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Abstract

Smartphone technology is widespread both in the academy and in the commercial world. 
Almost every people have today a smartphone in their pocket, that are not only used to 
call other people but also to share their location on social networks  or to plan activi-
ties. Today with a smartphone we can compute our position using the sensors settled 
inside the device that may also include accelerometers, gyroscopes and magnetometers, 
teslameter, proximity sensors, barometer, and GPS/GNSS chipset. In this chapter we 
want to analyze the state-of-the-art of the positioning with smartphone technology, con-
sidering both outdoor and indoor scenarios. Particular attention will be paid to this last 
situation, where the accuracy can be improved fusing information coming from more 
than one sensor. In particular, we will investigate an innovative method of image recog-
nition based (IRB) technology, particularly useful in GNSS denied environment, taking 
into account the two main problems that arise when the IRB positioning methods are 
considered: the first one is the optimization of the battery, that implies the minimization 
of the frame rate, and secondly the latencies due to image processing for visual search 
solutions, required by the size of the database with the 3D environment images.

Keywords: positioning techniques, image navigation, GNSS, sensors, GPS

1. Introduction

Nowadays, thanks to new technologies, the information about our position is available in 
almost every moment and almost everywhere thanks to mobile devices, such as smartphones 
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or tablets. These devices may include many sensors, such as global positioning system (GPS)/
global navigation satellite system (GNSS) chipset, inertial measurement unit (IMU) plat-
forms, barometer, altimeter, cameras, etc., that empower customers to plan their activities 
(e.g., to know the time that it is necessary to wait a train) or to share their location on social 
networks (e.g., Facebook) [13]. With these kind of sensors and to the rise of new positioning 
techniques, it is possible to obtain the position both in outdoor and in indoor scenarios. In the 
first case, GPS/GNSS are the most useful sensors for obtaining a fast position even if there are 
some problems, especially in harsh environment, due to multipath or satellite obstructions. 
In the second case, these sensors became useless because no satellites are visible: so, it is pos-
sible to perform positioning thanks to other sensors, such as IMUs and cameras, considering 
other techniques such as the image recognition‐based (IRB) or the pedestrian dead reckoning 
(PDR) technology.

In this chapter, we will investigate the positioning performances and methodologies in 
outdoor and indoor scenarios considering smartphone technology. In particular, the goal 
of this work is to analyze the state‐of‐the‐art of the precisions and accuracies that can 
be achieved with these instruments for positioning and navigation purposes, in both 
scenarios.

In Section 2, the analysis of the most common sensors installed into smartphones is given as 
well as the methodology for the determination of the smartphone’s reference system. We will 
discuss about the GNSS chipset (Section 2.1) available today and the positioning accuracy 
obtainable today with these sensors and with INS platforms (Section 2.2). Moreover a short 
description of cameras installed today into smartphones is done, in order to perform position-
ing using also images (Section 2.3).

Subsequently, in Section 3 a description of the positioning techniques obtainable today with 
smartphones is made and some practical examples are provided: the tests performed and the 
results obtained are presented, focusing the attention on outdoor (Section 3.1) and indoor 
(Section 3.2) scenarios.

Finally, some conclusions will be drawn in Section 4.

2. Sensors on smartphones

Many sensors are available today on smartphones: most of them are related to internal 
applications (proximity sensor, light sensors, etc.) while other ones (e.g., GNSS, INS, and 
cameras) allow to obtain a positioning. One of the biggest problems is represented by the 
operating system (OS) installed inside the smartphone: each OS has different ways to man-
age data that comes from internal sensors, not to mention the use of these data made by 
the apps.

While sensor availability varies from device to device, it can also vary between iOS and 
Android versions. The biggest changes were made in this last OS, due to several platform 
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releases: in Android 1.5 (API Level 3) many sensors have been introduced even if some of 
them were not employed and not accessible before Android 2.3 (API Level 9). Similarly, in 
Android 2.3 (API Level 9) and Android 4.0 (API Level 14) some other sensors have been intro-
duced and some others have been removed and replaced by newer ones.

Figure 1 shows the availability of each sensor on a platform‐by‐platform basis, considering 
the only four platforms that involved sensor changes.

In this chapter, we focus the attention only on sensors useful for positioning: GNSS and INS 
chipset and cameras for images. Hereinafter, a brief description of these sensors is provided.

