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Summary: In this paper a simple linear elastic fracture mechanics approach is proposed for prediction 
of edge debonding in plated beams. The analytical model results in simple equations, suitable for 
immediate design use. The load–deflection curve of a plated beam, from the onset of debonding up to 
the complete separation of the plate, is obtained by controlling the length of the interfacial debonding 
crack. Its shape clearly shows that snap-back or snap-through instabilities may arise when the beam is 
loaded under displacement or force control. Analytical predictions are also compared with finite 
element results based on an interfacial cohesive crack model. It is shown that predictions of the 
proposed analytical model match very closely the numerical solution, provided that an effective crack 
length accounting for the size of the fracture process zone is used in the calculations. 
 
 
1 INTRODUCTION 

Plate bonding is an effective and cost-efficient technique to increase the load-bearing capacity 
and/or the stiffness of existing beams. In the past decade, fiber-reinforced polymer (FRP) composite 
plates have almost totally replaced the more traditional steel plates for this application. Among the 
possible failure modes of plate bonded beams, several mechanisms related to debonding of the plate 
from the substrate have been identified by previous researches. Due to the brittle and unstable 
character of such failures, their prediction has been the subject of several investigations. In particular, 
this paper focuses on the so-called “edge debonding” mechanism, whereby failure occurs by the 
formation and rapid growth of an interfacial crack between the edge of the plate and the beam.  

A detailed review of existing models for prediction of edge debonding failures is available in [1]. 
Most of the models reviewed therein adopt a stress-based criterion for failure prediction. Rabinovitch 
and Frostig [2] proposed a fracture-mechanics based approach, where the higher-order theory is used 
for the stress analysis of the plated beam, and the J-integral formulation is adopted for the evaluation 
of the energy release rate. In the attempt to simplify the formulation, Rabinovitch [3] adopted the 
virtual crack extension method coupled with different stress analysis models, including: (i) the two- and 
one-parameter elastic foundation models for the evaluation of the interfacial stresses between the 
plate and the substrate, (ii) the equivalent beam model, (iii) the finite element analysis. By comparing 
results with those obtained from the application of the higher-order theory, he showed that the virtual 
crack extension method using the stress results of the elastic foundation models provides an 
acceptable estimate of the energy release rate.  
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In the most recent studies on edge debonding, fracture mechanics based approaches are 
becoming increasingly established [4, 5]. Carpinteri et al. [5] used three-dimensional finite element 
modelling to analyze edge debonding in beams with non-rectangular cross-section, assuming a linear 
behaviour for the materials and a non-linear interfacial cohesive law for the plate-substrate interface. 
Their results show that, when the bending stiffness of the plated beam is considerably higher than that 
of the unplated beam, snap-back instabilities may take place. 

In this paper, a simple linear elastic fracture mechanics approach is proposed for the prediction of 
edge debonding in plated beams. This approach is analogous to the equivalent beam model adopted 
by Rabinovitch [3] and aims at simplifying more detailed models based on the elastic foundation 
theory [6, 7]. In this paper, useful closed-form equations to estimate the critical load for the onset of 
edge debonding are determined. Moreover, the analysis is extended to the determination of the entire 
load–deflection curve of the beam, obtained according to a crack length control scheme, as first 
proposed by Carpinteri [8, 9] and then recently generalized [10] to interface mechanical problems. The 
shape of the obtained curve delivers interesting information on the beam behaviour following the 
whole process of edge debonding, and on the role played by the most significant design variables. 
Finally, analytical predictions are compared with the results of a nonlinear finite element model. This 
model assumes linearly elastic behaviour for the materials, but considers a nonlinear interface 
cohesive law taking into account Mixed Mode effects [11]. Predictions provided by the analytical model 
are expected to deviate quite significantly from those obtained on the basis of a more sophisticated 
approach, in accordance with previous results [3]. However, it will be shown that a suitably enhanced 
version of such a simple model can be devised to match more closely the numerical solution. 

2 ANALYTICAL MODEL 

2.1 Assumptions 

The model considers a plated beam of length l  (Figure 1), supported with a hinge at one end and 
a roller at the other end, and loaded with a point load F  at the mid-span. 
 

RB = F/2RA = F/2

d
l

A B

F

a

 
Figure 1: Plated beam under a mid-span force. 

