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Optimal Power Allocation Strategies in

Two-Hop X-duplex Relay Channel
Alessandro Nordio, Member, IEEE, Carla Fabiana Chiasserini, Fellow, IEEE,

Emanuele Viterbo, Fellow, IEEE

Abstract

We consider a dual-hop, decode-and-forward network where the relay can operate in FD or HD

mode (X-duplex relay). We model the residual self-interference as an additive Gaussian noise with

variance proportional to the relay transmit power, and we assume a Gaussian input distribution at

the source. Unlike previous work, we assume that the source is only aware of the transmit power

distribution adopted by the relay, but not of the symbols that the relay is currently transmitting.

This assumption better reflects the practical situation where the relay node forwards data traffic

but modifies physical-layer or link-layer control information. We then identify the optimal power

allocation strategy at the source and relay, which in some cases coincides with the HD transmission

mode. We prove that such strategy implies either FD transmissions over an entire time frame, or

FD/HD transmissions over a variable fraction of the frame. We determine the optimal transmit power

level at the source and relay for each frame, or fraction thereof. We compare the performance of

our scheme against reference FD and HD techniques, which assume that the source is aware of the

symbols instantaneously transmitted by the relay, and show that our solution closely approaches

such strategies.

Index Terms

Full-duplex, Half-duplex, Relay networks, Communication strategies

I. INTRODUCTION

Multi-hop relay communications are a key technology for next generation wireless net-
works, as they can extend radio access in case of coverage holes or users at the cell edge,
as well as increase the potentialities of device-to-device data transfers. The dual-hop relay
channel, in particular, has been widely investigated under different cooperative schemes,
namely, decode-and-forward (DF), compress-and-forward (CF) and amplify-and-forward (AF)
[1]–[5]. Most of this body of work has assumed the relay node to operate in half-duplex (HD)

A. Nordio is with CNR-IEIIT, Italy. C. F. Chiasserini is with Politecnico di Torino and a Research Associate at CNR-IEIIT,
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mode. Specifically, results on the capacity of the HD dual-hop relay channel have appeared
in [6], [7], where it was shown that the network capacity is achieved by a discrete input
when no direct link between the source and the destination exists.

More recently, a number of studies [8]–[12] have addressed the case where the relay
operates in full-duplex (FD) mode, i.e., it can transmit and receive simultaneously on the
same frequency band. Indeed, advances in self-interference suppression in FD systems have
made such a technology very attractive for relay networks. The capacity of Gaussian two-
hop FD relay channels has been characterized in [13], under the assumption that the residual
self-interference can be neglected. The more realistic case where residual self-interference (
[14], [15]) is taken into account, has been instead addressed in [8]–[12], [16]–[18]. In these
works, the signal looping back from the relay output to its input is modeled as an additive
noise with variance proportional to the relay transmit power. In particular, [16] considers an
AF relay, which can work in either FD or HD, and derives the distribution of the signal-to-
interference plus noise ratio (SINR), the outage probability, and the average rate. The study
in [17] compares the performance in terms of block error rate for FD and HD in the case of
DF relay, ultra reliable short-packet communication and finite blocklength codes. The work
in [8] analyses the instantaneous and average spectral efficiency of a dual-hop network with
direct link between source and destination, and a relay node that can operate in either HD or
FD mode. Interestingly, the authors propose hybrid FD/HD relaying policies that, depending
on the channel conditions, optimally switch between the two operational modes when the
FD relay transmit power is fixed to its maximum value, as well as when it can be reduced in
order to mitigate self-interference as needed. The FD mode only is considered in [10], which
aims to maximize the SINR as the relay transmit power varies, in the case where AF is used,
the relay has multiple transmit antennas and a single receive antenna, and constraints on the
average and maximum relay transmit power must hold. In [11], the maximum achievable rate
and upper bounds on the capacity are obtained when the relay node operates in DF and CF
and Gaussian inputs are considered at the source and the relay.

The study in [12] investigates the capacity of the Gaussian two-hop FD relay channel where
the residual self-interference is assumed to be a Gaussian random variable with variance
depending on the amplitude of the transmit symbol of the relay. Also, [12] assumes the
average transmit power at source and relay nodes to be limited to some maximum values.
The study shows that the optimal conditional probability distribution of the source input,
given the relay input, is Gaussian while the optimal distribution of the relay input is either
Gaussian or symmetric discrete with finite mass points. This result implies that, under the
above assumptions, a capacity achieving scheme requires the source to know at each time
instant what the relay is transmitting. This can be realized with the aid of a buffer at the
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relay, which holds the data previously transmitted by the source and correctly decoded by
the relay. The relay re-encodes such data before forwarding it to the destination in the next
available channel use. The source can use the same encoder as the relay, in order to predict
what will be transmitted by the relay and hence guarantee a capacity achieving transmission.

In this work, we consider a scenario similar to [12], including a dual-hop, DF network
where the relay can operate in FD or HD mode (i.e., X-duplex mode), and the residual self-
interference is modeled as an additive Gaussian noise, with variance proportional to the relay
transmit power. Differently from [12], in this paper we consider the case where the source
does not know what symbols are transmitted by the relay at a given time instant and is aware
only of the transmit power distribution adopted by the relay over a given time horizon. Thus,
our scenario can accommodate the practical case where the relay node, although retransmitting
to the destination the same information sent by the source, it may transmit symbols different
from those it has received. Examples include the case where the relay modifies physical-layer
or link-layer in-band control information, as well as the case where the relay performs link-
layer data encryption using a key that is unknown to the source. In this scenario, the source
knowledge about the relay power is exploited in order to optimally set the source transmit
power and decide whether the relay should operate in HD or FD. Furthermore, we assume
a Gaussian input distribution at both source and relay, with variance not exceeding a target
maximum value.

Under this scenario, we formulate an optimization problem that aims at maximizing the
achievable data rate, subject to the system constraints. We characterize different operational
regions corresponding to optimal network performance, and provide conditions for their
existence. Our analysis leads to the following major results:

(i) The distribution of the transmit power at the relay can be conveniently taken as the
driving factor toward the network performance optimization. We prove that the optimal
probability density function (pdf) of such a quantity is discrete and composed of either
one or two delta functions, depending on the target value of average transmit power at
the source and relay. We provide the expression of the above distribution for the whole
range of the system parameter values, including the channel gains and the target values
for the average transmit power at the source and the relay.

(ii) The above finding leads to the optimal communication strategy for the network under
study, which implies either FD transmissions over an entire frame, or FD/HD transmis-
sions over a fraction of the frame.

(iii) Given the optimal transmit power distribution at the relay, we derive the optimal power
level to be used over time at the relay and the source, i.e., the power allocation policy
that yields the system maximum data rate. We remark that our policy establishes the
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time fractions during which the relay should work in FD and in HD, as well as the
transmit power to be used at the source and the relay, given that only the average (not
the instantaneous) relay transmit power needs to be known at the source.

(iv) We compare the results of our optimal power allocation to a reference FD and HD
scheme, where the source knows the instantaneous relay transmit power. Interestingly,
our scheme closely approaches the performance of such strategy in all the considered
scenarios.

In the rest of the paper we introduce our system model in Sec. II and we present the
constrained optimization problem, along with an overview of the methodology we use in
Sec. III The optimal communication strategy and our main analytical results are presented in
Secs. IV and V. Sec. VI shows some performance results, and Sec. VII extends the analysis
to a limited average transmission power at the source. Finally, Sec. VIII concludes the paper.

II. SYSTEM MODEL

We consider a two-hop, DF relay network including a source node s, a relay r and a
destination d. All network nodes are equipped with a single antenna, and the relay can work
in either FD or HD mode (X-duplex). No direct link exists between source and destination,
thus information delivery from the source to the destination necessarily takes place through
the relay. As far as the channel is concerned, we consider independent, memoryless block
fading channels with additive Gaussian noise, between source and relay as well as between
relay and destination.

The source and the relay operate on a frame basis, of constant duration T , with T being
set so that channel conditions do not vary during a frame. In general, the following modes of
operations are possible for source and relay: (i) the source transmits while the relay receives
only (HD-RX mode); (ii) the source is inactive while the relay transmits (HD-TX mode),
(iii) the source transmits while the relay transmits and receives at the same time (FD mode).

We remark, that in our model source and relay do not need to be synchronized on a
per-symbol basis, and that the relay can modify link-layer or physical-layer multiple control
information as well as perform link-layer data encryption. This implies that, in order to select
its operational mode, the source is not required to be aware of the information the relay is
transmitting. We assume instead that the source has knowledge of the distribution of the
transmit power adopted by the relay across a frame.

When the relay transmits to the destination, a residual self-interference (after analog and
digital suppression) adds up to what the relay receives from the source. Then the signals
received at the relay and destination can be written as:

yr =
p
Ph1xs + ⌫ + nr ; yd =

p
ph2xr + nd where (1)
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• h1 and h2 are the complex static channel gains of the source-relay and relay-destination
links, respectively. We consider that h1 is known to the the source, and that both h1 and
h2 are known to the relay. Also, we assume that the communication between nodes is
organized in frames of duration T , with T being sufficiently smaller than the channel
coherence time, so that channel gains can be considered as static during a frame;

• xs and xr are the input symbols transmitted by the source and the relay, respectively. We
assume the input at both source and relay to be zero-mean complex Gaussian distributed
with unit variance. From (1), we have that the levels of instantaneous power transmitted
by source and relay, are P |xs|2 and p|xr|2, respectively. In the most general case, P
and p are time-varying continuous random variables ranging in [0, Pmax] and [0, pmax],

respectively. Here we assume1
P and p to be independent of xs and xr, respectively;

• nr and nd represent zero-mean complex Gaussian noise with variance N0 over the source-
relay and the relay-destination link, respectively;

• ⌫ represents the instantaneous residual self-interference at the relay. As typically done
in previous studies [11], [12], [19], [20], given p, we model ⌫ as a Gaussian noise with
variance proportional to the instantaneous transmission power at the relay, i.e., given
p, ⌫|p ⇠ NC(0, �p). In these expressions, � denotes the self-interference attenuation
factor at the relay. As shown in [12], assuming ⌫ as a zero-mean i.i.d. Gaussian random
variable represents the worst-case linear residual self-interference model.