2.1. GPS/GNSS chipsets

GPS/GNSS chipset is the most widespread sensor installed inside smartphones. There are 
many chipsets today available on the market, and very often each manufacturer installs few 
different versions of the same GNSS brand [2]. For example, Apple installs chips provided 
by Broadcom Corporation, while Samsung smartphones with Android OS have installed u‐
blox AG chipsets. Since 2016, no GNSS raw data acquired by mobile platform such as smart-
phones or tables were available, but starting from 2016 it has been possible also to extract 

Figure  1. Availability of each sensor in different Android systems (available at: http://rowdysites.msudenver.
edu/∼gordona/cs390‐mobile/lects/summer14_day07‐touch+sensing/summer14_day07‐sensors/summer14_day07‐
sensors.html).
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pseudoranges and carrier‐phase measurements from smartphones with Android 7.0 OS. The 
announcement came from Google during the I/O 2016, the 3‐day developer conference which 
took place from 18 to 20 May. It is a very strong innovation, destined to bring a revolution in 
the field of survey and geo‐localization: with these kinds of sensors, accuracies of few centi-
meters will be obtainable even with mobile devices. Despite that, this kind of possibility will 
not be analyzed in this chapter.

2.2. INS

Inertial measurement unit platforms are increasingly being used integrated either with other 
instruments, typically GNSS, odometers, and magnetometers, or with storage units [34]. They 
then form an inertial navigation system (INS).

In general, INS instruments are comprised of three accelerometers, three gyroscopes, and 
three magnetometers. The characteristics of these sensors are briefly described.

Accelerometers are instruments that measure acceleration (the rate of change in velocity), and 
help the phone distinguish up from down.

All accelerometers have two fundamental parts:

1.	 A housing attachment to the object whose acceleration we want to measure.

2.	 A mass that, while tethered to the housing, can still move.

For example, let us assume a spring and a heavy ball. If you move the housing up, the ball lags 
behind stretching the spring. If we measure how much that spring stretches, we can calculate 
the force of gravity.

Gyroscopes are sensors that can provide orientation information as well, but with greater 
precision. Thanks to this particular sensor, Android’s Photo Sphere camera feature can tell 
how much a phone has been rotated and in which direction.

The digital compass is normally based on a sensor called magnetometer, which provides 
a simple orientation in relation to the Earth’s magnetic field. Consequently, every smart-
phone knows where is North so it can autorotate the digital maps depending on its physical 
orientation.

2.3. Cameras

Like GPS/GNSS chipset, camera sensors are mandatory components for any kind of mass‐
market communication device and in particular for smartphones. CMOS image sensor (CIS) 
has always been one of the most important features in our phone, so that it was able to move 
the market to a new category of smartphones, the so‐called camera phones. Google Pixel, 
Apple iPhone 7 Plus, Samsung Galaxy S7, Huawei P9, and Sony Xperia X are some of the best 
camera phones according to the international mobile industry congress like the International 
Consumer Electronics Show (CES) 2017 in Las Vegas and the Mobile World Congress (MWC) 
2017 in Barcelona.
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The mobile image sensing is the more direct way for the commercial user to represent the real-
ity, to share information, and to create social interactions. For these reasons, in the last years, 
the CIS market has put particular emphasis on the quality of the camera modules, reaching 
high resolution levels, and makes them usable as low cost tools for numerous applications. 
Jointly with the numerous embedded sensors, like gyroscope, accelerometer, proximity sen-
sor, GPS receiver, and Wi‐Fi connectivity, these new camera chipset have boost the effort in 
R&D for new kind of applications like 3D sensing technology, such as Google’s Tango, auto-
motive self‐drive, drone product, and virtual and augmented reality. Numerous technological 
upgrades in chipset architecture, like backside illumination (BSI) and in‐sensors setups, like 
the dual camera implementation, have moved the market in favor of company rather than 
another. Nowadays, production and technology leader of image chipsets is Sony, covering 
35% of the entire market. Sony’s sensors are mounted into numerous smartphones and tablets 
like the Samsung Galaxy S7, Huawei P9, Sony Xperia X, etc. After, there is Samsung (Samsung 
Galaxy S7, Lenovo Vibe Shot) and Omnivision (Huawei P8, Lenovo K3 Note) and, according 
to many CIS market research firms, all three together reach about the 70% of the world market.

CMOS stands for complementary metal‐oxide semiconductor, and it uses the same manu-
facturing technologies of CCDs sensors, the dominated technology till now, but needs much 
less power and the production is less expensive. The main advantages of CMOS imagers are 
that they are compatible with mainstream silicon chip technology and this allows on‐chip 
processing and consequently the miniaturization. With the technological development on the 
semiconductor industry, the gap between CCD and CMOS has narrowed and the quality of 
the obtained image is competitive.

