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Information-theoretic Characterization of

MIMO Systems with Multiple Rayleigh

Scattering
G. Alfano, Student Member, IEEE, C.-F. Chiasserini, Senior Member, IEEE,

A. Nordio, Member, IEEE, and S. Zhou

Abstract

We present an information-theoretic analysis of a point-to-point Multiple-Input-Multiple-Output

(MIMO) link affected by Rayleigh fading and multiple scattering, under perfect channel state information

at the receiver. Unlike previous work addressing this setting, we investigate the Random Coding Error

Exponent, its associated cutoff rate and the Expurgated Error Exponent, and derive closed-form expres-

sions for them. Moreover, leveraging the average mutual information expression presented in [1], we

derive another important metric, namely, the sum rate, under linear receive processing and independent

stream decoding. In particular, we characterize the performance of the Minimum Mean Squared Error

receiver in closed form, and that of the Zero Forcing receiver by resorting to bounding techniques. The

bulk of the work relies on results about finite-dimensional random matrix products, a number of which

are novel and detailed in the Appendices. The analysis, validated through numerical results, highlights

the severe degradation in the performance of linear receivers due to multi-fold scattering. It also unveils

the performance trend of multiple scattering MIMO channels as a function of the number of antennas

and the number of scattering stages.
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I. INTRODUCTION

The presence of multiple (or multi-fold) scattering on the radio channel has been confirmed by

early measurement campaigns [2], and has henceforth been taken into account in Multiple-Input-

Multiple-Output (MIMO) channel modeling (see, e.g., the pioneering work in [3]). These works

take into account, from the practical and the theoretical point of view, the presence of isolated or

clustered obstacles of considerable size compared to the signal wavelength. The scattering effects

due to such obstacles are relevant with respect to common diffusion phenomena caused by the

presence of randomly placed impurities in the radio channel. Impairments caused by these objects

are referred to as keyholes or pinholes (see, e.g., [4]) when they are correlated, thus leading to a

rank-deficiency of the MIMO channel matrix. They are instead termed as multi-keyhole [5] (or,

more in general, double or multiple scattering phenomena) in the presence of multiple objects

causing uncorrelated scattering events. For a preliminary analysis of such phenomena in early

MIMO literature, the reader is referred to [6]. Importantly, in the more recent literature, multi-

fold scattering is considered as a relevant impairment of the radio channel in the analysis of the

link between a pico-base station and a user [7, and references therein]. Analytical understanding

of multiple scattering models is also a milestone towards a fair comparison between small-cells

and the recently proposed cell-less paradigm (see e.g. [8]).

The presence of successive clusters of dominant scatterers affecting a MIMO link can be

modeled as a product of N random matrices. The size of such matrices may vary from matrix

to matrix and coincides with the number of dominant scatterers per cluster [7, and references

therein]. Correlation between spatially separated clusters, as well as between scattering objects

belonging to the same cluster (see [9]), is typically neglected for the sake of simplicity. Even

after such a strong simplification, finite-size analysis of multiple scattering MIMO channels was

considered to be impractical till very recently, due to the lack of closed-form characterization

of the spectrum of the product of an arbitrary number of independent random matrices of finite

size. A noticeable exception is the case of N = 2, i.e., the so-called double scattering channel

[6], [10], [11], the simplified version of which is referred to as Rayleigh-product channel [12,

and references therein]. A very large number of studies (not cited here for the sake of brevity)
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have appeared on this case since very early MIMO analysis. Additionally, asymptotic analysis

of MIMO links, where the channel matrix is represented by a product of a finite number of

large-sized random matrices1, has been focusing only on relay-aided settings (see, e.g., [13],

[14]).

Finite-size analysis for an arbitrary N has become possible in closed form only after the

seminal work in [1]. Therein, Akemann et al. provide an explicit expression for the marginal

singular value distribution of a matrix product of N independent rectangular matrix factors, each

having independent, standard complex Gaussian entries. As an instance of application of such

spectral statistics, [1] provides a closed-form expression for the mutual information conveyed by

a MIMO multiple scattering channel [1, Formula (82)] when Channel State Information (CSI)

is available at the receiver. Using the result in [1], Wei et al. [7] present the first exact analysis

of the above system in the case of orthogonal space-time block coding, while an approximate

analysis for an arbitrary number of matrix factors and in a more general scenario is given in

[15].

Yet all the aforementioned works address mutual information only. This motivated us to extend

the analysis to the error exponent, the channel cutoff rate, and the sum rate achievable by linear

receivers – metrics that are of paramount relevance in wireless communications. Indeed, while

ergodic mutual information represents the channel performance when information is encoded

using an (ideally) infinite block length, error exponent and cutoff rate illustrate how the channel

behaves with finite block length. Specifically, the error exponent expresses the trade-off between

the average block-error probability (corresponding to the optimum code) and the required coding

length at a prescribed rate below the channel capacity.

We first focus on the Random Coding Error Exponent (RCEE), proposed by Gallager [16] and

based on uniformly random selection of the codewords. We provide closed-form expressions for

both the RCEE and its associated cutoff rate, in the multiple-scattering scenario. We also derive

a closed-form expression for a refined version of the RCEE, called Expurgated Error Exponent

(EEE) [16], where bad codewords are expurgated in order to decrease the error probability. We

remark that previous studies tackling MIMO channels [17]–[21] have derived results2 tailored

to specific fading assumptions only and without multi-fold scattering, either in closed form or

1Despite model similarities with multiple scattering channels, the study of this aspect is beyond the scope of our work.
2In [22], where first the problem was formulated, there is no final analytic expression for the error exponent.

October 16, 2017 DRAFT



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. X, NO. X, MONTH 201X 4

resorting to saddle-point approximations. Our evaluation of RCEE and EEE, instead, specifically

addresses multiple-scattering MIMO channels and, as customary in the literature, it is performed

under the assumption of CSI availability at the receiver only. It is also worth noticing that,

without CSI at either link ends, the unique available result on the error exponent in MIMO

systems is for Rayleigh channels and has been derived in [23]. Furthermore, the closed-form

expressions that we obtain for the cutoff rate allow us to extensively study the channel behavior

and provide interesting insights on the interplay between spatial degrees of freedom (the number

of available antennas at either link end), fading degrees of freedom (the number of significant

scattering stages), channel coherence, and coding length. It is worth mentioning that a detailed

analysis of a MIMO product channel, focused on Lyapunov exponents instead of RCEE, can be

found in [24], where the authors analyze an infinite product of finite-sized Rayleigh scattering

matrices.

We then study the sum-rate performance of linear receivers, which, in proper signal-to-noise

(SNR) ranges, provide close-to-optimal performance with limited computational burden. Previous

closed-form analysis of the Minimum Mean-Squared Error (MMSE) receiver has been carried

out for Rayleigh/Rayleigh-product or uncorrelated Ricean fading [12], [25]. Zero-forcing (ZF)

receive processing, instead, has been investigated by Matthaiou et al. in [26], [27], where the

authors provide bounds to the sum rate in the presence of Rayleigh fading. The performance of

ZF and MMSE receivers have been compared in [28] in terms of the single-branch signal-to-

interference-plus-noise-ratio (SINR), with and without large-scale fading, lognormal distributed

component. In our study, we adopt the strategy proposed in [25] for the MMSE sum-rate

evaluation, particularizing it to the multiple-scattering channel, and obtain a closed-form result.

Finally, drawing upon [26] and [28], we analyze the ZF case and derive an upper and a lower

bound to its sum rate. Interestingly, we find that, in the presence of multiple scattering, sum-rate

bounds result to be very loose, with respect to their tight behavior in Rayleigh and Rice fading.

