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Discriminating pathological voice from healthy voice using Cepstral Peak

Prominence Smoothed distribution in sustained vowel

Antonella Castellana1, Alessio Carullo1, Simone Corbellini1, Arianna Astolfi2

Abstract

This paper deals with Cepstral Peak Prominence Smoothed (CPPS) distribution and its descriptive

statistics as possible indicators of vocal health status. 41 voluntary patients and 35 control subjects

participated in the experiment: all of them followed the same protocol, which includes three repetitions

of the sustained vowel /a/ simultaneously acquired with a microphone in air and a contact sensor, the

perceptual assessment of voice quality and the videolaringoscopy examination. The fifth percentile and

the standard deviation of CPPS distribution were the parameters included in the best logistic regression

models for the microphone in air and the contact sensor, respectively. The selected CPPS parameters had

a strong to good discrimination power: an Area Under Curve of 0.95 and 0.87 has been found for the

microphone in air and for the contact sensor, respectively. For each CPPS parameter, the repeatability has

been also estimated and the Monte Carlo method has been implemented for the uncertainty evaluation

of the discrimination threshold. Furthermore, preliminary recommendations for better accuracy and

repeatability of future studies are provided: analyses on the main CPPS influence quantities and on the

effect of the frequency content of the signal spectrum on the CPPS parameters have been provided.

Index Terms

Cepstral analyses, human voice, biomedical measurement, acoustic devices, reproducibility of re-

sults, Monte Carlo methods, uncertainty

I. INTRODUCTION

Traditionally, voice quality has been assesed using subjective tests, in which experts listen to

live or recorded vocal signals and perceptually rate them. In order to overcome the subjectivity

and the expensiveness of such methods and with the aim to find a less time-consuming tool,

researchers started to analyze voice signals and to extract several parameters as indexes of

different aspects of voice and voice-related issues.
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A first field of study deals with voice acoustic analysis as objective tool to assess voice

disorders thanks to its non-invasiveness, low cost and ease of application [1]. The numerical

output provided is relatively easy to communicate to all stakeholders, e.g. voice clinicians,

patients, third-party payers and physicians [2], and allows tracking of vocal behavior. Such

analysis is thus appealing not only for diagnosis, but also for dysphonia prevention and dysphonia

treatment.

Another object of study about the analysis of voice signals is related to the recent spread of

innovative digital technologies that has caused the need of evaluating speech quality in telephone

systems, e.g. speech quality as one of the parameter for the service quality provided to the

users by operators. Therefore, several non-intrusive tools have also been implemented to predict

the speech quality in a telephone conversation, such as algorithms that use clipping statistics

[3], digital watermarking [4], GSM encoders [5] and optimized multi-sine signals [6], but also

In-Service Nonintrusive Measurement Device [7]. Moreover, techniques for the discrimination

between speech and voice-band data transmission in telephone systems have been explored [8].

A further voice-related field is based on the investigation of vocal signals with the aim to study

illnesses that are not directly linked to the vocal apparatus but for which the voice quality is an

effective indicator. For example, monotonous sounding speech indicates depression and suicidal

individuals often use toneless sounds while speech [9]. Furthermore, analysis techniques have

been developed in order to detect snoring sounds during sleep [10] and to study the obstructive

sleep apnea [11].

About the first field of study, that is the vocal signal analysis as a detector of vocal disorders,

many algorithms and methods have been implemented (see Buder for an overview [12]), even

though most of them suffer from a lack of metrological characterization. In this paper, the authors

describe a method to obtain an objective analysis of dysphonia that takes the main uncertainty

contributions into account and allows the main influence quantities to be identified.

The first investigated parameters were those in the time domain, e.g. jitter and shimmer,

whose main limitations have been highlighted in the existing literature. Since they depend on

the accurate identification of cycle boundaries, that is where a cycle of vocal-fold vibration starts

and finishes, they become unreliable with highly perturbed signals [13]. Furthermore, the good

performance of the speech task, i.e. a vowel produced with steady pitch and loudness, is very

important for the computation of such parameters, since any changes in the signal could be read

as increases in vocal perturbation [14]. To overcome such limitations, spectral- and cepstral-
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based measures are currently considered: they can be applied also to continuous speech that is

able to represent everyday speaking patterns [15]. In particular, cepstral parameters have been

defined the most promises indexes of dysphonia severity. They are evaluated in the cepstrum

