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Abstract. Amongst the many new tools used for vibration based mechanical fault diagnosis in rotating
machineries, stochastic resonance (SR) has been shown to be able to identify as well as quantify gearbox damage
via numerical simulations. To validate the numerical simulation results that were obtained in a previous work by
the authors, SR is applied in the present study to data from an experimental gearbox that is representative of an
industrial gearbox. Both spur and helical gears are used in the gearbox setup. While the results of the direct
application of SR to experimental data do not exactly corroborate the numerical simulation results, applying SR
to experimental data in pre-processed form is shown to be quite effective. In addition, it is demonstrated that
traditional statistical techniques used for gearbox diagnosis can be used as a reference to check how well SR
performs.

Keywords: Stochastic resonance / Damage identification and quantification / pre-processed signals
1 Introduction

In industries, maintenance is periodically performed on
machineries in order to reduce the chances of catastrophic
failure. Economically, this is an effective cost saving
measure and there is no doubt that vibration based
condition monitoring plays a key role in both preventive
and predictive maintenance of rotating machineries. It is
due to this fact that many methodologies for performing
vibration based condition monitoring exist, some of which
are quite new.

Stochastic resonance (SR) is a fairly new approach in
the sense that it has only been used recently for fault
detection in mechanical systems. It stands out from other
techniques because it is able to use the noise in a system to
its advantage [1]. This means that while other approaches
rely on some form of filtering to work effectively, SR makes
use of noise as part of its functionality. Researches that
have been conducted so far on the application of SR to
mechanical systems have shown promising results [2–6] and
thus, it remains an area of vital interest.

In [3,4], SR is applied to impact signals generated by the
simulation of a set of spur gears in mesh. The simulation is
done using the equations of motion and taking the varying
meshing stiffness of the meshing gears into account.
Furthermore, the transmission path between the gear
lement.mba@polito.it
meshing points and the transducers are considered. In the
work, different number of signal cycles, fault severities and
noise levels are tested to see how well SR performs for the
simulated data. The results in the work show that SR is
quite effective for the simulated gearbox vibration data.
The work in this article goes a step further by applying SR
to real life vibration data from a gearbox. The gearbox data
is obtained from the prognostics and health management
(PHM) dataset 2009 [7] where a double stage reduction
gearbox with different types of faults is run at different
speeds under both high and low loads. More details about
the gearbox setup is described in Section 3. Additionally,
SR is applied to the most common statistical techniques
used for gearbox diagnosis with the results compared.

2 Brief description and application of
stochastic resonance

SR is a non-linear time domain signal processing technique
that uses a proper amount of noise to amplify and detect a
weak signal. It was first used within the framework of the
earth’s climate [8] but it has seen usage in other fields such
as biology, physics, finance and engineering [9]. In the
context of condition monitoring, SR refers to a scenario
where non-linear system noise is used to enhance the signal
to noise ratio (SNR) output of the system. Generally, a
periodic input, inherent noise and system threshold are
required for SR to occur. These features cause a resonance
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Fig. 1. Bistable system showing brownian particle motion in the
presence of a periodic input signal and noise [2].

Fig. 2. Example of results that can be obtained when the non-
linear system parameters a and b are well tuned [2]. The green
horizontal line in the bottom figure corresponds to the left well of
the potential while the red horizontal line corresponds to the right
well of the potential.
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like behavior response of the non-linear system as a
function of noise, thus the name stochastic resonance [10].
SR is a unique feature extraction procedure in the sense
that it requires the presence of noise to produce desired
results. In addition, it is governed by a simple equation
which is described by the Brownian motion equation of
particles:

dx

dt
¼ � dUðxÞ

dx
þ sðtÞ þ nðtÞ; ð1Þ

where U(x) is the potential function, s(t) is the input signal
and nðtÞ ¼ ffiffiffiffiffiffiffi

2D
p

e is the input noise which can either be
inherent or synthetic, withD being the noise intensity and e
the Gaussian noise. U(x) which is a reflection-symmetric
quartic potential is given by

