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Abstract

Magnetic resonance-based electric properties tomography (MREPT) is a recent
quantitative imaging technique that could provide useful additional information to
the results of magnetic resonance imaging (MRI) examinations. Precisely, MREPT
is a collective name that gathers all the techniques that elaborate the radiofrequency
(RF) magnetic field B1 generated and measured by a MRI scanner in order to
map the electric properties inside a human body. The range of uses of MREPT in
clinical oncology, patient-specific treatment planning and MRI safety motivates the
increasing scientific interest in its development. The main advantage of MREPT
with respect to other techniques for electric properties imaging is the knowledge
of the input field inside the examined body, which guarantees the possibility of
achieving high-resolution. On the other hand, MREPT techniques rely on just the
incomplete information that MRI scanners can measure of the RF magnetic field,
typically limited to the transmit sensitivity B+

1 .

In this thesis, the state of art is described in detail by analysing the whole bibliography
of MREPT, started few years ago but already rich of contents. With reference
to the advantages and drawbacks of each technique proposed for MREPT, the
particular implementation based on the contrast source inversion method is selected
as the most promising approach for MRI safety applications and is denoted by
the symbol csiEPT. Motivated by this observation, a substantial part of the thesis
is devoted to a thoroughly study of csiEPT. Precisely, a generalised framework
based on a functional point of view is proposed for its implementation. In this
way, it is possible to adapt csiEPT to various physical situations. In particular,
an original formulation, specifically developed to take into account the effects
of the conductive shield always employed in RF coils, shows how an accurate
modelling of the measurement system leads to more precise estimations of the
electric properties. In addition, a preliminary study for the uncertainty assessment of
csiEPT, an imperative requirement in order to make the method reliable for in vivo



v

applications, is performed. The uncertainty propagation through csiEPT is studied
using the Monte Carlo method as prescribed by the Supplement 1 to GUM (Guide to
the expression of Uncertainty in Measurement). The robustness of the method when
measurements are performed by multi-channel TEM coils for parallel transmission
confirms the eligibility of csiEPT for MRI safety applications.
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Chapter 1

Introduction

In recent years, scientists and clinicians have exhibited a growing interest in quanti-
tative imaging for medical applications because of the possibility of achieving an
objective understanding of the physiological state of the examined patient. Most of
the medical imaging techniques currently used acquire a qualitative image of the
patient, whose contrast is a weight of some parameters of the biological tissues and
of the scanning machine but do not bring any readable physical information. As a
consequence, the interpretation of the results is subjective and diagnostic imaging
can be afflicted by examiner bias. In addition, by weighting unspecified parameters,
different machines may lead to images with different contrast for the same patient,
making the results achieved by instrumentation of different vendors incomparable.
Both the issues are overcome by quantitative imaging. In this case, since the con-
trast of the image measures a specific physical property, it is possible to objectively
identify the physiological state of the tissues, as well as their spatial arrangement.
Moreover, the contrast does not depend on the used instrumentation, but just on the
investigated body, leading to a twofold advantage. On the one hand, it becomes
possible to perform a rigorous metrological study on the uncertainty of the images
and to compare results from different instrumentation. On the other hand, it allows
the detection of imaging markers for some pathologies that do not change across
sites, scanners, and even vendors [1, 2].

Recently, quantitative imaging has started to be used in clinical practice, as for the
case of magnetic resonance elastography. Based on the same equipment as magnetic
resonance imaging (MRI), this technique produces images whose contrast is pixel-
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by-pixel proportional to the mechanical properties of the examined body—precisely,
to the, possibly complex, elastic shear modulus [3, 4]. Mechanical properties have
been considered across the centuries in a qualitative manner for the detection of many
pathologies by distinguishing between soft and hard tissues through touch—clinical
palpation. Nowadays, magnetic resonance elastography has proven its clinical
usefulness in recognising early stage liver diseases, which present an increase in
the degree of fibrosis and so in stiffness, in a less invasive and more objective way
than palpation [3]. In addition, magnetic resonance elastography allows to study
the mechanical properties of regions where palpation is physically impossible, as in
deep tissues or in the brain [4]. In order to estimate the elastic shear modulus, first, a
peculiar sequence of magnetic fields generated by a MRI scanner produces a map of
the displacement induced by a vibrating support at a known frequency, and then the
resulting displacement map is used as input for an inverse problem within the linear
isotropic viscoelastic materials theory.