domain, that is a log power spectrum of a log power spectrum [16]: while the first power

spectrum shows the frequency distribution of the signal energy, the second spectrum indicates

how periodic the harmonic components in the spectrum are. Two cepstral parameters have been

defined, namely the Cepstral Peak Prominence (CPP) and its smoothed version (CPPS). CPP is a

measure (in dB) of the cepstral peak amplitude, normalized for overall signal amplitude through

a linear regression line estimated relating quefrency to cepstral magnitude [17]. CPPS considers

two smoothing steps before calculating the cepstral peak prominence [16]. The meta-analysis on

correlation coefficients between acoustic measurements and perceptual evaluation of voice quality

by Maryn et al. [18] highlighted the relevance of CPPS: they found that CPPS satisfied the meta-

analytic criteria in sustained vowels as well as in continuous speech. CPPS has also resulted

well correlated with perceptual judgement of overall grade of dysphonia and different types

of voice quality [19]-[20]. Additionally, significantly different CPPS values between dysphonic

and control group have been found in the vowel /a/ [21]. Despite the attention given to the

parameter, in the existing literature there is a lack of investigation on CPPS diagnostic precision.

Such analysis has been performed for the Acoustic Voice Quality Index (AVQI), which is a

multivariate construct that includes CPPS and other four acoustic metrics [22]. All the above-

mentioned studies used cepstrum software packages to estimate CPPS, which only provide the

mean of CPPS values and in some cases the standard deviation: the most popular packages are

Praat [23], SpeechTool [24] and the Analysis of Dysphonia in Speech and Voice module [25]

of Multi-Speech from KayPENTAX (Montvale, NJ). These programs process signals acquired

with microphones in air only.

In recent years, the diffusion of in-field long-term monitorings instead of in-clinic short-term

measurements has been providing distributional parameters that are able to characterize the

vocal behavior [26]. Proper devices for such voice monitoring have been developed: the NCVS

dosimeter [27], the VoxLog [28], the Ambulatory Phonation Monitor [29], the Voice Care [30]-

[33] and a smartphone-based platform [34]. The main advantage of these devices is the use of a

contact sensor for the acquisition of the voice signal: it has a very limited sensitivity with respect

to background noise levels and it does not impair the subject activity. A recent work by Mehta

et al. [35] evaluated CPP from vowels acquired with a microphone in air and an accelerometer
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sensor using a commercially available program. They found that CPP measures from the two

sensors were highly correlated, without significant differences between healthy and pathological

voice.

The present paper investigates CPPS distributions in sustained vowel /a/ and their descriptive

statistics as discriminators between healthy and unhealthy voices. Descriptive statistics different

than the mean have been considered as possible candidate that could exhibit higher discrimination

power. Signals acquired with two types of microphones have been included in the analysis,

that are a headworn microphone and a contact Electret Condenser Microphone (ECM). A first

uncertainty contribution that has been taken into account is related to the repeatability of a subject

in performing the speech task. This contribution, which has been estimated as the intra-speaker

variability of CPPS parameters in repeated sessions, has been used to assess the uncertainty

of the threshold values between healthy and unhealthy voices by means of the Monte Carlo

method. Preliminary results have been discussed in [36], while the present paper reports updated

outcomes and the results of further investigations. The main influence quantities of the estimated

cepstral parameters have been identified, which are the fundamental frequency of the vocalization

and the broadband noise superimposed to the signal, providing recommendations for improving

the accuracy of future studies. In addition, the reliability of CPPS estimation with respect to the

frequency content of the vocal spectrum has been evaluated, which is mainly dependent on the

bandwidth of the measuring chain used to acquire the vocal signal.

II. METHOD

A. Subjects

Fourty-one voluntary patients, 30 females and 11 males, participated in this study (age range:

20-77 years; mean: 51 years; standard deviation SD: 18.1 years). Thirty-five healthy adults with

normal voices, 12 females and 23 males, were also included in the experiment (age range: 21-58

years; mean: 29 years; SD: 11.1 years). A clinical protocol that included a careful case history,

auditory-perceptual measures, and videostroboscopy, was followed for all the participants, who

were all native Italian speakers. Table I shows the otolaryngologic diagnoses in the patient group.

B. Procedure

The protocol was designed in order to avoid each step affecting the following one. The relevant

steps of the procedure can be summarized as follows:
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TABLE I

DIAGNOSES FOR THE PATIENT GROUP.

