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Matteo Testa, Tiziano Bianchi and Enrico Magli
Department of Electronics and Telecommunication engineering
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Abstract—Compressed Sensing enables both computationally
secure encryption and signal processing in the compressed
domain. Even though these characteristics have always been
considered in separate fashion, in this paper we propose a novel
method that takes into account these features jointly. As a result
we obtain provable secrecy guarantees and enable fast signal
processing. In more detail, we show that it is possible to perform
anomaly detection relying on the measurements information
leakage. At the same time, we can prevent attackers trying to
obtain confidential data by obfuscating the information leakage.
We show the effectiveness of such method through theoretical
bounds and numerical experiments.

I. INTRODUCTION

Compressed Sensing (CS) has become increasingly popular
in recent years thanks to its ability to perform signal acquisi-
tion and compression in a single operation by means of random
projections.

The acquisition, which is a key aspect of CS, can be either
performed in software or hardware. Software acquisition can
be easily modeled as matrix-vector multiplication, where the
sensing matrix is a fat matrix, i.e. it has more columns than
rows, made of i.i.d. random entries. However, while general,
this approach fails to take full advantage of the CS properties
since it still requires to first sample the original signal in a
conventional way and only later apply CS. On the other hand,
hardware (e.g., optical [1]) acquisition is able to fully exploit
CS and allows to either reduce the number of required sensing
elements or their power consumption [2]–[4]. This latter aspect
makes the CS framework an excellent candidate for the class
of low-energy devices which form the Internet of Things
(IoT). While a rising demand of IoT devices is foreseeable,
leading to increased amounts of data and hence a stronger
need for compression, it is unclear how to guarantee the
data confidentiality. As highlighted in [5], typical low-energy
sensors seem to fail to meet the computational requirements
needed to perform standard data encryption operations.

Along the same line, oftentimes sensors are required to per-
form basic signal processing operations on confidential data,
e.g. detect anomalies. While this is a desirable characteristic,
in typical settings this operation would require to decrypt the
ciphertext before performing signal processing operations, thus
requiring even higher computational capabilities. Interestingly,
both of the aforementioned characteristics can be provided by
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means of CS. Indeed, not only it allows to perform signal
processing operations in the compressed domain at low cost,
e.g. [6], [7], but it can also provide secrecy. In fact, if the
sensing matrix is assumed to be a secret (only known at trusted
parties) and it is re-generated at each acquisition, then the ill-
posed inverse problem of CS can be cast as the decryption
stage of a private key cryptosystem [8], [9].

At this point, it is important to highlight that the secrecy
and processing requirements are orthogonal, i.e. as more pro-
cessing is needed, more secret information has to be to shared
with the processing unit. While different design choices are
available, we focus on architectures that need fast processing
operations, thus relying on the information that is leaked by
the measurements themselves.

Different sensing matrix structures are related to different
kinds of information leakage and, as such, authors addressed
this problem for Gaussian [9], Bernoulli [10] or circulant [11]
sensing matrices. In the best case (i.i.d. Gaussian random
entries) the leakage is only related to the energy of the original
signal [9], namely an attacker can obtain an estimate of the
energy of the original plaintext. Assuming a signal can belong
to different classes, each of them having a different energy, it
is evident that this leakage, while desirable at the processing
side, can help an attacker to gain deeper information about
the nature of the encrypted signal. Literature contains works
that deal with this problem by normalizing the signal energy
in order to avoid this leakage and achieve perfect secrecy (in
asymptotic sense) [9]. However, in case of HW acquisition,
additional computational hardware may be needed to com-
pute the signal energy and to normalize the measurements.
Moreover, since the energy is a confidential information which
needs to be transmitted to trusted parties in order to guarantee
a correct recovery, encryption schemes such as [12] for this
additional quantity need to be taken into account.

In this paper we propose a novel method which allows to
bypass the shortcomings of the energy normalization method
and also enables fast anomaly detection, allowing to jointly
consider secrecy and processing in CS. We show that a
multiplicative random gain is able to obfuscate the leakage of
information through the measurements when using Gaussian
sensing matrices and, in the asymptotic case, also that of
generic sensing matrices. For the sake of clarity, in the rest of
the paper we will refer to this method as energy obfuscation.
This approach not only does not require to know the original
signal energy but it also does not require any additional
information to be transmitted to trusted parties. Indeed, trusted



parties which can efficiently de-obfuscate the measurements
can perform fast anomaly detection before performing any
recovery operations. The result is an efficient obfuscation
scheme that can be efficiently implemented in a compressive
cryptosystem architecture at very low cost.