In summary, our main contributions are as follows:

• We first characterize the multiple-scattering channel by deriving closed-form expressions for

the RCEE, its associated cutoff rate, and EEE, under the assumption that CSI is available

at the receiver only. We remark that our methodology is general and allows the derivation

of the error exponent for a large class of fading distributions;

• We also provide a spectral analysis of multiple-scattering matrices by deriving the expres-

sions for the minimum, maximum and generic unordered eigenvalue;
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• We then analyse the performance of a communication system in the presence of multiple-

scattering channel, when linear receivers are adopted. In particular, we obtain a closed-form

expression of the sum rate achieved by the MMSE receiver, and a lower and an upper bound

for the ZF receiver;

• We validate our analysis through numerical results, and show the poor suitability of linear

receivers for multiple-scattering channels and the impact of the number of scattering clusters

on the system performance.

At last, we mention that we do not address spatially correlated systems. The impact of spatial

correlation on the average asymptotic capacity of double-scattering channels has been quantified

as early as in [3], while the corresponding effect on the variance of the mutual information

has been handled in [11]. Very recently, a relevant study [9] has appeared on multiple-cluster

scattering with spatial correlation at the end of the link with the least number of antennas. This

is the only case for which exact results are currently available.

The rest of the paper is organized as follows. Sections II and III introduce, respectively, the

notation we use in our analysis and the channel model we assume. Section IV presents our

results on the eigenvalue decomposition, the generalized variance and the spectral transforms

of the product of random matrices. We then derive results on the error exponent and on the

cutoff rate in Section V. The mutual information and the sum rate for the MMSE and the ZF

receivers are analysed in Section VI. Whenever appropriate, analytical results are complemented

with numerical results for validation purposes. Finally, we draw our conclusions in Section VII.

II. NOTATION

A. Vectors and matrices

Boldface uppercase and lowercase letters denote matrices and vectors, respectively. The iden-

tity matrix is indicated by I. The determinant and the conjugate transpose of the generic matrix

M are denoted by |M| and MH, respectively, while the (i, j)-th element of M is indicated by

[M]i,j . The Frobenius norm of M is denoted by kMk2 = Tr{MMH} where Tr is the matrix

trace operator. The n⇥n matrix M is sometimes denoted as M = {[M]i,j}i,j=1,...,n. For any n⇥n

Hermitian matrix M with eigenvalues m

1

, . . . ,mn, the Vandermonde determinant is defined as

V (M) =

Y

1k<`n

(mk �m`) . (1)
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Fig. 1. Scattering channel representation.

B. Special functions

The Meijer-G function is defined as the line integral
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where a = [a

1

, . . . , ap], b = [b

1

, . . . , bq], �(s) is the Gamma function and the parameters

m,n, p, q are integers [29, Ch. 8]. Moreover, L represents one among three suitable integration

paths in the complex plane, selected according to the respective values of the integers m,n, p, q

and the value of the variable z, as detailed in [29, 9.302].

C. Random variables

The probability density function (pdf) of the random variable a is denoted by fa(a), while

its cumulative distribution function (CDF) by Fa(a). Moreover, Ea[·] represents the expectation

operator with respect to the random variable a.

III. CHANNEL MODEL

Let us consider a source-destination pair of multiple-antenna equipped nodes communicating

through a wireless MIMO channel with N�1 independent scattering clusters (see Figure 1). Let

us denote by n

0

and nN the number of antennas at the source and destination, respectively. We
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assume a memoryless block fading channel with block length equal to nc channel uses. Then

the signal received at the destination can be written as

Y =

p
↵HX+N (2)

where the nN ⇥nc matrix Y represents the output, the n

0

⇥nc matrix X is the channel input, the

nN ⇥n

0

matrix H is the channel matrix, and N represents the matrix of AWGN noise with i.i.d.

entries having zero mean and variance N
0

. For simplicity, in the following we assume N
0

= 1.

Assuming no CSI at the transmitter, the available transmit power is uniformly distributed over

all the n

0

antennas, hence X is modeled as a random matrix with i.i.d. entries and covariances

EX[XXH
] =

Pnc

n

0

I , EX[X
HX] = PI

where P is the total transmitted energy per channel use.

In our scenario we assume that X and H are independent and each cluster is composed of ni

independent scatterers, i = 1, . . . , N � 1. The random channel matrix, H, is also referred to as

multiple-scattering channel matrix and can be expressed as

H = HN · · ·H
1

, (3)

where matrices Hi are independent across i due to the independence of the scattering stages, and

the generic matrix Hi has size ni ⇥ ni�1

. Such matrices are complex random with i.i.d. entries

whose real and imaginary parts are independent and have a standard normal distribution [30]:

fHi(Hi) = e

�Tr{HiH
H
i }
⇡

�nini�1

. (4)

Given the communication system under study, in this work we consider n

0

to be smaller than

or equal to any ni, with i = 1, . . . , N . Then we further define auxiliary variables capturing

the possible difference in spatial degrees of freedom/scattering richness at each cluster, namely

⌫i = ni � n

0

, i = 1, . . . , N , which by assumption are non-negative integers.

The energy-normalization constant ↵ can be written as

↵ =

n

0

nN

Tr{EH[HHH
]} . (5)
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Note that for the multiple-scattering channel in (3)

Tr{EH[HHH
]} = Tr{EH[HN · · ·H

1

HH
1

· · ·HH
N ]}

= n

0

Tr{EH[HN · · ·H
2

HH
2

· · ·HH
N ]}

=

N�1

Y

i=0

niTr{EH[HNH
H
N ]}

=

N
Y

i=0

ni . (6)

It follows that

↵ =

N�1

Y

i=1

1

ni
. (7)

As an example, if N = 1 and H has i.i.d. Gaussian complex entries with zero mean and unit

variance, we have ↵ = 1 and, having assumed N
0

= 1, the overall SNR of the system is P .

Before proceeding into the information- and communication-theoretic investigation, we provide

a comprehensive statistical analysis of the spectrum of the channel matrix in (3), which constitutes

the basis of our subsequent findings.

IV. SPECTRAL ANALYSIS OF RANDOM MATRIX PRODUCTS

This section is devoted to the spectral analysis of Hermitian products of random matrices.

It is articulated into two main subsections: the first one provides eigenvectors and eigenvalues

statistics, while the second reports the generalized variance of the channel matrix in (3), as well

as relevant integral transforms of the matrix spectrum.

A. Eigenvalue Decomposition and Its Properties

Let us consider the matrix H in (3), and the eigenvalue decomposition of its full-rank3 Gram

matrix, namely, HHH = UH⇤U. This is an instance of a matrix with eigenvectors that, arranged

as the columns of the n

0

-dimensional square matrix U, are jointly uniformly distributed on the

group of the unitary matrices, U(n
0

). This can be proven as done in the following proposition.

Proposition 4.1: Given a matrix product as in (3), its full-rank Gram matrix HHH = UH⇤U

is unitarily invariant, i.e., fHHH(
eUHHHHeU) = fHHH(H

HH), for any choice of eU 2 U(n
0

).

3Since we assumed n
0

 nN , the number of non-zero singular values of H is n
0

, thus its full-rank Gram matrix is of size

n
0

.
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Moreover, U follows the Haar distribution [31, Formula (2.7)] and it is independent of ⇤, the

diagonal matrix of the eigenvalues of HHH.