We also define f(p) as the probability density function of p, with support in [0, pmax]. Finally,
we consider that the average power over a frame at the source and at the relay is constrained
to given target values, denoted by P̄ and p̄, respectively. The average transmit power at the
source and relay is therefore given by:

p̄ = EpExr [p|xr|2] = Ep[p] =

Z
p
max

0

pf(p) dp (2)

P̄ = EpExs [P |xs|2] = Ep[P ] =

Z
p
max

0

P (p)f(p) dp (3)

where E[·] is the average operator and the expression in (3) is due to the fact that the source
may select its transmission power based on its knowledge of p, hence P can be conveniently
described as a function of p. In order to highlight this dependency, in (3) and in the following,
P (p) indicates the transmit power level at the source when the transmit power level at the
relay is set to p. Moreover, in the following P (·) indicates the generic function of transmit
power allocation at the source, which depends on the relay transmit power. From the definition

1The transmit power at the source and the relay are denoted by P (capital letter) and p (small capital letter).
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of the received signals given in (1), assuming a sufficiently long frame length T , and having
fixed both p and P (p), the rates on the source-relay and relay-destination links are given by

log
⇣
1 + P (p)|h1|2

N0+�p

⌘
and log

⇣
1 + p|h2|2

N0

⌘
, respectively. Then the average rates achieved over a

frame can be written by averaging the above quantities over the random variable p:

R1(f, P )=

Z
p
max

0

f(p) log

✓
1+

P (p)|h1|2

N0 + �p

◆
dp ; R2(f)=

Z
p
max

0

f(p) log

✓
1+

p|h2|2

N0

◆
dp . (4)

where we recall that p, hence also P (p), is not a function of the transmitted messages. In (4),
by writing R1(f, P ) and R2(f) we highlight that such rates depend on the choice of the power
allocation function at the relay, f(·), and at the source, P (·).

III. PROBLEM FORMULATION

In our study, we aim at determining the power allocation at the source, P (·), and the one
at the relay, f(·), that maximize the achievable rate of the dual-hop network described above.
To this end, we start by recalling some fundamental concepts:

(a) the network rate will be determined by the minimum between the rate achieved over
the source-relay link and over the relay-destination link;

(b) R1(f, P ) depends on the source transmit power, the Gaussian noise, and on the residual
self-interference at the relay, which, in turn, depends on the relay transmit power;

(c) R2(f) depends on the relay transmit power and the noise at the destination;
(d) the transmit power at source and relay may vary over time. When P (p) > 0 and p > 0,

the relay is in FD mode, while, when P (p) > 0 and p = 0, the relay is in HD-RX mode.
When P (p) = 0 and p > 0, the relay is in HD-TX mode and the source is silent.

Based on (b) and (c), the residual self-interference introduces a dependency between the
performance of the first and second hop. Under such conditions and under the constraints on
the average and the maximum transmit power at the source and at the relay, the maximum
rate achievable by the two-hop relay network is defined as

R , max
f(·),P (·)

min {R1(f, P ), R2(f)} = max
f(·)

min

⇢
max
P (·)

R1(f, P ), R2(f)

�
(5)

where the last equality comes from the fact that only R1(f, P ) depends on P (·). From the
definition of R it is clear that, in order to maximize the network rate, source and relay should
coordinate their power allocation strategies. In our study, we optimize such power allocations,
hence the source-to-destination rate, by controlling the distribution of the transmit power at
the relay, f(·), and the distribution of the transmit power at the source, P (·).
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p

!

Pmax

p

Pmax

!

!�Pmax

!!

P(p) P(p)

Fig. 1. Transmission power at the source, P(p), for Pmax  ! (left) and Pmax > ! (right).

As a first step, in Section III-A we fix f(·) and maximize R1 with respect to P (·). By
doing so, we rewrite R1 as a function of, essentially, a Lagrange multiplier, !, and f(·).
Then, in Section III-B, we formulate the maximization problem over the (!, f(·)) space,
which will lead us to find the optimal transmit power distribution at the relay as well as at
the source node.

A. Optimal transmit power allocation at the source

For a given distribution f(·), in order to maximize the rate R1(f, P ) with respect to P (·)
we need to solve the following problem

P0: R1(f) = max
P (·)

R1(f, P ) s.t.

(a)

Z
p
max

0

P (p)f(p) dp = P̄ ; (b) 0  P (p)  P
max

where (a) represents the constraint on the source average transmit power given by (3) and (b)

is the constraints on the maximum source transmit power. Problem P0 can be solved using
calculus of variations techniques. Specifically, it can be shown (see Appendix A) that, given
f(·), the maximizer of P0 is given by

P (p) =
�

|h1|2
min

�
[! � p]+,Pmax

 
(6)

where [·]+ , max{0, ·}, Pmax , P
max|h1|2/� and ! is a parameter defined as (see Ap-

pendix A): ! , |h1|2
��

� N0
�

with � being the Lagrange multiplier used in the constrained

maximization of R1(f, P ). Given f(·), the value of ! can be obtained by substituting (6)

into the constraint P0-(a). The function P(p) , min {[! � p]+,Pmax}, proportional to (6),
is plotted in Fig. 1 (blue line) for the cases Pmax  ! (left) and Pmax

> ! (right).
In particular, we observe that when P

max is sufficiently large, the optimal power allocation
at the source behaves as depicted in Fig. 1(right) and it can be simplified to

P (p) =
�

|h1|2
[! � p]+ . (7)
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This scenario encompasses the case where the source is a macro-cell base-station (BS) and the
relay is a small-cell BS, with the macro-cell BS having weaker constraints on the maximum
transmit power than the small-cell BS. The case where instead the value of Pmax is smaller
than !, is more complicated to deal with (see Fig. 1(left). This case encompasses the situation
where the source is a user equipment transmitting to a small-cell BS, which relays traffic
toward a macro-cell BS.

In the following, in order to simplify the derivation of the network rate, we assume P
max

to be sufficiently large; we will remove this assumption in Sec. VII, where we briefly explain
how to solve the problem when the parameter Pmax comes into play. Then, by substituting (7)
in constraint P0-(a) and in the expression for R1(f, P ) in (4), we obtain, respectively,

Z
p
max

0

f(p)[! � p]+ dp = P̄
|h1|2

�
, P̄ (8)

R1(f) =

Z
p
max

0

f(p) log

✓
1+�

[!�p]+

N0 + �p

◆
dp =

Z
p
max

0

f(p) log

✓
1+

�0[!�p]+

1+�0p

◆
dp , (9)

where �0 , �

N0
. Thus, we now have both the rate R, optimized with respect to P (·) and the

constraint on the average source power, expressed as functions of the parameter !.

B. Rate maximization problem

After having optimized the source transmit power, we need to find the optimal distribution
f(·) that maximizes the network data rate R, as indicated in (5). To this end, we formulate
the following optimization problem, subject to the system constraints:

P1: R = max
f(·)

min{R1(f), R2(f)} s.t.

(a) R1(f) =

Z
p
max

0

f(p) log

✓
1+

�0[!�p]+

1+�0p

◆
dp

(b) R2(f) =

Z
p
max

0

f(p) log (1+vp) dp; (c)

Z
p
max

0

f(p)[!�p]+ dp = P̄

(d)

Z
p
max

0

pf(p) dp = p̄;

Z
p
max

0

f(p) dp = 1; 0  p  p
max

where v , |h2|2
N0

in (b). In the above formulation, (a) represents the average rate achieved

over a frame on the source-relay link in (9); (b) represents the average rate achieved over a
frame on the relay-destination link in (4); (c) is the average power constraint at the source
specified in (8); (d) imposes that the mean value of transmit power at the relay equals p̄,
that f(·) is a distribution, and that p does not exceed p

max.
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If f(·) were known, constraint P1-(c) would completely determine the parameter !. How-
ever, this is not the case in our scenario; in fact, f(·) is the function that we need to properly
select to maximize the source-to-destination rate. It follows that, in general, in our problem !

is a free parameter and we need to maximize the rate over the (!, f(·)) space. An overview
of the methodology we adopt to solve such a problem is provided below.

C. Roadmap

We consider the following two cases: ! � p
max (Sec. IV) and ! < p

max (Sec. V). While the
former can be handled analytically by directly addressing the above problem formulation, the
latter is far more complicated and requires the definition of a novel methodology. Specifically,
(i) for ! � p

max, we first find lower and upper bounds for R1(f) and R2(f) so that three
different cases can be identified. For all of them, we obtain the optimal transmit power
allocation at the source and relay. The third of these cases leads to a particularly interesting
result, which shows that the network rate is maximized when f(p) is discrete with one or
two probability masses, depending on the value of the system parameters (e.g., channel gains
and self-interference mitigation factor). As by-product of this analysis, we also obtain the
optimal communication scheme, which turns out to be a time-division strategy;
(ii) for ! < p

max, we show that the rate maximization problem can be rewritten in a simpler
form by expressing f(p) as the sum of two distributions with support over two distinct
intervals of values of p. The simpler formulation we get allows bounding the rates over the
two links, and analysing the expressions obtained for the two rates, over different sub-regions
of the solution space. Also in this case, we provide analytical solutions for the network rate
R, and the optimal power allocation and transmit strategy at the relay and at the source.
Our main analytical results are summarized in Tables I and II.

IV. OPTIMAL POWER ALLOCATION FOR ! � p
max

We solve the problem P1 by first considering the case ! � p
max, which allows to

remove the [·]+ operator in constraint P1-(a) and P1-(c). This case was also sketched in
our conference paper [21]. Then, by using the equalities provided in P1-(d) in P1-(c), we

obtain ! = P̄ + p̄. By plugging such expression for ! in P1-(a) and in (7), we get

R1(f) = log
�
1 + �0(P̄ + p̄)

�
�
Z

p
max

0

f(p) log(1 + �0p) dp (10)

and, from (9) P (p) = �

|h1|2 [P̄ + p̄� p]. Moreover, since ! = P̄ + p̄, the constraint ! � p
max

implies P̄ � p
max � p̄, P0 where we recall that P̄ , P̄

|h1|2
�

. In this section, we analyze the

behavior of the system for P̄ � P0.
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In order to solve problem P1, as a first step we provide upper and lower bounds to R1(f)

and R2(f) (Sec. IV-A). Such bounds are then used to identify three possible cases, in each
of which we solve P1 to the optimum (Sec. IV-B).