II. COMPRESSIVE CRYPTOSYSTEM ARCHITECTURE

Before discussing the architecture of the compressive cryp-
tosystem, it is important to state the security model we will
adopt in the remainder of this paper. We assume that the
attacker not only has access to ciphertext, but also to arbitrary
plaintext-ciphertext couples. Moreover, the ciphertext has to
be protected against any attacker trying to either decrypt
the signal or to estimate the original signal’s energy. Driven
by this security model, we consider the one time sensing
scheme which requires to re-generate the sensing matrix at
each acquisition in order to make the cryptosystem resistant
to known and chosen plaintext attacks. By employing this
strategy, as depicted in Fig. 1, the secret is a key which
is shared among trusted parties and is used to generate the
full sensing matrix by means of a generating function Genk.
At encryption side the measurements y are acquired either
via hardware or software and sent to the post-acquisition
processing unit. This block will output the actual ciphertext z
by applying, if needed, additional processing. In particular, for
the specific case we are considering throughout this paper this
block will handle the energy obfuscation. At the decryption
side, the sensing matrix is generated from the same shared key
k and used along with the ciphertext z by the decryption block
DecΦ to produce the recovered plaintext x̂. This is done by
inverting the post-processing operation and using any available
CS recovery algorithm, e.g. LASSO.

In the architecture we also include a processing block
which can perform basic signal processing operations in the
encrypted domain based on partial or no knowledge of the
sensing matrix entries. This block will be mainly considered
in Sec. IV, where an energy based anomaly detector is used
to show the performance of the proposed method. Is it worth
noting that the largest computational burden a sensor will
have to handle is the cost of the sensing matrix regeneration.
One may argue that at the same cost a block cipher scheme
could be implemented on the same sensor. However, the
advantage of the proposed scheme is a fast processing in the
encrypted domain. As described in Sec. IV, the processing
block only needs the ciphertext and the first sample of the
sensing matrix to perform signal processing, e.g. anomaly
detection and potentially raise alarms. Conversely, a block
cipher-based encryption scheme would require the processing
block to generate the full key stream to decrypt the ciphertext
before performing any processing; this would also require
to disclose the whole plaintext to the entity performing the
processing stage.

Lastly, we recall that in this paper we mainly focus on the
post-acquisition processing of the measurements in order to
increase the security of the whole cryptosystem.
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Fig. 1: Compressive cryptosystem architecture scheme

III. MAIN RESULTS

In this section we describe how to obfuscate the energy
leakage of a Gaussian CS cryptosystem through multiplicative
blinding. Let us start with the encryption model we consider
throughout this paper which is given by

z = ay = aΦx, (1)

where z ∈ Rm×1 is the encrypted signal, x ∈ Rn×1 is the
original signal, the entries of Φ ∈ Rm×n are i.i.d. and follow
φi,j ∼ N (0, σ2

Φ) and a ∈ R is drawn from a log-Normal
distribution a ∼ lnN (0, σ2

a). It is known from [9] that εx =
x>x, i.e. the energy of the original signal, is leaked by the
measurements y.

In order to reduce the leakage, quantified by the mutual
information I(x; y), we propose to scale the energy according
to a random value. It is important to highlight that we consider
a single scalar multiplication instead of a vector-wise product
with a random vector. The reason behind this choice comes
from the fact that it is known from [8] that, if the sensing
matrix is Gaussian and unknown, the spherical angle of the
original vector cannot be determined (whereas its magnitude
can indeed be estimated). Thus, a scalar multiplication which
only modifies the magnitude of the signal is preferred, dif-
ferently from other transformations which can also affect its
spherical angle.

In more detail, we quantify the improved secrecy due to
the random scalar multiplication in terms of lower mutual
information and increased η mean square error (MSE). This
latter metric, as defined in [9], quantifies the normalized
minimum MSE that can be obtained by an estimator seeking
an estimate of εx from the encrypted signal z, and can be
defined as:

Definition III.1. The measurements are said to be η-MSE
secret with respect to the signal’s energy if for every possible
estimator ε̂x(z) of εx, we have that

ηε̂x
∆
=

E[‖εx − ε̂x(z)‖22]

σ2
εx

≥ η,

where σ2
εx is the variance of εx.

