
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Debugging Approach for Trigger-Action Programming / De Russis, Luigi; Monge Roffarello, Alberto. - STAMPA. -
(2018), pp. 1-6. (Intervento presentato al convegno CHI 2018: The 36th Annual CHI Conference on Human Factors in
Computing Systems tenutosi a Montreal, QC (Canada) nel April 21–26, 2018) [10.1145/3170427.3188641].

Original

A Debugging Approach for Trigger-Action Programming

Publisher:

Published
DOI:10.1145/3170427.3188641

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2701270 since: 2018-04-24T14:58:37Z

ACM

A Debugging Approach for
Trigger-Action Programming

Luigi De Russis
Politecnico di Torino
Corso Duca degli Abruzzi, 24
Torino, Italy 10129
luigi.derussis@polito.it

Alberto Monge Roffarello
Politecnico di Torino
Corso Duca degli Abruzzi, 24
Torino, Italy 10129
alberto.monge@polito.it

Figure 1: Our debugging tool. Before saving a trigger-action rule,
users are informed about possible problems that the rule may
generate.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

Copyright held by the owner/author(s).
CHI’18 Extended Abstracts, April 21–26, 2018, Montreal, QC, Canada
ACM 978-1-4503-5621-3/18/04.
https://doi.org/10.1145/3170427.3188641

Abstract
Nowadays, end users can customize their technological de-
vices and web applications by means of trigger-action rules,
defined through End-User Development (EUD) tools. How-
ever, debugging capabilities are important missing features
in these tools that limit their large-scale adoption. Problems
in trigger-action rules, in fact, can lead to unpredictable be-
haviors and security issues, e.g., a door that is unexpect-
edly unlocked. In this paper, we present a novel debugging
approach for trigger-action programming. The goal is to
assists end users during the composition of trigger-action
rules by: a) highlighting possible problems that the rules
may generate, and b) allowing their step-by-step simulation.
The approach, based on Semantic Web and Petri Nets, has
been implemented in a EUD tool, and it has been prelimi-
nary evaluated in a user study with 6 participants. Results
provide evidence that the tool is usable, and it helps users
in understanding and identifying problems in trigger-action
rules.

Author Keywords
End User Development; Trigger-Action; Debug; Internet of
Things

ACM Classification Keywords
H.5.m [Information interfaces and presentation (e.g., HCI)]:
Miscellaneous

https://doi.org/10.1145/3170427.3188641

Introduction and Motivation
The potential of the Internet of Things (IoT) is nowadays be-
ing increasingly recognized, and its adoption already helps
society in many different ways, i.e., with applications for
the individual and for the industries as well. As reported
in recent studies, e.g., [4], the IoT ecosystem can be de-
fined from a wide perspective, by including not only physi-
cal devices, but also web applications such as messaging
services and social networks. In this domain, End-User
Development (EUD) tools empower users to define joint be-
haviors between sets of devices and web applications, on
the basis of their personal needs. Such behaviors are typ-
ically composed through a set of trigger-action rules such
as “if the Nest camera in the kitchen detects a movement,
then send me a Telegram message.” Despite apparent sim-
plicity, the composition of such rules may be a complex task
for end users [5], and the advent of new interconnected ob-
jects and web services raises new challenges. One of the
most important is the need of assessing the correctness of
trigger-action rules defined by users. Errors in trigger-action
rules, in fact, can lead to unpredicted and dangerous be-
haviors: while posting a content on a social network twice
could be considered a minor issue, in a smart home sce-
nario wrong rules could unexpectedly unlock a door, thus
generating a security threat. Unfortunately, even if debug-
ging features could facilitate the adoption of EUD tools in
the real world [3], relatively little work has been done in this
field. In this paper, we present a novel debugging approach
for trigger-action programming to assists end users during
the composition of trigger-action rules. The goal is to prop-
erly warn users when they are defining any troublesome or
potentially dangerous behavior, providing mechanisms to
understand why such problems can happen. For this pur-
pose, we define a formalism based on Semantic Web and
Petri Nets to model the execution of trigger-action rules,
and we integrated it in a tool (Figure 1) that: a) highlights

any possible problems that the rule which is being defined
may generate, and b) allows a step-by-step simulation of
the rules that generated the problems. A preliminary eval-
uation with 6 participants demonstrate the usability of the
tool, and suggests that the tool helps end users understand
and identify problems in trigger-action rules.