UðxÞ ¼ � 1

2
ax2 þ 1

4
bx4: ð2Þ

Combining equations (1) and (2), the following equation is
obtained:

dx

dt
¼ ax� bx3 þ sðtÞ þ nðtÞ; ð3Þ

a and b are the non-linear system parameters that are
responsible for SR occurrence and they can be adjusted in
such a way that the full effect of SR is obtained. Hence
whether SR occurs depends on a and b. In order to really
understand how SRworks, let us consider Figure 1. Figure 1
showsadoublewell symmetric potential at different states a,
b, c and d. In the first state a, there is a ball otherwise called a
brownian ball in the left side well. When a periodic input
signal isappliedtothispotential,bothwellsmodulatebutthe
ball remains in the left side well. When a proper amount of
noise is combinedwith theperiodic input signal, the addition
of noise provides the energy for the ball to move to the next
wellwhich iswhathappens in statesb, c andd. In theabsence
ofboththe signalandnoise, the stateof thepotentialdepends
on initial conditions. If state a is the original state of a
particular system, the non-linear system parameters a and b
can be adjusted in such a way that the ball jumps to the
height of the barrier that separates the left side well from the
right side well, without getting into the right side well but
instead returns to its original position in the left side well.
This incident leads toahuge spike that canbequantifiedbya
performance indicator such as kurtosis and used to detect
hidden impulses in a noisy signal as shown in Figure 2.

An impulse response function (IRF) submerged in noise
can be seen at the top of Figure 2. This combination of IRF
and noise corresponds to s(t) + n(t) in the SR equation (3).
In thebottomfigure ofFigure 2, the SRoutputwhich is given
by x in the SR equation (3) can be seen. This output can be
obtainedbysolvingequation(3)numericallybearing inmind
that thenon-linear systemparametersaand bhave tobewell
tuned. When this is well executed, the impulse which was
originallyhiddeninthetopfigure ismadeveryconspicuous in
thebottomfigure. It can also be seen that there is a veryhuge
amplification in the kurtosis which is used here as a
performance indicator. The green horizontal line in the
bottomfigure corresponds to the leftwell of thepotential and
it is given by � ffiffiffiffiffiffiffiffi

a=b
p

, while the red horizontal line
corresponds to the right well of the potential and it is given
by

ffiffiffiffiffiffiffiffi
a=b

p
. In addition, the threshold of the potential is given

by the vertical distance from either the green horizontal line
or the red horizontal line to zero. The height of the potential
barrier DU, shows the following relationship between the
non-linear system parameters a and b.

DU ¼ a2

4b
: ð4Þ

In addition to properly tuning the non-linear system
parameters a and b, there are requirements that have to be
met in a system for the SR equation to work. These include
having a low amplitude, low frequency and low noise
intensity of the input signal. However in reality, practical
systems generally do not meet these requirements. As a
result, the input signal is usually subjected to preprocessing
techniques like re-scaling frequency, normalization, modu-
lation, etc., before the SR equation is applied. Further-



Fig. 3. Comparison of the changes in the most common gearbox fault diagnosis statistical features. (a) non-SR Signal (b) SR Signal.
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more, there have been questions on how to properly tune
the non-linear system parameters a and b. Different
methodologies such as Resonance Curve [2], Ant Colony
Optimization [6], Particle SwarmOptimization (PSO) [11],
Standard Differential Evolution (SADE) [12] and grey wolf
optimization [13] have been put forward in literature with
good results. The commonly used procedure which is really
simple to apply is the kurtosis maximization algorithm
which is typically applied after normalizing the input signal
with a certain standard deviation. The kurtosis maximiza-
tion algorithm is employed in this work.