A. Bounding R1(f) and R2(f)

Let us consider R1(f) and R2(f), as given, respectively, in (10) and in constraint P1-(b);
an upper and a lower bound to such expressions can be obtained through the lemma below.

Lemma 4.1: Let �(p) be a continuous concave function and f(p) be a probability distri-

bution, both with support in [a, b]. Let
R
b

a
pf(p) dp = m. Then,

b�m

b� a
�(a) +

✓
1� b�m

b� a

◆
�(b) 

Z
b

a

f(p)�(p) dp  �(m) .

The lower bound holds with equality when f(p) = b�m

b�a
�(p� a) +

�
1� b�m

b�a

�
�(p� b), while

the upper bound holds with equality when f(p) = �(p�m), where �(·) is the Dirac delta.
Proof: The proof is reported in Appendix B.

We observe that the term log(1+cp), c > 0, appearing as argument of the integrals in (10)
and P1-(b), is a concave function of p. Since f(p) is a distribution with average p̄, we can
exploit the lower bound provided by Lemma 4.1 and write:

R1 log
�
1+�0(P̄+p̄)

�
� p̄

pmax
log(1+�0p

max), r
max

1
(11)

R2�
p̄

pmax
log(1+vp

max), r
min

2
(12)

with the equality in (11) and (12) holding when f(p) =
⇣
1� p̄

pmax

⌘
�(p) + p̄

pmax �(p� p
max).

Similarly, by applying the upper bound provided by Lemma 4.1, we get:

R1 � log
�
1 + �0(P̄ + p̄)

�
� log(1 + p̄�0), r

min

1
; R2  log(1 + p̄v), r

max

2
(13)

with the equality holding when f(p) = �(p� p̄).

B. Solving P1

The bounds to R1(f) and R2(f), obtained in Section IV-A, allow us to break problem P1
into three cases, as detailed below.
1) If r

min

2
� r

max

1
, then R = r

max

1
and the optimal relay power distribution is f

?(p) =
⇣
1� p̄

pmax

⌘
�(p) + p̄

pmax �(p� p
max). Solving for P̄ the inequality r

min

2
� r

max

1
, we obtain

P̄  P1,
1

�0
[(1 + p

max
�0)(1 + p

max
v)]

p̄
pmax � 1 + p̄�0

�0
and
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R = log
�
1 + �0(P̄ + p̄)

�
� p̄

pmax
log (1 + �0p

max) .

2) If rmin

1
� r

max

2
, then R = r

max

2
and the optimal relay power distribution is f ?(p) = �(p�p̄).

Solving for P̄ the inequality r
min

1
� r

max

2
, we get

P̄ � P2,p̄v
1 + p̄�0

�0
; R = log (1 + p̄v) .

3) Otherwise, we find solutions for f(·) such that R = R1 = R2. Indeed, for P1  P̄  P2,
problem P1 becomes:

P2: R = log
�
1 + �0(P̄ + p̄)

�
�min

f(·)

Z
p
max

0

f(p) log(1 + �0p) dp s.t.

(a)

Z
p
max

0

f(p) log [(1 + p�0)(1 + pv)] dp = log
�
1 + �0(P̄ + p̄)

�

(b)

Z
p
max

0

pf(p) dp = p̄; (c)

Z
p
max

0

f(p) dp = 1 .

The minimizer of the functional can be found by applying the theorem below, which shows
that the solution of optimization problems such P2 is given by one or two delta functions,
depending on the value of the parameters appearing in the problem formulation.

Theorem 4.1: Consider the following constrained minimization problem:

min
f(·)

Z
b

a

f(p)�(p) dp s.t. (14)

(a)

Z
b

a

f(p) (p) dp = c ; (b)

Z
b

a

pf(p) dp = m

(c)

Z
b

a

f(p) dp = 1 ; (d) f(p) � 0, 8p 2 [a, b] ;

where �(p) = log(1+�1p), ⌘(p) = log(1+�2p),  (p) = �(p)+⌘(p), and f(p) is a probability
distribution with support in [a, b], a > 0. Moreover, �1 > 0, �2 > 0, m 2 [a, b] and c are
constant parameters. Then, the minimizer has the following expression

f
?(p)=

8
<

:

p2�m

p2�a
�(p�a) + m�a

p2�a
�(p�p2) if �1 > �2

b�m

b�p1
�(p�p1) +

m�p1

b�p1
�(p�b) if �1  �2

(15)

where p1 2 [a,m] and p2 2 [m, b] are obtained by replacing (15) in the constraint (a) in (14).
Proof: The proof is given in Appendix D.
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Through Theorem 4.1 and considering v � �0, the maximizer of the rate in P2 is:

f
?(p) =

p
max � p̄

pmax � p1
�(p� p1) +

p̄� p1

pmax � p1
�(p� p

max) (16)

where p1 is obtained by replacing f(p) with (16) in constraint P2-(a), i.e., by solving the
following equation for p1


(1+p1�0)(1+p1v)

k

� pmax�p̄
pmax�p1

=
1+�0(P̄+p̄)

k
(17)

with k = (1+p
max

�0)(1+p
max

v). When v < �0, the maximizer of the rate in P2 is

f
?(p) =

p2 � p̄

p2
�(p) +

p̄

p2
�(p� p2) (18)

where p2 is obtained using f
?(p) in P2-(a), i.e., by solving the following equation for p2

[(1 + p2�0)(1 + p2v)]
p̄
p2 = 1 + �0(P̄ + p̄) . (19)

Given the optimal distribution f
?(p), which represents the optimal transmit power allo-

cation at the relay, the optimal power allocation at the source node can be obtained by
using (7). We remark that, from the implementation view point, such a scheme implies
minimal overhead since f

?(p) is composed of one or two � functions. Thus, it is enough that
the sends to the source the parameters of such �’s. It is however important that source and
relay are synchronized at the frame level.

From the above results, some important observations can be made:

(i) the power allocation at the relay that leads to the maximum rate depends on the channel
gain h2 through v (see (16) and (18) where p1 and p2, given in (17) and (19), depend on
v). Similarly, the power allocation at the source depends on channel gain h1 (see (7));

(ii) more importantly, the optimal power allocation f
?(p) at the relay is discrete, with either

one or two probability masses depending on the number of � functions appearing in the
expression of f ?(p);

(iii) the above finding implies that source and relay should operate according to a time
division strategy consisting of transmissions over either the entire frame (when f

?(p)

includes one probability mass only), or two fractions of the frame (when two probability
masses appear in f

?(p)). Hereinafter, we will refer to such fractions as, respectively,
phase A and phase B; clearly, they reduce to one phase when f

?(p) includes only one
probability mass. An example where two phases exist is depicted in Fig. 2(left);

(iv) The phases duration are given by the coefficients of the � functions composing f
?(p)

(see Fig. 2(right)). Note that now p takes on a new meaning, as it represents the average
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f(p)

tA

pA
p̄

tB

pB p
p
max

PA, pA PB , pB
t1

tA tB

Fig. 2. Left: Optimal communication strategy during a frame resulting in two phases (A and B). Right: Optimal distribution

of the average relay transmit power at the relay (p).

TABLE I

OPTIMAL POWER ALLOCATION AND RATE FOR P̄ � P0 . tA AND tB = 1� tA ARE THE TIME FRACTIONS

REPRESENTING THE PHASES DURATION. THE PHASES IN WHICH THE RELAY WORKS IN HD ARE SHADED

v � �0 Phase A Phase B

tA PA pA tB PB pB

P̄ 2 [P0,P1]
p̄

pmax
�

|h1|2
(P̄ + p̄� pmax) pmax 1� p̄

pmax
�

|h1|2
(P̄ + p̄) 0

P̄ 2 (P1,P2)
p̄�p1

pmax�p1

�
|h1|2

(P̄ + p̄� pmax) pmax pmax�p̄
pmax�p1

�
|h1|2

(P̄ + p̄� p1) p1

P̄ 2 [P2,1) – – – 1 �
|h1|2

P̄ p̄

v < �0 Phase A Phase B

tA PA pA tB PB pB

P̄ 2 [P0,P1]
p̄

pmax
�

|h1|2
(P̄ + p̄� pmax) pmax 1� p̄

pmax
�

|h1|2
(P̄ + p̄) 0

P̄ 2 (P1,P2)
p̄
p2

�
|h1|2

(P̄ + p̄� p2) p2 1� p̄
p2

�
|h1|2

(P̄ + p̄) 0

P̄ 2 [P2,1) 1 �
|h1|2

P̄ p̄ – – –

Rate R

P̄ 2 [P0,P1] log
�
1 + �0(P̄ + p̄)

�
� p̄

pmax log(1 + pmax�0)

P̄ 2 (P1,P2); v � �0 log
�
1 + �0(P̄ + p̄)

�
� pmax�p̄

pmax�p1
log (1 + p1�0)� p̄�p1

pmax�p1
log (1 + pmax�0)

P̄ 2 (P1,P2); v < �0 log
�
1 + �0(P̄ + p̄)

�
� p̄

p2
log (1 + p2�0)

P̄ 2 [P2,1) log(1 + p̄v)

level of transmission power to be used at the relay during a frame phase. The values
of p, hence of the relay average transmission power over each phase, are given by the
arguments of the �’s in f

?(p). Likewise, through (7), the average level of transmitted
power at the source is determined by the arguments of the � functions in f

?(p).