Let us start with an equivalence which we will use in the
remainder of the paper.



Lemma III.2. Assuming the model considered in (1), the mu-
tual information between x and z is equivalent to the mutual
information between their energies as I(z;x) = I(εz; εx).
Proof. The proof is presented in the Appendix.

The result of the above Lemma allows us to consider
I(εz; εx) instead of I(z;x) which makes the problem easier
to tackle. In the next lemma we present an upper bound for
I(εz; εx).

Lemma III.3. If we consider a CS cryptosystem as defined in
(1) and p(εx = 0) = 0 and p(a = 0) = 0, then the leakage of
information of x through z is bounded by

I(z;x) = I(εz; εx) ≤ 1

2
ln

(
1 +

ψ1

(
m
2

)
+ var(ln εx)

4σ2
a

)
,

where ψ1(z) = d2

dz2 ln Γ(z) is the trigamma function.
Proof. The proof is presented in the Appendix.

From the above lemma we can see the fundamental role of
the term σ2

a; as its value increases, the upper-bound and hence
I(z;x) goes towards zero. It important to note that, as shown
in the next section, small values of σ2

a are able to significantly
increase the secrecy of the system. Suitable choices for σa
are discussed in Sec. IV. In order to obtain the value of the
η-MSE metric when energy obfuscation is employed, we state
the following

Lemma III.4. Obfuscated measurements are at least η-MSE
secret with respect to εx, where

η =
eh(εx|z)−1

2πσ2
εx

.

Proof. As for Lemma 2 in [9], by employing Theorem 8.6.6 in
[13] we have that E[‖εx− ε̂x(z)‖22] ≥ 1

2π e
2h(εx)−2I(εx;z)−1 =

1
2π e

2h(εx|z)−1, the result then follows from the definition of
η-MSE secrecy.

Next, employing Lemma III.3 and Lemma III.4 we can state
the following

Corollary III.4.1. If we consider a CS cryptosystem as
defined in (1), and x is an exactly k-sparse signal with i.i.d
Gaussian non-zero entries, the minimum MSE obtainable by
any estimator seeking an estimate of εx from the encrypted
signal z is given by

η =
e

2ξ( k2 )−ln

(
1+

ψ1(m2 )+ψ1( k2 )
4σ2
a

)
−1

πk
,

where ξ(z) = z + ln Γ(z) + (1 − z)ψ(z) and ψ(z) is the
digamma function,

where we used the fact that for k-sparse signals with i.i.d.
Gaussian non-zero entries var(ln εx) = ψ1

(
k
2

)
. We now

extend the previous result for generic sensing matrices and
finite power signals. If we consider the asymptotic setting,
that is n→∞, we can state the following

Proposition III.5. If we consider X to be a random
process whose realizations xj have finite power Wx =
limn→∞

1
n

∑n−1
j=0 x

2
j and are mapped to Yj according to (1) to

a finite m where the entries of Φ are i.i.d. from a subgaussian
distribution, then as n→∞ Lemma III.3 and Corollary III.4.1
hold for generic sensing matrices with strict less-than sign.

Proof. The proof is presented in the appendix.

It is worth to highlight that this important result can be used
to guarantee the secrecy of efficient sensing matrices such as
Bernoulli ones for sufficiently large values of n. Moreover,
since practical Gaussian sensing matrix entries are drawn from
truncated distributions and represented with finite precision,
this result can also be used to provide secrecy for this class
of sensing matrices.