The model is based on the following assumptions: 
- plane cross-sections remain plane for both the unstrengthened (unplated) and the 

strengthened (plated) portions of the beam; 
- beam and plate materials are assumed to be linear elastic; 
- the bending stiffnesses of the unstrengthened and strengthened cross-sections are indicated 

as uEI  and sEI , respectively. The gradual development of composite action between the 
beam and the strengthening plate is neglected, assuming that all sections in presence of a 
bonded plate have stiffness sEI . This corresponds to assuming an infinite stiffness of the Tp  - 

beam 

plate 

adhesive 
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Tg  relationship, Tp  and Tg  being the interfacial shear stress and tangential relative 
displacement, respectively; 

- the interfacial crack of length a  develops symmetrically on both sides of the beam and 
propagates always in the same direction. In other words, the crack is assumed to propagate in 
pure Mode II conditions, i.e. Mixed Mode effects are neglected. For the sake of simplicity, 
Figure 1 shows that the crack forms in the adhesive. Its actual path follows the weakest link 
between the substrate, the adhesive, the interface between substrate and adhesive, and the 
interface between adhesive and plate. 

2.2 Mid-span deflection and compliance 

The mid-span deflection of the beam under three-point bending can be expressed as follows 
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where d  is the distance between the support and the cutoff section of the strengthening plate, and a  
is the length of the interfacial crack. Hence, the compliance C  is a function of a , which can be 
expressed as 
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As it is reasonable to expect, the compliance increases with the length of the interfacial crack. 

Considering that 
 

dla −≤≤
2

0  (3) 

 
it follows that the compliance varies between a minimum value, minC , and a maximum value, maxC , 
given by 
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where maxC  corresponds to the compliance of the unplated beam. 

2.3 Energy release rate and conditions for crack propagation 

Under load control, the energy release rate is given by 
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where fb  is the width of the plate. Combining Eqs. (2) and (5) yields 
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The value of the applied load leading to crack propagation in presence of an interfacial crack of 

length a , )a(Fcr , can be obtained by equating the energy release rate given by Eq. (6) to its critical 
value, crG . Note that, following the assumptions of the model, this critical value corresponds to the 
interfacial fracture energy in Mode II. The resulting expression for the critical load is 
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In particular, if the initial crack length is equal to zero, we have 
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Under displacement control, the energy release rate is given by 
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which yields 
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Eq. (10) can also be obtained by combining Eqs. (1) and (6). The value of the applied mid-span 
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deflection leading to crack propagation in presence of an interfacial crack of length a , )a(vcr , can be 
obtained by equating the energy release rate given by Eq. (10) to its critical value, crG . It can also be 
expressed as follows 

 

)a(F)a(C)a(v crcr =  (11) 

 
where )a(C  and )a(Fcr  are given by Eqs. (2) and (7), respectively. In particular, if the initial crack 
length is equal to zero, we have 

 

)(F)(C)(v crcr 000 =  (12) 

2.4 Dimensionless formulation 

It is now assumed that the beam cross-section is rectangular, of width b  and depth h , that the 
plate has thickness t , and that E  and sE  are, respectively, the elastic moduli of the beam material 
and of the strengthening plate. All the dimensionless variables introduced as follows are illustrated in 
Table 1.  

 
Table 1: Definition of dimensionless variables. 

Definition Description 

hEGb
FF

crf

cr
cr =  Dimensionless force 

l
aa =  Dimensionless crack length 

l
dd =  Dimensionless distance between the support and 

the cutoff section of the strengthening plate 

l
hh =  Dimensionless beam depth 

b
bb f

f =  Dimensionless plate width 

u

s

EI
EIk =  Bending stiffness ratio between plated and 

unplated cross-sections 

E
En s=  Modular ratio between plate and beam materials 

h
tt =  Dimensionless plate thickness 

l
vv =  Dimensionless mid-span displacement 

l
hEGb

CC crf=  Dimensionless compliance 

Eh
GG cr

cr =  Dimensionless Mode II fracture energy 
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Elastic analysis of the cross-section easily shows that, in the particular case of 1=fb , the bending 
stiffness ratio between plated and unplated cross-sections can be obtained as 
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With simple manipulations, Eq. (7) can be cast in dimensionless form as follows 
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and Eq. (2) in dimensionless form becomes 
 

( ) ( )( ) 



 +−+=

3
2 181

4
dak

hk

GbaC crf  (15) 

 
Finally, the following dimensionless version of Eq. (11) holds 

 

)a(F)a(C)a(v crcr =  (16) 

 
where crv  is the critical value of the dimensionless mid-span deflection. 