Organic dysphonia Patients

Cyst 8

Edema 10

Sulcus vocalis 3

Polyp 4

Chronic laryngitis 4

Vocal fold hypostenia 3

Vocal fold paresis 2

Vocal fold nodul 2

Neurological disorder 3

Post-surgery dysphonia 2

1) each participant was asked to vocalize the sustained vowel /a/ on a comfortable pitch and

loudness until he/she had need to breathe again, while he/she worn a headworn microphone

and a contact microphone simultaneously;

2) participants repeated the previous task other two times, waiting few seconds of silence

between the repetitions

3) two otolaryngologists performed the clinical practice that included a careful case history,

auditory-perceptual measures (GIRBAS scale) and the videolaringoscopy examination.

The vowel /a/ was selected as speech material due to its large use in acoustic analysis of voice

and the duration of each phonation was always longer than 2 s, as recommended in [38].

C. Equipment for recording procedure

The voice recordings were performed in a quiet room, where the A-weighted equivalent

background noise level was measured with a calibrated class-1 sound level meter (NTi Audio

XL2) over a period of 5 minutes in four different days, obtaining the average value of 50.0 dB

(SD = 2.0 dB). Before performing the tasks described in steps (1) and (2), subjects worn the

two microphones, that were:

• an omni-directional headworn microphone Mipro MU-55HN, which was placed at a distance

of about 2.5 cm from the lips’ edges of the talker, slightly to the side of the mouth. The

microphone, which exhibits a flatness of 3 dB in the range from 40 Hz to 20 kHz, was
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TABLE II

NUMBER OF SUBJECTS WHO UNDERTOOK THE EXPERIMENTS WITH THE DIFFERENT DEVICES MIPRO MU-55HN

HEADWORN MICROPHONE AND ECM AE38 CONTACT MICROPHONE. NUMBER OF PATIENTS AND CONTROLS AND FEMALES

(F) AND MALES (M) ARE ALSO REPORTED.

Mipro MU-55HN ECM AE38

F M Overall F M Overall

Patients 30 11 41 28 6 34

Controls 12 23 35 12 23 35

Overall 42 34 76 40 29 69

connected to a bodypack transmitter ACT-30T, which transmits to a wireless system Mipro

ACT 311. The output signal of this system was recorded with an handy recorder ZOOM H1

(Zoom Corp., Tokyo, Japan), that use a sample rate of 44.1 kSa/s and 16 bit of resolution;

• an Electret Condenser Microphone (ECM AE38 [Alan Electronics GmbH (Dreieich, Ger-

many)]), which was fixed at the jugular notch of each talker by means of a surgical band.

The microphone senses the skin vibrations induced by the vocal-fold activity and it was

connected to the handy recorder ROLAND R05 (Roland Corp., Milano, Italy), that samples

the signal at a rate of 44.1 kSa/s using 16 bit of resolution.

Table II shows the details related to the subjects who performed the experimental task with

the two microphones.

D. Data processing

Data were transferred from the handy recorders to a Personal Computer in order to be post-

processed. First, the phonation interval from 1 s to 6 s has been selected for each sustained vowel,

using the software Adobe Audition (version 3.0). Then, a specific MATLAB (R2014b, version

8.4) script, developed by the authors, has been used to estimate the Cepstral Peak Prominence

Smoothed (CPPS) following the procedure described by Hillenbrand [16]. The selected signal

was down-sampled to 22050 Sa/s and CPPS has been estimated every 2 ms (frame) using

a 1024-point (46 ms) analysis window. For each window, the Fast Fourier Transform (FFT)

algorithm has been implemented twice in order to obtain the spectrum amplitude at the first

step and then the cepstrum from it. Before extracting the cepstral peak, a two smoothing steps

procedure has been performed as follows: the smoothing in time averages cepstra using a time-
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window of 14 ms (7 frames) and then the smoothing in cepstrum averages cepstral-magnitude

across quefrency with a seven-bin window. On the smoothed cepstrum, a regression line has

been estimated in the quefrency vs cepstral magnitude domain without considering the first

millisecond, as suggested in [17]. Quefrencies below 1 ms are more affected by the spectral

envelope, which varies slowly, than by the spectrum periodicity [37], so they have not been

considered in the regression line evaluation. The Cepstral Peak Prominence Smoothed (CPPS)

has been calculated as the difference in dB between the peak in the cepstrum and the value on

the regression line at the same quefrency. The cepstral peak has been searched in the range from

3.3 ms to 16.7 ms, since the quefrency corresponding to the cepstral peak is the reciprocal of

the fundamental frequency and the respective values of 60 Hz and 300 Hz match the usual range

of fundamental frequency in adults.