To summarize, Table I reports the solution of problem P1 for P̄ � P0, along with the
corresponding power allocation at the source and relay. Thus the two tables also specify the
optimal communication strategy at source and relay, i.e.,

• for P̄  P1, both source and relay transmit during phase A and thus the relay operates
in FD. In phase B, the relay is silent and only receives (HD-RX mode);

• for P̄ 2 (P1,P2), two cases are possible. For v � �0 the relay always operates in FD
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but source and relay use different power levels in the two phases. Otherwise, the relay
uses the same scheme as for P̄  P1, i.e., FD in phase A and HD-RX in phase B, but
its transmit power in phase A should be set to p2;

• for P̄ � P2, the relay continuously operates in FD over the entire frame, and source
and relay always transmit at their average power.

V. OPTIMAL POWER ALLOCATION FOR ! < p
max

In this section, we solve problem P1 when ! < p
max. To this end, we first show that

P1 can be recast in a simpler form by rewriting the distribution f(p) as a sum of two
distributions (Sec. V-A). Next, we bound the rates R1(f) and R2(f) (Sec. V-B) and show
that such bounds can be used to break the maximization problem into easier sub-problems,
(Secs. V-C and V-D). The expression of the maximum achievable rate is then derived by
solving the obtained sub-problems as P

max varies (Sec. V-E).

A. Rewriting the maximization problem in a simpler form

We observe that, due to the presence of the [·]+ operator, the arguments of the constraints
P1-(a) and P1-(c) are identically zero for p 2 (!, pmax], while they can take values greater
than zero for p 2 (!, pmax]. This suggests that, given ! 2 [0, pmax), we can rewrite the
distribution f(p) as the weighted sum of two distributions: g(p) with support in [0,!], and
h(p) with support in (!, pmax]; i.e.,

f(p) = F (!)g(p) + [1� F (!)]h(p) (20)

where F (!) 2 [0, 1] is the cumulative distribution function of f(p), given by F (!) =
R
!

0
f(p) dp. It is easy to check that the expression for f(p) given in (20) integrates to 1

in the range [0, pmax]. Then constraint P1-(d) on the average transmit power at the relay can
be rewritten as

p̄ = F (!)

Z
!

0

pg(p) dp+ [1� F (!)]

Z
p
max

!

ph(p) dp . (21)

If we define Z
!

0

pg(p) dp , G(!)

F (!)
, (22)

from (21) it immediately follows that
Z

p
max

!

ph(p) dp =
p̄�G(!)

1� F (!)
(23)

where, being (22) and (23) positive, we have: 0  G(!)  p̄.
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For simplicity, from now on we drop the dependence on ! from F (!) and G(!). The
relation between F and G can be found by applying the definitions in (20) and (22) to the
constraint P1-(c). Doing so, we obtain

Z
p
max

0

f(p)[! � p]+ dp =

Z
!

0

(! � p)Fg(p) dp = F! �G = P̄ i.e., G = F! � P̄ . (24)

We also need to impose that the averages in (22) and (23) lie within the support of the
distributions g(p) and h(p), respectively, i.e.,

0  G

F
 !; ! <

p̄�G

1� F
p

max
. (25)

As shown in Appendix C, recalling that ! 2 [0, pmax), F 2 [0, 1], 0  G  p̄ and using (24),
the inequalities in (25) define a region ⌦ ⇢ R2 of approximately triangular shape given by

⌦ =

(
(!, F ) 2 R2

�����
p
maxP̄

pmax � p̄
 !  P̄ + p̄,

P̄
!

 F  p
max � p̄� P̄
pmax � !

)
(26)

with vertices V1 =
⇣

p
maxP̄

pmax�p̄
, 1� p̄

pmax

⌘
;V2 =

�
P̄ + p̄, 1

�
;V3 =

⇣
P̄ + p̄,

P̄
P̄+p̄

⌘
. Such region

exists if P̄ < P0 where we recall that P0 = p
max � p̄. The region ⌦ is depicted in Fig. 3(a),

where the edge V1–V2 has equation F = p
max�p̄�P̄
pmax�!

while the edge V1–V3 has equation F = P̄
!

.

Next, we substitute (20) in the the rates R1(f) and R2(f) given in P1-(a) and P1-(b),

respectively, and obtain: R1(f) = F log(1 + �0!)� F
R
!

0
g(p) log(1 + p�0) dp , R1(g) and

R2(f) = F

Z
!

0

g(p) log(1 + pv) dp+ (1� F )

Z
p
max

!

h(p) log(1 + pv) dp

 F

Z
!

0

g(p) log(1 + pv) dp+ (1� F ) log

✓
1 + v

p̄� F! + P̄
1� F

◆

, eR2(g) (27)

where the inequality in (27) follows from Lemma 4.1 and (23). By writing R1(g) and eR2(g),

we stress the fact that they depend on the distribution g(·). The upper bound, eR2(g), is
achieved for

h(p) = �

✓
p� P̄ + p̄� !

1� F
� !

◆
. (28)
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It turns out that, by writing f(p) as in (20), the maximization problem P1 reduces to the
maximization of the rate R over g(·) and over the region ⌦. Thus, P1 is recast as

P3 R = max
g(·),(!,F )2⌦

min{R1(g), eR2(g)} s.t. (29)

R1(g) = F log(1 + �0!)� F

Z
!

0

g(p) log(1 + p�0) dp (30)

eR2(g) = F

Z
!

0

g(p) log(1 + pv) dp+ (1� F ) log

✓
1 + v

P̄ + p̄� F!

1� F

◆
(31)

Z
!

0

pg(p) dp = ! � P̄
F

(32)

Z
!

0

g(p) dp = 1 (33)

where (32) is obtained by using (22) and (24), while (33) states that g(p) is a pdf.

B. Bounding the rates R1(g) and eR2(g)

To solve P3, we first apply Lemma 4.1 to R1(g) and eR2(g). We obtain:

R1(g) � F log
F (1 + !�0)

F (1 + !�0)� P̄�0
,R

min

1
(34)

eR2(g)  F log

✓
1 + v

✓
! � P̄

F

◆◆
+ (1� F ) log

✓
1 + v

P̄ + p̄� F!

1� F

◆
, eRmax

2
. (35)

The bounds in (34) and (35) hold with equality when

g(p) = �

✓
p� ! +

P̄
F

◆
. (36)

Similarly, we can write

R1(g)  P̄
!
log(1 + �0!),R

max

1
(37)

eR2(g) �
✓
F � P̄

!

◆
log(1 + v!) + (1� F ) log

✓
1 + v

P̄ + p̄� F!

1� F

◆
, eRmin

2
. (38)

In (37) and (38), equality holds for

g(p) =
P̄
F!

�(p) +

✓
1� P̄

F!

◆
�(p� !) . (39)

In the following, we use the above bounds to divide the solution space ⌦ into subregions,
over which maximizing R becomes easier.
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C. Breaking the solution space into subregions

In order to maximize the rate over ⌦, we exploit the bounds in (34), (35), (37), and (38)
in order to define the following subsets of ⌦.

• Let ⌦1 =
n
(!, F ) 2 ⌦

���Rmin

1
� eRmax

2

o
. Then in ⌦1 the problem P3 reduces to maxi-

mizing eRmax

2
. The maximum rate achieved in ⌦1 will be denoted by R⌦1 . We observe

that ⌦1 can be viewed as the set of points where Q1(!, F ) , R
min

1
� eRmax

2
� 0 (i.e.,

R
min

1
� eRmax

2
). Then the implicit curve Q1(!, F ) = 0 is one of the edges of ⌦1 (see

Fig. 3(a)). Also, the intersection point between Q1(!, F ) = 0 and the edge V1–V3,

whose equation is F = P̄
!

, is A =
⇣
!A, FA = P̄

!A

⌘
. The value of !A can be computed

numerically by solving Q1 (!A, FA) = 0.
The intersection between Q1(!, F ) = 0 and the edge V1–V2, whose equation is F =

p
max�p̄�P̄
pmax�!

, is B =
⇣
!B, FB = p

max�p̄�P̄
pmax�!B

⌘
. The value of !B can be computed numerically

by solving Q1(!B, FB) = 0. Moreover, as shown in Appendix E, the curve Q1(!, F )

intersects the line ! = p̄+ P̄ at most in a single point. Finally, it can be seen that Rmin

1

decreases with ! while eRmax

2
increases with ! (details can be found in [22]). Thus, we

conclude that ⌦1 is located on the left of the curve Q1(!, F ) = 0 (see Fig. 3(a)).

• Let ⌦2 =
n
(!, F ) 2 ⌦

��� eRmin

2
� R

max

1

o
. Then in ⌦2 the problem P3 reduces to maximiz-

ing R
max

1
. The maximum rate achieved in this subregion will be denoted by R⌦2 . We

observe that ⌦2 is given by the set of points (!, F ) where Q2(!, F ) , eRmin

2
�R

max

1
� 0

(i.e., eRmin

2
� R

max

1
). Then the implicit curve Q2(!, F ) = 0 is one of the edges of ⌦2.

Also, it can be easily shown that R
max

1
decreases with !, while eRmin

2
increases with

! and decreases with F (see [22] for details). Based on the above observations and
recalling that Rmax

1
does not depend on F , we conclude that Q2(!, F ) increases with

! while decreases with F . By consequence, the curve defined by the implicit equation
Q2(!, F ) = 0, has non-negative derivative:

�@Q2(!, F )

@!

�
@Q2(!, F )

@F
� 0 .

Moreover, the curve Q2(!, F ) = 0 intersects the edge V1–V3 in A =
⇣
!A, FA = P̄

!A

⌘
,

as it can be easily proven by observing that Q2(!A, FA) = 0. The curve Q2(!, F ) = 0

intersects the edge V1–V2 in C =
⇣
!C , FC = P̄+p

max�p̄

pmax�!C

⌘
.

Note that the curve Q2(!, F ) = 0 never crosses the line ! = P̄ + p̄. Indeed, when
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A

B

C

1

F

!

V2

V1

V3

⌦1

⌦3

⌦2

Q
1 (!

,
F
)
=

0

Q
2
(!