In addition, a quantitative imaging technique under development, called mag-
netic resonance fingerprinting, has been identified as a promising new approach by
the European Society of Radiology [5]. Magnetic resonance fingerprinting aims at
the simultaneous recovery of the many parameters involved in the MRI working
principles—the spin-lattice relaxation time T1, the spin-spin relaxation time T2, the
proton density, and so on—by elaborating pseudorandomised and undersampled
MRI acquisitions with concepts from compressed sensing and pattern recognition [6].
The overall time required by the parameters estimation is comparable to a traditional
MRI scan and, despite the physical properties mapped by this technique do not have
a direct intuitive application as in the case of magnetic resonance elastography, they
are metrologically more reliable than the usual qualitative MRI results as well as less
sensitive to noise, patient motion, and other errors due to system imperfections [6].
Moreover, the investigation for complex biomarkers where a multi-parametric anal-
ysis is required can be introduced, thanks to the simultaneous estimation of many
different properties.

In this dissertation, the quantitative imaging of the electric properties, both the
relative permittivity εr and the electric conductivity σ , is investigated. This subject
has been studied in biomedical research for many years because of its many applica-
tions, amongst which the most relevant are probably the ones related to breast cancer
detection. Indeed, it has been shown that breast cancer may have a substantially
higher electric conductivity than the corresponding healthy tissue [7–10], because
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of the lower membrane potentials in cells that have an increased mitotic rate and
the consequent higher attraction of positive ions, which are displaced and rotated
by radiofrequency (RF) fields [7]. An investigation on the correlation between
the electric conductivity and some clinicopathological factors suggests that in vivo
images of the electric conductivity would help in predicting prognoses in breast
cancer, especially for the mitotic state of the tumour cells, that is strongly correlated
to poor prognosis, but usually underestimated in core biopsies [10]. Some consid-
erations in this direction have been performed also on exciso malignant colorectal
tissues [11]. Moreover, nowadays there exist many different medical therapies using
electromagnetic fields that would benefit—for both efficacy and safety—from the
patient-specific planning and dosimetry made possible by the estimation of the actual
distribution of the electric properties. Just some examples of these therapies are:

Oncological hyperthermia. The beneficial effect of heating cancerous tissues has
been known for thousands of years [12]. In the last years of the 19th century,
because of the observation of natural regression of tumours in patients with
high fever, the possibility to inoculate bacterial toxins in order to induce the
fever was taken into account as a medical treatment [13]. For the same reason
as well as for the capability of moderately high temperature—around 39 ◦C
to 45 ◦C—to increase the sensitivity of cells to radio and chemotherapy, hy-
perthermia is currently used as a therapy [12, 14, 15]. In order to increase the
temperature until the optimal thermal dose is reached in the tumour without
heating the healthy tissues, the Joule effect can be exploited by applying prop-
erly designed electromagnetic fields [12]. In the emerging case of nanoparticle
mediated hyperthermia, magnetic nanoparticles are inoculated in the patient
and targeted to the cancerous tissue, then the application of an alternating
magnetic field generates heat in the nanomagnets by hysteresis loss or Néel
relaxation loss [16]. Anyway, this technology still requires extensive studies
about the long-term safety and sustainability of nanoparticles, for example in
regard to bioaccumulation due to limited excretion [17].

Electroporation. When cells are exposed to sufficiently intense electric fields, they
develop pores in the cell membrane that, if enough large and stable, increase
rapidly and considerably their permeability along with their electric conduc-
tivity. Based on this phenomenon, called electroporation, many biotechno-
logical [18] and medical [19] applications have been developed, such as elec-
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trochemotherapy, non-thermal ablation (irreversible electroporation), and gene
therapy, which expose the object of interest to time-varying pulsed electric
fields—with an harmonic content up to some hundreds of kilohertz. In order
to expose a selected tissue to a spatially homogeneous electric field with no
interferences with the healthy tissues, a system of antennas must be carefully
designed with the help of numerical simulations [20].