A typical CMOS is an integrated circuit with an array of pixel sensors and has the following 
main part:

•	 Micro lenses

•	 Color filter

•	 Pixel array

•	 ADC (analog to digital converter)

•	 Digital controller

Looking at the best camera phone of 2017, it is possible to state the specification of the camera 
sensors and make an overview on the best characteristics. Table 1 resumes some smartphone 
camera specifications.

More details about cameras are available at the following hyperlinks:

•	 https://en.wikipedia.org/wiki/Exmor

•	 http://www.chipworks.com/sites/default/files/Apple_iPhone_6s_A1688_Smartphone_
Chipworks_Teardown_Report_BPT‐1509‐801_with_Commentary.pdf

•	 http://www.gsmarena.com/samsung_galaxy_s7_camera_sensors_compared_sony_vs_
samsung‐news‐17183.php

Positioning Techniques with Smartphone Technology: Performances and Methodologies...
http://dx.doi.org/10.5772/intechopen.69679

167



CMOS imaging sensor characteristics

Smartphone Sensor name Size 
(diagonal) 
[mm]

dpix [µm] CMOS 
technology

Sensor 
dimensions 
[mm × mm]

Image 
dimension 
[pix × pix]

MP

Google 
Pixel/
BlackBerry 
Key One

Sony Exmor 
RS IMX378

7.81 1.55 BSI CMOS 6.25 × 4.69 4032 × 3024 12.2

Apple 
iPhone 6S

Sony Exmor 
RS IMX315

6.15 1.22 BSI CMOS 4.92 × 3.70 4032 × 3024 12.2

Apple 
iPhone 7

Sony Exmor 
RS IMX*

6.15 n/a n/a n/a n/a 12

Apple 
iPhone 7 
Plus

Sony Exmor 
RS IMX*

5 n/a n/a n/a n/a 12

Samsung 
Galaxy S6, 
S6 Edge(+)

Sony Exmor 
RS IMX240

6.83 1.12 BSI CMOS 5.95 × 3.35 5312 × 2988 15.9

Samsung 
Galaxy S7, 
S7 Edge

Sony Exmor 
RS IMX260

7.06 1.4 BSI CMOS 5.64 × 4.23 4032 × 3024 12.2

Samsung 
Isocell 
S5K2L1

7.06 1.4 ISOCELL 5.64 × 4.23 4033 × 3024 12.2

Huawei P9 Sony Exmor 
RS IMX286

6.2 1.25 BSI CMOS 4.96 × 3.72 3968 × 2976 11.8

OnePlus 
3T/LGV20/
Huawei 
Mate 8/Asus 
Zenfone 3

Sony Exmor 
RS IMX298

6.4 1.12 BSI CMOS 5.16 × 3.87 4608 × 3456 15.9

Sony Xperia 
XZ

Sony Exmor 
RS IMX300

7.87 1.08 BSI CMOS 6.46 × 4.47 5984 × 4140 24.8

5.96 × 4.47 5520 × 4140 
(4:3 mode)

22.8

6.46 × 3.64 5984 × 3366 
(16:9 mode)

20.1

Sony 
Xperia XZ 
Premium 
(coming 
soon)

Sony Exmor 
RS IMX400

7.73 1.22 BSI CMOS 6.17 × 4.63 5056 × 3792 19.2

LG G4 e G5 Sony Exmor 
RS IMX234

6.83 1.12 BSI CMOS 5.95 × 3.35 5312 × 2988 15.9

Table 1. CMOS image sensor characteristics for commercial camera phones.
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•	 https://en.wikipedia.org/wiki/Samsung_CMOS

•	 https://www.androidheadlines.com/2016/04/huawei‐p9‐p9‐plus‐feature‐sonys‐12mp‐
imx286‐sensors.html

3. Positioning with smartphones: outdoor and indoor scenarios

When outdoor scenarios are considered, smartphone technology can provide positions with 
a quite good level of accuracy, using the assisted GPS (A‐GPS) system. Despite that, it is pos-
sible that the received GPS/GNSS signal is too noisy or not available at all, for example, if the 
user is in urban canyons or inside buildings: in these cases GNSS positioning is not possible.