,
F
)
=

0

P̄ + p̄

(a)

B

(a)

(c)

A

A

B

D

(b) A

A

B

C

(d)

⌦3

V1

V1

V2

V2

V3

V3

⌦1
V1

V2

V3

V1

V2

V3

⌦2

⌦1 ⌦1

⌦3

⌦2

(b)

Fig. 3. (a) A graphical representation of Region ⌦ and its subregions ⌦1, ⌦2 and ⌦3. (b) A graphical representation of

the subregions ⌦1, ⌦2, and ⌦3 and of the cases when they exist.

! = P̄+p̄, the expression Q2(P̄+p̄, F ) does not depend on F any longer. As mentioned,

R
max

1
decreases with ! while eRmin

2
increases with !; thus, ⌦2 is located on the right of

the curve Q2(!, F ) = 0 (see Fig. 3(a)).
• Finally, let ⌦3 = ⌦ \ (⌦1 [ ⌦2). The maximum rate achieved in ⌦3 is denoted by R⌦3

and can be obtained by maximizing the rate R1(g) = eR2(g) over g(·). To this end, in
the region ⌦3, we reformulate P3 as follows:

P4 R⌦3 = max
(!,F )2⌦3


F log(1 + !�0)� F min

g(·)

Z
!

0

g(p) log(1 + �0p) dp

�
s.t.(40)

Z
!

0

g(p) [log(1 + �0p) + log(1 + vp)] dp = C(!, F )

Z
!

0

pg(p) dp = ! � P̄
F

Z
!

0

g(p) dp = 1

C(!, F ) = log(1 + �0!) +

✓
1� 1

F

◆
log

✓
1 + v

P̄ + p̄� F!

1� F

◆
(41)

where we maximize with respect to !, F , and g(·), and we impose R1(g) = eR2(g).

The maximum rate over ⌦ is therefore given by R = max{R⌦1 , R⌦2 , R⌦3}. In the following,
we state the conditions under which the three subregions ⌦1, ⌦2, and ⌦3 exist.
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D. Existence of regions ⌦1, ⌦2, and ⌦3

We first observe that, depending on the system parameters, the positions of the points A

and B vary. Several cases are possible.

(a) Point A is located on the left of V1, hence, outside ⌦. Since the curve Q2(!, F ) = 0

intersects the edge V1–V2 at most once, we conclude that in this case ⌦2 = ⌦. This
situation is depicted in (a) in Fig. 3(b) and arises when Q2(V1) � 0. By solving Q2(V1) �

0 for P̄ , we obtain P̄  P3,p
max�p̄

pmax�0

h
(1 + p

max
v)

p̄
pmax�p̄ � 1

i
. Clearly, ⌦1 and ⌦3 do not

exist in this case.
(b) Points A and B are located on the right of the points V3 and V2, respectively, as depicted

in (b) in Fig. 3(b). Since the curve Q1(!, F ) = 0 intersects the edge V2–V3 at most in a
single point (as proved in Appendix E), in this case ⌦1 = ⌦. The condition Q1(V2) � 0

(i.e., for which B is on the right of V2), solved for P̄ , provides P̄ � p̄
v

�0
(1+ p̄�0) = P2

while the condition Q1(V3) � 0 (i.e., for which A is to the right of V3) is equivalent

to p̄ log
�
1 + v(P̄ + p̄)

�
 P̄ log(1 + (P̄ + p̄)�0) with solution P̄ � P4. Therefore, the

above situation arises when P̄ � max{P2,P4}.
(c) Point A is located on the right of V3 and B is on the left of V2. Here, only regions ⌦1

and ⌦3 exist, as depicted in (c) in Fig. 3(b). This situation arises when Q1(V3) � 0 and

Q1(V2)  0, i.e., for P4  P̄  P2. Furthermore, in this case the curve Q1(!, F ) = 0

intersects the edge V2–V3 in D.
(d) Point A lies on the edge connecting V1 and V3. In this case, all regions ⌦1,⌦2, and ⌦3

exist, as depicted in (d) in Fig. 3(b). This situation happens when P3  P̄  P4.

E. Maximizing the rate as the average source transmit power varies

We consider the four cases reported in Fig. 3(right).

(a) For P̄  P3 (case depicted in (a) in Fig. 3(b)), R = R⌦2 = max⌦2 R
max

1
. Since R

max

1

decreases with ! and does not depend on F , the maximum is achieved in V1. We then
replace (39) and (28) in (20), set ! and F to the coordinates of V1, and find:

f
?(p) =

✓
1� p̄

pmax

◆
�(p) +

p̄

pmax
�(p� p

max) .

Recalling that the source power is P (p) = �

|h1|2 [!�p]+, for p = 0 we get P (p) = p
max

P̄

pmax�p̄
,

while for p = p
max we have P (p) = 0. The achieved rate becomes:

R = R⌦2 =

✓
1� p̄

pmax

◆
log

✓
1 +

p
maxP̄

(pmax � p̄)�0

◆
.
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(b) For P̄ � max{P4,P2} (case depicted in (b) in Fig. 3(right)), R = R⌦1 = max⌦1
eRmax

2
.

It can be easily shown that eRmax

2
increases with !, the values on the edge V1–V2

monotonically increase with !, and the values on the edge V1–V3 monotonically decrease

with ! (see [22] for details). We therefore conclude that the maximum of eRmax

2
is located

on the rightmost edge of ⌦1, i.e., on the edge V2–V3 where ! = P̄+ p̄. Once we fix ! to

such value, eRmax

2
|!=P̄+p̄ increases with F . It follows that the rate is maximized in V2 and

is given by R = R⌦1 = log(1 + vp̄). Moreover, by replacing (36) and (28) in (20) and

by setting ! = P̄+ p̄ and F = 1, we obtain f
?(p) = �(p� p̄). Since this is a single delta

function, the source power can be computed for p = p̄ as: P (p̄) = �

|h1|2 [! � p̄]+ = P̄ .

(c) For P4 < P̄ < P2, only subregions ⌦1 and ⌦3 exist, thus R = max{R⌦1 , R⌦3}. Let

us first focus on ⌦1. As observed before, R⌦1 = max⌦1
eRmax

2
where eRmax

2
increases

with !, thus eRmax

2
is maximized on the edge B–D and on the segment D–V3 (where

! = P̄ + p̄). However, as mentioned for ! = P̄ + p̄, eRmax

2
increases with F . It follows

that the maximum must lie on the edge B–D.
As for the subregion ⌦3, the maximum achievable rate is given by the solution of P4,
which can be solved by using Theorem 4.1. We have that:

– if v � �0, it can be shown that R⌦3 lies on the edge B–D (see [22] for details).
Thus, R = R⌦1 = R⌦3 and R can be computed by solving R = maxQ1(!,F )=0 R

min

1
,

which is convex, hence, easy to be solved. Let (!?
, F

?) be the point where the rate
is maximized, then the corresponding function f

?(p) is given by combining (28)

with g(p) = �(p� ! + P̄/F ), i.e.,

f
?(p) = F

?
�(p� !

? + P̄/F
?) + (1� F

?)�

✓
p� P̄ + p̄� !

?

1� F ?
� !

?

◆
; (42)

– otherwise, the problem can be solved numerically and the rate is maximized in
V2 = (P̄ + p̄, 1) [22]. The optimal distribution of the transmission power at the
relay is then given by:

f
?(p) =

p2 � p̄

p2
�(p) +

p̄

p2
�(p� p2) (43)

where p2 is the solution of the following constraint:

log [(1 + �0p2)(1 + vp2)]

p2
=

log(1 + �0!) +
�
1� 1

F

�
log

⇣
1 + v

P̄+p̄�F!

1�F

⌘

! � P̄
F

. (44)

(d) When P3 < P̄ < P4, the situation is depicted in (d) in Fig. 3(b) where all three subre-
gions exist. In subregion ⌦1, following the same rationale as in case (c), we conclude that
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TABLE II

OPTIMAL POWER ALLOCATION AND RATE FOR 0  P̄ < P0 . tA AND tB = 1� tA ARE THE TIME FRACTIONS

REPRESENTING THE PHASES DURATION. THE PHASES IN WHICH THE RELAY WORKS IN HD ARE SHADED

v � �0 Phase A Phase B

tA PA pA tB PB pB

(a) P̄ 2 [0,P3]
p̄

pmax 0 pmax 1� p̄
pmax

�
|h1|2

pmaxP̄
pmax�p̄ 0

(b) P̄ 2 [max{P2,P4},1) – – – 1 �
|h1|2 P̄ p̄

(c), (d) P̄ 2 (P3,max{P2,P4}) 1� F ? 0 P̄+p̄�F?!?

