡) and

Table 2: Details of the O-rings under test.

Material Max. temp. (∘C) 𝑑 (mm) Φ (mm)
Kalrez 4079 316 11 1.78
Kalrez 6375 275 11 1.78

Viton 90 200 11 1.78
11 2.62

Viton 90 200 41 1.78
41 2.62

Viton 75 200 11 1.78
11 2.62

Viton 75 200 41 1.78
41 2.62

𝑥(𝑡) acquired at several frequencies the experimental transfer
functions 𝐹(𝑠)/𝑥(𝑠) were obtained. The transfer function is
defined as ratio:

𝑇𝑥𝐹 (𝜔) = 𝑃𝐹𝑥 (𝜔)𝑃𝑥𝑥 (𝜔) , (2)

where 𝑃𝐹𝑥 is the cross power spectral density of 𝑥 and 𝐹 and𝑃𝑥𝑥 is the power spectral density of 𝑥. Using a Kelvin Voigt
model the transfer function can be written as follows:

𝐹 (𝑠)𝑥 (𝑠) = 𝑘 + 𝑐𝑠. (3)

Stiffness and damping coefficients were calculated with
the following formulas:

𝑘 (𝜔) = Re(𝐹 (𝑗𝜔)𝑥 (𝑗𝜔)) (4a)

𝑐 (𝜔) = 1𝜔 Im(
𝐹 (𝑗𝜔)
𝑥 (𝑗𝜔)) . (4b)

Finally, a least square procedure (see Appendix A) was
adopted to find a best fit for the experimental data. This
brought expressions for stiffness and damping in the expo-
nential form

𝑘 = 𝐴𝜔𝛼, (5a)

𝑐 = 𝐵𝜔𝛽. (5b)

In these relations the pulsation is expressed in rad/s.

3. Results and Discussion

An example of Bode diagram is shown in Figure 3. It can
be noticed that, approaching the resonance frequency of the
test bench, the Bode diagram has a peak in the amplitude.
Also the phase changes abruptly. For this reason, data at
frequencies over 850Hz are neglected.

3.1. Frequency Dependence. The results are summarized in
Tables 3–5 for Viton 75, Viton 90, and Kalrez, respectively.
They are presented in the form of coefficients A, B, 𝛼, and 𝛽.
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Table 3: Summary of the results for Viton 75 O-ring.

𝑑 (mm) Φ (mm) S% 𝐴 ⋅ 106 𝛼 k200 (MN/m) 𝐵 ⋅ 106 𝛽 c200 (Ns/m)

11 1,78

5 0,0347 0,331 0,368 0,0293 −0,666 253
10 0,131 0,268 0,887 0,0298 −0,508 794
15 0,0666 0,384 1,032 0,0335 −0,544 690
20 0,155 0,295 1,272 0,094 −0,66 847

11 2,62
10 0,275 0,192 1,082 0,469 −0,923 647
15 0,111 0,384 1,720 0,177 −0,673 1453
20 0,08 0,492 2,679 0,369 −0,735 1946

41 1,78

5 0,1644 0,474 4,8402 0,0328 −0,297 3940
10 0,1811 0,463 4,9298 0,0389 −0,311 4228
15 0,0550 0,631 4,9655 0,0320 −0,278 4405
20 0,1378 0,542 6,5927 0,0370 −0,273 5278

41 2,62

5 0,0791 0,51 3,0100 0,0115 −0,209 2584
10 0,0903 0,555 4,7403 0,0223 −0,254 3647
15 0,0958 0,56 5,2100 0,0286 −0,27 4164
20 0,1427 0,541 6,7758 0,0408 −0,291 5112

Table 4: Summary of the results for Viton 90 O-ring.

𝑑 (mm) Φ (mm) S% 𝐴 ⋅ 106 𝛼 k200 (MN/m) 𝐵 ⋅ 106 𝛽 c200 (Ns/m)

11 1,78

5 0,229 0,132 0,588 0,654 −1,006 499
10 0,504 0,218 2,386 0,620 −0,917 892
15 0,125 0,379 1,861 0,058 −0,557 1082
20 1,380 0,160 4,323 0,069 −0,462 2568

11 2,62
10 1,428 0,114 3,221 0,460 −0,828 1249
15 5,602 0,072 9,385 22,750 −1,364 1348
20 0,472 0,416 9,188 11,280 −1,122 3758

41 1,78

5 0,0994 0,597 7,039 0,028 −0,245 4868
10 0,116 0,617 9,485 0,050 −0,296 6048
15 0,284 0,521 11,691 0,090 −0,333 8404
20 0,164 0,625 14,204 0,195 −0,443 8249

41 2,62

5 0,329 0,487 10,637 0,093 −0,390 5750
10 0,362 0,528 15,666 0,158 −0,421 7823
15 0,421 0,492 14,083 0,218 −0,463 8001
20 0,740 0,467 20,715 0,171 −0,387 10810

Table 5: Summary of the results for Kalrez O-ring (𝑑 = 11mm, Φ = 1.78mm).