A. Numerical simulations

We now present some experiments showing the behavior of
the bounds discussed in the previous section to gain a better
understanding. In Fig. 2 the values of the bound on I(z;x)
as a function of the number of measurements m are depicted.
We compare it with the bound obtained in [9] to validate the
effects of the energy obfuscation. Since for this experiment
no distribution for εx is specified and it is known that c0 =
logE[εx]−E[log εx] ≥ 0, we fix its value to a positive constant
c0 = 0.1. For the same reason we fix c1 = var(ln εx) = 0.2.
As can be seen, the proposed method is able to decrease
the mutual information I(εz, εx); this means that the energy
leakage, as seen by an attacker, is greatly reduced. Conversely,
if no energy obfuscation is applied the mutual information is
higher and increases with the number of measurements. It is
important to highlight that the bound in Fig. 2 behaves in a
counter-intuitive way. The mutual information decreases as the
number of measurements becomes larger, in contrast to what
one may expect. This may be explained since the depicted
mutual information is actually an upper bound value whereas
as m increases the upper bound becomes tighter. A similar
behavior is shown in Fig. 3 where the minimum obtainable
MSE on εx is considered for signals which are exactly k-
sparse with i.i.d. non-zero Gaussian entries. Moreover, in
this experiment different values of m are considered, but
still keeping fixed the ratio k/m = 0.5. In this experiment
we also consider the theoretical performance of a linear
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Fig. 2: Mutual information, σa = 2
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minimum mean square error (LMMSE) estimator which can

be obtained as ε̂x(εz)LMMSE = 2εz
σ2

Φh
+
kσ2
x(h−2me2σ

2
a )

h , where

h = 2(2 + k +m)(g + e2σ2
a) +mkg and g = (e4σ2

a − 1)e4σ2
a .

Then, the MSE achieved by this estimator can be shown to
be ηLMMSE = 1 − 2me4σ

2
a

h . It can be seen in Fig. 3 that
the MSE of the LMMSE estimator approaches the bound as
m increases, however there is still a gap between these two
quantities. This is due to the fact that during the derivation of
the η-MSE in Corollary III.4.1 the entropy of log εz is upper
bounded by that of a Gaussian distribution. For the sake of
completeness, Fig. 3 also depicts the simulated η-LMMSE,
obtained averaging over 105 experiments, that is very close to
the theoretical η-LMMSE curve.

In a last experiment, depicted in Fig. 4, we show the
behavior of both mutual information and η with respect to
different values of σa: increasing the variance of log(a)
reduces the mutual information and increases the η-MSE.

IV. APPLICATION TO ANOMALY DETECTION

In this section we show an experiment aimed at showing the
effectiveness of the energy obfuscation method in a practical
setting. We consider an energy based anomaly detector which
can be of interest in applications such as infrared camera fire
detectors, where the acquisition is performed by means of CS.
The goal here is that of being able to perform a fast detection
(avoiding the full signal decryption chain) by exploiting the
information leakage, if an anomaly is detected then the original
image should be recovered. Nevertheless, we need to provide

(a) (b)

Fig. 5: Set of two 64 × 64 images employed in the experiment: (a)
regular image (b) anomaly image.

confidentiality by avoiding an attacker who has access to the
ciphertext to correctly detect the anomaly. Let us define the
problem as a threshold-based detection where H0 corresponds
to no anomaly and H1 means that an anomaly has occurred.
Namely if εx > τ the detector will consider H1 to be true, and
H0 in the other case. Both legitimate and attacker detectors
have no access to the true εx but rather they can estimate its
value given εy and εz for the legitimate and attacker detectors
respectively.

If we consider the best estimator in terms of MSE, which
is the minimum MSE estimator, it has to be highlighted that it
requires to specify a prior distribution on the plaintext energy
εx. However, considering the problem we described in this
section, no informative prior can be reasonably chosen as the
best one. Thus, we suppose that both attacker and legitimate
detectors employs a maximum-likelihood (ML) estimation
strategy, which can be shown to asymptotically achieve the
minimum MSE among all consistent estimators. For what
concerns the attacker side, since a ML estimator requires
the knowledge of the conditional probability p(εz|εx) which
cannot be obtained in closed form for this specific case, we
propose to use a two step ML estimation. At first the ML
estimator in (2) is employed to estimate the value of εy .

ε̂y(εz) = arg max
εy

− log2 εy + log εz log εy
8σ2

a

. (2)

This estimate is then considered as a given observation and
used by the estimator in (3) which outputs an estimate of εx.

ε̂x(εy) =
εy
mσ2

Φ

. (3)

It is important to note that, if m is large enough, the variance
of p(εy|εx) is small and thus, the knowledge of εy implies
the knowledge of εx with no or little uncertainty. Under these
circumstances, the assumption we made to justify the two-step
ML estimation strategy is legitimate. Based on this assump-
tion the attacker uses the two-step ML estimator previously
described in order to estimate ε̂x and perform the anomaly
detection. Conversely, the legitimate detector uses the secret
key to generate the first random sample in order to obtain
the obfuscation random scalar a. At this point it can obtain
y = z/a and use (3) to estimate ε̂x. These estimates are then
used to discriminate between H0 and H1 based on the result
of the thresholding.

