
09 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Easing IoT Development for Novice Programmers Through Code Recipes / Corno, Fulvio; De Russis, Luigi; Sáenz, Juan
Pablo. - STAMPA. - (2018), pp. 13-16. (Intervento presentato al convegno 40th International Conference on Software
Engineering: Software Engineering Education and Training Track tenutosi a Gothenburg, Sweden nel May 27-June 3
2018) [10.1145/3183377.3183385].

Original

Easing IoT Development for Novice Programmers Through Code Recipes

Publisher:

Published
DOI:10.1145/3183377.3183385

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2698336 since: 2018-06-19T13:44:49Z

ACM

Easing IoT Development for Novice Programmers
Through Code Recipes

Fulvio Corno
Politecnico di Torino

Turin, Italy
fulvio.corno@polito.it

Luigi De Russis
Politecnico di Torino

Turin, Italy
luigi.derussis@polito.it

Juan Pablo Sáenz
Politecnico di Torino

Turin, Italy
juan.saenz@polito.it

ABSTRACT
The co-existence of various kinds of devices, protocols, architec-
tures, and programming languages make Internet of Things (IoT)
systems complex to develop, even for experienced programmers.
Perforce, Software Engineering challenges are even more difficult
to address by novice programmers. Previous research focused on
identifying the most challenging issues that novice programmers
experiencewhen developing IoT systems. The results suggested that
the integration of heterogeneous software components resulted one
of the most painful issues, mainly due to the lack of documentation
understandable by inexperienced developers, from both conceptual
and technical perspectives. In fact, novice programmers devote
a significant effort looking for documentation and code samples
willing to understand them conceptually, or in the worst case, at
least to make them work. Driven by the research question: “How
do the lessons learned by IoT novice programmers can be captured,
so they become an asset for other novice developers?”, in this paper,
we introduce Code Recipes. They consist of summarized and well-
defined documentation modules, independent from programming
languages or run-time environments, by which non-expert pro-
grammers can smoothly become familiar with source code, written
by other developers that faced similar issues. Through a use case,
we show how Code Recipes are a feasible mechanism to support
novice IoT programmers in building their IoT systems.

CCS CONCEPTS
• Social and professional topics → Computational science
and engineering education; Software engineering education;
• Computer systems organization → Embedded and cyber-
physical systems;

KEYWORDS
Novice programmers, Internet of Things, Documentation, Code
Fragments

1 INTRODUCTION
The development of IoT systems is challenging. On one hand, it
relies on various areas such as distributed systems, mobile com-
puting, web information systems, and cloud computing, among
others. On the other hand, it differs from mainstream mobile-app
and client-side web application development in a sense that IoT
developers are required to consider aspects such as: the multide-
vice programming; the reactive, always-on nature of the system;
heterogeneity and diversity; the distributed, highly dynamic, and
potentially migratory nature of software [8].

Naturally, these challenging issues are even more painful for
novice programmers since they are not expected to have deep
knowledge or experience in all those areas or aspects [5]. Our
previous research aimed at identifying the pain points that novice
programmers experienced when developing IoT systems [2]. An
exploratory study was conducted among Electronic and Computer
Engineering undergraduate students of a university course inwhich,
following a project-based learning approach, three to four people
groups were assigned to develop an IoT system. In accordance with
the course learning goals, these IoT systems had to include mobile
applications, web applications, cloud computing services, wearable
devices, single-board computers, and IoT sensing devices [1].

The results from this exploratory study suggested that the inte-
gration of heterogeneous software components is one of the most
painful issues. It commonly implies dealing with several protocols,
formats, and authentication mechanisms, that are usually unknown
to the students. Moreover, the lack of clear and complete docu-
mentation, or merely, the absence of documentation that can be
understood by a novice developer, make this integration issue even
more difficult to overcome.

Looking for solutions to support novice IoT developers in over-
coming these integration issues, we noticed that despite the speci-
ficity of each project, implementations of the integration between
software components were similar across most of them, especially
when third-party services were involved. However, although the
source code of the projects from the past years’ courses is on GitHub,
it was not being reused among groups in later versions of the course.
Therefore, the lessons learned by a group when implementing its
project is not useful for the next year’s groups.