Starting from that, many researchers have been investigating alternative solutions that con-
sider different sensors (such as INS and images) and other technologies (e.g., Wi‐Fi, pedes-
trian tracking system, Bluetooth) in order to improve position accuracy and availability. A 
brief overview about accuracies obtainable today with a generic smartphone (chosen as rep-
resentative) is made in the following subsections.

3.1. Outdoor scenarios

3.1.1. GPS/GNSS only

As said in Section 2.1, starting from the end of 2016, it is possible to acquire raw GNSS mea-
surements from smartphones: the main problem is that only Android Nougat OS allows to 
extract these information. Thus, in this section the attention is focused only on internal solu-
tions provided by software installed on smartphones. In order to analyze the precision obtain-
able today with GNSS internal chipset, some tests were performed.

The tests took place in the same places described in [11] considering two different scenarios: 
an open outdoor area to represent “ideal” conditions (Figure 2, left) and another area (one 
of the courts in Politecnico di Torino campus) with characteristics of urban canyon (Figure 2, 
right). The line in Figure 2 - right shows a particular track where it is possible to find an area 
with a limited satellite visibility (similar to urban canyon conditions) and many windows that 
create multipath due to their high reflectivity.

Dynamic tests were performed in these areas by walking along the same path with the smart-
phones mounted on a special “two‐hands” support as shown in Figure 3. The entire data 
collection system includes:

•	 a smartphone (a)

•	 a 360‐degree retro‐reflector (d)

•	 and allows to install also an external IMU platform (b) and an external GNSS antenna (c).

GNSS data positions were recorded during the surveys considering a one‐second sample 
rate, using a dedicated app that stores the National Marine Electronics Association (NMEA) 
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GGA messages in an ASCII file. All results were compared with a “ground‐truth” obtained 
through the continuous tracking of the smartphone position with a total station, thanks to the 
retro‐reflector installed on the “two‐hands” support. In this way, a millimeter accuracy was 
obtained, considering and estimating the level‐arm offset between the instruments.

The NMEA sentences were analyzed and compared with the reference trajectories using soft-
ware written in MATLAB.

The horizontal positioning errors of the representative receiver are shown in Figure 4 for the 
urban canyon environment.

In order to have a more complete analysis from a statistical point of view, the most significant 
statistical parameters have been summarized in Table 2 for the urban canyon and open area 
test locations.

As expected, then, it is generally possible to affirm that some environmental characteristics, 
such as obstacles, multipath effects coupled with the number of trackable satellites, play a 
crucial role in the accuracy determination of the smartphone positioning.

Figure 2. Test site and track: an open sky area (left) and an urban canyon (right).

Figure 3. The two‐hands support system developed at Politecnico di Torino.
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However, precision and accuracy improvements could be increased by computing a dif-
ferential positioning solution, considering the raw measurements obtainable from internal 
sensors.

Figure 4. 2D performances of internal GPS sensor.

Smartphone Mean (m) Standard deviation (m)

E N H E N H

Urban canyon 
environment

0.4 −7.3 −2.1 4.5 4.7 5.0

Open area 
environment

−0.5 1.6 −1.9 2.6 2.5 4.5

Table 2. Error statistics in urban canyon and open area environments.
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3.1.2. GNSS + INS

Very often in bibliography it is possible to find two different methods for GNSS + INS posi-
tioning: the loosely (LC) and the tightly (TC) coupled approaches(Figure 5).

In the first case (LC), the software integrates acceleration and angular velocities and updates 
all the state parameters. These include the positions and angular assets, but also the instru-
mental biases, using GNSS positions and IMU measurements.

In the latter one (TC method), the input parameters are the same, but both the GNSS (pseudo-
ranges, carrier‐phases, Doppler) and IMU observations enter into the extended Kalman filter, 
each with its own rate and precision, associated with their new biases [8], in order to provide 
an unique solution.

Although from a computing point of view, this is a heavier process and it takes into account 
the use even of one or a few visible GNSS satellites, which is a typical situation of urban can-
yons [13] 

It is important to underline that the only LC method is available today because this approach 
does not require the raw GNSS measurements, while for the TC is fundamental to have these 
observations.

Starting from this, in this subsection a brief analysis of results obtainable with GPS + INS 
instruments installed on smartphones is made, following the LC approach.

The tests were carried out in our campus in the same two different test sites described in the 
previous subsection, considering the same special support created in the Geomatics Lab at the 
Politecnico di Torino.

Considering the Inertial Explorer® software for postprocessing all data acquired on the field, 
it is possible to have an horizontal error loop equal to 4.21 m and a vertical error loop equal 
to 3.73 m, considering a 3‐min session duration. Obviously, the results are slightly different if 
different smartphones are considered but it is possible t o affirm that these values are repre-
sentative for the technology available today.