For this anomaly detection experiment, we employ two
synthetic images (shown in Fig. 5), namely regular image and
image with anomaly. In Fig. 6 we show the receiver operating
characteristic (ROC) curve for both the attacker and the
legitimate detectors trying to detect the anomaly. We consider
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1000 experiments with a fixed compression ratio m/n = 0.3
with n = 4096, Gaussian i.i.d entries with σ2

Φ = 1 for the
sensing matrix and σ2

a = 2. Additionally we add AWGN
noise to the acquired images with standard deviation 0.95.
As can be seen, the proposed method obfuscates the energy to
the attacker making the energy thresholding detection more
difficult as it flattens the ROC curve towards the perfect
secrecy which corresponds to PD = PFA. On the other hand,
the legitimate detector can detect the anomaly with very high
probability.

V. PRACTICAL IMPLEMENTATION STRATEGIES

In this section we briefly discuss a possible implementation
of the sensing matrix generation block. If we consider the
sensing matrix having i.i.d. entries distributed according to
N (0, 1) we need to securely generate mn Gaussian entries.
Different approaches to solve this problem include the Box-
Muller transform [14] and the Ziggurat method [15]. Because
of its simplicity and efficient implementation we consider the
Box-Muller transform method which generates two Gaussian
distributed entries given two samples uniformly distributed
in (0, 1]. To generate these uniform samples we can rely
on trusted cryptographic primitives which generate uniformly
distributed random bits. In particular, as suggested in [16]
we choose to employ the SHA3 Skein [17] or Keccak [18]
algorithms which include a Key Derivation Mode which can
generate an arbitrary number of uniformly distributed bits
with a single call to the pseudorandom generation function
(PRF). For their representation we use a Qb representation
which is a fixed point representation which employs b-bits
for the significand. If we then choose the b-bits to be the
output of a secure hashing algorithm, the result is a uniformly
distributed number in [0, 1), from which we map the 0 value
to 1 in order to limit the interval to (0, 1]. We now recall that
the value of b directly influences the smallest number which
can be represented and hence the maximum output value of
the Box-Muller transformation. As example, if we consider
b = 32 which leads to the smallest representable number to
be 2−32, the Box-Muller transformation will always output
values smaller than 6.6604. Consequently, the Gaussian values

are sampled, in practice, from a Gaussian distribution with
truncated tails for probabilities smaller than 1.3654 × 2−36.
In particular, by employing b = 78 the tails are truncated
for probabilities smaller than 2−83 which is considered a
negligible value for cryptographic applications.

Nevertheless, here we need to take into account that com-
pressive cryptosystem schemes are suited for low-power weak-
secrecy applications. This means that for this range of ap-
plications, we are not interested in reaching perfect secrecy.
Consequently, the number of required bits can be reduced
depending on the specific application requirements in terms
of secrecy and computational capabilities.

Lastly, the generation of the energy obfuscation parameter
relies on the same strategy as described above, except for the
fact that the Gaussian sample has to be scaled and exponen-
tiated in order to be distributed accordingly to a log-Normal
distribution with the desired variance. Regarding this latter
aspect, it is important to note that var(a) = (eσ

2
a − 1)e2µa+σ2

a

and the secrecy bounds we obtained depend on the value of
σ2
a. This suggests that one can have arbitrarily large σ2

a by
keeping bounded the value of var(a), e.g. by setting µa = −σ2

a

which results in var(a) = 1 − e−σ
2
a . However, this trick

does not take into account the fact that with finite precision
we have a limit on how large σ2

a could be. More in detail,
if we consider a floating point number representation, we
have that the smallest number which can be represented is
approximately 1.2×10−38 for single precision and 5×10−324

for double precision respectively. At this point we obtain the
maximum σa which can be used in practice by recalling that
a = eµa+σaX where X ∼ N (0, σ2

x). If we consider that
σ2
x = 1 and that the distribution of x is truncated at 10σx, we

obtain that σsingle
a,MAX = 15.6 and σdouble

a,MAX = 32.74 for single
and double precision respectively. To conclude, even tough
this trick has some limitations in practical applications and
σa cannot be chosen to be arbitrarily large, it is important
to consider that small values of σa are sufficient to provide
secrecy guarantees.