A time series of 2500 CPPS values (5000 ms/2 ms) has been obtained for each speech

sample, which is treated as a distribution. Examples of CPPS distributions for pathological

and healthy voices can be found in [36]. For each CPPS distribution, the following descriptive

statistics have been calculated: mean (CPPSmean), median (CPPSmedian), mode (CPPSmode),

5th percentile (CPPS5prc) and 95th percentile (CPPS95prc) as measures of location of the

distribution; standard deviation (CPPSstd) and the interval between the maximum and the

minimum value (CPPSrange) as measures of its variance, kurtosis (CPPSkurt) and skewness

(CPPSskew) for the characterization of distribution shape.

E. Analyses

1) CPPS parameters in healthy and unhealthy voices: the two-tailed Mann-Whitney U-test

[39] has been used to investigate statistical differences between each coupled list of descriptive

statistics related to the patient group and the control subjects. It is a non-parametric test that refers

to independent samples: the null hypothesis (H0) states that MD = 0, where MD is the median

of the population of the differences between the sample data for patients and controls. When the

null hypothesis is accepted, the two lists of values seem to come from the same population, i.e.

it is not possible to distinguish healthy and unhealthy samples. The one-sample Kolmogorov-

Smirnov test has been performed to verify that data in each list are not normally distributed,

with the exception for the kurtosis values of CPPS distributions (CPPSkurt) from patients. Such

result allows the use of a non-parametric test for the analysis. The two above-mentioned tests

have been performed using a MATLAB script.
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2) Best logistic regression model: with the aim of investigating the effectiveness of the

descriptive statistics for CPPS distribution as discriminators between dysphonic and healthy

voices, a binary classification approach has been followed: a dichotomous variable, which has

been coded as 0 or 1, has been given to each individual value of the descriptive statistics for CPPS

distribution depending on the absence or the presence of dysphonia, respectively. The absence or

the presence of the voice problem has been determined by the outcome of the videolaringoscopy

examination. Then, a single-variable logistic regression model has been performed for each

descriptive statistic and the best model was selected based on the highest Mc Fadden’s R2 and

Area Under Curve (AUC) [40]. The Mc Fadden’s R2 characterizes the predictive power of a

logistic regression model, while the area under the Receiver Operating Characteristic (ROC)

curve describes the classification accuracy of the model. Area Under Curve (AUC) ranges from

0.5 to 1.0: an AUC near to 1 indicates a strong model’s ability to separate those subjects with

vocal disorders from those who have a healthy voice, while an AUC close to 0.5 means that the

model has a poor capability to discriminate between the two groups.

Furthermore, the best threshold for the classification of healthy and pathological voices has

been selected, observing a graph where sensitivity and specificity versus each possible threshold

are plotted. Sensitivity is the true positive rate, i.e. the quota of people with voice problems who

are correctly classified as positive. Specificity is the true negative rate, that is the percentage

of subjects with healthy normal voice who are correctly identified as negative. The authors

privileged a greater true positive rate (sensitivity) in selecting the best threshold, instead of

taking the usual threshold that corresponds to the crossing point of sensitivity and specificity

curves. All the analyses related to the logistic regression model has been performed using the

statistical program RStudio (Version 0.99.489).

3) Intra-speaker variability: the repeatability of the descriptive statistics for CPPS distribution

that have been included in the empirical fitted models has been investigated. Sixty-one subjects

performed correctly the second task described in paragraph II-B, while wearing both the head-

worn microphone and the ECM. For these participants, CPPS distributions have been calculated

in the three repetitions of the sustained vowel /a/.

4) Monte Carlo method: the uncertainty estimation of the threshold values obtained for each

logistic model has been assessed using the Monte Carlo method. First, the best fitting distribution

for the lists of CPPS parameters that were included in the models has been determined throught

the Maximum Likelihood Estimation algorithm in MATLAB. This analysis has been performed
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for both healthy and pathological voices, including CPPS parameters from the three repetitions

of the vowel for each subject. Then, 1000 trials of the Monte Carlo method have been repeated

by randomly sampling 50 values from each fitted distribution. For each trial the best threshold

of the logistic model has been determined, setting the equality between the sensitivity and the

specificity obtained from the ROC analysis.