Related Works
Relatively little work has been done to insert debugging
features for end users that aim to jointly customize their de-
vices and web applications on the basis of their personal
needs. Cao et al. [1], for example, explore end users’ de-
bugging strategies in mashup programming, while Ko and
Myers [6] propose an interrogative debugging interface for
the Alice programming environment. None of such works,
however, include IoT devices or is related to trigger-action
programming. Moreover, using rules in “critical” systems
implies that the system’s behavior must be thoroughly ana-
lyzed, while providing end users with tools and methods for
validating their rules could facilitate the adoption of EUD
tools at a large-scale [3].Research targeting rule analy-
sis has mainly been performed in the area of databases.
Li et al. [7], in particular, propose a Conditional Colored
Petri Net (CCPN) formalism to model and simulate Event-
Condition-Action (ECA) rules for active databases. Some
other previous works analyze rules in the context of smart
environments, e.g., [9]. Typically, they adopt formal verifi-
cation techniques to check the consistency of a set of de-
fined rules, and employ predefined use cases to validate
the algorithms. The goal of our work is different: instead of
verifying “off-line” a set of already defined rules, we aim at
assisting end users during the definition of their rules.

Debugging Trigger-Action Rules
Problems in Trigger-Action Rules
Informed by the literature [9], we define three class of prob-
lems that can occur in sets of trigger-action rules: loops,
inconsistencies, and redundancies. Loops occur when a
set of trigger-action rules are continuously activated without
halting by reaching a stable state. Inconsistencies happen
when rules that are activated at (nearly) the same time1

may try to execute contradictory actions. Redundancies
occur, instead, when two or more rules are activated at
(nearly) the same time and their functionality is replicated.
The following set of trigger-action rules contains all the
three problems:

Figure 2: Part of the net that
includes R1, R2, R4 and R6.
Trigger Places are in green, Action
Places in red.

R1. if my Android GPS detects that I exit the home area,
then lock the entrance door
R2. if my Android GPS detects that I exit the home area,
then set the Nest thermostat to Away mode
R3. if I add a photo on my iOS library, then share it on
Facebook
R4. if the entrance door is locked, then set the Nest thermo-
stat to Away mode
R5. if I share a photo on Facebook, then save it on my iOS
library
R6. if the entrance door is locked, then set the Nest thermo-
stat to Manual mode

R1, R2, R4, and R6 may be activated at nearly the same
time (because R1 activates R4 and R6) and contain two
inconsistent actions, i.e., set the Nest thermostat to Away
mode (R2 & R4) and set the Nest thermostat to Manual
mode (R6), and two redundant actions, i.e., both R2 and
R4 have the actionset the Nest thermostat to Away mode.

1e.g., when rules share the same triggers or when some rules trigger
other rules

Furthermore, R3 and R5 produce an infinite loop that con-
stantly save and post the photo on iOS and Facebook.

Semantic Colored Petri Nets
We define a Semantic Colored Petri Nets (SCPN) formal-
ism to model the execution of trigger-action rules. Petri
nets can be used as a tool for describing distributed, con-
current, and asynchronous systems such as a rule-based
system. Petri nets for describing rules have been mainly
adopted in the area of active databases [7]. We adopt a
similar approach for our context, i.e., end-user debug of IF-
THEN rules. The main difference with other Colored Petri
Net based approaches is that we use a semantic model to
generate and analyze the net. Furthermore, each token of
the net contains semantic information, i.e., the “color”, that
allows the inference of more information from the simulation
of the net. The exploited semantic model is EUPont [2], an
ontological high-level description of trigger-action program-
ming, that describes physical devices and web applications
on the basis of their categories and capabilities, i.e., offered
services. For each trigger or action, in particular, the ontol-
ogy provides information about their final functionality, the
service by which they are offered, and any relationship with
other triggers or actions, e.g., the fact that the action turn
on the lamp intrinsically activates the trigger the lamp has
been turned on.