With a view to showing the effect of SR as a possible
amplifier, Figure 3 shows the changes that traditional
statistical features for gearbox diagnosis undergo for both
SR and non-SR signals as the fault severity progresses.
Note that the vibration data used for analyses here is
obtained by means of the simulation methodology
described in the introduction. The statistical features
[14–16] are defined as follows:

2.1 Root mean square

The root mean square (RMS) gives a measure of the power
content in a vibration signature. It is given by

RMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
n ¼ 1

x2
n

 !vuut ;

where N is the number of samples and xn is the data series.
2.2 Kurtosis

Kurtosis is defined as the fourth normalized moment of a
given distribution. It gives ameasure of the “peaked ness” of
the probability distribution of a real valued random
variable. Kurtosis is perhaps the most commonly used
statistical indicator for fault diagnosis in the time domain.
Its definition is given by

Kurtosis ¼ N
PN

n ¼ 1 ðxn �~xÞ4
½PN

n ¼ 1 ðxn �~xÞ2�:

2.3 Crest factor

Crest factor is defined as the ratio of the maximum positive
amplitude of the input signal to the RMS of the input
signal. Its definition is

Crest Factor ¼ max½absðxnÞ�
RMSðxnÞ :

2.4 Energy operator

The energy operator is calculated by taking the normalized
kurtosis of value x2

n � ðxn � 1 � xn þ 1Þ for every point xn of
the signal x in a continuous loop.

2.5 FM0

FM0 is defined as the ratio of the peak-to-peak level of the
Time Synchronous Average signal to the sum of the
amplitudes of the mesh frequencies and their harmonics.
The TSA signal is acquired by synchronous averaging of
the raw signal with a signal that is synchronous with the
desired signal, or a repetitive frequency of the desired signal
(like the tachometer signal) [15,17–19]. There are four
general steps involved in generating the TSA signal:

–
 Calculate the zero crossings corresponding to one shaft
revolution from the tachometer signal that is synchro-
nous with the shaft.
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–
 Perform interpolation to increase the number of data
points in the series generated in the first step.
–
 Use the results of the second step to resample the original
acceleration signal. This is otherwise known as order
tracking.
–
 Divide the order-tracked signal into segments of equal
length and find the average. This average is known as the
TSA and it is periodic. Subtracting the TSA from the
original acceleration signal gives the random noisy part of
the original acceleration signal.

TSA is quite important because it is the basis for
various gear and shaft condition-monitoring algorithms
like the FM0. FM0 is given as

FM0 ¼ PPAPh
0 An

;

where PPA is the peak-to-peak amplitude of the TSA
signal, An is the amplitude of the nth harmonic and h is the
total number of harmonics.
2.6 FM4

FM4 is the kurtosis of the difference signal and it is given as

FM4 ¼ N
PN

n ¼ 1 ðdn �~dÞ4
½PN

n ¼ 1 ðdn �~dÞ2�;
where dn is the data series of the difference signal and ~d is
the mean value of the difference signal. The difference
signal is determined by removing the mesh frequencies and
their harmonics, the shaft frequencies and their harmonics,
and the first order sidebands from the original time
synchronous averaged signal [14–16]. When only the mesh
frequencies and their harmonics are removed along with
the shaft frequencies and their harmonics from the original
time synchronous averaged signal, the resulting signal is
known as a residual signal. That is to say that the only
difference between the residual signal and difference signal
is the presence of first order sidebands in the residual signal.

2.7 NA4

NA4 is defined as the ratio of the fourth statistical moment
of the residual signal to the square of its run time averaged
variance. It is given as

NA4 ¼ N
PN

n¼1 ðrnM � ~rM Þ4
1
M

PM
k¼1½

PN
n¼1 ðrnk � ~rkÞ2�

� �2 ;
where r is the residual signal, ~r is the mean value of the
residual signal, k is the index of the time signal in the run
ensemble and M is the current time signal number.

2.8 NA4*

NA4* otherwise known as ENA4 is an enhanced version of
NA4. It is obtained by dividing the normalized fourth
statistical moment of the residual signal by the residual
signal variance for a healthy gearbox. The equation for
NA4* is as follows

NA4� ¼ 1
N

PN
n¼1 ðrn �~rÞ4

ðV Þ2;
where V is the variance of the residual signal of the healthy
gearbox.