Pulsed electromagnetic fields. The exposure to time-varying pulsed electric fields
with low energy can be of benefit in medicine, because it induces a substantial
upregulation of some adenosine membrane receptors in human cells, and
so increases their anti-inflammatory effect [21]. This kind of field could
be useful both in vitro, for tissue engineering [21], and in vivo, for surgical
implants treatment [21], bone and joint inflammatory disorders [22], and brain
tumour treatment [23]. Also in this case, accurate dosimetry requires accurate
numerical modelling of the system [24].

Transcranial magnetic stimulation. The possibility to inspect the integrity of the
motor cortex of a patient by magnetically inducing a low frequency current in it
has led to the introduction of transcranial magnetic stimulation as a diagnostic
tool [25]. Subsequently, it has been discovered that application of a repetitive
transcranial magnetic stimulation can be used therapeutically to treat many
neurological and psychiatric disorders, like chronic pain, epilepsy, depression,
and schizophrenia [26]. Dosimetrical studies on the actual induced currents
require the adoption of numerical simulations [27].

Since, despite they are often referred to as dielectric constants, the electric
properties of biological tissues are dispersive, i.e. they are strongly influenced by
the frequency of the considered electromagnetic field [28–30], different imaging
techniques have to be developed, each one effective in a particular frequency range.
The dispersive behaviour of these parameters can be understood by investigating
the time-varying microscopic—molecular and cellular—mechanisms averaged in
the macroscopic electric properties definition. Precisely, biological tissues are
mostly composed of electrolytes and proteins dissolved in intra- and extra-cellular
water, which interact with cell membranes and react to the electromagnetic fields by
displacing and polarizing themselves according to different relaxation times [7, 28–
30].
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At low frequencies—up to a few kilohertz—a main strategy for electric con-
ductivity imaging is the electric impedance tomography (EIT) [31]. Assuming the
validity of the quasi-stationary conduction approximation, the scalar electric potential
inside an inspected body Ω, denoted by φ ∈ H1(Ω), can be modelled as the unique
solution of the problem {

∇ · (σ ∇φ) = 0 , in Ω

φ = f , on ∂Ω

where f ∈ H1/2(∂Ω) is the known potential at the boundary. Here, the symbol
Hα(A) denotes the Sobolev space of order α whose elements are defined in the
domain A. In this context, the Dirichlet-to-Neumann map Λσ , parameterised by
the electric conductivity distribution σ , is defined as the linear operator between
fractional order Sobolev spaces [32] that assigns a current flowing out from the body
to each voltage on the boundary,

Λσ : H1/2(∂Ω) −→ H−1/2(∂Ω)

f 7−→ σ
∂φ

∂n
,

with n the outward unit normal to ∂Ω. Thus, EIT can be stated as the problem
of finding the essentially bounded non-negative electric conductivity distribution
σ ∈ L∞(Ω), being Ω = Ω∪∂Ω the closure of Ω, given the Dirichlet-to-Neumann
map Λσ [31, 33]. Usually, the voltage at the boundary is measured, by virtue of
energetic considerations, when a certain known current is injected in the body by
electrodes applied on the skin, leading in practice to the approximate knowledge
of the Neumann-to-Dirichlet map Λ−1

σ [31]. Current injection in the body is a
delicate procedure, which can be painful and even burn the patient if the design
of the electrodes is not optimised [34, 35]. Because of its unusual as well as
elegant mathematical formulation, EIT is actively studied, other than physicists and
engineers, by mathematicians, which often refers to it as Calderón’s problem [33],
because of Calderón’s pioneering contribution in EIT formalisation [36]. Despite the
efforts made from many sides by the scientific community on EIT development, the
images obtained by this method are inherently affected by low resolution, especially
in regions far from the electrodes—as in case of deep organs when the electrodes are
applied on the skin of the patient—, making it unfeasible in biomedical applications
that require high resolution imaging [31, 35, 37].
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In order to achieve high resolution images of the electric conductivity at low
frequency, the knowledge of some quantity internal to Ω in addition to the boundary
measurements would help. This is made possible by the MRI scanners, which
are able to measure the map of the longitudinal component Hz—the one directed
as the MRI static field BBB0—of magnetic fields induced in the body by externally
injected currents [38] (cf. Appendix A). Consequently, by rotating the patient inside
the scanner in three different positions, it would be possible to measure the whole
induced magnetic field HHH and deduce the induced current density by means of
Ampère’s law JJJ = ∇×HHH [38]. This imaging procedure is known as magnetic
resonance current density imaging (MRCDI) and led to the proposal of different
magnetic resonance-based electric impedance tomography (MREIT) techniques,
which take advantage in different ways of Ohm’s law |JJJ| = σ |∇φ | to invert the
conduction problem [35, 37]. In many biomedical applications, however, it would
be preferable to avoid rotating the patient inside the MRI scanner, because of the
technical difficulties in avoiding pixel misalignments during MRCDI and the risk of
changing the geometric arrangement of the internal organs during the rotation, in
addition to the physical constraint imposed by many MRI bores. The harmonic Bz