5) Influence quantities: the effects of fundamental frequency and broadband noise as influence

quantities of the CPPS have been investigated by feeding the script that estimates the CPPS

statistics with synthesized signals with well known characteristics. A set of vowels /a/ with the

fundamental frequency in the range of 80 Hz to 260 Hz (frequency step of 20 Hz) has been

synthetically generated using the software Sopran [41] with a sampling rate of 22050 Sa/s. The

selected frequencies cover both the typical female and male fundamental frequency range in

sustained vowels of adults [42]. For each fundamental frequency, a 2 s long vowel has been

created setting the first eight formants as pass-band filters with a Q factor of 20 and center

frequencies of 580 Hz, 1.7 kHz, 2.9 kHz, 4.3 kHz, 5.4 kHz, 6.5 kHz, 7.7 kHz, 9.0 kHz. The

Signal-to-Noise Ratio (SNR) of this set of vowels is of about 100 dB, which is mainly related

to the quantization noise. Other two sets of vowels with the same frequency characteristics have

been created adding two levels of random noise using MATLAB noise generator. A mean zero

white Gaussian noise has been superimposed to the vowel signals setting the standard deviation

in order to obtain SNR of 40 dB and 20 dB. For each fundamental frequency, CPPS distributions

have been estimated by processing the 1 s long middle part of the vowel signal.

6) Frequency content of the spectrum: the 4 s middle part of a sustained vowel /a/ acquired

with the headworn microphone from a control subject have been used in order to investigate

the behavior of CPPS distributions and their statistics with different frequency contents. Starting

from the full spectrum bandwidth of the signal, that is of about 11 kHz, a 500 Hz frequency

content has been cut away at a time and CPPS computation has been repeated for each step.

This operation has been done down to a bandwidth of 1 kHz.

III. RESULTS

A. Microphone in air

The p-values obtained from the Two-tailed Mann-Whitney U-test of the lists of descriptive

statistics related to the two groups of subjects were lower than 0.05, with the exception of

skewness and kurtosis. These outcomes mean that the null hypothesis is rejected for most of

November 24, 2017 DRAFT



IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. XX, NO. Y, ZZZ 2017 10

CPPS parameters: CPPS distributions are significantly different in location, with an average value

of 15.2 dB and 18.2 dB for CPPSmean in patients and controls, respectively, and in variance,

with an average value of 1.9 dB and 1.3 dB for CPPSstd in pathological and healthy voices,

respectively.

Assuming the presence/absence of voice disorders as dependent variable, the best logistic re-

gression model between healthy and unhealthy voice includes CPPS5prc as independent variable.

The following formula defines the best empirical fitted model:

P (Unhealty) =
e(28.8−1.93·CPPS5prc)

1 + e(28.8−1.93·CPPS5prc)
(1)

where P (Unhealthy) is the probability of having unhealthy voice, which ranges from zero to

one. The negative coefficient of CPPS5prc shows that the probability to have unhealthy voice

decreases as the CPPS5prc increases. A Mc Fadden’s R2 equal to 0.62 and an AUC of 0.95 of

the model highlight that there is a clear separation between patients and controls: Fig. 1 shows

the fitted values obtained for each subject and most of patients are in the upper part of the

graph, where the probability of having unhealthy voice is near to one, while most of controls

have lower scores, near to zero. The best classification threshold was P (Unhealthy) = 0.44, that

corresponds to 15.0 dB in terms of CPPS5prc, with a sensitivity equal to 0.90 and a specificity

of 0.94. As shown in Fig. 1, the four patients that are wrongly classified by the model have

been judged with the lowest overall grade G of dysphonia.

The results on the repeatability of CPPS5prc are summarized in Fig. 2. For each subject, it

shows the average values and the relative experimental standard deviations of the CPPS parameter

in the three repetitions of the vowel /a/ acquired with the headworn microphone. Among the

patient group, a clear separation between the first two grades G of dysphonia is not highlighted

in the figure, while the three patients with G=3 show CPPS5prc lower than 8 dB. The average

of the standard deviations of the CPPS5prc is equal to 0.8 dB for the patient group and 0.5 dB

for the control group.