Material S% 𝐴 ⋅ 106 𝛼 k200 (MN/m) 𝐵 ⋅ 106 𝛽 c200 (Ns/m)

Kalrez 4079

5 n.a.
10 0,080 0,409 1,481 0,0776 −0,580 1237
15 0,214 0,314 2,012 0,193 −0,675 1562
20 0,168 0,391 2,736 0,211 −0,654 1983

Kalrez 6375

5 0,0312 0,429 0,666 0,0370 −0,564 661
10 0,0266 0,514 1,042 0,0877 −0,637 931
15 0,0371 0,512 1,433 0,284 −0,778 1102
20 0,0983 0,377 1,449 0,0478 −0,501 1339
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Figure 3: Body diagram of transfer function 𝐹(𝑠)/𝑥(𝑠) in case of Viton 75, 𝑑 = 11mm, Φ = 1.78mm.

S = 5%
S = 10%

S = 15%
S = 20%

102 103101

f (Hz)

105

106

107

k
(N

/m
)

(a) Effect of squeeze 𝑆 on stiffness 𝑘 of Viton 75 O-rings, 𝑑 = 11mm,
Φ = 1.78mm

S = 5%
S = 10%

S = 15%
S = 20%

102 103101

f (Hz)

101

102

103

104

c
(N

s/
m

)

(b) Effect of squeeze 𝑆 on damping 𝑐 of Viton 75 O-rings, 𝑑 = 11mm,
Φ = 1.78mm

Figure 4

Stiffness and damping coefficients at a frequency of 200Hz
are also given in the tables.These aremore representative than
the previous coefficients as they are less affected bymeasuring
errors.

In Figures 4–7, the experimental points of stiffness and
damping coefficients are plotted with the fitted power law
lines.

Figures 4–7 show the squeeze effect on 𝑘 and 𝑐 coefficients
for a selected size of theO-ring and the size influence on 𝑘 and𝑐 at a medium squeeze level (15%).

Figure 4(a) shows the effect of squeeze on the stiffness
coefficient of Viton 75 O-rings of size 𝑑 = 11mm, Φ =1.78mm. It can be seen that stiffness increases with frequency
and with the squeeze level.

Figure 4(b) shows the effect of squeeze on the damping
coefficient of Viton 75 O-rings of size 𝑑 = 11mm, Φ =1.78mm. Damping decreases with frequency and increases
with the squeeze level.

Figures 5(a) and 5(b) show the influence of the size
on the stiffness and damping coefficients at a 15% squeeze
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(b) Effect of squeeze 𝑆 on damping 𝑐 of Viton 90 O-rings, 𝑑 = 11mm,
Φ = 1.78mm

Figure 6

level. Stiffness and damping coefficients increase both with
diameter 𝑑 and cross diameterΦ, although the influence ofΦ
is almost negligible when 𝑑 is high.This is in accordance with
data of paper [10], in which the influence of the cross section
diameter is negligible with an O-ring of internal diameter 𝑑
of about 73mm.

Figures 6(a) and 6(b) show the effect of squeeze on
stiffness and damping coefficients of Viton 90 O-rings of size𝑑 = 11mm, Φ = 1.78mm. It can be noticed that Viton 90 is
more rigid and has also a greater damping capability.

Similar trends are shown in Figures 7(a) and 7(b) pre-
senting the influence of the size on the stiffness and damping
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Figure 8: Comparison of the results of Viton 75, squeeze level 15%, with those from [10, 11].

coefficients at a 15% squeeze level for Viton 90 O-rings. Both
stiffness and damping are greater in Viton 90 with respect to
Viton 70.

Literature data on these coefficients are very difficult to be
found. Table 6 shows details aboutO-rings from [10, 11] tested
with the mass resonant method. Figure 8 compares these
results with that of the present paper, with Viton material

and a squeeze level of 15%. Considering that stiffness and
damping should increase with the Shore hardness and with
both 𝑑 and Φ, coefficients from [11] are compatible with that
of 𝑑 = 41mm, as their Shore hardness and their cross section
diameter are lower. Furthermore the coefficients from [10] are
greater than that of 𝑑 = 41mm and squeeze 15% and also this
comparison is good.
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Figure 10: 𝑘200 and 𝑐200 versus 𝑆 for Viton 90.