Taking into account the results of the exploratory study and the
lack of code reuse between the course groups, we envisioned that
the the solutions found by the students, that were finally included in
the working prototype built at the end of the course, could become
a valuable asset for the novices that are about to start implementing
their projects. The source code of these prototypes reveals architec-
tural decisions and strategies adopted by other groups to achieve
the integration of diverse software components. This code should,
therefore, provide some guidance to other programmers that are in
the process of overcoming the same learning curve issues. More-
over, if documented, this code would be a solution to the reported
lack of documentation understandable by inexperienced develop-
ers [9]. In fact, being able to observe how someone else coded, what
others paid attention to, and how they solved problems all support
learning better ways to code and access to superior knowledge [3].

The present work is driven by the research question: “How do the
lessons learned by IoT novice programmers can be captured, so they
become an asset for other novice developers?”. The current proposal

aims at easing the learning curve to IoT novice developers, not by
automating code reusing and hiding the code from the developers,
but instead, by enabling non-expert programmers to easily become
familiar with source code, written by other developers that faced
similar issues.

2 USE CASE
As mentioned earlier, the results from our previous research [2]
suggested that among the most challenging issues novices face
when developing IoT systems, the integration with other software
components was perceived by many students as the most painful is-
sue. In particular, the integration with third-party APIs that require
OAuth 2.0 authentication was a time-consuming and difficult task.
The OAuth 2.0 authorization framework enables a third-party appli-
cation to obtain limited access to an HTTP service, either on behalf
of a resource owner by orchestrating an approval interaction be-
tween the resource owner and the HTTP service, or by allowing the
third-party application to obtain access on its own behalf. Broadly
speaking, this authentication protocol consists of a flow, with a set
of roles (resource owner, resource server, client, and authorization
server) interacting across various steps (authorization request, ac-
cess token request, and protected resource request), and exchanging
several resources (authorization grant, access token, refresh token,
redirect URI).

In the development of IoT systems, OAuth authentication proto-
col becomes fundamental since most of the third party service APIs
use it. The integration with the Fitbit activity tracker1 is a concrete
example of the OAuth protocol usage. In order to gather the data
captured by this wearable device, the third party application (i.e.,
the one developed by the novices) must obtain users authorization
through the OAuth protocol.

However, due to the roles, steps, and resources that the protocol
comprises, the adoption of the OAuth authentication is not trivial.
The appropriate implementation of this protocol requires a clear un-
derstanding of the various steps, both from the conceptual and the
technical perspective. Novice programmers struggle considerably
with the adoption of OAuth, mainly due to the lack of documenta-
tion that might be understandable by non-expert programmers.

Fitbit, for instance, has a documentation website2 that provides
guidance about the Web API for accessing data from Fitbit activity
trackers. Although the developer’s site has an API explorer built
in Swagger, and an API debug tool, it does not provide a fully
implemented functional source code sample. Moreover, despite the
clarity, readability and good overall structure of the documentation,
it is targeted at experienced programmers, as with most of the
developer’s documentation.

In this scenario, novice programmers are required to search
code samples, willing to understand them conceptually, or in the
worst case, at least to make them work. Typically, this involves the
reference of the Google OAuth Client Library documentation, the
Fitbit developers website, several posts published in Stack Overflow,
and various code samples available on GitHub. Hence, from the
experience of the novice programmers adopting the OAuth protocol,

1Fitbit, accessed October 6, 2017, https://www.fitbit.com
2Fitbit Web API, accessed October 6, 2017, https://dev.fitbit.com/reference/web-api/
quickstart/

we have that: (i) a significant amount of effort is devoted looking for
documentation and samples; (ii) just through the source code it is
not possible to understand the whole learning process behind it; (iii)
the code fragments must be surrounded by summarized, structured
and well-defined documentation modules, so they become an asset
for other IoT novice programmers.

3 CODE RECIPES
Code Recipes aims at capturing the most important information
and documentation about one or more code fragments, to ease the
development of an IoT system for novice developers. Code Recipes
are specified through a set of metadata and consist of multiple
code fragments along with documentation and links to ease the
understanding of such code, in order to implement a given integra-
tion between subsystems of an IoT system. The joint presence of
metadata and links allow novice developers to explore alternative
solutions and, at their will, deepen their knowledge about a specific
IoT subsystem, thus contributing to their learning process.