1�F? F ? �
|h1|2

P̄
F? !? � P̄

F?

v < �0 Phase A Phase B

tA PA pA tB PB pB

(a) P̄ 2 [0,P3]
p̄

pmax 0 pmax 1� p̄
pmax

�
|h1|2

pmaxP̄
pmax�p̄ 0

(b) P̄ 2 [max{P2,P4},1) 1 �
|h1|2 P̄ p̄ – – –

(c) P̄ 2 (P4,max{P2,P4}) p̄
p2

�(P̄+p̄�p2)
|h1|2 p2 1� p̄

p2

�(P̄+p̄)
|h1|2 0

(d) P̄ 2 (P3,P4] 1� FA 0 p̄
1�FA

FA
�P̄

|h1|2FA
0

Rate R

(a) P̄ 2 [0,P3] (1� p̄
pmax ) log

⇣
1 + pmaxP̄�0

pmax�p̄

⌘

(b) P̄ 2 [max{P2,P4},1) log(1 + p̄v)

(c), (d) P̄ 2 (P3,max{P2,P4}); v � �0 F ? log
⇣

F?(1+!?�0)
F?(1+!?�0)�P̄�0

⌘

(c) P̄ 2 (P4,max{P2,P4}), v < �0 log(1 + �0(P̄ + p̄))� p̄
p2

log(1 + �0p2)

(d) P̄ 2 (P3,P4]; v < �0 FA log(1 + �0!A)

the rate R⌦1 lies on the edge B–A. In subregion ⌦2, the rate is R⌦2 = max⌦2 R
max

1
. Since

R
max

1
does not depend on F , it decreases with !, and the implicit curve Q2(!, F ) = 0

is monotonically increasing, we conclude that R⌦2 is obtained when operating in A.
Hence, R⌦2  R⌦1 . With regard to subregion ⌦3, the maximum achievable rate is given
by the solution of P4, which can be solved by using Theorem 4.1. We have that:

– if v � �0, as observed for case (c), R⌦3 lies on the edge B–A. Thus, R = R⌦1 = R⌦3

and R can be computed by solving R = maxQ1(!,F )=0 R
min

1
;

– else, similarly to the previous case, the problem can be solved numerically and the
optimum is located in A = (!A, FA). The optimal distribution of the transmission
power at the relay is given by:

f
?(p) = FA�(p) + (1� FA)�

✓
p� p̄

1� FA

◆
. (45)
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As done before, we use the obtained probability density function of the transmit power
at the relay, to derive the optimal power allocation at the source node using (7). In
Table II, we summarize our results highlighting the power allocation at both source and
relay, the phases duration, and the data rate for the different cases analyzed above. Note
that the expressions reported in the table hold only for 0  P̄ < P0. By looking at the
two top tables, we can make the following observations:

– for P̄  P3, the source transmits during phase B only (i.e., the relay operates
in HD-RX mode) while in phase A the relay operates in HD transmitting at its
maximum power (HD-TX mode);

– for P̄ � max{P2,P4}, the relay operates in FD mode for the whole frame and both
source and relay transmit at their average power;

– for P̄ 2 (P3,max{P2,P4}) and v � �0, the relay works in HD-TX in phase A and
in FD mode during phase B;

– for P̄ 2 (P4,max{P2,P4}) and v < �0, the relay works in FD in phase A and in
HD-RX mode during phase B;

– for P̄ 2 (P3,P4] and v < �0, the relay works in HD-TX mode during phase A and
in HD-RX in phase B; thus, this case corresponds to the traditional HD mode.

VI. RESULTS

We compare the performance of our proposed scheme against the ideal full duplex commu-
nication scheme (in the following referred to as “FD Ideal”) where the relay does not suffer
from any self-interference. The performance of the “FD-Ideal” scheme is clearly unachievable
when self-interference is present; it is therefore used as an upper bound for all the considered
techniques. The corresponding rate is (see e.g. [12, eq.(38)])

RFD�Ideal = min

⇢
log

✓
1 +

P̄ |h1|2

N0

◆
, log

✓
1 +

p̄|h2|2

N0

◆�
.

We then consider the full duplex scheme (referred to as “FD-IP”) where the source is
aware of the instantaneous power (IP) at which the relay transmits. In FD-IP, the source
always transmits with average power P̄ while the relay transmits with average power p̄. We
stress that, unlike FD-IP, our scheme only requires the knowledge at the source of the average
power used at the relay. The expression of the rate achieved by FD-IP, also considered in
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[12], is2:

RFD�IP = min

(Z
+1

�1
log

✓
1 +

P̄ |h1|2

N0 + �x2

◆
e�x

2
/(2p̄)

p
2⇡p̄

dx, log

✓
1 +

p̄|h2|2

N0

◆)
. (46)

Furthermore, as done in [12], we compare our solution to the conventional half duplex scheme
(named “HD”), for which the rate is given by:

RHD = max
p̄/pmaxt1

min

⇢
(1�t) log

✓
1+

|h1|2P̄
(1�t)N0

◆
, t log

✓
1 +

p̄|h2|2

tN0

◆�
(47)

where the relay always operates in half duplex and its transmit power is limited to p
max. This

scheme implies that the communication is organized in two phases of relative duration t and
1� t, respectively.

Finally, we consider a scheme similar to the one proposed in [12] but without knowledge of
the instantaneous transmitted symbols. Specifically, we compare with a hybrid communication
scheme named FD-HD where the source has only knowledge of the instantaneous power used
by the relay and the relay leverages on FD-IP or on HD, depending on which operational
mode provides the highest rate. FD-HD is organized in the following three phases: (A) the
source transmits at power PA for a time fraction tA while the relay is silent; (B) the source
is silent and the relay transmits at power pB for a time fraction tB; (C) the relay operates in
FD, source and relay transmit at power PC and pC , respectively, for a time fraction tC . The
achieved rate is given by:

RFD�HD = max
tA,tB ,tC
PA,PC
pB ,pC

min

(
tA log

✓
1 +

PA|h1|2

N0

◆
+ tC

Z
+1

�1
log

✓
1 +

PC |h1|2

N0 + �x2

◆
e�x

2
/(2pC)

p
2⇡pC

dx,

tB log

✓
1 +

pB|h2|2

N0

◆
+ tC log

✓
1 +

pC |h2|2

N0

◆�
(48)

where the first argument of the min operator represents the rate achieved on the source-
relay link, the second one represents the rate achieved on the relay-destination link, and the
following constraints must hold: tA + tB + tC = 1, tAPA + tCPC = P̄ , tBpB + tCpC = p̄,
and pB, pC  p

max.
In order to evaluate the performance of our solution against the above schemes, we consider

a scenario similar to that employed in [12] where the source-relay and relay-destination
distances are both set to d = 500m, the signal carrier frequency is fc = 2.4GHz and the

2We further note that the symbols are Gaussian distributed, thus the probability that they transmit a symbol x = 0 is 0.

It follows that the system always works in FD mode.

DRAFT



24

 0

 1

 2

 3

 4

 5

-40 -30 -20 -10  0

R
 [

n
at

s/
s/

H
z]

P
-
 [dBW]

P
0

P
1

P
2

OP

HD

FD-IP

FD-HD

FD-Ideal

-40

-30

-20

-10

 0

-40 -30 -20 -10  0

P
, 
p
  
[d

B
W

]

P
-
 [dBW]

P
0

P
1

P
2

pA

pB

PA

PB

 0

 0.2

 0.4

 0.6

 0.8

 1

-40 -30 -20 -10  0

t

P
-
 [dBW]

P
0

P
1

P
2

tA

tB

Fig. 4. Performance for p̄ = �10 dBW, pmax = �7 dBW and � = �135 dB: (left) Achieved rate vs. P̄ ; (middle) Optimal

source and relay transmit power for phase A (solid lines) and phase B (dashed lines); (right) Phase durations tA (solid line)

and tB (dashed line).

path loss is given by |h1|2 = |h2|2 =
⇣

c

4⇡fc

⌘2

d
�↵, with ↵ = 3. Considering an additive noise

with power spectral density -204 dBW/Hz and a bandwidth B = 200 kHz, the noise power
at both relay and destination receivers is about N0 = �151 dBW. Note that, for this setting,
we have v = |h1|2/N0 ⇡ 30 dB.

Fig. 4(left) compares the rate of our optimal power allocation scheme, labeled “OP”, against
the performance of FD-Ideal, FD-IP, FD-HD and HD, for p̄ = �10 dBW, pmax = �7 dBW
and � = �135 dB. Since �0 = �/N0 ⇡ 16 dB, the results we derived for v > �0 apply. Let

Pi = Pi

�

|h1|2 , for i = 0, . . . , 4. For the parameters used in this example, the value of the power

thresholds are: P0 = �24 dBW, P1 = �14.23 dBW, P2 = �3.04 dBW, P3 = �9.92 dBW,
and P4 = �20.56 dBW. The thresholds P3 and P4 are meaningful only if lower than P0 (see
Sec. V), thus they are not shown in the figure. The achieved rates are depicted as functions of
the average transmit power at the source, P̄ . For P̄ � P0, the results obtained in Sec. IV hold.
Accordingly, the plot highlights three operational regions corresponding to P0  P̄  P1,
P1 < P̄  P2, and P̄ > P2, respectively. Instead, for P̄ < P0 (see Sec. V), we have a
single operational region only, since P3 > P0 and P4 > P0. As expected, the performance
of all communication strategies is upper-bounded by FD-Ideal, since the latter assumes no
self-interference at the relay. Also, FD-HD outperforms both FD-IP and HD since it assumes
perfect knowledge at the source about the instantaneous relay transmit power (as FD-IP) and
can work in either FD or HD mode, depending on the system parameters. The proposed OP
technique always outperforms HD and achieves higher rates than FD-IP for P̄ < �10 dBW.
Furthermore, OP gets very close to FD-HD, especially for P̄ > P1.

Such performance of the OP scheme is achieved for the source and relay transmit power
levels and for the phase durations depicted in Figs. 4(middle) and 4(right), respectively.
Interestingly, for P̄ < P1, the time durations of the two communication phases remain
constant. With regard to the transmit power, for P̄ < P0, the source transmits in phase B and
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Fig. 5. Performance for p̄ = �10 dBW, pmax = �7 dBW and � = �110 dB: (left) Achieved rate vs. P̄ ; (middle) Optimal

source and relay transmit power for phase A (solid lines) and phase B (dashed lines); (right) Phase durations tA (solid line)

and tB (dashed line).

is silent in phase A while the relay only transmits in phase A at its maximum power. For
P0  P̄ < P1, the source always transmits (even if at different power levels), while the relay
only receives in phase B and transmits at its maximum power in phase A. For P1  P̄ < P2,
both source and relay transmit but the duration of the two phases varies, with tA ! 0 as
P̄ ! P2. Finally, for P̄ � P2, both source and relay transmit at their average power level.