2.5 Load-deflection response using the crack length control scheme 

Assuming that the initial length of the interfacial crack is zero, no propagation occurs until )0(crF  
and )0(crv  (given by Eqs. (8) and (12), respectively) are simultaneously reached. In this stage, the 
load-deflection response of the beam is linear with compliance given by Eq. (4a). The subsequent 
load-displacement response can be obtained by combining )a(Fcr  and )a(vcr  given by Eqs. (7) and 

(11), or, using the dimensionless form, by combining ( )aF cr  and )a(v cr  given by Eqs. (14) and (16). 
The dimensionless load-deflection curve is shown in Figure 2 for different values of k , and for realistic 
values of the remaining dimensionless variables, namely: 1=fb , 120.h = , 1250.d = , 

810811 −×= .Gcr . The thick straight line corresponds to the load-deflection behaviour of the unplated 
beam. It is evident that the curves feature both snap-back and snap-through instabilities, i.e. 
discontinuities appear if the process is either displacement- or load-controlled [12]. The predicted 
behaviour is thus very similar to that obtained by Carpinteri et al. [5, 13] by finite element modelling 
and by Carpinteri et al. [12] using a one-parameter elastic foundation model for the plate-substrate 
interface. It is also worth noting that, for smaller values of the stiffness ratio k , the critical 
dimensionless load is higher, although the unstable snap-back branch is sharper.  
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(a) Analytical predictions (b) Numerical predictions 

Figure 2: Dimensionless load vs. mid-span deflection curves.  

Among the available test results, those presented by Buyukozturk et al. [14] can be used for a 
qualitative comparison with the previous analytical predictions. In such tests, beams with FRP 
strengthening plates of different lengths were considered. From a theoretical standpoint, this process 
is equivalent to adopting the interfacial crack length as the controlling parameter of the test. The 
experimental load vs. mid-span deflection curves are shown in Figure 3, where the different curves 
correspond to beams with different FRP lengths. As the figure clearly shows, the ideal curve joining 
the peaks of the various experimental load vs. mid-span deflection curves reproduces the snap-back 
profile predicted by the analytical model. Obviously, the pre-peak stage of the curve features a 
nonlinear behaviour which is not included in the model. 

 

 
Figure 3: Experimental load vs. mid-span deflection curves for the tested beams considered in [14].  

3 FINITE ELEMENT MODEL 
In the two-dimensional finite element (FE) model of the plated beam adopted herein, plane stress 

eight-node finite elements are used for the discretization of the continuum. As the study mainly 
focuses on the onset and stability of the edge debonding process, and in accordance with the 
assumptions of the analytical model, the beam and plate materials are both assumed to behave linear 
elastically and only the nonlinear behaviour of the interface is retained in the model. 

The plate-substrate interface is modelled with zero-thickness interface elements. The mechanical 
behaviour of such elements is usually described by suitable interface constitutive laws, where the 
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equivalent nodal forces transmitted along the interface are related to the displacement discontinuities 
in the corresponding directions (see also [15] for a detailed overview of mathematical methods for 
interface constitutive laws).  

The plate-substrate interface in the problem under examination is subjected to both shear and 
normal stresses, hence interfacial constitutive laws have to be assumed in both directions. For a 
review of different possible approaches in cohesive zone modelling of Mixed Mode fracture problems, 
see [16]. For a plated beam, the effect of Mode Mixity caused by bending effects has not yet been 
clarified by the previous research. 

In the present paper, coupled cohesive laws derived from a potential are considered in the normal 
and tangential directions. With this approach, the fracture energy is the same in all mode mixities. 
Tension relates the normal relative displacement, 0>Ng , to the normal stress, Np , while shear 
relates the tangential relative displacement, Tg , to the tangential stress, Tp . Frequently used coupled 
cohesive laws derived from a potential are those developed in [17] and [18]. Both use a dimensionless 
coupling parameter between the normal and tangential laws. The present study adopts a simplified 
version of the laws in [18], where the constant branch of the curves is taken of zero length. Hence, the 
cohesive laws implemented herein are bilinear. This simple shape is able to capture the three 
characteristic parameters of the interface, i.e. the fracture energies (areas underneath the curves), the 
cohesive strengths, maxNp  and maxTp , and the linear elastic properties (slopes of the curves in the 
ascending branch). For this reason the bilinear model is often used to model the interfacial behaviour 
of FRP bonded to quasi-brittle substrates [19]. 

The normal and shear cohesive laws are coupled by introducing a measure of interface opening 
and sliding, λ , as follows  

 

22









+








=

Tc

T

Nc

N

g
g

g
gλ  (17) 

 

where Ncg  and Tcg  are, respectively, the normal and shear relative displacements at peak traction. 
The normal and tangential tractions, NF  and TF , are computed as functions of the normal and 
tangential relative displacements using the following relationships 
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Note that only one cohesive strength is explicitly defined ( maxNp ), as the normal and tangential 

laws are derived from a potential. The curves vary with the coupling parameter λ . The parameter 
maxλ  has no specific influence on the numerical results. It is chosen sufficiently small as compared to 
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the unity, to obtain a stiff ascending branch of the cohesive laws, which agrees with the experimental 
observations on the FRP-concrete interfacial behavior.  

The crack-length control scheme is used in order to follow the whole range of load-deflection 
behaviour of the plated beam, from the onset of debonding to the complete detachment of the plate. 
Such numerical scheme was proposed by Carpinteri [8, 9] for the analysis of the unstable mechanical 
response of quasi-brittle materials, and then extended in [10] to interface crack problems. Applications 
of this method to the problem of FRP debonding can be found in [11]. 