2.9 M6A

M6A is determined by normalizing the sixth variance of the
difference signal to its variance of the third power. It is
given as

M6A ¼ N2PN
n¼1 ðdn �~dÞ6

½PN
n¼1 ðdn � ~dÞ2�3:

2.10 M8A

M8A is determined by normalizing the eighth variance of
the difference signal to its variance of the fourth power. It is
given as

M8A ¼ N3PN
n¼1 ðdn �~dÞ8

½PN
n¼1 ðdn � ~dÞ2�4:

2.11 NB4

NB4 is similar to NA4 except that it makes use of the
envelope of the signal band-pass filtered about the mesh
frequency. The equation for NB4 is as follows

NB4 ¼ N
PN

n¼1 ðEnM �~EMÞ4
1
M

PM
k¼1½

PN
n¼1 ðEnk � ~EkÞ2�

� �2
;

whereE is the envelope of the band-pass filtered signal. The
envelope is computed in the following way

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þH½B�2

q
;

where B is the band-pass filtered signal and H[B] is its
Hilbert transform.

On the x axes of Figure 3, 1 corresponds to a healthy
case, 2 corresponds to a small fault case, 3 corresponds to a
medium fault case and 4 corresponds to a large fault case.
Figure 3a shows the changes that occur when the statistical
indicators are applied directly to the raw signal and
Figure 3b shows the changes that occur when the statistical
indicators are applied to the output of the SR system after
the raw signal is passed through the SR system. As can be
seen with some of the indicators, SR tends to amplify the
absolute changes that occur in all or some stages of fault
growth. This is particularly true for the kurtosis, crest
factor, FM0, FM4, M6A, NB4, M8A, ENA4 and energy
operator. In general, the kurtosis and FM0 provide the



Table 1. showing geometry of double stage reduction gearbox.

Spur gear Angular speed Helical gear Angular speed

Input shaft: input pinion 32 teeth 30Hz 16 teeth 30Hz
Idler shaft: 1st idler gear 96 teeth 10Hz 48 teeth 10Hz
Idler shaft: 2nd idler gear 48 teeth 10Hz 24 teeth 10Hz
Output shaft: Output gear 80 teeth 6Hz 40 teeth 6Hz

Fig. 4. Double stage reduction gearbox [7].
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clearest indication of these changes; however, the overall
amplification is greater in the kurtosis than in any of the
other indicators. This either shows that kurtosis might be
the most suitable indicator for SR in the time domain, or
could be as a result of using the kurtosis maximization
technique.
3 Experimental setup, results and analyses

In this section, SR is applied to experimental data obtained
from the double stage reduction gearbox described in [7]
and shown in Figure 4. At both high and low loads, the
gearbox is run at different angular speeds of the input shaft
(30Hz, 35Hz, 40Hz, 45Hz, and 50Hz) with data collected
at each speed and load. In addition, the runs are repeated
twice for each load and speed. Both spur gears and helical
gears are used separately in the setup of the gearbox to
obtain different data as depicted in Table 1. Table 2 shows
the different configurations and fault severities of the
double stage reduction gearbox data analyzed in this work.
For the initial test in this work, we analysed the first-run
data with an input shaft speed of 30Hz and high load.
Future works will focus on repeating the same tests carried
out here on the other gearbox data and subsequently, use
the results obtained for the validation of the results
obtained here.

As shown in Table 1, the gear ratio between the input
shaft and the idler shaft is 96

32 or
48
16 ¼ 3 : 1 and the gear ratio

between the idler shaft and the output shaft
is8048 or

40
24 ¼ 1:67 : 1. Therefore, the overall reduction ratio

for both gear setups are the same: 32
96 � 48

80 or
16
48 � 24

40 ¼ 5 : 1.
Apparently, both setups have a lower and upper meshing
frequency. For our analyses, the datasets of spur 1, spur 2,
spur 4, helical 1, helical 2 and helical 5 are selected because
they are healthy, small and large fault cases as depicted in
Table 2.