algorithm overcomes this issue by implementing MREIT based on the measurement
of Hz only [39]. It is based on the elementary observation that

−∇
2HHH = ∇× JJJ = ∇φ ×∇σ .

The z-component of this vector relation implicitly defines the dependency of the
electric conductivity on the measured induced magnetic field component and the
electric potential. It is possible to take advantage of this implicit relation to invert
the conduction problem when two linearly independent currents are considered [35,
37, 39]. In order to avoid the external current injection in the patient, the feasibility
of MREIT from measurements of the eddy currents induced by the MRI gradient
coils in the body has been considered [40–42]. Unfortunately, for the existing MRI
sequences the noise in the measurement of the induced field is much higher than its
intensity, making MREIT from gradient coils unfeasible at the moment [41, 42].

At frequencies in the RF range—from hundreds of kilohertz up to hundreds of
gigahertz—the approach for the imaging of electric properties is strongly different
from the one at low frequency. Usually there is no injection of current in the body,
which is, instead, irradiated—or illuminated—by a RF electromagnetic field gen-
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erated by a well known source arranged around it. The body distorts the incident
electromagnetic field because of the scattering field generated by the eddy currents
induced inside the body depending on its electric properties. Thus, it is possible to
invert Maxwell’s equations to obtain images of the electric properties distributions
starting from measurements of the deformation of the electromagnetic field induced
by the body [43]. The measurements can be performed by a set of receiver antennas
located outside the body. It is worth noting that the described procedure applies
to any inverse scattering problem, giving rise to a unified theory for both acoustic
and electromagnetic inverse scattering [43]. In biomedical applications, the inverse
electromagnetic scattering problem is often referred to as microwave tomography.
Despite the many results that have been achieved on this subject [44–46], especially
after the introduction of the contrast source inversion (CSI) technique [47–50], mi-
crowave tomography suffers of some theoretical limitations since it is an ill-posed
problem in the sense of Hadamard [51]. Precisely, it suffers of a non continuous
dependence of the electric properties on the input data, which is reflected in the exis-
tence of a maximum achievable resolution in the output images [51]. Moreover, the
inverse problem is usually mathematically formalised as the minimisation problem
of a certain cost functional, which may be non-convex and may have, other than the
global minimum, additional local minima that play the role of false solutions for the
deterministic minimisation algorithms [52].

In the same way as introducing measurements performed by MRI scanners
considerably increases the resolution of EIT leading to a whole new technique,
the same happens at RF, since microwave tomography would benefit from field
measurements inside the inspected body for both resolution increase and local
minima removal [51, 52]. At the involved frequency, MRCDI is no more feasible,
and techniques able to measure the RF magnetic field BBB1 produced by the MRI
scanner are considered (cf. Appendix A). The techniques that aims at recovering
images of the electric properties at RF employing MRI measurements are called
magnetic resonance-based electric properties tomography (MREPT) or just electric
properties tomography (EPT). The magnitude of the active part—the component
rotating in the same wise as the nuclear spin precession—of BBB1, denoted as B+

1 , is
measured by many different methods [53–57], most of which developed to check
|B+

1 | homogeneity, useful in order to assess the MRI scanner quality (cf. Appendix A).
With the beginning of systematic research on MREPT in 2009 [58, 59], the estimation
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of the phase of B+
1 by MRI measurements has become object of study [60, 61]. In

this thesis, MREPT is investigated according to the following structure:

• Chapter 2 contains a comparative review of the main techniques proposed for
MREPT implementation and a discussion of their advantages and drawbacks.

• Chapter 3 deepens a particular MREPT method based on the contrast source
inversion technique, which has very promising properties, especially for MRI
safety applications.