Our approach lies in the fact that code examples, when used
effectively, can be a powerful learning resource [4]. However, while
examples are a valuable resource for programmers, the rich con-
text surrounding them is often crucial for adaptation and integra-
tion [6]. This proposal enables the integration of several software
components through code fragments that might belong to different
programming languages and might be deployed across various run-
time environments, as it is common in IoT systems. The decoupling
between the recipes and the technological stack is fundamental
given the heterogeneity of the software components that are in-
volved in an IoT system. Code Recipes, therefore, are defined as
summarized and well-defined documentation modules, indepen-
dent from programming languages or run-time environments.

By defining Code Recipes as documentation modules structured
around code fragments, they can be incorporated in various kind
of tools that might handle them in the learning process, e.g., a wiki-
style web application or an Integrated Development Environment
(IDE) extension.

Code Recipes, therefore, expose four features:

• Although the Recipes are structured around source code frag-
ments, they are much more than just code. They encompass
information that, besides providing technical solutions, in-
cludes comments and documentation sources that account
for the learning process that other novice IoT developers
followed and the decisions they made to reach a solution.

• Recipes are not constrained to a specific architecture, pro-
gramming language or run-time environment. This means,
first, that this proposal is aware of the heterogeneous nature
of IoT environments, and second, that is suitable to be used
in multiple scenarios with IoT novice developers.

• Recipes are not isolated from each other, they are cross-linked
on the basis of three criteria: alternative versions, other lan-
guage versions, and related recipes. This feature enables the
sharing of diverse learning experiences with their common-
alities and their divergences.

• Technical speaking, a structured representation (e.g., in JSON
or XML) of the Code Recipes enables the implementation of
various kind of tools that might handle them. For instance, a

2

https://www.fitbit.com
https://dev.fitbit.com/reference/web-api/quickstart/
https://dev.fitbit.com/reference/web-api/quickstart/

web application (as shown in Fig. 1), a web browser extension,
or an IDE plugin.

1 {
2 "id": "1506954092",
3 "author": [{
4 "name": "Juan Saenz"
5 }],
6 "date": "21.9.2017",
7 "name": "Integration between Fitbit and Java",
8 "description": "Recipe to consume the Fitbit API using OAuth

2.0",
9 "tags": ["fitbit", "java", "oauth 2.0", "api"],
10 "running_environment": "Server application built in Java",
11 "endpoints": ["Fitbit API"],
12 "ingredients" : [{
13 "name": "Fitbit account",
14 "description": "Fitbit accounts set up for read/write API

access",
15 "url": "https://dev.fitbit.com/"}],
16 "dependencies" : [{
17 "name": "Maven",
18 "description": "Maven plugin for Eclipse installed",
19 "url": "http://www.eclipse.org/m2e/"}],
20 "code_fragments": [{
21 "programming_language": "Java",
22 "description": "This is the main class",
23 "documentation_urls": ["https:// github.com/google -oauth -

client"],
24 "name": "FitbitSample",
25 "source_code_url": "./1506954092/ FitbitSample.java",
26 "ide": "Eclipse Neon",
27 "parameters": [{
28 "name": "SCOPE",
29 "description": "OAuth 2.0 permission for resources",
30 "data_type": "String",
31 "sample_value": "activity, heartrate, location,

nutrition"
32 }]
33 }],
34 "documentation_urls": ["https:// stackoverflow.com/quest

/9863836"],
35 "rating": "4.6",
36 "alternative_versions": ["1506957773", "1507562564"],
37 "other_languages_versions": ["1496761597"],
38 "related_recipes": ["1507302404"]
39 }

Listing 1: Code Recipe Sample

Listing 1 describes a possible structure of a Code Recipes in JSON
format. First, each recipe is described through an id (timestamp), its
author name, publication date, name, description, and tags
(lines 2 to 9). Then, the subsystems that the recipe integrates are
specified in the endpoints fields (lines 10 and 11). Ingredients
(line 12) correspond to the requirements of the recipe. They can be
technical requirements, such as the deployment of a specific kind
of web server, or data requirements, such as creating a developer
account and issuing API client credentials. Dependencies (line 16)
refers to requirements associated with the source code, which are
fundamentally libraries and packages that must be installed.