Fig. 5(left) refers to the same scenario as that considered in Fig. 4(left), but with the
self-interference attenuation factor, �, set to -110 dB. In this case, �0 = �/N0 ⇡ 41 dB and
the results obtained for v < �0 apply. Moreover, we have: P0 = 1 dBW, P2 = 21 dBW,
P3 = �9.9 dBW, and P4 = �0.7 dBW, while the threshold P1 is not meaningful (hence, it is
not shown). The figure highlights two operational regions for P̄ � P0 (namely, P0  P̄  P2

and P̄ � P2), and three operational regions for P̄ < P0 (i.e., P̄ < P3, P3  P̄  P4 and
P4 < P̄ < P0). In this case too, OP outperforms FD-IP (except for high values of P̄ ) and
performs very close to FD-HD. By looking at Fig. 5(middle), which depicts the corresponding
power levels used at source and relay, we note that in phase B the relay is always silent. In
phase A, instead, the relay transmits at its maximum power (namely, -7 dBW) when P̄  P3,
and it slowly decreases its power to p̄ as P̄ approaches P2. With regard to the source, in
phase B it always transmits for P̄ < P2, although at different power levels depending on
P̄ . On the contrary, in phase A it is silent for P̄ < P4, and it always transmits for larger
values of P̄ . These results match the values of the phase durations depicted in Fig. 5(right):
now, the region where the phase durations are constant is limited to P̄ < P3, while, as P̄

approaches P2, tA ! 1 and tB ! 0.
Fig. 6(left) highlights the impact of self-interference on the network performance by

showing the rate versus P̄ , achieved by OP and its counterpart FD-HD, as � varies. For
completeness, the results for FD-Ideal and HD (which do not depend on �) are shown too.
For � = �120 dB (i.e., v < �0), the system is affected by a substantial self-interference at the
relay, and OP performs as HD for low-medium values of P̄ . As � (i.e., the self-interference)
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Fig. 6. (Left) Achieved rate vs. P̄ , for p̄ = �10 dBW, pmax = �7 dBW, and different values of �; (middle) Achieved

rate vs. P̄ = p̄, for pmax = p̄ + 3 dB and � = �130 dB; (right) Achieved rate vs. P̄ = p̄, for pmax = 10 dBW and

� = �130 dB.

decreases, the OP performance becomes closer to that of FD-HD and FD-Ideal; in particular,
for � = �140 dB, the gap between OP and FD-HD reduces to about 1 dB.

In Fig. 6(middle), we study a different scenario where � is fixed to -130 dB, p̄ and P̄ vary,
and p

max = p̄ + 3 dB. Since now P̄ , p̄ and p
max can all grow very large, the gap between

FD-Ideal and all other schemes becomes much more evident. However, OP closely matches
FD-HD and significantly outperforms HD. Interestingly, FD-IP provides a lower rate than
HD as the transmit power at source and relay increases. This is because FD-IP cannot exploit
the HD mode; thus, when p̄ is large and the impact of self-interference becomes severe, there
is no match with the other schemes.

Finally, Fig. 6(right) addresses a similar scenario to the one above, but pmax is now fixed to
10 dBW. We observe that, as p̄ grows, the rate provided by all schemes increases. However,
when p̄ approaches p

max, the relay is constrained to transmit, i.e., to work in FD, for an
increasingly longer time. For p̄ = p

max, the relay always transmits at a power level equal to
p̄ = p

max. Also, the rate provided by the HD scheme drops to 0 while FD-IP and FD-HD
provide the same performance; indeed, the latter cannot exploit anymore the advantages of
HD. For the same reason, the OP scheme experiences a rate decrease. These results clearly
suggest that significantly better performance can be achieved when p̄ is not too close to p

max.

VII. EXTENSION TO FINITE P
max

The analysis performed in Secs. IV and V as well as the numerical results reported in
Sec. VI have been obtained by assuming P

max to be very large. By removing this assumption,
the transmission power at the source can be written as in 6 We recall that, for simplicity, we

defined Pmax = |h1|2
�

P
max so that P (p) can be more conveniently written as P (p) = �

|h1|2P(p)

with P(p) = min {[! � p]+,Pmax}.
The following cases can occur:
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• Pmax
> !, then P(p) = [!� p]+. This leads to a situation similar to that considered in

Secs. IV and V. Indeed,
– in Sec. IV, by imposing ! � p

max in constraints (c), (d), and (e) of problem P1, we
obtained ! = P̄ + p̄. It follows that P̄ should lie in the range [pmax� p̄,Pmax� p̄] where
the results reported in Table I hold;
– in Sec. V, we considered the case ! < p

max. Since Pmax
> !, we obtain ! <

min{pmax
,Pmax}. If Pmax

> p
max the results shown in Table II hold, otherwise they

need to be recomputed by simply considering ! ranging in [0,Pmax).
• Pmax  !, which is a more challenging scenario to analyse. Indeed, in such a situation

function P(p), with p 2 [0, pmax], takes values in up to three linear regions, depending
on the value of pmax. Specifically,
– if p

max
< ! � Pmax, we have P(p) = Pmax. Then the integral in (3) holds only

if P̄ = Pmax. This corresponds to the case where the source always transmits at its
maximum power, regardless what the relay does;
– if ! � Pmax  p

max
< !, P(p) takes values in two linear regions, i.e., P(p) = Pmax

if p 2 [0,! � Pmax), and P(p) = ! � p if p 2 [! � Pmax
, p

max). In order to maximize
the rate R over the distribution f(p), we then need to split it in two parts as done in
Sec. V and the same analysis therein applies;
– if p

max � ! , P(p) is composed of three linear regions, i.e., P(p) = Pmax if p 2
[0,! � Pmax), P(p) = ! � p if p 2 [! � Pmax

,!), and P(p) = 0 otherwise. In this
case, for any given !, the rate maximization can be solved by splitting f(p) in three
distributions having support in [0,! � Pmax), [! � Pmax

,!), and [!, pmax], and having
masses F1(!), F2(!), and 1 � F1(!) � F2(!), respectively. The maximization can be
performed following a procedure similar to Sec. V, although in this case, we need to
consider a three-dimensional (instead of a bi-dimensional) region ⌦, with coordinates
(!, F1, F2). Such maximization is quite cumbersome if performed analytically.

VIII. CONCLUSIONS

We investigated the maximum achievable rate in dual-hop decode-and-forward networks
where the relay can operate in full-duplex mode. Unlike existing work, in our scenario the
source is only aware of the probability density function of the transmit power at the relay;
under this assumption, we derived the allocation of the transmit power at the source and
relay that maximize the data rate. Such probability density function turned out to be discrete
and composed of either one or two delta functions. This finding allowed us to identify the
optimal network communication strategy, which, in general, is given by a two-phase scheme
where the relay operates in HD or FD in each phase. Our numerical results highlight the
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advantage of being able to gauge full-duplex and half-duplex at the relay, depending on the
channel gains and the amount of self-interference affecting the system. They also underline
the excellent performance of the proposed scheme, even when compared to strategies that
assume the source to be aware of the instantaneous transmit power at the relay.
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APPENDIX A

We can solve P0 by writing Lagrange’s equation and leveraging the well-known Karush-
Kuhn-Tucker (KKT) conditions. We define the Lagrangian as:

L(P ) = f(p) log

✓
1 +

|h1|2

N0 + �p
P (p)

◆
��

�
f(p)P (p)� P̄

�
�µ1(p)(P (p)�P

max)+µ2(p)P (p)

where µ1(p), µ2(p) � 0 and � are the KKT multipliers. Writing the KKT conditions, we

obtain |h1|2
N0+�p

· f(p)

1+
P (p)|h1|2
N0+�p

� �f(p) � µ1(p) + µ2(p) = 0, µ1(p)(P (p) � P
max) = 0, and

µ2(p)P (p) = 0, along with (a) and (b) that must still hold. It can be easily verified that
the above system is satisfied when µ1(p) = µ2(p) = 0, for which the first KKT con-

dition reduces to f(p)


|h1|2

N0+�p
· 1

1+
P (p)|h1|2
N0+�p

� �

�
= 0. Solving for P (p) we get: P (p) =

min

⇢h
1

�
� N0+�p

|h1|2

i+
, P

max

�
= �

|h1|2 min {[! � p]+,Pmax} where we defined

Pmax , P
max |h1|2

�
, and ! = |h1|2

��
� N0

�
, which must satisfy (a).

APPENDIX B

The upper bound is immediately obtained by applying Jensen inequality and it clearly
holds with equality when f(p) = �(p � m). With regard to the lower bound, being �(p)

concave in p 2 [a, b], we can write �(p) � �(b)��(a)

b�a
(p� a) + �(a). Therefore,

Z
b

a

f(p)�(p) dp �
Z

b

a

f(p)


�(b)��(a)

b�a
(p�a) + �(a)

�
dp =

b�m

b�a
�(a)+

✓
1�b�m

b�a

◆
�(b) .

For f(p) = b�m

b�a
�(p� a) +

�
1� b�m

b�a

�
�(p� b), the lower bound holds with equality.
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APPENDIX C

The conditions ! 2 [0, pmax), F 2 [0, 1], 0  G  p̄, (24), and (25) can be rewritten

in terms of F and ! as follows: (a)F  p̄+P̄
!

; (b)F  p
max�p̄�P̄
pmax�!

; (c)F � P̄
!
; (d)! <

P̄ + p̄ ; (e) 0  F  1 ; (f)0  ! < p
max. Note that (d) implies P̄+p̄

!
> 1. Since F  1,

condition (a) is always verified, hence it is redundant. Similarly, since P̄ and ! are both

positive, we have P̄
!
� 0; thus the left inequality in (e) is redundant. Also, it easy to check that

p
max�p̄�P̄
pmax�!

 1 implies !  p̄� P̄ , which is more restrictive than (d); thus, the right inequality

in (e) is redundant. In conclusion, the remaining constraints on F can be summarized as
P̄
!
 F  p

max�p̄�P̄
pmax�!

. Clearly, solutions for F exist if and only if P̄
!
 p

max�p̄�P̄
pmax�!

, i.e., if and

only if ! � p
maxP̄

pmax�p̄
. Since term p

maxP̄
pmax�p̄

is positive, the remaining conditions on ! can be

summarized as p
maxP̄

pmax�p̄
 ! < min{pmax

, P̄+ p̄}. Hence, a solution for ! exists if and only if

p
maxP̄

pmax�p̄
< p

max and p
maxP̄

pmax�p̄
< P̄ + p̄; such conditions are satisfied when P̄ < p

max � p̄ = P0.

In conclusion, under the condition P̄ < P0, a solution for the above inequalities exists and
it is represented by the region ⌦ in (26).