As can be seen in Table 2, there are chipped and
eccentric gears in spur 2 and broken and eccentric gears in
spur 4. Eccentric gears allow the rotation of one gear to
modulate the speed of the other gear which causes
sidebands at the meshing frequency [20]. The resulting
pattern of sidebands about the meshing frequency is
generally asymmetric at multiples of the shaft speed
because the motion that occurs is a combination of both
amplitude and frequency modulation. A large number of
high-level sidebands can indicate eccentric gears, gear
tooth cracks, gear housing cracks, misaligned shafts,
excessive shaft deflection etc. Based on this, it is expected
that the eccentric, chipped and broken gears will all
generate sidebands in the frequency spectrum.

Figures 5–10 show the vibration spectra obtained for
both the spur gearbox and helical gearbox with their
corresponding SR signals on the right hand side of the plot
and non-SR signals on the left hand side of the plot. Each
figure has an upper section corresponding to the spectrum
for the lower meshing frequency range and a lower section
corresponding to the spectrum for the upper meshing
frequency range. The red and magenta lines represent the
theoretical position of the sidebands around their corre-
sponding fundamental frequencies. The meshing frequen-
cies of the spur gear setup are 480Hz and 960Hz while that
of the helical gear setup are 240Hz and 480Hz. A closer
look at the raw figures shows a very slight deviation of the
meshing frequencies from their actual values ranging from
0.21 to 0.35%. This is quite reasonable and is most likely
due to the approximation to an integer of the actual shaft
speed obtained during the measurement process. The
figures shown here consider these deviations in the
computation of the sideband positions.

In the spur gear setup of Figures 5 and 6, the very
conspicuous sidebands in the non-SR signals are spaced at a
shaft speed of 10Hz, which corresponds, to the intermedi-
ate shaft where the eccentric gear is mounted. The chipped
gear rotates at a shaft speed of 30Hz while the broken gear
rotates at a shaft speed of 6Hz. The broken and chipped
gear sidebands are not very discernible in Figures 5 and 6
for both data from channel 1 (input side accelerometer) and
channel 2 (output side accelerometer). This could be either
due to the position of both sensors or the “overshadowing”
effect of the eccentric gear. In the helical gear setup of
Figures 8 and 9 where there is no eccentric gear, the
sidebands corresponding to the chipped and broken gears



Table 2. showing the different configurations and fault severities of the double stage reduction gearbox.

Gears Bearings Shafts

32
teeth

96
teeth

48
teeth

80
teeth

Input
shaft:
input
side

Idler
shaft:
input
side

Output
shaft:
input
side

Input
shaft:
output
side

Idler
shaft:
output
side

Output
shaft:
output
side

Input Output

Spur 1
– (healthy
case)

Good Good Good Good Good Good Good Good Good Good Good Good

Spur 2
– (chipped
tooth case)

Chipped Good Eccentric Good Good Good Good Good Good Good Good Good

Spur 4
– (broken
tooth case)

Good Good Eccentric Broken Ball Good Good Good Good Good Good Good

Gears Bearings Shafts

32
teeth

96
teeth

48
teeth

80
teeth

Input
shaft:
input
side

Idler
shaft:
input
side

Output
shaft:
input
side

Input
shaft:
output
side

Idler
shaft:
output
side

Output
shaft:
output
side

Input Output

Helical 1
– (healthy
case)

Good Good Good Good Good Good Good Good Good Good Good Good

Helical 2
– (chipped
tooth case)

Good Good Chipped Good Good Good Good Good Good Good Good Good

Helical 5
– (broken
tooth case)

Good Good Broken Good Good Good Good Good Inner Good Good Good

Fig. 5. Non-SR and SR vibration spectrum of a 1800 rpm double stage reduction spur gearbox–broken tooth case (a) lower meshing
frequency range (b) upper meshing frequency range.
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are distinctly visible. It should be noted that data from
both channel 1 and channel 2 are quite similar but only the
data from channel 2 is shown in this paper.
Comparing the non-SR signal and SR signal of Figure 5,
there is no obvious difference between them. In Figure 6, the
SRsignalappearsnoisy inthe lowermeshing frequencyrange



Fig. 6. Non-SR and SR vibration spectrum of a 1800 rpm double stage reduction spur gearbox–chipped tooth case (a) lower meshing
frequency range (b) upper meshing frequency range.