The proof of the above proposition follows directly from the observation that matrices Hi are

bi-unitarily invariant by virtue of [31, Example 2.4], i.e., their pdf does not vary under left and/or

right multiplication by a unitary matrix. As a consequence, the full-rank Gram matrix HHH =

HH
1

AH
1

is unitarily invariant for any A, and in particular for A = HH
2

· . . . ·HH
NHN · . . . ·H

2

.

The joint and marginal eigenvalue distributions of HHH have been characterized, respectively,

in [32] and in [1]. In particular, the joint law of the unordered n

0

eigenvalues of HHH can be

written as [32]

f⇤(⇤) =

1

Z V (⇤)|G(⇤)| , (8)

where the normalizing constant is given by [1, Eq.(21)]: Z = n

0

!

Qn
0

i=1

QN
`=0

�(i+⌫`), and G(⇤)

is an n

0

⇥ n

0

matrix with generic entry

[G(⇤)]i,j = G

N,0
0,N

0

@

�

⌫N , . . . , ⌫2, ⌫1 + i� 1

�

�

�

�j

1

A

,

for i, j = 1, . . . , n

0

.

Let us now define the n

0

⇥ n

0

auxiliary matrix Ah, with entries

[Ah]i,j = �(⌫

1

+ i+ j + h� 1)

N
Y

`=2

�(⌫` + j + h) , (9)

where h is any integer number for which (9) takes meaningful values. We first observe that

|A
0

| = Z
n

0

!

(10)

The proof is reported in Appendix C. Also, drawing on [33, Theorem I], the following proposition

holds.

Proposition 4.2: The marginal density of a single, unordered eigenvalue � of HHH is given

by:

f�(�) =
1

n

0

Tr
�

A�1

0

G
1

(�)

 

(11)

where

[G
1

(�)]i,j = �

j�1

G

N,0
0,N

0

@

�

⌫N , . . . , ⌫2, ⌫1 + i� 1

�

�

�

�

1

A

.

The CDF of a single, unordered eigenvalue � of HHH is given by

F�(�) =
1

n

0

Tr
�

A�1

0

G
2

(�)

 

(12)
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where

[G
2

(�)]i,j= G

N,1
1,N+1

0

@

1

⌫N+j, . . . , ⌫

2

+j, ⌫

1

+i+j�1,0

�

�

�

�

1

A

. (13)

Proof: The marginal density of a single unordered eigenvalue, can be obtained by integrat-

ing (8) w.r.t. all eigenvalues but one. This can be done by exploiting [33, Theorem I], which

provides the result of the integration in terms of matrices G
1

(�) and A
0

, with A
0

given by

A
0

=

Z

+1

0

G
1

(�) d� .

Its closed-form expression can be obtained from either [32, A.2], or by setting h = 0 in (9).

The CDF in (12) can be obtained by integrating (11). The matrix G
2

(�), given by

G
2

(�) =

Z �

0

G
1

(x) dx , (14)

can be written as in (13) by exploiting the properties of the Meijer-G function [29, (7.811.2)].

Notice that (11) differs from the expression in [1, Formula (52)], which is based on the

classical approach of k-point correlation functions for the density of an arbitrary subset of

k < n

0

eigenvalues of a given random matrix. In particular, while (11) includes a single Meijer

function only, the expression in [1] involves products of two Meijer functions. With regard to

the moments of the unordered eigenvalue, we refer the reader to [1, Formula (55)], which holds

for both integer and non-integer moment order.

A graphical representation of the CDF and the pdf of an unordered eigenvalue of HHH is

provided in Figures 2 and 3, respectively. The results are shown for a varying number of clusters

(N = 1, . . . , 6), and ni = 4 for any i = 0, . . . , 4. It can be noticed that the higher the number

of stages in the channel matrix, the larger the range of possible values taken by the generic

eigenvalue. In particular, as N grows, the pdf curve tends to resemble a straight line in a double-

logarithmic plot. This is consistent with the trend observed in the SISO case in [34, Formula

(8) and Fig. 1], where the pdf of the product of N independent Rayleigh-distributed random

variables is derived. Therein, it is numerically shown that for N = 5, the pdf resembles a power

law. Another relevant study to compare to is [3], where large-sized matrices, are investigated

in the case of both a finite and an infinite number of (unitarily invariant) matrix factors. We

remark however that a detailed analysis of the marginal pdf in (11) as N grows large, would

require a rigorous investigation of the asymptotic behavior of the Meijer-G function, for which

no results are available in the literature and which is subject of ongoing work.
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Fig. 2. Cumulative distribution of a single unordered eigenvalue of a multiple-scattering channel, for ni = 4, i = 0, . . . , N ,

and N ranging between 1 and 6.

A characterization of the extremal eigenvalues of HHH is also provided in terms of their

CDFs in the following proposition, which relies on [35].

Proposition 4.3: The CDF of the maximum eigenvalue �

max

of HHH is given by:

F�
max

(�) =

|G
2

(�)|
|A

0

| , (15)

where G
2

(�) is given by (13). The pdf of the maximum eigenvalue is given by

f�
max

(�) =

|G
2

(�)|
|A

0

| Tr{G
2

(�)

�1G
1

(�)} . (16)

In turn, the CDF and pdf of the minimum eigenvalue �

min

of HHH can be written as

F�
min

(�) = 1� |G
3

(�)|
|A

0

| , (17)

and

f�
min

(�) =

|G
3

(�)|
|A

0

| Tr{G
3

(�)

�1G
1

(�)}, (18)
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Fig. 3. Probability density function of a single unordered eigenvalue of a multiple-scattering channel, for ni = 4, i = 0, . . . , N ,

and N ranging between 1 and 6.

where

[G
3

(�)]i,j = G

N+1,0
1,N+1

0

@

1

0,⌫N+j, . . . , ⌫

2

+j, ⌫

1

+i+j�1

�

�

�

�

1

A

.

Proof: F�
max

(�) can be derived by following a similar approach to that adopted for the

proof of [36, Theorem I]. Indeed, recall that the joint pdf of the ordered eigenvalues can be

obtained from the unordered one given in (66), by multiplying it by n

0

! and taking into account

that the ordered law, i.e.,

f

ord

⇤ (⇤) =

|G(⇤)|
|A

0

| V (⇤) , (19)

is defined over the domain4 {0  �

1

< �

2

< . . . < �n
0

< +1}. By definition, F�
max

(�) =

P (�n
0

 �), henceforth

F�
max

(�) =

Z

D
f

ord

⇤ (⇤) d⇤ , (20)

4We herein implicitly assume the eigenvalues to follow an increasing order, but all the statements hold also for a set of

eigenvalues following a decreasing order.
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where D = {⇤ 2 (R+

)

N
0 |�i  �, i = 1, . . . , n

0

}. By virtue of [36, Lemma I], (20) can

be equivalently written as (15). The pdf f�
max

(�) is obtained by computing the derivative of

F�
max

(�) in (15). To do so, we exploit Jacobi’s formula [37]:

d

dz

|M| = |M|Tr
⇢

M�1

dM

dz

�

, (21)

getting

f�
max

(�) =

d

d�

F�
max

(�)

=

1

|A
0

|
d

d�

|G
2

(�)|

=

|G
2

(�)|
|A

0

| Tr

⇢

G
2

(�)

�1

d

d�

G
2

(�)

�

. (22)

At last, from (14) we observe that the derivative of G
2

(�) is G
1

(�). In order to get an expression

for F�
min

(�) = 1� P (�

1

> �), we first exploit [35, Eq. (7)], using (19), so that we get

F�
min

(�) = 1�
Z

eD
f

ord

⇤ (⇤) d⇤ , (23)

with eD = {⇤ 2 (R+

)

n
0 |�i > �, i = 1, . . . , n

0

}. Then we apply [38, Corollary I] to obtain (17).