3.2. Indoor scenarios

The spread of smartphone devices with different embedded sensors, increased computa-
tional power and advance connectivity features, has led to the introduction into the market  

Figure 5. GNSS + INS processing approaches.
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of numerous application services, based on the awareness of the user position, which pro-
vides information and assistance for navigation in the environment, pose estimation, track-
ing, and any kind of service related to the spatial context. Many location‐based services 
(LBS) are implemented as information systems that use as prior information the position of 
a mobile device [22]. The number of companies deploying LBS solution for commercial pur-
pose reveals that location‐based solutions are finally meeting markets’ needs and soon will 
be implemented on mass‐market application. The principal fields of application are medical 
care [15], ambient assisted living [40], environmental monitoring [33], transportation [38], and 
marketing [1] etc.

The major part of these services requires accurate localization for people, instruments, vehi-
cles, animals, and assets. As it is well known, the GNSS positioning provides good accuracies 
only in open‐sky environments. Contrariwise, when an indoor space or in an urban canyon is 
considered, the GNSS positioning in not possible and it is mandatory to overcome this issue 
considering different techniques and sensors. In recent years, some indoor location‐based 
services (LBSs) have been developed integrating different technologies and measurements 
[22], such as cameras [27], infrared (Kinect), ultrasound [20], WLAN/Wi‐Fi [6], RFID [23], 
mobile communication [10], and so forth are examples of the technologies that the scientific 
community has put at the service of indoor locations. Despite the ample panorama of solu-
tions, mass market applications for indoor positioning require the use of embedded sensors in 
commercial smartphone without supplementary physical components. For this reason, major 
modification to the devices is forbidden and the type of technology usable in these applica-
tions is reduced. Ref. [36] has made a summary on the user requirements for mass‐market 
localization systems that is reported in Table 3.

All these indoor positioning systems have pros and cons that make them more useful in spe-
cific scenarios, compared to other options. One of the most useful but complex localization 
method is the inertial navigation system. This system is based on dead reckoning, which 
computes locations employing inertial measurements units installed inside the smartphone 
as accelerometers and gyroscope. The main advantages of a system using IMU (INS) is that 
nowadays, every kind of mobile device have it already implemented inside and no external 

Criteria Criteria description Value

Horizontal accuracy 2D position for the detection of a shelf in a 
supermarket

1 m

Vertical accuracy Selection of the correct floor and 
visualization

Floor detection

Update rate Minimum for navigation 1 Hz

Latency Delay with which position is available to 
the user

None

TTFF Time-To-First-Fix, latency after switching 
on the device

Without delay

Privacy Maintenance of the user privacy According to user-set policy

Table 3. Summary of requirements for mass-marked localization according to Wirola et al. [36].
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infrastructure is required. Moreover, with the inertial systems, the only input information 
that is needed is the staring position. Without any other external information required, this 
technology is not affected by adverse weather conditions or by security vulnerability or jam-
ming problems. However, these systems suffer from integration drift, making errors accu-
mulate and therefore must be corrected by some other system. The LBSs based on the camera 
sensor have strong advantages and do not need to install any network of chipsets in the envi-
ronment. All the primary sensors are already installed in the user device. In this case, the 
system could be considered low cost. Moreover, the positioning accuracy with these systems 
is usually more accurate in comparison to other systems. Furthermore, most of these systems 
based on triangulation, cannot determinate the orientation of the user, with important limita-
tions to support many useful applications like augmented reality.

It is evident now that providing a reliable and stable position information in a complex and 
changing environment is a very challenging task. Sensor fusion may be an option to com-
bine advantages of two or more different techniques (e.g., angle of arrival (AoA), time of 
flight (ToF), received signal straight indication (RSSI)), and technologies (e.g., GPS, Wi‐Fi, 
Bluetooth, camera sensors, ultrasound) and minimize the limitation. Some methods and 
technologies are ideal candidate to support or complete other navigation or localization sys-
tems in a multimodal approach in order to obtain an accuracy and reliability in the location 
information superior to that obtainable by each technique, technology, or system parameter 
without the use of diversity. Multimode solutions employing different sensor would not be 
feasible for low‐end handsets unable to connect to more than one technology or without the 
hardware enhancements required to apply different techniques. For these reasons, the posi-
tioning solution with smartphone technologies exploits the already embedded sensors: INS, 
CMOS image sensor, and Wi‐Fi.