Considering that the sensitivity of rubber properties on
temperature is very high, the discrepancies on the data from
different test benches are acceptable. Also, as noticed in [19],
the O-rings can easily be twisted during mounting and this
fact could influence the test results. To avoid this problem the
O-rings could be lubricated, but the presence of a lubricant
could be another source of uncertainty.

3.2. Dependence on the Squeeze. The relationship between
the stiffness and damping coefficients and the squeeze 𝑆 is
approximately linear. Figures 9 to 11 show the coefficients at
frequency of 200Hz.

3.3. Dependence on O-Ring Size. The effects of the inner
diameter 𝑑 and of the cross section diameter Φ can be
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Figure 11: 𝑘200 and 𝑐200 versus 𝑆 for Kalrez O-rings.

Table 6: Dimensions of the O-rings tested in [10, 11].

Rubber Φ (mm) 𝑑 (mm) Squeeze level Temperature
Ref. [10] Viton 70 3.53 69 15% 21∘C
Ref. [11] Viton 70 1.73 41 28% n.a.

evaluated plotting the coefficients obtainedwith the following
ratios:

𝑘200 = 𝑘200𝑑 ⋅ Φ ,
𝑐200 = 𝑐200𝑑 ⋅ Φ .

(6)

The results are depicted in Figures 12 and 13. In first
approximation it is possible to collapse the four trends into
one curve. In this way the properties of the O-rings can be
identified independently of their size:

𝑘200 = 𝐶 + 𝛾𝑆 (7a)

𝑐200 = 𝐷 + 𝛿𝑆. (7b)

The least squares procedure was adopted to fit the linear
trends to experimental data (see Appendix B). In these
equations the squeeze is expressed in percentage form (𝑆 = 5,
10, 15, and 20). Table 7 summarizes the results.

4. Conclusions

In the present work the dynamic properties of rubberO-rings
are provided. The following conclusions can be made:

(i) Stiffness increases with frequency, while damping
decreases.

Table 7: Coefficients for the identification of 𝑘200 and 𝑐200.
Rubber 𝐶 (MN/m3) 𝛾 (MN/m3) 𝐷 (Ns/m3) 𝛿 (Ns/m3)
Viton 75 22595 2610 2.069⋅107 1.800⋅106
Viton 90 22915 10412 1.177⋅107 0.457⋅107

(ii) Stiffness and damping coefficients increase both with
the size of the O-ring (internal diameter 𝑑 and cross-
sectional diameter Φ) and with the squeeze level.

(iii) A material with higher Shore hardness has higher
stiffness and damping.

Formulas are provided to identify as a first approximation
the stiffness and damping coefficients of O-rings of general
size. These formulas can be inserted in lumped parameters
models of gas bearings to evaluate their increased stability
with the use of the O-rings.

Future interesting investigations could concern the veri-
fication of these formulas with O-rings of different size. Also
the effect of temperature could be taken into account setting
up a temperature control.

Appendix

A. Interpolating Coefficients

Coefficients 𝐴 and 𝛼 are calculated solving the following
linear system by least squares procedure:

[[[[
[

1 log𝜔1...
1 log𝜔𝑛

]]]]
]
{log𝐴𝛼 } =

{{{{{{{{{

log 𝑘1...
log 𝑘𝑛

}}}}}}}}}
. (A.1)

The pulsation vector is expressed in rad/s.
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Figure 12: 𝑘200 and 𝑐200 versus 𝑆 for Viton 75.
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Figure 13: 𝑘200 and 𝑐200 versus 𝑆 for Viton 90.
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Similar procedure was adopted for coefficients 𝐵 and 𝛽:
[[[[
[

1 log𝜔1...
1 log𝜔𝑛

]]]]
]
{log𝐵𝛽 } =

{{{{{{{{{

log 𝑐1...
log 𝑐𝑛

}}}}}}}}}
. (A.2)

B. Extrapolating Coefficients

Coefficients 𝐶 and 𝛾 are calculated solving the following
linear system by least squares procedure:

[[[[
[

1 𝑆1...
1 𝑆𝑛

]]]]
]
{𝐶𝛾} =

{{{{{{{{{

𝑘200,1...
𝑘200,𝑛

}}}}}}}}}
. (B.1)

The squeeze is expressed in percentage form.
Similar procedure was adopted for coefficients𝐷 and 𝛿:

[[[[
[

1 𝑆1...
1 𝑆𝑛

]]]]
]
{𝐷𝛿} =

{{{{{{{{{

𝑐200,1...
𝑐200,𝑛

}}}}}}}}}
. (B.2)
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