Most importantly, Code Recipes include one or more code frag-
ments that can be implemented in different programming lan-
guages and IDEs (lines 20 to 33). Each fragment has a set of pa-
rameters, which are values specific to each implementation of the
recipe. Besides the source code, recipes include the documentation
that their authors consulted, both for the whole recipe as well as
for its fragments. They can be specified in the documentation
URLs fields (lines 23 and 34). Finally, Code Recipes can be linked
to each other in three ways (lines 36 to 38): alternative versions,
that point to other recipes targeted at implementing the same inte-
gration; other language versions, that point to implementations

Figure 1: Code Recipe visualized in a web interface

of the same recipe in other programming languages; and related
recipes, that correspond to other recipes that can be used as inter-
mediate steps to implement the concerned recipe.

4 THE FITBIT OAUTH CODE RECIPE
With the use case described in Section 2 in mind, a Code Recipe was
developed to illustrate how our approach might help novices to
overcome integration issues through a collaborative approach. To
develop this recipe, we took on the task of implementing a simple
Java application to gather data from a Fitbit bracelet.

As mentioned before, no sample projects are provided in the
Fitbit developers’ website. Therefore, the first endeavor was to find
a sample project in which the OAuth authentication was imple-
mented using Java. After googling “OAuth 2.0 Java Sample Code”,
the second result took us to the documentation of the Google OAuth
Client Library for Java (in the Code Recipes, this website would be
included in the documentation_urls field). This website had setup
instructions for Maven, the list of libraries that were required (in
the Code Recipes would correspond to the dependencies field), the
release notes of these libraries, and one sample code of the integra-
tion between a Java application and the Dailymotion API3, using
OAuth 2.0.

Once downloaded and imported the sample code into the IDE, the
next step was to install and configure Maven, including the Project
Object Model (POM) in which the dependencies of the project
were defined. Later, when the Java project was already compilable,
the next task was to identify which pieces of the code should be
modified to achieve the integration with the Fitbit API (in the Code
Recipes, these pieces are specified in the parameters field). Among
the new data that had to be inserted into the code as parameters,
there were the API key, the API secret, the Callback URL and the
Scope. All of this data was obtained after completing the registration
as a Fitbit developer (in the Code Recipes this registration accounts
as an ingredient)
3Dailymotion Developers - API, accessed October 6, 2017, https://developer.dailymotion.
com/

3

https://developer.dailymotion.com/
https://developer.dailymotion.com/

Afterwards, there was the source code itself. It consisted of three
Java classes, two of which had to be parameterized. The explanation
of the meaning of every parameter was available in the Fitbit devel-
opers website, along with their possible values (in the Code Recipes,
these parameters can be documented through a description,
their data_type, and a set of sample_values). Since this was the
first Recipe that was developed, there were no other Recipes to link.

Across the whole implementation process, several documenta-
tion sources were consulted. The Google OAuth Client Library
documentation, the Fitbit developers website, several posts pub-
lished in Stack Overflow, and various code samples available in
GitHub. Notwithstanding the fact that the Code Recipe was devel-
oped by an experienced programmer, its implementation was not
trivial, and many of the issues expressed by the novices in our
previous research were highlighted.

5 RELATEDWORKS
Warner et al. [10] createdCodePilot, a prototype IDE for novices. The
tool enabled multiple users to connect to a web-based programming
session andwork together. According to the authors,CodePilot is the
first attempt to integrate real-time collaborative coding, testing, bug
reporting, and version control management into a unified system.
This approach aims at lowering the entry barrier for novices by
unifying the collaborative development workflow into a single IDE.

Oney et al. [6] developed and evaluated a mechanism they called
Codelets. It consists of a block of example code and a user inter-
active helper widget that assists the developer in understanding
and integrating the example. Through this interactive helper, web
developers always have explanations attached to their code and can
recall it if necessary. This approach allows maintaining a connec-
tion between example code and related documentation throughout
the example’s life-cycle.

Sidiroglou-Douskos et al. [7] presented a system named Code-
CarbonCopy for transferring code from a donor application into
a recipient application. This tool implemented an automatic data
representation and naming translation between recipient and donor
and a static analysis that automatically identifies and removes code
that is irrelevant to the recipient.

Unlike CodePilot [10] and Codelets [6], Code Recipes are designed
not to be tied to a specific programming language, IDE, or deploy-
ment environment. In our approach, IoT developers are intended to
gain expertise understanding and adapting source code into their
own implementations, despite the architectural decisions of the
concerned system.