Figure 2 shows a partial view of the net built starting from
the previous example (R1, R2, R4 and R6). The set of rules
are modeled as transitions. Triggers and actions are mod-
eled as places, i.e., Trigger Place (TP) and Action Place
(AP). A token in a Trigger Place, for example, means that all
the rules that share that specific trigger are activated. When
a trigger is in common between more than one rule (as in
R1 and R2), the associated places are duplicated and con-
nected through a Copy Transition. When there is a token in

the original place, the Copy Transition simply replicates it in
each copied place. Trigger Places and Action Places can
be connected each other through:

• Rule Transition. A connection between a trigger
and an action by means of a trigger-action rule. Rule
Transitions model the rule defined by the user. They
remove a token from a TP and generate a new token
in an AP.

• Trigger Transition. A connection used when an ac-
tion of a rule triggers the event of another rule. Trig-
gers Transition are extracted from the semantic infor-
mation contained in EUPont. They remove a token
from an AP and generate a new token in a TP.

Rule Analysis with SCPN
To detect loops, inconsistencies, and redundancies in trigger-
action rules at composition time, we first translate the rules
in the corresponding SCPN. Then, possible loops are de-
tected by performing a depth-first search on the net. If the
net is loop-free, i.e., its execution terminates in a finite num-
ber of transitions, the net is executed and analyzed. For
the execution, a SCPN offers many possibilities. To iden-
tify problems in rules at composition time, for example, the
initial marking can be a single token in the Trigger Place
related to the rule that is being defined. When the net exe-
cution terminates, all the tokens in the net are analyzed to
find inconsistencies and redundancies.

By analyzing the semantic information of the tokens, along
with their position in the net, an inconsistency is found if
there are at least two actions that: a) act on the physical ob-
ject or web application, and b) are classified under contrast-
ing EUPont functionality. A redundancy, instead, is found
if there are at least two actions that: a) act on the physi-
cal object or web application, b) share the same EUPont
final functionality. Finally, the nature of a Petri net opens up

many opportunities, e.g., to simulate rules at real-time.

Implementation
We implemented the SPCN in a web-based tool for com-
posing trigger-action rules. We exploited a large dataset
of more than 200,000 trigger-action rules extracted from
IFTTT [8] to define available triggers and actions. The tool
assists end users in two ways, i.e., problem checking and
step-by-step explanation. Users are informed of any loops,
inconsistencies, or redundancies that the rule which is be-
ing defined may generate (Figure 1). By clicking an “expla-
nation” button, users can inspect the problem by simulating
the involved trigger-action rules step-by-step.

Preliminary evaluation
We preliminary evaluated our debugging approach in a user
study by focusing on the usability and understandability of
the implemented tool at composition time, leaving for future
works the evaluation of the SCPN approach for run-time
check and simulation of large sets of rules. We think that
a user-centered approach is fundamental to understand
whether end users are able to deal with debugging features
such as those implemented in our tool. In particular, our
aim was to investigate whether end users are able to RQ1)
understand the concepts of loop, inconsistency, and redun-
dancy in trigger-action programming, and why specific rules
may generate such problems; and RQ2) understand and
use the tool, including the step-by-step simulation.

We recruited 6 participants with a mean age of 20 years
(SD = 1.26, range: 19-22) by sending emails to students
coming from various backgrounds, i.e., biology, law, edu-
cation, and aerospace engineering. In the recruitment pro-
cess, we excluded users who had previous experience in
computer science and programming.