VI. CONCLUSIONS

In this paper we considered the existing trade-off between
the processing capabilities and the secrecy of a compressive
cryptosystem. In fact, we showed that it is possible to design
a compressive cryptosystem which offers a good balance
between these two characteristics. More in detail, relying on
the measurements information leakage, the proposed method
enables fast anomaly detection and increased secrecy through
a simple random multiplication. Its effectiveness is proven
from both theoretical and experimental points of view. To
conclude, it is worth noting that, while the literature of CS
encryption schemes is increasing, there is still a open gap
towards practical implementations, and this paper presents a
few possible solutions.

APPENDIX

Proof of Lemma III.2. At first we show that I(z;x) =
I(z; εx). From [9] we have that p(y|x) = p(y|εx), thus



p(z|x) =
∫
p(z|y)p(y|x)dy =

∫
p(z|y)p(y|εx)dy = p(z|εx).

Then, we can write I(z;x) = I(z;x, εx) = I(z; εx) +
I(x; z|εx) = I(z; εx). This is due to the fact that since
p(z|x) = p(z|εx), we have that I(x; z|εx) = I(x; z|x) =
h(x|x)−h(x|z, x) = 0. Lastly, let us define uz = z/εz which
allows us to write I(εx; z) = I(εx; εz, uz) = I(εx; εz) +
I(εx;uz|εx) = I(εz; εx) since uz is uniformly distributed on
a hypersphere and it is independent on εz and εx.
Proof of Lemma III.3. To prove this lemma, in a similar fash-
ion to [19], we start the derivation obtaining a bound on
I(εz; εy) which, under the assumptions of the Lemma and
since the logarithm is a deterministic and invertible function,
it is equal to I(ε̄z; ε̄y) with ε̄z = ln εz and ε̄y = ln εy . For this
reason we carry on the derivation starting from the equation
ε̄z = 2ā+ ε̄y where ā = ln a. By definition we have

I(ε̄z; ε̄y) = h(ε̄z)− h(ε̄z|ε̄y) = h(ε̄z)− h(2ā) (4)

Since the variance of a normal distributed r.v. with vari-
ance σ2 is given by 1

2 log(2πσ2), focusing on the sec-
ond term, we have that h(2ā) = 1

2 ln
(
8πeσ2

a

)
. For

what concerns the first terms, since it is difficult to ob-
tain its entropy in closed form, we will bound it using its
maximum. We choose to bound it with the entropy of a
Gaussian distribution having the same variance as ε̄z since
they share the same support (−∞,+∞). Since p(εy|εx) =

Gamma
(
m
2 , 2σ

2
φmεx

)
, by the law of total variance, we have

that var(ln ε̄y) = E
p(εx)

[
var

p(εy|εx)
(ε̄y)

]
+ var

(
E

p(εy|εx)
[ε̄y]

)
=

ψ1

(
m
2

)
+var

(
ψ
(
m
2

)
+ ln(2σ2

Φmεx)
)

= ψ1

(
m
2

)
+var(ln εx).

Thus, the variance of ε̄z is given by var(ε̄z) = 4σ2
a +

ψ1

(
m
2

)
+ var(ln εx). Hence we can bound h(ε̄z) with the

entropy of a gaussian distritbution having the same variance as
h(ε̄z) ≤ 1

2 ln
(
2πe

[
4σ2

a + ψ1

(
m
2

)
+ var(ln εx)

])
. If we now

put together the two terms in (4), we can obtain I(εz; εy) =

I(ε̄z; ε̄y) ≤ 1
2 ln

(
1 +

ψ1(m2 )+var(ln εx)

4σ2
a

)
In order to link the

I(εz; εy) with I(εz; εx) we can note that the energies follow
a Markov chain εz → εy → εx. Thus, if we apply the data
processing inequality, we get I(εz; εx) ≤ I(εz; εy).
Proof of Proposition III.5. Here we give an intuitive explana-
tion of the validity of the bounds in the asymptotic case. From
Proposition 2 in [10], we have that p(y|x) ∼ N