Here again,

G
3

(�) =

Z

+1

�

G
1

(x) dx, (24)

can be written in closed form via [29, (7.811.3)], as reported in the proposition statement. The

pdf f�
min

(�) can be obtained by deriving (17) and applying again the property in (21). In this

case, however, according to (24) the derivative of G
3

(�) is given by �G
1

(�).

The CDF of the maximum and minimum eigenvalue of HHH is depicted in Figure 4 for

N = 2, and n

0

= 4, n
1

= 5 and n

2

= 6. The CDF of a single, unordered eigenvalue has been

plotted too for completeness.

B. Generalized Variance and Spectral Transforms

This subsection is devoted to the investigation of the so-called generalized variance, given by

the Gram determinant of a random matrix. We hereinafter provide the expression for the moments

of |HHH|, and for its logarithm. We conclude the subsection by evaluating in closed form the

Shannon transform of HHH, which is an integral transform largely adopted in communication
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Fig. 4. Cumulative distribution of the maximum, the minimum, and of a single unordered eigenvalue of a multiple-scattering

channel, with N = 2 scattering stages, n
0

= 4, n
1

= 5, and n
2

= 6.

theory5. The closed-form expression for the Shannon transform of HHH will be useful to derive

our results in Section VI.

Proposition 4.4: The moments of |HHH| can be expressed as

EH[|HHH|h] = |Ah|
|A

0

| h 2 N . (25)

Proof: Let us first recall that |HHH| = |⇤|. Then, using (8), we have:

EH[|HHH|h] =

1

n

0

!|A
0

|

Z

(R+

)

n
0

V (⇤)|G(⇤)||⇤|h d⇤

=

|Ah|
|A

0

| ,

5The Shannon transform, along with the ⌘-transform that we also provide for completeness, are rigorously defined with respect

to the laws of non negative random variables. In this work, as customary in the literature, by transform of an Hermitian random

matrix we mean the transform of its marginal unordered eigenvalue density, since we deal with finite-dimensional random

matrices.

October 16, 2017 DRAFT



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. X, NO. X, MONTH 201X 15

by virtue of [38, Corollary I]. Note that, by applying [29, 7.811.4], (9) can be rewritten as

[Ah]i,j =

Z

R+

�

j�1+h
G

N,0
0,N

0

@

�

⌫N , . . . , ⌫2, ⌫1+i�1

�

�

�

�

1

A

d� .

From Proposition 4.4, the Corollary below follows.

Corollary 4.1:

EH[ln |HHH|] = Tr
n

A�1

0

eA
0

o

, (26)

where eA
0

is a square matrix of size n

0

, with elements given by

h

eA
0

i

i,j
= [A

0

]i,j

"

⌫
1

+i+j�2

X

t=1

1

t

+

N
X

`=2

⌫`+j�1

X

t=1

1

t

�N�

#

. (27)

In the above equation, � is the Euler-Mascheroni constant.

Proof: In order to prove the corollary, we can write:

EH

⇥

ln |HHH|
⇤

=

d

ds

EH

⇥

exp(s ln |HHH|)
⇤

�

�

�

�

�

s=0

=

d

ds

EH

⇥

|HHH|s
⇤

�

�

�

�

�

s=0

=

1

|A
0

|
d

ds

|As|

�

�

�

�

�

s=0

(28)

where in the last line we exploited Proposition 4.4. To compute the derivative of a matrix

determinant, we apply the property in (21) and obtain

d

ds

|As|

�

�

�

�

�

s=0

= |As|Tr
⇢

A�1

s

d

ds

As

�

�

�

�

�

�

s=0

= |A
0

|Tr
n

A�1

0

eA
0

o

(29)
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where eA
0

=

d

dsAs

�

�

s=0

. The generic i, j-th entry of eA
0

is given by:

h

eA
0

i

i,j
=

d

ds

�(⌫

1

+i+j+s�1)

N
Y

`=2

�(⌫`+j+s)

�

�

�

�

�

s=0

= �(⌫

1

+i+j�1)

N
Y

`=2

�(⌫`+j) ·

"

�� +

⌫
1

+i+j�2

X

t=1

1

t

+

N
X

`=2

 

�� +

⌫`+j�1

X

t=1

1

t

!#

= [A
0

]i,j

"

⌫
1

+i+j�2

X

t=1

1

t

+

N
X

`=2

⌫`+j�1

X

t=1

1

t

�N�

#

.

(30)

By substituting (30) and (29) in (28), we obtain the assertion.

As mentioned, we conclude the section by providing the expression of the Shannon transform

of HHH, which is related to the mutual information.

The Shannon transform [31, Def. 2.12] of the n

0

⇥ n

0

random matrix HHH is given by

V (�, n

0

) = E� [ln (1 + ��)]

where � is any unordered eigenvalue of HHH. In the case of our multiple-scattering channel,

the following proposition holds.

Proposition 4.5: The Shannon transform of HHH for the multiple-scattering channel in (3) is

given by:

V (�, n

0

) =

1

n

0

Tr{A�1

0

G
4

(�)} (31)

where

[G
4

(�)]i,j = G

N+2,1
2,N+2

0

@

0,1

0,0,⌫N+j, . . . ,⌫

2

+j,⌫

1

+i+j�1

�

�

�

1

�

1

A

with

� =

P↵

n

0

. (32)

Proof: The assertion is obtained by replacing (11) in the definition of the Shannon transform

given above, by writing ln(1 + ��) in terms of a Meijer-G and by exploiting the properties of

the Meijer-G functions [29].

For the sake of completeness, we also derive the ⌘-transform [31, Def. 2.11], defined as

⌘ (�, n

0

) = E�

⇥

(1 + ��)

�1

⇤

.
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By replacing once again (11) in the above definition and by exploiting [29, 7.811.5], we obtain:

⌘ (�, n

0

) =

1

n

0

Tr{A�1

0

G
5

(�)} (33)

where

[G
5

(�)]i,j = G

N+1,1
1,N+1

0

@

1

1,⌫N+j, . . . ,⌫

2

+j, ⌫

1

+i+j�1

�

�

�

1

�

1

A

.

V. ERROR EXPONENTS AND CUTOFF RATE

To evaluate the error exponents for the channel under study, we refer to the matrix-valued

transmission model in (2). Assuming each codeword to span over nbnc channel uses, we collect

nb independent realizations of (3). The average error probability achievable by a code of rate R

with maximum likelihood decoding can be bounded as [16, Ch. 7]:

Pe 
✓

2e

r�

�

◆

2

exp (�nbncE(fX(X), R, nc)) , (34)

where r, � > 0, � ⇡ �p
2⇡nb�2

�

, �2

� = EX

h

(kXk2 � ncP)

2

i

, E(fX(X), R, nc) is the RCEE, and

fX(X) is the distribution of the channel input X. The variable P denotes the average input-power

constraint, i.e.,

EX[kXk2]  ncP (35)

for a given distribution of the input matrix fX(X). The RCEE in (34) is given by

E(fX(X), R, nc) = max

0⇢1

⇢

max

r�0

� ln E
nc

�⇢R

�

, (36)

where E is defined as

E = EH



Z

CnN⇥nc

EX

h

f(Y|X,H)

1

1+⇢
e

r(kXk2�ncP)

i

1+⇢

dY

�

.