In this chapter, we will focus on solution of image recognition‐based (IRB) technology that 
uses CIS as the main sensor. In particular, after a general overview on existing methods, we 
will investigate an innovative method of IRB location based on the image retrieval of real‐time 
acquired smartphone pictures with the corresponding synthetically generated 3D image or 
RGBD image extracted by a database. Then we will evaluate the integration of INS for a mul-
timodal solution of the previous method for indoor navigation and finally some consideration 
on system using Wi‐Fi technology as the main positioning technology.

3.2.1. Cameras + INS

Indoor positioning and navigation by optical sensors is becoming one of the dominant tech-
niques, able to cover a large number of fields of application at all levels of accuracy. The 
success of these techniques is due to the improvements and miniaturization of the CMOS 
sensors. Simultaneously, there has been an increase in the data transfer speed and smart-
phone computational capabilities, as well as a remarkable development in the field of image 
processing.

As seen before, the LBSs based on the camera sensor have strong advantages. First, these sys-
tems do not need to install any network of chipsets in the environment as the primary sensor 
(CIS) is already installed in the user device. This allows to develop a low cost service without 
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design and implementation of onsite network. Moreover, the positioning accuracy with these 
systems is usually more accurate in comparison to other systems. In industrial process, for 
example, computer vision systems based on object detection algorithms are used in produc-
tion line to track object and check the quality. These kinds of systems have accuracy around 
few millimeters. Of course, applications of image‐based positioning with smartphones can-
not reach these levels of accuracy but can perfectly match the requirements for navigation 
purpose.

There are many previous research studies on indoor image‐based localization that pursue 
different goals and use different methods and technologies also in the function of the field of 
interest of the research groups. There are visual odometry approaches [19], simultaneous and 
location mapping (SLAM) [24], structure from motion, or investigating semantic features [29]. 
Some interesting work exploits the computer vision algorithm and in particular the neural 
network and transfer learning for visual indoor positioning and classification [35]. Some use 
RGB‐D images to perform object recognition [25]. On the use of a smartphone as a navigation 
device, some interesting research can be found in [27, 39].

As seen in bibliography, there are many LBS based on images, whose accuracies and cover-
age area is function of the application. Some accuracy ranges may be useful for applications 
in very large indoor spaces like museums or fairs, and others may require accuracies at sub-
room level, for example, in the field of logistics and optimization. When trying to make indoor 
positioning and navigation in more complex spaces with task of “search and rescue” or in 
construction sites, the coverage area decreases and higher accuracies are required.

A possible solution, considering all sensors which are installed into the smartphone device, is 
the image recognition‐based approach, where the localization of our device is based on pho-
togrammetric principle [16]. Image recognition‐based (IRB) positioning is a good technology 
for smartphone indoor localization. The aim of these procedures is to match a user‐generated 
query image, via a mobile device, against an existing image database with position informa-
tion [41].

Some test has been carried out in our campus, following the methodologies presented in [9, 
28]. The use of IRB positioning in mobile applications is characterized by the availability of 
a single camera; under this constraint, in order to estimate the camera parameters (position 
and orientation), a prior knowledge of 3D environment has to be available, in the form of a 
database of images with associated spatial information. A Terrestrial LiDAR (Light Detection 
and Ranging) Survey (TLS) with an associated camera can be executed to acquire the 3D 
model of the environment used to generate the images database (RGB‐D images) . Once the 
retrieval of the reference image is completed, it is possible to extract the 3D information of the 
selected features from the image to estimate the external parameters (position and attitude) of 
the query image according to the collinearity equations (Figure 6).

A priori information are necessary for these techniques, but nowadays, an accurate 3D model 
that could be always available for further upgrading and be usable for collateral tasks is 
obtainable, thanks to the integration of some geomatics techniques, such as photogrammetry, 
LiDAR, and mobile mapping systems.

Positioning Techniques with Smartphone Technology: Performances and Methodologies...
http://dx.doi.org/10.5772/intechopen.69679

175



Table 4 summarizes the accuracy results in terms of discrepancies from ground truth and 
estimated values, for indoor trial in case of good level of similarity between the query image 
and the reference one extracted out of the database.