Fig. 7. Non-SR and SR vibration spectrum of a 1800 rpm double stage reduction spur gearbox–healthy tooth case (a) lower meshing
frequency range (b) upper meshing frequency range.

Fig. 8. Non-SR and SR vibration spectrum of a 1800 rpm double stage reduction helical gearbox–broken tooth case (a) lower meshing
frequency range (b) upper meshing frequency range.
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Fig. 9. Non-SR and SR vibration spectrum of a 1800 rpm double stage reduction helical gearbox–chipped tooth case (a) lowermeshing
frequency range (b) upper meshing frequency range.

Fig. 10. Non-SR and SR vibration spectrum of a 1800 rpm double stage reduction helical gearbox–healthy tooth case (a) lower
meshing frequency range (b) upper meshing frequency range.
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while there is an amplification of eccentric gear sidebands in
the higher meshing frequency range. In the healthy case of
Figure 7, there is not a lot of difference between the non-SR
and SR signal in the lower meshing frequency range,
nevertheless, there is a huge amplification of sidebands in
the higher meshing frequency range.

In the helical gear configuration, there appears to be
amplification in the higher meshing frequency range of the
SRsignal inFigure8 although it looksnoisy.TheSRsignal in
the lowermeshing frequency is similar although a bit noisier
than its corresponding non-SR signal. In Figure 9, there is
amplification at 200Hz and 250Hz in the lower meshing
frequency range of the SR signal. The other sidebands in the
SRsignal have either the sameamplitude or lower amplitude
than those in the non-SR signal. In the higher meshing
frequency range of the same figure, the amplitudes of all the
sidebands of the SR signal seem to be amplified even though
they appear noisy. The healthy case of Figure 10 shows the
SR signal having a slight amplification at 270Hz in the lower
meshing frequency range and a general amplification in the
SR signal of the higher meshing frequency range.

In an overall sense, there always seems to be
amplification in the SR signals with the amplifications in
the higher meshing frequency range looking more notice-
able and noisy. The amplification of sidebands in the
healthy signals appears to be more apparent in the
experimental case than the numerical simulation case in
[4]. It is a well-known fact that experimental data have
more noise, vibration and complexity and as a result, they
could bemore difficult to analyse properly. In order to solve
this problem, the authors thought it necessary to reduce
the complexity of the data to allow for its easier
investigation. Based on this reasoning, 2 approaches are
proposed to achieve this objective. The first approach



Fig. 11. Non-SR and SR residual signal vibration spectrum of a 1800 rpm double stage reduction spur gearbox–broken tooth case (a)
lower meshing frequency range (b) upper meshing frequency range.

Fig. 12. Non-SR and SR residual signal vibration spectrum of a 1800 rpm double stage reduction spur gearbox–chipped tooth case (a)
lower meshing frequency range (b) upper meshing frequency range.
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involves applying SR to a residual signal rather than the
raw signal while the second approach involves applying a
high pass filter after selecting a proper cut-off frequency to
the raw signal before applying SR. Removal of some
frequencies is what both approaches have in commonwhich
makes the resulting signal less complex to examine.

3.1 Applying stochastic resonance to residual signals

The residual signal is determined by removing the meshing
frequencies and the shaft frequencies along with their
harmonics from the original time synchronous averaged
(TSA) signal [14–16].

r ¼ xðtÞ � xrðtÞ; ð5Þ
where r is the residual signal, x(t) is the original TSA and
xr(t) is the signal containing the meshing frequencies, shaft
frequencies and their harmonics. When the first order
sidebands about the meshing frequency are removed from
the residual signal, a difference signal is formed.

d ¼ r� ðfm ±viÞ; i ¼ 1; ð6Þ
where d is the difference signal, fm is the signal meshing
frequency and v is the shaft frequency. Both the residual
and difference signal were proposed in order to better
observe the changes that occur in a vibration signal [14].