(37)

Rigorously, random coding equally weights both good as well as bad codewords. An improved

bound for the average error probability can be obtained by expurgating bad codewords from

the code ensemble (see, e.g., [16]). Such an expurgating procedure leads to the following upper

bound for the error probability

Pe  exp (�nbncEe(fX(X), R, nc) + o(1)) , (38)

where

Ee(fX(X), R, nc) = max

0⇢1

⇢

max

r�0

� ln Ee
nc

� ⇢R

�

(39)
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is the EEE. Ee denotes the matrix integral

Ee = EH

h

EX,X0

h

e

r(kXk2+kX0k2�2ncP)

w(X,X0
,H)

1

⇢

i⇢i

(40)

and

w(X,X0
,H) =

Z

CnN⇥nc

p

f(Y|X,H)f(Y|X0
,H) dY . (41)

In (40), X0 shares the same distribution as X and represents the input signal of good codewords.

Note that, without CSI at the receiver, the expressions in (37) and (40) would depend on f(Y|X)

and f(Y|X0
) rather than on f(Y|X,H) and f(Y|X0

,H). However, f(Y|X) and f(Y|X0
) are

difficult to evaluate, except for the case of uncorrelated Rayleigh fading, asymptotically analyzed

in [23]. Notice also that the optimal distribution f(X) would be the one that maximizes the error

exponents (either E(fX(X), R, nc) or Ee(fX(X), R, nc)). However, in the following, as usually

done in the literature (see, e.g., [17], [19], [20] and references therein), we assume that fX(X)

follows a Gaussian distribution, i.e.,

fX(X) = e

�Tr{Q�1XXH}|⇡Q|�nc
, (42)

where the covariance matrix Q =

1

nc
E[XXH

] should satisfy the average power constraint

enforced in (35)

EX[kXk2] = ncTr{Q}  ncP .

This assumption simplifies the evaluation of the error exponent. Also, the Gaussian law for X

is optimal if the rate R approaches the channel capacity.

When R is close to the capacity and CSI is available at the receiver but not at the transmitter,

Uniform Power Allocation (UPA) across transmit antennas yields optimal performance in the

presence of a unitarily invariant channel matrix [22]. Under UPA, the covariance matrix of the

channel input is scalar. That is, it can be written as Q = pI where

p =

P
n

0

represents the per-antenna transmit power, assuming the average power constraint is met with

equality.
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A. Random Coding Error Exponent

Theorem 5.1: For a block-fading channel as in (3), fed by a Gaussian input according to (42)

with UPA (i.e., Q = pI), the RCEE related to an observation window of nb independent fading

blocks of nc channel uses each, can be expressed as per (36) with6

E = k

Z

(R+

)

n
0

f⇤(⇤)

�

�

�

�

I+
↵p

(1 + ⇢)(1� pr)

⇤

�

�

�

�

�nc⇢

d⇤, (43)

where we recall that ⇤ is the diagonal eigenvalue matrix and r is the parameter appearing in 34.

k =

e

�rncP(1+⇢)

(1� pr)

ncn
0

(1+⇢)
,

The proof can be found in [39]. Notice, however, that (43) slightly differs from [39, Formula

(11)], where no constraint between the number of transmit and receive antennas was enforced,

while our current analysis assumes n

0

 nN .

Proposition 5.1: For a block-fading channel as in (3), the RCEE is given by (36) where

E =

k

|A
0

|

�

�

�

�

Z

✓

(1� pr)(1 + ⇢)

↵p

◆

�

�

�

�

, (44)

and k is given in Theorem 5.1. The elements of the n

0

⇥ n

0

matrix Z(x) are given by

[Z(x)]i,j =

G

N+1,1
1,N+1

0

@

1

nc⇢, ⌫N+j,. . .,⌫

2

+j,⌫

1

+i+j�1

�

�

�

x

1

A

�(nc⇢)
.

Proof: The proof is provided in Appendix B.

The channel cutoff rate corresponding to the RCEE, according to [17, Eqs. (26-27)], can be

written as

R

0

= � log E
nc

|r=0,⇢=1

,

for which a closed-form expression can be straightforwardly obtained from (44).

6We remark that our derivation, albeit slightly more compact, partially overlaps with the content of [17, Appendix A], where

the analysis was focused on Rayleigh-faded channels.
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B. Expurgated Error Exponent

Theorem 5.2: For a block-fading channel as in (2), fed by a Gaussian input according to (42)

with UPA (i.e., Q = pI), the EEE related to an observation window of nb independent fading

blocks of nc channel uses each, can be expressed as per (39) with

Ee = ke

Z

(R+

)

n
0

f⇤(⇤)

�

�

�

�

I+
↵p

2⇢(1� pr)

⇤

�

�

�

�

�nc⇢

d⇤ (45)

where

ke =
e

�2rncP⇢

(1� pr)

2n
0

nc⇢

Proof: The proof is given in Appendix A.

Proposition 5.2: For a block-fading channel as in (2), with channel matrix given by (3), the

EEE is given by (45) where

Ee =
ke

|A
0

|

�

�

�

�

Z

✓

2(1� pr)⇢

↵p

◆

�

�

�

�

, (46)

and where ke is defined in Theorem 5.2.

Proof: The proof is given in Appendix B.

C. Numerical Results

Here we briefly report on the behavior of the cutoff rate of a multiple-scattering MIMO

channel, relying on our newly derived expression.

In Figure 5, we plot the cutoff rate as a function of the transmit power, in the case of random

coding. We set nc = 9 and ni = 4, i = 0, . . . , N and we show the results for an increasing number

of scattering clusters (N = 1, . . . , 6). As expected, the cutoff rate increases with the transmit

power, and decreases as the number of scattering clusters grows. In particular, we remark that,

in the high-SNR region (i.e., beyond 20 dB), doubling the number of clusters N has a similar

impact on the cutoff rate to that observed when reducing the transmitted power by 10 dB.
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Fig. 5. Cutoff rate as a function of the transmit power for nc = 9, ni = 4, i = 0, . . . , N , and N ranging between 1 and 6.

VI. MUTUAL INFORMATION AND SUM RATE ANALYSIS

When perfect CSI is available at the receiver, the ergodic mutual information achieved by

optimal receive processing is given by [1]:

I (�, n

0

) = EH

⇥

ln

�

�I+ �HHH
�

�

⇤

= E⇤ [ln |I+ �⇤|]

= n

0

E� [ln (1 + ��)]

= n

0

Z 1

0

ln (1 + ��) f�(�) d� , (47)

where we recall that � is the generic unordered eigenvalue of HHH. Notice that, although I

depends on several system parameters, for simplicity in (47) we highlighted only the dependency
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on the SNR and on the number of transmit antennas, n

0

. f� too depends on several integer

parameters, according to (11), however we preferred to highlight the dependency on n

0

only.

Assuming that a linear receiver is used instead of the optimal one, the system incurs some

performance loss. The relationship between the optimal ergodic mutual information and the sum

rate achieved by the MMSE receiver has been unveiled in [25]. Therein, compact expressions for

achievable rates have been derived in the case of Rayleigh and Ricean-faded MIMO channels,

under various assumptions on the spatial correlation.

In this section, we extend the analysis to the multiple-scattering channel matrix in (3). Fur-

thermore, we analyse the case of ZF receiver, deriving in this last case upper and lower bounds

following both the approaches proposed by Matthaiou et al. in [26], [27] and that of Jiang et

al. in [28].