(
0, σ2

ΦεxIm
)

as n→∞. Moreover, we have that the bound in Lemma III.3
will only hold with the equal sign iff εz is distributed as a
log-Normal random variable. However, under the assumption
of a being distributed as a log-Normal, εz = a2εy can not
be log-Normal since such distribution can only be obtained as
the product of log-Normal distributed RVs which would imply
εy is log-Normal, which is not the case. This means that the
bound holds for strict less-than sign. Given these considera-
tions, and recalling that in the asymptotic sense p(y|x) tends to
a Normal distribution, there must be an n starting from which
the asymptotic mutual information approaching the true one
is smaller than the value of the upper bound. This verifies the
proposition.
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sensing of ultrasound images: Sampling of spatial and frequency do-
mains,” in Signal Processing Systems (SIPS), 2010 IEEE Workshop on.
IEEE, 2010, pp. 231–236.

[4] D. Gangopadhyay, E. G. Allstot, A. M. Dixon, K. Natarajan, S. Gupta,
and D. J. Allstot, “Compressed sensing analog front-end for bio-sensor
applications,” IEEE Journal of Solid-State Circuits, vol. 49, no. 2, pp.
426–438, 2014.

[5] W. Trappe, R. Howard, and R. S. Moore, “Low-energy security: Limits
and opportunities in the internet of things,” IEEE Security & Privacy,
vol. 13, no. 1, pp. 14–21, 2015.

[6] M. A. Davenport, P. T. Boufounos, M. B. Wakin, and R. G. Baraniuk,
“Signal processing with compressive measurements,” IEEE Journal of
Selected Topics in Signal Processing, vol. 4, no. 2, pp. 445–460, 2010.

[7] M. Testa and E. Magli, “Compressive estimation and imaging based
on autoregressive models,” IEEE Transactions on Image Processing,
vol. 25, no. 11, pp. 5077–5087, 2016.

[8] Y. Rachlin and D. Baron, “The secrecy of compressed sensing measure-
ments,” in Communication, Control, and Computing, 2008 46th Annual
Allerton Conference on. IEEE, 2008, pp. 813–817.

[9] T. Bianchi, V. Bioglio, and E. Magli, “Analysis of one-time random
projections for privacy preserving compressed sensing,” IEEE Transac-
tions on Information Forensics and Security, vol. 11, no. 2, pp. 313–327,
2016.

[10] V. Cambareri, M. Mangia, F. Pareschi, R. Rovatti, and G. Setti, “Low-
complexity multiclass encryption by compressed sensing,” IEEE Trans-
actions on Signal Processing, vol. 63, no. 9, pp. 2183–2195, 2015.

[11] T. Bianchi and E. Magli, “Analysis of the security of compressed sensing
with circulant matrices,” in Information Forensics and Security (WIFS),
2014 IEEE International Workshop on. IEEE, 2014, pp. 173–178.

[12] R. Fay, “Introducing the counter mode of operation to compressed
sensing based encryption,” Information Processing Letters, vol. 116,
no. 4, pp. 279–283, 2016. [Online]. Available: http://dx.doi.org/10.
1016/j.ipl.2015.11.010

[13] T. M. Cover and J. A. Thomas, “Elements of information theory 2nd
edition,” 2006.

[14] D. W. Scott, “Box–muller transformation,” Wiley Interdisciplinary Re-
views: Computational Statistics, vol. 3, no. 2, pp. 177–179, 2011.

[15] G. Marsaglia, W. W. Tsang et al., “The ziggurat method for generating
random variables,” Journal of statistical software, vol. 5, no. 8, pp. 1–7,
2000.

[16] R. Fay and C. Ruland, “Compressive sensing encryption modes and their
security,” 2016.

[17] N. Ferguson, S. Lucks, B. Schneier, D. Whiting, M. Bellare, T. Kohno,
J. Callas, and J. Walker, “The skein hash function family,” Submission
to NIST (round 3), vol. 7, no. 7.5, p. 3, 2010.

[18] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “The keccak
sha-3 submission,” Submission to NIST (Round 3), vol. 6, no. 7, p. 16,
2011.

[19] T. Bianchi, A. Piva, and M. Barni, “Analysis of the security of linear
blinding techniques from an information theoretical point of view,” in
2011 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2011, pp. 5852–5855.