Study Description
At the beginning of the study, participants were introduced
to the trigger-action programming and to the realized tool
with an example of a rule composition. To investigate RQ1,
participants were not introduced to the problems that rules
may generate. The evaluation consisted of a single task.
Participants were asked to compose 12 trigger-action rules
of which 5 caused a problem with respect to the already de-
fined rules (1 loop, 2 inconsistencies, and 2 redundancies).
Rules were presented to the users one at a time in coun-
terbalanced order. When the EUD tool highlighted some
problems, they had to decide whether to save the rule or
not. Before deciding, they could optionally use an explana-
tion button to simulate the rules that generated the problem
step-by-step.

L I R
6 12 12
Discarded 5 12 5
Saved 1 0 7
Explanations 4 4 5

Table 1: The table reports the total
number of times (#) participants
encountered a Loop (L), an
Inconsistency (I), or a Redundancy
(R) in the study, and the number of
time they discarded or saved the
involved rules, along with the
number of times they used the
explanation button.

Measures
We collected quantitative and qualitative measures, such as
the number of saved and discarded rules and the number
of times participants used the explanation button. When
the composition of a rule generated a problem, we asked
participants to answer some open questions by voice. In
particular, when the participants decided to discard the rule,
they had to demonstrate they understood the problem by
retrospectively explaining why the rule generated the issue
(explanation). On the contrary, if they decided to save the
rule, they had to justify their choice (justification). At the
end of the study, participants were asked to evaluate the
comprehension of the tool on a Likert-scale from 1 (Not
understandable) to 5 (Very understandable).

Results
The debugging perspective was successfully used in the
study by all the participants, and the answers to the fi-
nal questions about the comprehension of the tool (M =
3.75; SD = 0.96) give us a positive feedback on its usability

(RQ2). Table 1 reports the quantitative measures collected
during the study. On average, each participant discarded
3.67 rules out of the 5 that generated a problem, while they
saved 1.34 rules even if the tool highlighted a problem.
By analyzing these participants’ choices, we found that 5
users discarded the rule that generated a loop, and all 6
users discarded both rules that generated an inconsistency.
This suggests that participants were aware of the “danger”
caused by such problems. The qualitative data further con-
firm that participants understood the concept of loop and
inconsistency (RQ1). All 6 users, in fact, successfully pro-
vided a sound explanation in case of inconsistencies, while
only 1 participant (the one that saved the rule anyway) had
difficulty in understanding the concept of loop and provided
a wrong justification. Not surprisingly, results suggest that
the loop was the most complex concept to understand: in 4
cases out of 6 participants discarded the rule that caused
the loop by providing a right explanation only after having
used the step-by-step explanation. Conversely, on a total of
12 redundancies, users decided to save the rule in 7 cases.
All the participants demonstrated they understood the re-
dundancy concept (RQ1), and the provided justifications
confirm that redundancies were perceived as less “dan-
gerous” than loops and inconsistencies, and acceptable
in some cases. For example, by looking at a redundancy
that simultaneously posted on Twitter two tweets about the
same topic, i.e., “I listened to the new song of Ed Sheeran
on YouTube” and “I listened to the new song of Ed Sheeran
on Spotify”, 2 users said “this is not a problem for me, the
two tweets are different so I want to save the rule anyway.”

Conclusion and Future Works
We presented a debugging approach to assist end users in
defining trigger-action rules for customizing their smart de-
vices and web services based on Semantic Web and Petri
Nets. A preliminary evaluation provided interesting insights

about the usability and the understandability of the debug-
ging approach and the related concepts. Open questions
still remain to guide future works. How would end users ac-
tually debug their trigger-action rules, and which strategies
would they adopt? To what extent they would benefit from
problem checking and simulation features with a large set of
rules?