A. Optimal Receiver Performance

Using the definition of the Shannon transform and (47), we can write:

I (�, n

0

) = n

0

V (�, n

0

) . (48)

B. Linear Receivers Sum Rate

Let us consider the MIMO communication channel described in (2) and that a linear filter is

used at the receiver output. Under the assumption of independent stream decoding, the MIMO

channel can be decomposed into n

0

parallel subchannels [40], with ⇢k denoting the instantaneous

SINR corresponding to the k-th subchannel. Then the achievable sum rate can be written as

R ,
n
0

X

k=1

E⇢k [ln(1 + ⇢k)] . (49)

The expression of ⇢k depends on the adopted receiving strategy (e.g., MMSE or ZF). Below we

provide the exact closed-form expression for the achievable sum rate in the case of the MMSE

receiver, and an upper and a lower bound in the case of the ZF receiver. Note that the results

we present below are based on the eigenanalysis of HHH, rather than on the (cumbersome)

statistics of ⇢k.

1) MMSE Performance Analysis: The MMSE filter for the signal in (2) is given by F =

HH
(HHH

+ I/�)�1, where � is as in (32). The k-th component of the filtered signal Fy has

SINR given by [41, Ch. 6]: ⇢k = 1

h

(

I+�HHH
)

�1

i

k,k

�1. An explicit expression for the pdf of ⇢k is
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only available in the canonical Rayleigh case, i.e., when HHH is a central, uncorrelated Wishart

matrix with nN degrees of freedom [42]. However, by writing the term [(I + �HHH)

�1

]k,k

as [43]:
h

�

I+ �HHH
��1

i

k,k
=

�

�

�

I+�H(k)HH(k)
�

�

�

|I+�HHH| , where H(k) is the matrix obtained by removing

the k-th column from H, and upon substitution of the above expression and of that of ⇢k in (49),

we obtain [25]:

R

MMSE

=

n
0

X

k=1

EH

⇥

ln

�

�I+ �HHH
�

�

⇤

�
n
0

X

k=1

EH(k)

h

ln

�

�

�

I+ �H(k)HH(k)
�

�

�

i

. (50)

By using (47), the first term on the right hand side of (50) can be written as n

0

I(�, n
0

). The

second term depends, instead, on the distribution of the matrix H(k), which has size nN ⇥n

0

�1,

and which, by virtue of (3), can be rewritten as H(k)
= HN · · ·Hi · · ·H(k)

1

, where H
(k)
1

is the

matrix obtained by removing the k-th column from H
1

. Since the entries of H
1

are i.i.d., we

conclude that the term W = EH(k) [ln |I+�H(k)HH(k)|] does not depend on k. Moreover, noticing

that, for each k, one of the transmit antennas is virtually switched off, it follows that (cfr. [25])

W = I (�, n

0

� 1). In conclusion,

R

MMSE

= n

0

I (�, n

0

)� n

0

I (�, n

0

� 1)

= n

2

0

V (�, n

0

)�n

0

(n

0

�1)V (�, n

0

�1) .

From (51), it immediately follows that the availability of an explicit expression for the Shannon

transform of the channel matrix allows for a closed-form evaluation of the sum rate in the MMSE

case.

2) ZF Performance Bounds: For the sake of completeness, we also present an approximate

analysis of the ZF filter, which constitutes a low-complexity alternative to the implementation of

the linear MMSE filter and offers asymptotically equivalent sum-rate performance in the high-

SNR regime. When the ZF filter is employed at the receiver, the SNR on the k-th sub-channel

is given by: ⇢k = �
h

(

HHH
)

�1

i

k,k

.

In the absence of an exact expression for the sum rate of a MIMO communication with

ZF receiver, we work toward bounding R

ZF. At first, we exploit the bounds provided in [26],

directly derived with reference to the sum rate, rather than on ⇢k, and collect related results in

the following proposition.
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Proposition 6.1: The sum rate achievable with a ZF receiver over a MIMO channel affected

by Rayleigh fading, in the presence of multiple scattering, is upper bounded by [26, Thm.1]7:

R

ZF  n

0

ln

�

E�

⇥

�

�1

⇤

+ �

�

+ n

0

EH

⇥

ln |HHH|
⇤

�
n
0

X

k=1

EH(k)

h

ln |H(k)HH(k)|
i

= n

0

ln

�

E�

⇥

�

�1

⇤

+ �

�

+ n

0

EH

⇥

ln |HHH|
⇤

� n

0

EH(1)

h

ln

�

�

�

H(1)

H
H(1)

�

�

�

i

(51)

where we recall that matrix H(k) is obtained from H by removing the k-th column, and

that, due to the independence and identical distribution of the columns of H(k), the average

EH(k) [ln |H(k)HH(k)|] does not depend on k. Its value can be computed by exploiting Corollary 4.1

and by noting that H(k)HH(k) has size (n

0

� 1)⇥ (n

0

� 1). The expression of the first negative

moment of � can be found in [1, Eq. (59)].

The sum rate is, in turn, lower bounded by [26, Thm.3]:

R

ZF �
n
0

X

k=1

ln

�

1 + �e

�k
�

= n

0

ln

�

1 + �e

�
1

�

(52)

where for any k 2 {1, . . . , n
0

}, �k = EH

⇥

ln |HHH|
⇤

�EH(k)

h

ln

�

�

�

H(k)HH(k)
�

�

�

i

. Note that in (52)

we exploited the fact that, due to the already recalled symmetries in the law of the H(k)’s, the

actual value of �k does not depend on the index k. An explicit expression of (52) for the channel

model at hand is obtained by replacing (26) in the expression of the �k’s.

For the sake of completeness, we also report the upper [28, Eq. (6)] and lower [44, Eq. (8)]

bounds to the SINR, both related to the smallest eigenvalue of HHH. I.e.,

�

min

�  ⇢k 
�

min

�

u

, (53)

where u is a Beta random variable8, hence fu(u) = (n

0

� 1)(1� u)

n
0

�2

, 0  u  1. From (53)

and the fact that the bounds are independent of k, it follows that

R

ZF � n

0

E�
min

ln (1 + �

min

�) , (54)

7This bound explicitly depends on the first negative moment of an unordered eigenvalue of the channel matrix; in case it

does not exist, one can resort to the upper bound [26, Thm.2], which holds irrespectively from the availability of E�[�
�1]. We

further notice that no new analytical results are to be derived in order to evaluate the mentioned bound in [26, Thm.2], which

only requires the closed-form expression of the determinantal moments, provided in Corollary 4.1.
8With reference to the proof technique of [28, Lemma V.I], we notice that the rightmost inequality (53) holds for any unitarily

invariant matrix, and thus in particular for (3). With regard to the leftmost one, it holds also for MMSE receivers.
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while

R

ZF  n

0

E�
min

,u ln

✓

1 +

�

min

�

u

◆

. (55)

With regard to the upper bound, due to the independence of �

min

and u, (55) can be further

expressed as:

R

ZF  n

0

 

E�
min

[ln (�

min

�)] +

n
0

�1

X

t=1

1

t

!

+ E�
min

2

4

2

F

1

⇣

1, 1;n

0

+ 1;� 1

�
min

�

⌘

�

min

�

3

5 (56)

where
2

F

1

is the hypergeometric function. Thus, an upper bound to the sum rate can be evaluated

via numerical integration over the law of �
min

.

We remark that an interesting line of research would be the refinement of the above upper

and lower bounds for the ZF receiver. Such a refinement could be obtained, e.g., by extending

the recent result in [45] to the single-branch ZF SINR.

C. Numerical Results

Here we validate the expressions of the mutual information and of the rates derived above,

against numerical (i.e., Monte Carlo) simulations.