APPENDIX D

The problem in (14) can be solved by using the Euler-Lagrange formula. We define the
Lagrangian L(p, f(p)) = f(p)�(p) + �1f(p) (p) + �2pf(p) + �3f(p)� µ(p)f(p) where the
first term represents the functional to be minimized. The second, third and fourth terms
represent the constraints (a), (b), and (c) with associated Lagrange multipliers �1, �2 and
�3, respectively. Note that (d) can be rewritten as �f(p)  0 and it requires a Lagrange
multiplier for every p 2 [a, b]. This can be done by introducing the multiplier µ(p) � 0.

Next, we apply the Euler-Lagrange formula and we write the Karush-Kuhn-Tucker condi-

tions associated with the problem. Specifically, we get @L

@f
= 0 ) µ(p) = �(p) + �1 (p) +

�2p+ �3, subject to the conditions (a), (b), (c), (d), µ(p) � 0, and µ(p)f(p) = 0.
Now the key observation is that µ(p) = �(p) + �1 (p) + �2p + �3 identifies a family of

continuous functions driven by the parameters �1, �2 and �3. Such parameters need to be
properly chosen in order to have µ(p) � 0, 8p 2 [a, b]. If µ(p) is strictly positive in [a, b]

(i.e., µ(p) > 0, 8p 2 [a, b]), then the condition µ(p)f(p) = 0 implies f(p) = 0, 8p 2 [a, b],
which is not a valid solution. Moreover, �(p) and  (p) are not constant functions, therefore
it is not possible to find values of the Lagrange multipliers such that µ(p) = 0, in a subset
of [a, b] having non-zero measure. The only option is to allow µ(p) > 0 for all p 2 [a, b],
except for a discrete set of points pi 2 [a, b] for which µ(pi) = 0. This observation hints that
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the solution of the problem must be found in the set of discrete distributions. In practice,
every solution pi of µ(p) = 0 is associated with a mass of probability, ⇡i, located at pi.

The number of solutions of µ(p) = 0 can vary depending on the values of �1, �2, �3, �1,
and �2. In general, such a number can be computed by analyzing the first derivative of µ(p):

µ
0(p) =

k1p
2 + k2p+ k3

(1 + �1p)(1 + �2p)
(49)

where k1, k2, k3 depend on �1, �2, �3, �1, �2. The numerator of (49) is a polynomial in p of
degree 2 and thus has up to two solutions for p in [a, b], which correspond to local minima
or maxima of µ(p). Let f ?(p) be the minimizer of (14). Then several cases are possible:
1) µ(p) has a single solution p1 2 [a, b], which does not correspond to local minima or
maxima. Then p1 = a or p1 = b. This implies f

?(p) = ⇡1�(p � a) (or, f ?(p) = ⇡1�(p � b))
which, however has only one degree of freedom (i.e., the value of ⇡1) and thus, in general,
cannot satisfy constraints (a), (b), and (c) of (14) all together;
2) µ(p) has a single solution p1 2 [a, b], which corresponds to a local minimum. Thus
f
?(p) = ⇡1�(p� p1). However, this solution is not feasible since it has only two degrees of

freedom (i.e., p1 and ⇡1) and therefore, in general, cannot satisfy the three constraints (a),
(b), and (c) of (14) at the same time;
3) µ(p) has two solutions p1, p2 2 [a, b] none of which corresponds to a local minimum. Thus
p1 = a and p2 = b, and f

?(p) = ⇡1�(p� a) + ⇡2�(p� b). Again, in general, this solution is
not feasible since it has only two degrees of freedom (⇡1 and ⇡2) and therefore cannot meet
(a), (b), and (c) at the same time;
4) µ(p) has two solutions p1, p2 2 [a, b] one of which is a local minimum. Then two cases
are possible, i.e., {p1 = a, p2 > a} or {p1 < b, p2 = b}) and the minimizer f

?(p) takes the
expression f

?(p) = ⇡1�(p�a)+⇡2�(p�p2) or f ?(p) = ⇡1�(p�p1)+⇡2�(p�b). This solution
is feasible since it has three degrees of freedom represented by {⇡1, ⇡2, p1} or {⇡1, ⇡2, p2}
that can be determined by imposing the constraints (a), (b), and (c). The constants �1, and
�2 determine which of the two expressions in (15) is the minimizer. This is shown below.
Since µ(p) cannot have more than two distinct solutions in [a, b] (indeed, µ0(p) has at most
two solutions), we conclude that the minimizer of (14) is given by (15).

Selecting the minimizer expression. The minimizer can assume one of the two possible
expressions in (15). Here we show that the choice of the minimizer depends on the parameters
�1 and �2. To do so, we first observe that the family of distributions f ?(p, x, y) = ⇡(x, y)�(p�
x) + [1 � ⇡(x, y)]�(p � y), where ⇡(x, y) = y�m

y�x
> 0 with m  y  b and a  x  m,

encompasses both expressions in (15). Specifically, the expressions reported in (15) are given
by f

?(p, a, p2) and f
?(p, p1, b), respectively.
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For such a family of distributions, constraint (c) in (14) can be rewritten as F (x, y) =
R
b

a
f
?(p, x, y) (p) dp = ⇡(x, y) (x) + [1 � ⇡(x, y)] (y) = c. Similarly, the cost function,

R
b

a
f(p)�(p) dp, can be written as G(x, y) = ⇡(x, y)�(x)+ [1�⇡(x, y)]�(y). Note that, since

 (p) = �(p) + ⌘(p), we have F (x, y) = G(x, y) +H(x, y) where H(x, y) = ⇡(x, y)⌘(x) +

[1�⇡(x, y)]⌘(y). In the following, for the sake of notation simplicity, we drop the argument
of the functions when not needed. We now make the following observations:
1) F and G are increasing functions of x and decreasing functions of y [22].
2) the equation F (x, y) = c is the implicit definition of yc(x), a  x  p1 and p2  y  b

with derivative defined as y0
c
(x) = dyc(x)

dx
= �Fx

Fy
where we defined Fx = @F

@x
and Fy =

@F

@y
. By

the above arguments on the partial derivatives of F , we conclude that y0
c
(x) > 0. Similarly,

the function G(x, y) = t is the implicit definition of yt(x) whose derivative y
0
t
(x) is positive.

3) Given the constant c, a value for t exists such that yc(x) and yt(x) have a common solution
(x⇤

, y
⇤). E.g., if t = G(a, p2), the two curves share the point (a, yc(a)).

Now consider a value of t such that the curves yc(x) and yt(x) intersect at point P =

(x⇤
, y

⇤), with P 6= (a, p2), P 6= (p1, b).
If y

0
c
(x) > y

0
t
(x) at P , then t is not the global minimum of the cost function in (14).

Indeed, it exists ✏ > 0 such that the curve yt�✏(x) intersects yc(x) at some point P
0 =

(x⇤ + �x, y
⇤ + �y) where the cost function G(x⇤ + �x, y

⇤ + �y) = t � ✏ is clearly lower
than at P . Since this is true for any point P = (x⇤

, y
⇤), we conclude that the minimizer is

f
?(p, p1, b) and that the minimum is G(p1, b). By applying similar arguments, if y0

c
(x) < y

0
t
(x)

at P the minimizer is f
?(p, a, p2) and the minimum is G(a, p2).

To compare the derivatives of y0
c
(x) and y

0
t
(x), we use the definitions of F , G, and H and

write: y
0
c
(x) = �Fx

Fy
= �Gx+Hx

Gy+Hy
and y

0
t
(x) = �Gx

Gy
where Gx, Hx, Gy, Hy are the partial

derivatives of G and H w.r.t. x and y, respectively. By considering y
0
c
(x) � y

0
t
(x), we obtain

�Gx+Hx
Gy+Hy

� �Gx
Gy

) �Gx
Gy

 �Hx
Hy

. We also observe that: @⇡

@x
= ⇡x = ⇡

y�x
and @⇡

@y
= ⇡y =

1�⇡

y�x
.

We can the easily derive the expressions of Gx, Gy, Hx and Hy.
Now observe that �(p) = log(1+�1p) and ⌘(p) = log(1+�2p) are the same function (i.e.,

log(1 + �p)), the former evaluated in � = �1 and the latter in � = �2. Therefore, since G

depends on �(p) and H depends on ⌘(p), we can write �Gx
Gy

= ⇣(�1) and �Hx
Hy

= ⇣(�2). It is

easy to show that ⇣(�) increases with �; indeed, by imposing ⇣ 0(�) � 0, after some algebra

and after simplifying positive factors, we obtain: log
⇣

1+�y

1+�x

⌘
(2 + �y + �x) � 2�(y � x).

The right hand side (r.h.s.) of the previous inequality is positive and linear with �, � � 0.
The left hand side (l.h.s.) is positive, convex and tangent to the r.h.s. at � = 0. Therefore,
the above inequality always holds and ⇣(�) increases with �. We conclude that if �1  �2,
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we have �Gx
Gy

 �Hx
Hy

and, thus, yc(x) > yt(x). In such a case, the minimizer is f
?(p, p1, b).

Similarly, when �1 > �2, the minimizer is f
?(p, a, p2).

APPENDIX E

The curve Q1(!, F ) intersects the line ! = p̄ + P̄ at most in a single point. To prove

this, we substitute ! = p̄+ P̄ in the expression for Q1(!, F ) = 0, i.e., we compute (Rmin

1
=

eRmax

2
)|!=p̄+P̄ . Such equation can be conveniently rewritten as

� log

✓
1� P̄�0

F (1 + a)

◆
= F log

✓
1� P̄�0v

F (�0 + av)

◆
+ log

✓
1 +

av

�0

◆
. (50)

where a = �0(p̄ + P̄). The l.h.s of (50) is defined when P̄�0

F (1+a)
< 1, i.e., when F � P̄�0

1+a
,

which is always true since in ⌦ F is larger than in V3, i.e., P̄�0

a
. Moreover, the l.h.s of (50)

decreases with F while the r.h.s of (50) increases with F ; thus, (50) has at most one solution.
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