REFERENCES
1. J. Cao, K. Rector, T. H. Park, S. D. Fleming, M. Burnett,

and S. Wiedenbeck. 2010. A Debugging Perspective on
End-User Mashup Programming. In 2010 IEEE
Symposium on Visual Languages and Human-Centric
Computing. 149–156. DOI:
http://dx.doi.org/10.1109/VLHCC.2010.29

2. F. Corno, L. De Russis, and A. Monge Roffarello. 2017.
A Semantic Web Approach to Simplifying
Trigger-Action Programming in the IoT. Computer 50,
11 (2017), 18–24. DOI:
http://dx.doi.org/10.1109/MC.2017.4041355

3. G. Desolda, C. Ardito, and M. Matera. 2017.
Empowering End Users to Customize Their Smart
Environments: Model, Composition Paradigms, and
Domain-Specific Tools. ACM Transactions on
Computer-Human Interaction 24, 2, Article 12 (2017),
52 pages. DOI:http://dx.doi.org/10.1145/3057859

4. G. Ghiani, M. Manca, F. Paternò, and C. Santoro. 2017.
Personalization of Context-Dependent Applications
Through Trigger-Action Rules. ACM Transactions on
Computer-Human Interaction 24, 2, Article 14 (2017),
33 pages. DOI:http://dx.doi.org/10.1145/3057861

5. Ting-Hao K. Huang, A. Azaria, and J. P. Bigham. 2016.
InstructableCrowd: Creating IF-THEN Rules via

Conversations with the Crowd. In Proceedings of the
2016 CHI Conference Extended Abstracts on Human
Factors in Computing Systems (CHI EA ’16). ACM,
New York, NY, USA, 1555–1562. DOI:
http://dx.doi.org/10.1145/2851581.2892502

6. A. J. Ko and B. A. Myers. 2004. Designing the Whyline:
A Debugging Interface for Asking Questions About
Program Behavior. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI ’04). ACM, New York, NY, USA, 151–158. DOI:
http://dx.doi.org/10.1145/985692.985712

7. X. Li, J. M. Medina, and S. V. Chapa. 2007. Applying
Petri Nets in Active Database Systems. IEEE
Transactions on Systems, Man, and Cybernetics, Part
C (Applications and Reviews) 37, 4 (July 2007),
482–493. DOI:
http://dx.doi.org/10.1109/TSMCC.2007.897329

8. B. Ur, M. Pak Yong Ho, S. Brawner, J. Lee, S.
Mennicken, N. Picard, D. Schulze, and M. L. Littman.
2016. Trigger-Action Programming in the Wild: An
Analysis of 200,000 IFTTT Recipes. In Proceedings of
the 34rd Annual ACM Conference on Human Factors in
Computing Systems (CHI ’16). ACM, New York, NY,
USA, 3227–3231. DOI:
http://dx.doi.org/10.1145/2858036.2858556

9. C. Vannucchi, M. Diamanti, G. Mazzante, D.
Cacciagrano, R. Culmone, N. Gorogiannis, L.
Mostarda, and F. Raimondi. 2017. Symbolic verification
of event–condition–action rules in intelligent
environments. Journal of Reliable Intelligent
Environments 3, 2 (01 Aug 2017), 117–130. DOI:
http://dx.doi.org/10.1007/s40860-017-0036-z

http://dx.doi.org/10.1109/VLHCC.2010.29
http://dx.doi.org/10.1109/MC.2017.4041355
http://dx.doi.org/10.1145/3057859
http://dx.doi.org/10.1145/3057861
http://dx.doi.org/10.1145/2851581.2892502
http://dx.doi.org/10.1145/985692.985712
http://dx.doi.org/10.1109/TSMCC.2007.897329
http://dx.doi.org/10.1145/2858036.2858556
http://dx.doi.org/10.1007/s40860-017-0036-z

	Introduction and Motivation
	Related Works
	Debugging Trigger-Action Rules
	Problems in Trigger-Action Rules
	Semantic Colored Petri Nets
	Rule Analysis with SCPN

	Implementation
	Preliminary evaluation
	Study Description
	Measures
	Results

	Conclusion and Future Works
	REFERENCES