4 NUMERICAL EXAMPLE 
The example considers a beam characterized by the geometrical and mechanical parameters 

reported in Table 2. The total fracture energy is kept equal to 65 N/m, whereas the maximum normal 
traction is equal to 6max =Np  MPa. The comparison between analytical predictions and numerical 
results is proposed in Figure 2 in terms of dimensionless load vs. dimensionless mid-span deflection. 
The comparison between Figures 2a and 2b shows that the analytical model overestimates the critical 
(peak) load corresponding to the onset of FRP debonding, if compared to the FE solution. This agrees 
with previous results [3], and is expectable, when considering the high degree of approximation 
involved in the analytical model. In particular, the analytical model does not incorporate the detailed 
distribution of interfacial stresses at the crack tip and the size of the fracture process zone. 
Conversely, these aspects are taken into account by the numerical model. 

 
Table 2: Parameters used in the numerical simulations. 

Parameter Case 1 Case 2 Case 3 
Dimensional parameters 

l  [m] 1 1 1 
d  [m] 0.125 0.125 0.125 
h  [m] 0.12 0.12 0.12 
b  [m] 0.1 0.1 0.1 

fb  [m] 0.1 0.1 0.1 
E  [GPa] 30 30 30 

sE  [GPa] 210 210 210 
t  [m] 0.0015 0.0030 0.0045 

crG  [N/m] 65 65 65 
Dimensionless parameters 

d  0.125 0.125 0.125 
h  0.12 0.12 0.12 

fb  1 1 1 
t  0.0250 0.0125 0.0375 
n  7.0 7.0 7.0 
k  1.25 1.47 1.67 
crG  1.81E−8 1.81E−8 1.81E−8 

 
In order to better interpret the discrepancy between analytical and numerical solutions, Figure 4 

shows the dimensionless load vs. the relative length of the interfacial crack, la /2 . The diagram refers 
to the parameters corresponding to Case 2 in Table 2, but considers 05.0=d  instead of 125.0=d  in 
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order to follow a broader range of the curve. Also in this plot the analytical curve is seen to 
overestimate the numerical predictions. However, if the analytical model is applied by considering an 
increased fictitious crack length, aa ∆+ , instead of the real crack length a , the resulting analytical 
curve matches closely the numerical one. In this example, the value of a∆  yielding the best 
agreement between analytical and numerical results is equal to approximately 40 mm. This 
corresponds to the length of the fracture process zone in front of the crack tip. Such a length has been 
estimated from the interfacial stress distributions given by the FE solution model, and appears 
approximately constant during the entire debonding process. If the dimensionless load vs. 
dimensionless mid-span deflection curve is evaluated by using the incremented crack length aa ∆+  
(Figure 5), a very close match between analytical and numerical results is achieved, the maximum 
deviation being about 4%. This can be clearly observed by comparing Figure 5 with Figure 2b. Note 
that this approach shows analogies with the so-called “point method”, widely used in the study of 
fatigue crack propagation, as well as with the effective crack approach used to account for small scale 
yielding in linear elastic fracture mechanics. 

 

4 CONCLUSIONS 
A simple linear elastic fracture mechanics approach for prediction of edge debonding in plated 

beams has been presented in this paper. Closed-form equations have been provided, through which 
an approximate estimate of the critical load for the onset of edge debonding can be obtained under the 
simplifying assumptions of the model. Moreover, the analysis has been extended to the determination 
of the entire load-deflection curve of the beam, obtained by controlling the length of the interfacial 
debonding crack. The shape of the curve shows that snap-back or snap-through instabilities may arise 
when the beam is loaded under displacement or force control. As the stiffness ratio between the 
plated and the unplated cross-sections decreases, the critical dimensionless load increases but the 
unstable snap-back branch becomes sharper. 

 

 
Figure 4: Dimensionless load vs. dimensionless interface crack length.  
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Figure 5: Analytical predictions using mm a 40=∆ . 

 
Analytical predictions have been compared with results of finite element modelling. It has been 

shown that the proposed analytical model significantly overestimates the critical load, due to its 
simplifying assumptions including infinite stiffness of the interfacial traction-separation law. However, 
analytical predictions match very closely the numerical solution, provided that an effective crack length 

aa ∆+  accounting for the size of the fracture process zone is used in the calculations. This approach 
shows analogies with the so-called “point method”, widely used in the study of fatigue crack 
propagation, as well as with the effective crack approach used to account for small scale yielding in 
linear elastic fracture mechanics. Further research is needed to evaluate a∆  theoretically, and to 
further validate the conclusions of the present study on a wider range of cases. 
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