Fig. 2 also shows the threshold uncertainty, that is represented as a gray area around the

CPPS5prc threshold. The probability density functions of the best-fitted distributions of CPPS5prc

in pathological and healthy voices (bimodal and normal, respectively) have been used in a Monte

Carlo simulation based on 1000 trials [36]. The output was a 95% confidence interval of the

threshold equal to 0.7 dB, which constitutes the width of the gray area in the figure 2.
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Fig. 1. Fitted values of the best logistic regression model, in terms of probability of having unhealthy voice, for vocalizations

acquired with the headworn microphone Mipro MU-55HN. Circle points indicate the patient group (empty circles for the patients

having a overall grade G of dysphonia equal to 1, gray circles for G=2 and black points for G=3); diamond points represent the

control group. The bold line indicates the threshold value (0.44), which best separates patients and control subjects.

Fig. 2. Averaged values of CPPS5prc in the three repetitions of the vowel for each subject, acquired with the headworn

microphone Mipro MU-55HN. Circle points indicate the patient group with different grades of dysphonia; diamond points

represent the control group. Bars indicate the experimental standard deviation for each subject. The bold line indicates the

threshold value (15.0 dB) and the gray area corresponds to its 95% confidence interval.

November 24, 2017 DRAFT



IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. XX, NO. Y, ZZZ 2017 12

B. Contact microphone

According to the outputs of the Two-tailed Mann-Whitney U-test, the lists of descriptive

statistics for CPPS distributions related to the groups of patients and controls, who were recorded

with the ECM, were significantly different in CPPSmean, CPPSmedian, CPPSstd, CPPSrange

and CPPS5prc (p-values < 0.05). As a consequence, CPPS distributions resulted significantly

different in location, e.g. the average CPPSmean was equal to 18.0 dB for patients and 19.7 dB

for controls, and in variance, e.g. the average CPPSstd was equal to 1.7 dB and 0.9 dB for

patients and controls, respectively.

The following formula describes the best empirical fitted logistic model for vowels acquired

with ECM, which uses CPPSstd as independent variable:

P (Unhealty) =
e(−6.33+5.50·CPPSstd)

1 + e(−6.33+5.50·CPPSstd)
(2)

where P (Unhealthy) is the probability of having unhealthy voice, which ranges from zero

to one. The positive coefficient of CPPSstd shows that the probability to have unhealthy voice

increases as CPPSstd increases. The empirical model has a moderate discrimination power with

a Mc Fadden’s R2 equal to 0.38 and an AUC of 0.87: Fig. 3 shows that the fitted values of the

two groups are not clearly separated. The best classification threshold is P (Unhealthy) = 0.43,

that corresponds to 1.1 dB in terms of CPPSstd, with a sensitivity of 0.79 and a specificity of

0.69. Fig. 3 also shows that six out of seven patients that are wrongly classified by the model

have been perceptually rated with the lowest overall grade G of dysphonia.

For each subject, the average values and the relative experimental standard deviations of

CPPSstd in the three repetitions of the vowel /a/ acquired with the ECM are reported in Fig.

4. One should note that patients rated with G=1 have lower CPPSstd than those with G=2 and

G=3. The average of the standard deviations of the CPPSstd is equal to 0.3 dB for the patient

group and 0.2 dB for the control group.

The same numerical procedure described in III-A has been implemented in order to estimate

the threshold uncertainty, where a bimodal and a lognormal probability density functions have

been used for pathological and healthy voices, respectively. The output was a 95% confidence

interval of 0.2 dB. This interval is represented as a gray area around the CPPSstd threshold in

Fig.4.
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Fig. 3. The same of Fig. 1, for samples acquired with the contact microphone ECM AE38. The bold line indicates the selected

threshold value, that is 0.43, which best separates patients and control subjects.

Fig. 4. Averaged values of CPPSstd in the three repetitions of the vowel for each subject, acquired with the contact microphone

ECM AE38. Circle points indicate the patient group with different grades of dysphonia; diamond points represent the control

group. Bars indicate the experimental standard deviation for each subject. The bold line indicates the threshold value (1.1 dB)

and the gray area corresponds to its 95% confidence interval.

C. Influence quantities: fundamental frequency and noise

Fig. 5 shows the behavior of CPPS5prc and CPPSstd corresponding to the sets of vowels

/a/ that have been synthesized according to the procedure described in the section II-E5.