Figure 6 shows the mutual information I(�, n
0

), the sum rates R

MMSE and R

ZF, and the

upper and lower bounds to R

ZF, plotted as functions of P , i.e., of the SNR. In this scenario,

we consider a channel with one scattering cluster (N = 2), four transmit antennas (n
0

= 4),

five scatterers (n
1

= 5), and six receive antennas (n
2

= 6). In the plot, the lines represent the

results obtained by evaluating the expressions in (48), (51), (51), (52) and (56). Note that the

lower bound in (54) is not shown, as it results to be quite loose. The markers, instead, refer to

the results obtained by averaging over M = 1000 randomly generated samples of the matrix H.

In particular,

• square markers have been obtained by computing

¯I (�, n

0

) =

1

M

M
X

m=1

ln |I+ �H[m]

H
H[m]|

• circles have been obtained by computing

¯

R

MMSE

= � 1

M

M
X

m=1

n
0

X

k=1

ln



⇣

I+ �H[m]

H
H[m]

⌘�1

�

k,k
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Fig. 6. Ergodic mutual information, sum rate and bounds as functions of P , for N = 2, n
0

= 4, n
1

= 5, and n
2

= 6.

• triangles have been obtained by computing

¯

R

ZF

= � 1

M

M
X

m=1

n
0

X

k=1

ln

0

B

B

B

@

1 +

�



⇣

H[m]

H
H[m]

⌘�1

�

k,k

1

C

C

C

A

where H[m] is the m-th realization of random matrix H.

The figure shows a perfect match between Monte Carlo and analytical results for the MMSE

case. As far as the ZF case is concerned, upper and lower bounds based on Proposition 6.1

are very tight for high SNR, while at low SNR the upper bound exhibits a floor. In this last

SNR range, the upper bound (56) is to be preferred. This is in contrast with the Rayleigh fading

case, for which the upper bound in [26] was generally tight over a wide range of SNR values.

An intuitive explanation of this behavior is provided by the spectral density analysis in [1, Sec.
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Fig. 7. Sum rates achieved by the MMSE filter plotted versus P , for N = 1, 2, 3, 4, ni = 4, i = 0, . . . , N .

IV]. Therein, it is shown that the marginal eigenvalue density for a non-trivial (i.e., N � 2)

product model exhibits a quite different behavior with respect to the Rayleigh case. Indeed,

while (51) depends on the statistics of an unordered eigenvalue of HHH, (56) relies on the

minimum eigenvalue. On the contrary, the lower bound based on �

min

, and herein not depicted

in any figure, is quite loose in the presence of multiple scattering.

Figures 7 and 8 show, respectively, the sum rate achieved by the MMSE filter and the

corresponding gap with respect to the mutual information corresponding to the optimal case.

The plots refer to the case where N = 1, 2, 3, 4 and ni = 4, for i = 0, . . . , N . For N = 1

the channel reduces to a classical Rayleigh MIMO without scattering clusters. As N increases,

worse system performance is obtained: in particular, Figure 8 highlights that the gap between

the mutual information and the MMSE rate significantly grows with N , thus suggesting that
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Fig. 8. Mutual information and RMMSE relative difference plotted versus P , for N = 1, 2, 3, 4 and ni = 4, i = 0, . . . , N .

linear receivers are not well-suited for multi-fold scattering.

Finally, Figure 9 depicts the ZF sum rate for different values of N and ni = 4, for i = 0, . . . , N .

The numerical performance is shown, along with the upper bound to R

ZF in (56) and the lower

bound in (52). Again, the rate decreases as N grows. Interestingly, the gap between the numerical

curve and the upper bound decreases, while the lower bound to R

ZF tends to become looser.

VII. CONCLUSION

We investigated the performance of a MIMO link between source and destination, affected by

Rayleigh fading and multiple scattering. Since the multiple-scattering channel can be represented

as a finite-dimensional product of random matrices, we first analyzed the spectral properties

of such product, including its generalized variance and spectral transforms. Then, under the

assumption that CSI is available at the receiver only, we presented a unifying framework to

evaluate in closed form the Random Coding Error Exponent, along with the cutoff rate, and the

Expurgated Error Exponent. Furthermore, we analyzed the sum-rate performance when either

the MMSE or the ZF receiver is adopted and independent stream decoding is used. Specifically,
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Fig. 9. Sum rates achieved by the ZF filter plotted versus P , for N = 1, 2, 3 and ni = 4, i = 0, . . . , N .

we obtained a closed-form expression in the case of the MMSE receiver, and lower and upper

bounds in the case of the ZF receiver. Importantly, our closed-form expressions hold for an

arbitrary and finite number of transmit and receive antennas, and any value of SNR, while the

ZF sum-rate bounds can be tailored to different, specific SNR ranges. In all cases, we validated

our analysis against numerical results showing an excellent match between the two.

APPENDIX A

PROOF OF THEOREM 5.1 AND 5.2

We first prove Theorem 5.1. Under the assumption of UPA, the density of the input specified

in (42) is given by

fX(X) =

1

(⇡p)

ncn
0

exp

✓

�kXk2

p

◆

.

The conditional law f(Y|X,H) appearing in (37) is Gaussian non-central matrix-variate and

can be written as

f(Y|X,H) = exp

�

�kY �
p
↵HXk2

�

⇡

�nNnc
. (57)
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Let t(Y,H) be the average over X appearing in (37). Then

t(Y,H) = EX

h

f(Y|X,H)

1

1+⇢
e

r(kXk2�ncP)

i

=

Z

Cn
0

⇥nc

fX(X)f(Y|X,H)

1

1+⇢
e

r(kXk2�ncP)

dX .

By substituting in the above equation the expressions for fX(X) and f(Y|X,H), we obtain

t(Y,H) = c

Z

e

Tr
n

�LXXH
+

p
↵

1+⇢(H
HYXH

+XYHH
)

o

dX

(a)
=

c⇡

ncn
0

|L|nc
e

Tr
n

↵
(1+⇢)2

HL�1HHYYH
o

=

e

�rncP
e

Tr
n⇣

↵
(1+⇢)2

HL�1HH� 1

1+⇢ I
⌘

YYH
o

⇡

nNnc
1+⇢ |pL|nc

(58)

where c = e

�rncP� kYk2
1+⇢

/(p

ncn
0

⇡

ncn
0

+

nNnc
1+⇢

) and

L =

✓

n

0

� rP
P

◆

I+
↵

1 + ⇢

HHH , (59)

and where the equality (a) relies on the result in [46, Appendix B] 9. We now compute the

integral with respect to Y appearing in (37). We have

s(H) =

Z

CnN⇥nc

t(Y,H)

1+⇢
dY

=

e

�rncP(1+⇢)

|pL|nc(1+⇢)

Z

CnN⇥nc

e

�Tr{(I� ↵
1+⇢HL�1HH

)YYH}

⇡

nNnc
dY .

The above integral can be solved by using the property
Z

CnN⇥nc

e

�Tr{M�1YYH}

⇡

nNnc |M|nc
dY = 1

which holds for any invertible square matrix M. Then we get

s(H) =

e

�rncP(1+⇢)

|pL|nc(1+⇢)

�

�

�

�

I� ↵

1 + ⇢

HL�1HH

�

�

�

�

�nc

=

e

�rncP(1+⇢)

|pL|nc(1+⇢)

�

�

�

�

p

1� pr

L

�

�

�

�

nc

=

e

�rncP(1+⇢)

|pL|nc⇢
(1� pr)

ncn
0

. (60)

9Notice that the referred formula assumes a positive definite L. Positive definiteness of (59) is indeed ensured by enforcing

the constraint 0  n
0

� rP  n
0

, as customary in the literature (see e.g., [17, Eq.(16)]).
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We observe that s(H) depends on H only through its non-zero squared singular values, i.e.,

the eigenvalues ⇤ = diag(�
1

, . . . ,�n
0

) of HHH, appearing in |L|. Indeed, by using the definition

of L given in (59), we have

|pL| = (1� pr)

n
0

�

�

�

�

I+
↵p

(1 + ⇢)(1� pr)

⇤

�

�

�

�

.