To obtain the residual signal in this situation, 6 Hz,
10 Hz and 480 Hz, as well as their multiples are removed
from the original TSA. This is sufficient to remove all the



Fig. 13. Non-SR and SR residual signal vibration spectrum of a 1800 rpm double stage reduction spur gearbox–healthy tooth case (a)
lower meshing frequency range (b) upper meshing frequency range.

Fig. 14. Non-SR and SR residual signal vibration spectrum of a 1800 rpm double stage reduction helical gearbox–broken tooth case
(a) lower meshing frequency range (b) upper meshing frequency range.
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meshing frequencies, shaft frequencies and their har-
monics since they are multiples of each other. It should
be noted that the difference signal and residual signal for
the experimental spur gear set up are equivalent because
the first order sidebands are multiples of the shaft
speeds.

In Figure 11, where there is an eccentric gear and a gear
with broken tooth, the frequency spikes are very evident in
both the lower and upper meshing frequency range. The
frequency spikes in the lower meshing frequency range are
due to the eccentric and broken tooth gears while the spikes
in the upper meshing frequency range are most likely as a
result of the harmonics of the spikes in the lower meshing
frequency range. The frequency spikes are just as evident in
the SR signal of Figure 12 especially in the higher meshing
frequency range. The spikes that are present in the lower
meshing frequency range are most likely due to the
eccentric gear which are not as conspicuous as the spikes in
the higher meshing frequency range which are most likely
due to the chipped gear. In the healthy case in Figure 13,
both the SR and non-SR signals are similar.

Figures 14–16 show the results when the exact same
methodology is applied to the residual signal of the helical
gear set up. Just like the spur gear setup, the difference
signal and residual signal are equal to each other. As can be
seen in Figure 14, there is a clear amplification in the lower
meshing region of the SR signal due to the broken helical
gear tooth particularly after the fundamental frequency.
There is also amplification in the higher meshing frequency
range of the SR signal at 450Hz.



Fig. 15. Non-SR and SR residual signal vibration spectrum of a 1800 rpm double stage reduction helical gearbox–chipped tooth case
(a) lower meshing frequency range (b) upper meshing frequency range

Fig. 16. Non-SR and SR residual signal vibration spectrum of a 1800 rpm double stage reduction helical gearbox–healthy tooth case
(a) lower meshing frequency range (b) upper meshing frequency range.
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In Figure 15, a quick look suggests no amplification in
the SR signals but a closer look at the lower meshing
frequency range shows amplification in the SR signal after
the fundamental frequency. In Figure 16, the SR and non-
SR signal bear close resemblance with a small amplification
in the higher meshing frequency range.

It should be noted that in all the residual signal results,
the frequency spacings are not regular for the non-SR signals
while they are regular and spaced at 6Hz for the SR signal.

The results of applying SR to the residual signal for
experimental data are easier to interpret as compared to
when SR is applied directly to the raw signal. The noisy
nature of the SR signal, which is a core part of the results
obtained when SR is applied directly to the raw data,
disappears completely in the residual signal case. More-
over, the spikes due to faults present in the non-SR signal
are more apparent and plain in the SR signals of the
residual signal. This indicates that SR gives better and
more comprehendible results when it is applied to a pre-
treated signal.

3.2 Applying stochastic resonance to high-pass filtered
signals

The spectra results above indicate the potential of SR as a
powerful tool for vibration based condition monitoring. In
the time domain however, in the absence of signal pre-
treatment, the SR output of all the experimental data of the
healthygears givesahighkurtosis.This isnot the case for the
numerical simulations [3] described in the introduction,
which give a low kurtosis when SR is applied to the healthy
gear signal. As indicated earlier, the most reasonable



Fig. 17. Schematic diagram showing a possible way of choosing the high-pass filter cut-off frequency.