The estimated CPPS5prc (red lines) shows a non monotonic behavior as the fundamental

frequency increases for all of the three synthesized SNR levels. The standard deviation of the

parameter CPPS5prc in the investigated frequency range resulted in 1.3 dB, 1.6 dB and 1.3 dB
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Fig. 5. Behavior of CPPS5prc (red lines) and CPPSstd (blue lines) vs fundamental frequency, for three SNR levels (100 dB,

40 dB and 20 dB).

for SNR values equals to 100 dB, 40 dB and 20 dB, respectively. Hence the CPPS5prc shows a

moderate dependence on the fundamental frequency, which is of the same order of magnitude of

the estimated uncertainty of the discrimination threshold between healthy and unhealthy voices.

However, the estimated standard deviation refers to a frequency range that includes both male

and females voices, then lower variability is obtained by separating the two frequency ranges.

In addition, it is possible to strongly reduce the observed variability by limiting the field of use

of the fundamental frequency: from a practical point of view, this could be implemented by

providing a reference frequency to the subject before he/she produces the sustained vowel. With

respect to the SNR level, the three CPPS5prc curves are clearly separated: the one related to the

highest SNR (100 dB) is above the other two curves, with an average value of 20.6 dB, while

the one related to the noisiest signal (SNR of 20 dB) exhibits an average value of 16.3 dB.

These findings confirm that the amplitude of the cepstral peak is dependent on the depth of the

valleys between adjacent harmonics: higher the noise content in the spectrum shorter the height

of the peak amplitude in the cepstrum [43]-[44].

The parameter CPPSstd (blue lines) vs the fundamental frequency is seemingly flat for the

signals with SNR of 40 dB and 20 dB, while it exhibits an up-down trend when SNR is equal

to 100 dB. Furthermore, CPPSstd tends to rise as SNR increases: its average value in the

investigated frequency range is 0.7 dB (standard deviation 0.3 dB) for SNR = 100 dB, 0.6 dB
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(s.d. 0.1 dB) for SNR = 40 dB and 0.5 dB (s.d. 0.1 dB) for SNR = 20 dB. This outcome

proves that CPPS distributions have a higher variation when negligible noise is superimposed to

the vocal signal.

One should note that the obtained values for the parameters CPPS5prc and CPPSstd cor-

respond to a healthy voice, since the former is higher than the identified threshold of 15.0 dB

and the latter is lower than the threshold of 1.1 dB. This result, which is valid regardless of

the effects of the investigated influence quantities, confirms the effectiveness of the proposed

method, since synthesized vowels correspond to really healthy voices.

A further consideration can be made that is related to the differences of CPPS5prc and

CPPSstd between female and male typical fundamental frequency ranges. As shown in Fig. 5,

adult male range is typically assumed from 80 Hz to 180 Hz, while adult female fundamental

frequency is in the range from 160 Hz to 260 Hz. As highlighted before, CPPS5prc curves have

a slight downtrend as fundamental frequency increases. This seems confirmed by the results

reported in the upper part of Fig. 6, since for the three investigated SNR levels the average of

CPPS5prc is higher in the male range than in the female one. However, there is no significant

difference between the two mean values of genders, since the standard deviations corresponding

to the two frequency ranges overlap. The bottom part of Fig. 6 shows the behavior of CPPSstd

in male and female fundamental frequency ranges: also in this case, no significant differences

have been found, even though the average CPPSstd is higher in the male range than in the

female one for SNR = 100 dB, while the opposite behavior is observed for the other two SNR

levels.

D. Frequency content of the spectrum

Fig. 7 shows how CPPS5prc (red line) and CPPSstd (blue line) change when they are

estimated from a healthy vowel /a/ whose spectrum has different frequency contents, starting from

11 kHz down to 1 kHz. Both the parameters have small variations between 11 kHz and 5 kHz,

then CPPS5prc increases reaching its maximum value for a frequency content of 3 kHz and it

decreases again down to 1 kHz. The spectrum magnitude of the vowel under analysis, which is

reported in the upper part of Fig. 7, highlights that the harmonic components between 5 kHz and

11 kHz have a limited energy content. In other words, these components contribute to the overall

periodicity of the spectrum in a negligible way, so CPPS5prc keeps quite constant down to 5 kHz

(the dotted black vertical line helps in reading the graphs). If instead the frequency content of the
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Fig. 6. Average values of CPPS5prc (upper part) and CPPSstd (bottom part) in male and female frequency ranges; bars

indicate the confidence interval obtained with a coverage factor k = 2.

spectrum is limited to 3 kHz, sharp and clear harmonic components are deleted, which have an

important role in the definition of the spectrum periodicity: for this reason CPPS5prc increases

between 5 kHz and 3 kHz. Eventually, the parameter CPPS5prc decreases between 3 kHz and

1 kHz because of the limited number of harmonic components included in the spectrum.