6 CONCLUSION
In view of the complexity that the development of IoT systems
poses, particularly concerning the integration of heterogeneous
software components, and taking into account the lack of documen-
tation reported by novice programmers in our previous research,
this paper presented Code Recipes. Code Recipes are summarized
and well-defined documentation modules, non-dependent from
programming languages or run-time environments, and structured
around the code fragments that are required to implement some
portions of an IoT system. Through this approach we aim at sup-
porting novice IoT programmers, enabling them to easily become

familiar with source code written by other developers that faced
similar issues. Future work will concern: the development of a Code
Recipes catalog; a web-based tool through which students can use
them; and the subsequent evaluation in the context of the course.

REFERENCES
[1] Fulvio Corno, Luigi De Russis, and Dario Bonino. 2016. Educating Internet of

Things Professionals: The Ambient Intelligence Course. IT Professional 18, 6 (Nov
2016), 50–57. https://doi.org/10.1109/MITP.2016.100

[2] Fulvio Corno, Luigi De Russis, and Juan Pablo Sáenz. 2017. Pain Points for Novice
Programmers of Ambient Intelligence Systems: An Exploratory Study. In 2017
IEEE 41st Annual Computer Software and Applications Conference (COMPSAC),
Vol. 01. 250–255. https://doi.org/10.1109/COMPSAC.2017.186

[3] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. 2012. Social Coding
in GitHub: Transparency and Collaboration in an Open Software Repository.
In Proceedings of the ACM 2012 Conference on Computer Supported Cooperative
Work (CSCW ’12). ACM, New York, NY, USA, 1277–1286. https://doi.org/10.1145/
2145204.2145396

[4] Michelle Ichinco and Caitlin Kelleher. 2015. Exploring novice programmer ex-
ample use. In 2015 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). 63–71. https://doi.org/10.1109/VLHCC.2015.7357199

[5] Hanna Maenpaa, Samu Varjonen, Arto Hellas, Sasu Tarkoma, and Tomi Mannisto.
2017. Assessing IOT Projects in University Education - A Framework for Problem-
Based Learning. In 2017 IEEE/ACM 39th International Conference on Software
Engineering: Software Engineering Education and Training Track (ICSE-SEET).
37–46. https://doi.org/10.1109/ICSE-SEET.2017.6

[6] StephenOney and Joel Brandt. 2012. Codelets: Linking Interactive Documentation
and Example Code in the Editor. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’12). ACM, New York, NY, USA, 2697–2706.
https://doi.org/10.1145/2207676.2208664

[7] Stelios Sidiroglou-Douskos, Eric Lahtinen, Anthony Eden, Fan Long, and Martin
Rinard. 2017. CodeCarbonCopy. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE 2017). ACM, New York, NY, USA,
95–105. https://doi.org/10.1145/3106237.3106269

[8] Antero Taivalsaari and Tommi Mikkonen. 2017. A Roadmap to the Programmable
World: Software Challenges in the IoT Era. IEEE Software 34, 1 (Jan 2017), 72–80.
https://doi.org/10.1109/MS.2017.26

[9] Camilo Vieira, Alejandra J. Magana, Michael L. Falk, and R. Edwin Garcia. 2017.
Writing In-Code Comments to Self-Explain in Computational Science and En-
gineering Education. ACM Trans. Comput. Educ. 17, 4, Article 17 (Aug. 2017),
21 pages. https://doi.org/10.1145/3058751

[10] Jeremy Warner and Philip J. Guo. 2017. CodePilot: Scaffolding End-to-End
Collaborative Software Development for Novice Programmers. In Proceedings of
the 2017 CHI Conference on Human Factors in Computing Systems (CHI ’17). ACM,
New York, NY, USA, 1136–1141. https://doi.org/10.1145/3025453.3025876

4

https://doi.org/10.1109/MITP.2016.100
https://doi.org/10.1109/COMPSAC.2017.186
https://doi.org/10.1145/2145204.2145396
https://doi.org/10.1145/2145204.2145396
https://doi.org/10.1109/VLHCC.2015.7357199
https://doi.org/10.1109/ICSE-SEET.2017.6
https://doi.org/10.1145/2207676.2208664
https://doi.org/10.1145/3106237.3106269
https://doi.org/10.1109/MS.2017.26
https://doi.org/10.1145/3058751
https://doi.org/10.1145/3025453.3025876

	Abstract
	1 Introduction
	2 Use case
	3 Code Recipes
	4 The Fitbit OAuth Code Recipe
	5 Related works
	6 Conclusion
	References