Fig. 18. Time histories of the non-linear dynamic system–experimental results for the spur gear setup (1st column) raw signal (2nd
column) SR signal (3rd column) filtered SR signal. (1st row) broken tooth case (2nd row) chipped tooth case (3rd row) healthy case.

12 C.U. Mba et al.: Mechanics & Industry 18, 805 (2017)
explanation for this phenomenon is that experimental data
has more vibration, noise and complexity that makes it
difficult to properly examine. Thus, it is imperative to make
the signal to be analysed “less complex” before analysis.

In this section, a high-pass Butterworth filter with a
proper cut-off frequency is used to achieve the said goal.
Bearing in mind that SR tends to amplify the kurtosis of a
signal, the cut-off frequency of the filter is selected in such a
way that the kurtosis of the filtered signal is about 90%
(slightly less) of the kurtosis of the original signal using the
healthy case as reference. This is depicted schematically in
Figure 17.

The raw signal in Figure 17 is a healthy signal, which is
used as a reference. kh is the kurtosis of the healthy signal and
kf is the kurtosis of the filtered signal. The value of the cut-off
frequency of the filter that coincides with kf slightly lower
thankh shouldbeselected. Itshouldbenotedthattheprimary
goal here is to contain false alarms in the time domain.

For our case, 0.216 is selected as the normalized cut-off
frequency of the high-pass Butterworth filter. In Figures 18
and 19, the first column displays the raw signals, the second
column displays the SR output without filtering and the
third column displays the SR output after filtering. The
green and red lines in the second and third columns
correspond to the negative well, which is defined as� ffiffiffiffiffiffiffi

a=b
p

and the positive well which is defined as
ffiffiffiffiffiffiffi
a=b

p
respectively

of the SR output. In third column of Figures 18(a) and (b),
the kurtosis of the filtered SR output is more amplified
when compared with their corresponding second columns.
In Figure 18c, the kurtosis of the filtered SR output in the
third column is much lower than the kurtosis of the SR
output in the second column. These results demonstrate
that false alarms in the time domain can be contained in SR
output when the raw signal is filtered before passing it
through the SR dynamic system. These results are also
further supported by the experimental results for the
helical gear setup as seen in Figure 19. In Figure 19(a), the
kurtosis of the filtered SR output of the third column is
raised by a very considerable amount in comparison to the
ordinary SR output of the second column. In Figure 19(b),
the kurtosis for the filtered SR output in the third column is
lower than its counterpart in the second column; however,
the information in the third column is sufficient to identify
a fault in the system. In the third column of Figure 19(c),
the kurtosis of the filtered SR output is considerable lower
than the kurtosis of the SR output in the second column,
which demonstrates a containment of false alarms.
4 Conclusions

Although few researches have been done on applying SR to
mechanical problems, much of the already done research
focuses on faulty cases. In this paper, an all-round approach



Fig. 19. Time histories of the non-linear dynamic system–experimental results for the helical gear setup (1st column) raw signal (2nd
column) SR signal (3rd column) filtered SR signal. (1st row) broken tooth case (2nd row) chipped tooth case (3rd row) healthy case.
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is taken in analysing the effect of SR on data from
gearboxes including applying SR to gearbox diagnostic
statistical tools. First of all, SR is applied to the raw
vibration signal that is obtained from a real life gear box
that has different health conditions. While SR is able to
amplify the impulses in the faulty cases, it gives off false
alarms in the healthy cases by a huge amplification of the
vibration signal. The fact that this does not happen in the
numerical simulations implies that the complexity of
experimental signals might be responsible for this phe-
nomenon. Thus, two strategies are employed in this work
to tackle the problem of realistic data complexity which
seems to affect the SR results. The first procedure involves
computing the residual signals from the raw signals and
then applying SR; the second approach involves computing
the high pass filtered signal from the raw signal and then
applying SR. Finally, the results obtained when SR is
applied to the pre-processed signals i.e. the residual signals
and high pass filtered signals, rather than the raw signals is
positive as can be seen in the final sections of this paper.
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