Differently from CPPS5prc, CPPSstd has a downward trend between 5.5 kHz and 3 kHz

and it tends to have an up-down trend around a constant value again where the spectrum has a

frequency content lower than 3 kHz. The reasons of such a change of behavior can be found

in the previous observations about the spectrum periodicity. Fig. 7 also shows the frequency

content of the signals acquired with the headworn microphone (MIC) and the ECM, which are

respectively 10 kHz (vertical red dashed line) and 3.5 kHz (vertical blue dashed line). As we

can observe in the graph at the bottom of the figure, the CPPS5prc has been estimated where

its behavior with the frequency content of the signal is almost stable, while CPPSstd, which

is calculated from the ECM signal, has been estimated in the region of its high variability with

respect to the frequency content.
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Fig. 7. (Bottom part) - Behavior of CPPS5prc (red line) and CPPSstd (blue line) vs frequency content of the spectrum.

(Upper part) - Spectrum magnitude of the vowel under investigation, acquired with the headworn microphone. Vertical dashed

lines correspond to the frequency content of signals acquired with the ECM (blue line) and with the headworn microphone (red

line). Vertical dotted black lines helps in reading the graphs.

IV. CONCLUSIONS

This paper investigates individual distributions of Cepstral Peak Prominence Smoothed (CPPS)

and their descriptive statistics as possible indicators of vocal health. CPPS distributions have been

obtained from sustained vowels /a/ vocalized by a group of patients and a group of controls and

acquired with a microphone in air and a contact sensor (ECM). Regarding the speech material

acquired with the microphone in air, the fifth percentile (CPPS5prc) resulted the best descriptive

statistic for CPPS distributions that is able to discriminate healthy and unhealthy voices. The

respective empirical logistic model shows a strong discrimination power (AUC = 0.95) and a

discrimination threshold of CPPS5prc=15.0 dB, with lower values indicating unhealthy status of

voice. Concerning the sustained vowels acquired with the ECM, instead, the standard deviation

(CPPSstd) was the best parameter that separates the two groups. The respective empirical logistic

model has a good discrimination power, with AUC of 0.87, and a discrimination threshold of
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CPPSstd=1.1 dB, with larger values for pathological voice. Differently from the results by

Mehta etal. [30], the proposed method is able to discriminate healthy and unhealthy voice from

both the microphone in air and a contact microphone. As expected, the intra-speaker variability

of the two CPPS parameters was larger in the patients group than in the control one: its respective

values were 0.8 dB and 0.5 dB for CPPS5prc and 0.3 dB and 0.2 dB for CPPSstd. This result

highlights the limited capability of patients in the vocal production.

The uncertainty of the discrimination threshold for the two parameters CPPS5prc and CPPSstd

has been also estimated: the 95% confidence intervals were 0.7 dB and 0.2 dB, respectively,

thus showing that its contribution is negligible with respect to the variability of each subject.

With the aim of providing guidelines that make the estimated CPPS parameters reliable, an

analysis of the main CPPS influence quantities has been performed. The obtained outcomes

highlighted that the fundamental frequency and the SNR level of the acquired signals could

significantly affect the discrimination between healthy and pathological voices. For this reason,

it is important to limit the field of use of the fundamental frequency, e.g. providing a reference

tone to the subject before he/she performs the speech task, and to avoid large difference in the

SNR level during the experimental campaign.

Further investigations have been made in order to estimate the effect of the frequency content

of the signal spectrum on the CPPS parameters. As the result of this analysis, it can be stated that

a reliable estimation of the parameters CPPS5prc and CPPSstd is obtained provided that the

frequency content of the spectrum is not lower than 5 kHz. This justifies the lower discrimination

power obtained for the contact microphone that showed a frequency content of about 3.5 kHz.
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