Thus, we can write:

s(H) = s̃(⇤) =

e

�rncP(1+⇢)

(1�pr)

ncn
0

(1+⇢)

�

�

�

�

I+
↵p

(1+⇢)(1�pr)

⇤

�

�

�

�

�nc⇢

.

As a consequence, the outer integral in the expression of the error exponent (i.e., the integration

over H) can be computed as

E=EH[s(H)]=

Z

CnN⇥n
0

fH(H)s(H) dH=

Z

(R+)

n
0

f⇤(⇤)s̃(⇤) d⇤ (61)

where in the last equality we first applied the change of integration variable HHH = U⇤UH

(with U being a unitary matrix) and then the result in [30, eq. (93)]. By substituting in (61) the

expression for s̃(⇤), we obtain (43). Notice that, in the presence of a generic input-covariance

Q, repeatedly applying [46, Appendix B] would have led to the very same expression as in [17,

(15)].

Theorem 5.2 can be proved in a similar way. Specifically, the integral in (41) is evaluated by

using the expression for f(Y|X,H) in (57) and by resorting to [46, Appendix B], i.e.,

w(X,X0
,H) =

e

�↵kHXk2/2�↵kHX0k2/2

⇡

nNnc
·

Z

CnN⇥nc

e

�Tr{ 2YYH�
p
↵Y(X+X0

)

HHH
+

p
↵H(X+X0

)YH

2

}
dY

= e

�↵kHXk2/2�↵kHX0k2/2+↵kH(X+X0
)k2/4

= e

�↵kH(X�X0
)k2/4

. (62)

As far as the computation of (40) is concerned, we first average with respect to X0. This

average too admits closed-form expression by virtue of [46, Appendix B]. Indeed, we have

v(X,H) = EX0

h

e

rkX0k2
w(X,X0

,H)

1

⇢

i

=

Z

Cn
0

⇥nc

fX0
(X0

)e

rkX0k2
e

�↵kH(X�X0
)k2/4⇢

dX0

= (⇡p)

�n
0

nc
e

�↵kHXk2/4⇢

Z

Cn
0

⇥nc

e

�Tr

⇢

X0X0HLe�↵HHHXX0H
4⇢ �↵XHHHHX0

4⇢

�

dX0

= |pLe|�nc
e

�↵kHXk2/4⇢
e

Tr{WXXH} (63)
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where

Le =

✓

n

0

� rP
P

◆

I+
↵

4⇢

HHH

and

W =

↵

2

16⇢

2

HHHL�1

e HHH .

We now average with respect to X and obtain

se(H) = EX

h

e

rkXk2
v(X,H)

i

=

Z

Cn
0

⇥nc

e

�Tr{(Le�W)XXH}

|⇡p2Le|nc
dX

= |p2Le(Le �W)|�nc
. (64)

Then, by substituting the expressions for Le and W, we get

se(H) = (1� pr)

�2ncn
0

�

�

�

�

I+
↵p

2⇢(1� pr)

⇤

�

�

�

�

�nc

. (65)

Note that also se(H) depends on the eigenvalues ⇤ of HHH. Under the assumption that the

density of H depends only on HHH, the integral in (40) provides the result reported in (45).

APPENDIX B

PROOF OF PROPOSITION 5.1 AND 5.2

We start by proving Proposition 5.1. Following Theorems 5.1 and 5.2, the only quantity that

has to be provided to perform error exponents evaluation is the joint law of the non-zero ordered

eigenvalues of HHH. If H is given by (3), where each factor is an i.i.d. Gaussian matrix, then [32]

f⇤(⇤) =

1

n

0

!|A
0

|V (⇤)|G(⇤)| . (66)

G is an n

0

⇥ n

0

matrix such that

[G(⇤)]i,j = G

N,0
0,N

0

@

�

⌫N , . . . , ⌫2, ⌫1 + i� 1

|�j

1

A

,

for i, j = 1, . . . , n

0

. Then the matrix integral E boils down to

E =

k

n

0

!|A
0

|

Z

(R+

)

n
0

V (⇤)|G(⇤)|
�

�

�

�

I+
↵p

(1+⇢)(1�pr)

⇤

�

�

�

�

�nc⇢

d⇤. (67)

As far as the EEE evaluation is concerned,

Ee =
ke

n

0

!|A
0

|

Z

(R+

)

n
0

V (⇤)|G(⇤)|
�

�

�

�

I+
↵p

2⇢(1�pr)

⇤

�

�

�

�

�nc⇢

d⇤ (68)
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is to be computed. Both (67) and (68) can be expressed in closed form according to [38, Corollary

I], so that

E =

k

|A
0

|

�

�

�

�

Z

✓

(1 + ⇢)(1� pr)

↵p

◆

�

�

�

�

, (69)

with the entries of Z given by

[Z(x)]i,j =

Z

+1

0

G

N,0
0,N

0

@

�

⌫N , . . . , ⌫2, ⌫1+i�1

|�

1

A

�

1�j
(1 + �/x)

nc⇢ d� .

The above integral can be solved by using the result in [29, 7.811.5] yielding (45). Similarly,

Ee =
ke

|A
0

|

�

�

�

�

Z

✓

2⇢(1� pr)

↵p

◆

�

�

�

�

.

APPENDIX C

PROOF OF (10)

We first observe that the i, j-th element of A
0

can be written as

[A
0

]i,j = �(⌫

1

+ i+ j � 1)

N
Y

`=2

�(⌫` + j)

= [B]i,j[C]j,j (70)

where [B]i,j = �(⌫

1

+ i + j � 1) and C is diagonal with entries [C]i,i =
QN

`=2

�(⌫` + i). Then

A
0

= BC and |A
0

| = |B||C|. Note that

|C| =
n
0

Y

i=1

[C]i,i =

n
0

Y

i=1

N
Y

`=2

�(⌫` + i) .

As far as |B| is concerned, we have

|B| = |{�(⌫
1

+ i+ j � 1)}|i,j=1,...,n
0

= |{�(⌫
1

+ i+ j + 1)}|i,j=0,...,n
0

�1

= |{�(zj + i)}|i,j=0,...,n
0

�1

(71)
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where zj = ⌫

1

+ j + 1. We now exploit the result in [47, Eq. (4.1)] and obtain:

|B| = |{�(zj + i)}|i,j=0,...,n
0

�1

=

"

n
0

�1

Y

j=0

�(zj)

#

V (E)

=

n
0

�1

Y

j=0

�(zj)

n
0

�1

Y

j=0

�(j + 1)

=

n
0

�1

Y

j=0

�(⌫

1

+ j + 1)

n
0

�1

Y

j=0

�(j + 1)

=

n
0

Y

j=1

�(⌫

1

+ j)

n
0

Y

j=1

�(j)

=

n
0

Y

i=1

1

Y

`=0

�(⌫` + i)

(72)

where E = diag(z
0

, . . . , zn
0

�1

) and we applied [47, Eq. (B.5)]. With regard to the last line, we

recall that ⌫
0

= 0 by definition.

In conclusion,

|A
0

| =

"

n
0

Y

i=1

1

Y

`=0

�(⌫` + i)

#"

n
0

Y

i=1

N
Y

`=2

�(⌫` + i)

#

=

n
0

Y

i=1

N
Y

`=0

�(⌫` + i) . (73)

which corresponds to Z/n

0

!.
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