It is important to state that the entire procedure could be executed in real time on a com-
mercial smartphone and could provide the device position in few seconds. This is true for 
one‐spot positioning task, while, when it is needed to transpose the methodology for indoor 
navigation, it is necessary to take into account three fundamental problems: the energy con-
sumption, the latency of the image processing, and the Internet data consumption. Acquiring 
images at a given frame rate for navigation applications is a procedure that requires high 
wastage of energy, with a consequent problem of battery optimization. Furthermore, as each 
query image has to be sent to a server for image retrieval procedure, a certain amount of 
Internet traffic is needed. Finally, the rates of positioning information are subordinated to the 
latency of the entire IRB methodology.

To overcome the reduction of the frame rate and latencies compensation, inertial (INS) plat-
forms built with MEMS (micro electro‐mechanical systems) technology can be integrated in 
the IRB positioning [12]. Fusing IRB position and attitude measurement with INS measure-
ments, accelerations, and angular velocity measurements are integrated to provide real‐time 
relative position and relative attitude information, while inner INS variables (velocity at the 
starting point, accelerometer biases, and gyro drift) are estimated using absolute IRB position-
ing inputs (position and attitude).

Figure 6. The IRBL procedure.
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When MEMS technology is used together with IRB positioning, it is important to analyze 
the precisions and accuracies obtainable. The procedure was tested in our campus walking 
in a predefined path using two different smartphones (a) mounted on a special support, as 
described in Figure 3.

The procedure starts with the analysis of the raw data of inertial sensors (acceleration, angu-
lar velocity, and magnitude of magnetic field), directly registered from the smartphone. It is 
necessary to filter these data for estimating and removing the noise. After that, it is possible to 
use INS raw data in real time for positioning purposes considering a Kalman filter approach 
in order to reduce the number of frames that can be acquired for geo‐localization. This means 
that it is possible to extend the time interval between two images from 2 s up to 5 s, depending 
on the requested accuracy.

In Table 5, we see the positioning results in terms of accuracies, considering an IBN approach. 
Considering an interval of 1 s between images, the mean planimetric error was 21.3 cm at 67% 
of reliability, while at 95% this error was 37 cm.

When the positioning obtained with an interval of 2 s between the images is analyzed, the 
mean planimetric error increases to 61 cm at 67% and 1.49 m at 95%.

IBN allows to reduce to 50% the final residuals and increase the outages up to 90 s, even 
improving the quality of the estimated angles. At the moment, the IBN requires a server with 
high performance in order to obtain the solution and a well‐defined images database (DB).

3.2.2. Wi‐Fi et al.

Over the last decade, wireless location estimation has been an active field of research, becom-
ing the most widespread approach for indoor localization in GNSS denied environment. A 
WLAN (Wireless Local Area Networks, IEEE 802.11 standard), otherwise known as Wi‐Fi 

Param. ΔX [m] ΔY [m] ΔZ [m] Δω [rad] Δϕ [rad] Δk [rad]

|Max| 0.164 0.149 0.063 0.4646 0.5288 0.2396

Mean 0.018 0.010 0.015 0.0975 0.0544 0.0573

Dev. St. 0.084 0.086 0.020 0.1850 0.1689 0.1022

Table 4. Accuracy results in indoor trial for position (ΔX, ΔY, ΔZ) and attitude (Δω, Δϕ, Δk).

1 s 2 s 5 s

Mean Percentile Mean Percentile Mean Percentile

67% 95% 67% 95% 67% 95%

E 0.130 0.148 0.353 0.387 0.485 0.960 1.673 2.221 4.158

N 0.130 0.141 0.412 0.380 0.409 1.162 1.574 1.677 3.952

Table 5. Results obtained with drift estimation coming from images.
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(Wi‐Fi is a trademark of the Wi‐Fi Alliance), is a wireless network of devices that uses high 
frequency radio signal (2.4 GHz in ISM band) to transmit and receive data within a limited 
area. As the connection between nodes of the network maintains continuity, the communica-
tion is preserved even if one device is moving around in the limited area (50–100 m) [37]. This 
means that for these reasons, the WLAN technology could be used to estimate the location of 
a mobile device within this network. The positioning accuracy required to offer satisfactory 
LBSs is in the order of 1 m and a great effort is needed in R&D. The expansion of this field of 
research is expected to continue for years, beside numerous commercial applications, due to 
the fact that it is a low cost solution providing proper connectivity and high speed links. In 
fact, nowadays, the WLAN infrastructure is widespread in many indoor environments and it 
is already standardize for commercial smartphone communication.

Usually, an indoor environment is often complex, characterized by nonline‐of‐sight (NLOS) of 
target objects; in these situations, WLAN positioning technologies could be very helpful because 
they do not require the line of sight. Unfortunately, compared to IRBL procedure, WLAN posi-
tioning is affected by a large estimation error, proportional to the number, and position of nodes 
in the network. Others challenging issues are the power consumption and the signal attenuation.

Pros and cons of WLAN positioning are true in function of the techniques of positioning used. 
The most popular WLAN positioning method is based on the received signal straight indicator 
(RSSI) because it is easy to extract from any connected device in a Wi‐Fi network [17]. The RSSI 
method is based on the received signal power and on the relation between the signal attenua-
tion and distance of the nodes. Knowing the strength of the emitted signal, the strength of the 
received signal, is possible to calculate its attenuation and consequently the distance between 
the emitter and the receiver. With these techniques, it is possible to combine different strategies 
for positioning, like propagation modeling, fingerprinting, cell of origin, and multilateration 
[30]. To obtain a most precise localization, it is necessary to combine the technique of finger-
printing [37] that consists an a priori analysis to map the observed signal strength of fixed rout-
ers in every place of the indoor environment. With this data it is possible to generate a database 
(i.e., a radio map). The limitation of this method is the necessity of a priori information, an effort 
that means an increased workload and a well‐spread router network. The propagation model 
differs from the fingerprinting model because it tries to determinate the RSSI map analytically 
instead of empirically. Of course, the major issues are related with the right description and 
modeling of the environmental effects (moving objects, signal attenuation, multipath) [5].

Another way to locate a device in a Wi‐Fi positioning system is the cell of origin (CoO) method, 
with which the receiver position is made to coincide with the coordinate of the access point 
(AP) generating the highest RSSI value. Due to the spatial distribution of the APs in an indoor 
environment, this type of techniques is able to reach location with errors around 10–20 m [14].

Finally, multilateration methods, like time of arrival, time difference of arrival, angle of 
arrival, and so forth, are less common for WLAN positioning due to computational complex-
ity of these kinds of measurements in mobile devices [26].

A literature review on WLAN systems for indoor positioning has been published by He et 
al. in 2016 [18]. There are many previous research studies on indoor Wi‐Fi localization that 
pursue different goals and use different methods and technologies also in the function of 
the field of interest of the research groups. In particular, besides the numerous interesting 
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works on positioning and navigation on self‐made mobile devices with sensor integration, 
there are some researches exploiting the embedded sensors in COTS (Commercial On‐The‐
Shelf) smartphone. Some interesting work exploits the integration of inertial sensor‐based 
positioning with Wi‐Fi capability of smartphones [7, 31]. For example, in [7] the authors 
propose a sensor fusion framework for combining Wi‐Fi, pedestrian dead reckoning (PDR) 
and landmarks. The whole system runs on a smartphone and Android app is developed 
for real‐time indoor localization and navigation. The established accuracy is 1 m. An inter-
esting multimodal approach of Wi‐Fi navigation is described in [21], where PDR carried 
out with only low cost sensors and Wi‐Fi smartphones are issued in a cooperative posi-
tioning operation made by a certain number of participants. The size of the error becomes 
smaller when the number of participants rises (5 m for 50 devices). Some use GPS integra-
tion for cloud‐based LBSs [3], while other researchers introduce sensors fusion between 
Wi‐Fi and CIS for accurate indoor positioning [32] or for augmented reality navigation [1].

A comprehensive and complete view on indoor positioning systems implemented today, 
with its applications and obtainable positioning accuracies, is described in [18].

4. Conclusion

In this chapter, the authors have tried to describe the positioning performances and method-
ologies in outdoor and indoor scenarios considering smartphone technology. In particular, 
the state‐of‐the‐art of smartphone technology regarding the precisions and accuracies that 
can be achieved with these instruments for positioning and navigation purposes has been 
analyzed, in both scenarios.

Even if in outdoor scenarios the obtainable accuracy is less than 5 m under open‐sky condi-
tions considering only the GNSS sensors, in indoor environment is possible to have accura-
cies of 10–50 cm if some sensors, such as INS, cameras, or Wi‐Fi technology, are considered. 
Interesting results are obtained fusing IRB technique with MEMS technology: considering an 
interval of 2 s between images, the mean planimetric error is about 61 cm at 67% and 1.49 m 
at 95% of reliability. A possible interesting alternative for indoor positioning could be repre-
sented by the fusion of range camera and INS instruments.

This is not an exhaustive overview, also because the technology is evolving more quickly than 
the minds that are producing them: so this would be a starting point for future works regard-
ing these instruments for positioning and mapping application.
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