• Chapter 4 draws some conclusions about the results collected in this thesis and
delineates the future research trends on MREPT.

In addition, supplemental materials that introduce basic concepts can be found in the
appendices:

• Appendix A describes how MRI works and proposes the post-processing of
the achieved images with a couple of examples.

• Appendix B collects some useful results of functional analysis and suggests a
technique to compute the first and second order derivatives of a phase—helpful
in the MREPT methods based only on the B+

1 phase.



Chapter 2

Review of methods for the
electric properties tomography

The possibility to non-invasively recover the distribution of the electric properties
of a human body from the results of a MRI examination was first proposed in
1991 by Haacke and colleagues in [62]. In that work, a particular MRI sequence
(cf. Appendix A), a gradient echo sequence with low flip angle, is employed in order
to acquire images proportional to the magnitude of the RF field BBB1, which has to
be interpreted in the time-harmonic domain with an omitted factor eiωt , being ω

the Larmor angular frequency, as all the fields appearing in this chapter. Relying
on this information, the electric properties are laboriously recovered by an iterative
procedure starting from an initial guess. In the same paper, an explicit formula
that relates the electric properties to the RF field is proposed for homogeneous
regions leading to a straightforward method to evaluate both the permittivity and the
conductivity. Anyway, as stated by the authors [62], “[...] this method is not pursued
further at this time [...]” because “[...] MR images contain spurious phase effects
unrelated to the RF penetration which makes a simple extraction difficult.”

The matter has not been advanced any further until, in 2003, Wen presented at
a conference some experimental non-invasive quantitative mapping of the electric
properties using the wave propagation effects of the RF field [63], more than ten
years after the work of Haacke and colleagues. To achieve the results, Wen used
the explicit formula already suggested in [62]. The application of this method was
made possible by the improvement of the magnetic resonance (MR) systems with
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respect to the past [64] and by the introduction of high field MRI scanners, which
allows to increase both the spatial resolution of the images and the accuracy of
the measurements [63]. It is worth noting that Wen did not cite Haacke’s article,
suggesting that he developed the same technique for retrieving the electric properties
independently.

In the following years, the relation between the electric conductivity and the
non-resonant thermal noise measured by RF probes located around the examined
body has been exploited in the noise tomography technique [65–67]. Furthermore,
in 2006 a new strategy to non-invasively map the electric properties relying on
the distribution of the induced RF field BBB1 has been described and named electric
properties tomography (EPT) by Katscher and colleagues [68, 69]. Also in this case,
the authors do not cite neither Haacke’s nor Wen’s papers, suggesting the discovery
for the third time of the same concept. Differently from Wen [63], the electric
properties are recovered by a complicated iterative procedure instead of the simple
explicit formula. In [68, 69] it is stated that EPT is a preferable technique than both
microwave and noise tomography because it does not require any probe in addition
to the usual MRI equipment and because it can reach higher resolution, not being
based on an ill-posed inverse problem. Actually, despite EPT can really achieve
images with higher quality than other methods, the last sentence is not true—since
by its own definition, EPT is an inverse problem and also the apparently most direct
method to solve it, as for example the explicit relation of Wen [63], faces this fact. In
particular, derivation is a typical ill-posed inverse problem (cf. Appendix B) and both
Wen’s and Katscher’s approaches require the computation of spatial derivatives of
the measured BBB1. The advantage of EPT with respect to other methods is rather that
it relies on a big amount of information which is measured, although non-invasively,
inside the examined body and not just on its periphery.

Finally, in 2009 the systematic study of EPT started [58, 59]. Up to now, a
plethora of different techniques have been proposed for implementing EPT—or, as
it is more often named, magnetic resonance-based electric properties tomography
(MREPT)—[61, 70–78] and, allegedly, many others will be suggested in coming
years. In order to classify the methods, it is convenient to introduce a MREPT
taxonomy organised by a couple of categories:

Spatial categories It is possible to distinguish between local and global methods.
The local methods try to recover the electric properties in a point of the body by
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elaborating the electromagnetic information measured just in a neighbourhood
of the point itself. On the other hand, the global methods consider all the
obtained information at once to estimate the whole distribution of the electric
properties.

Mathematical categories The methods can be classified as direct or inverse. The
direct methods relegate the inverse nature of MREPT to some preliminary
computations—usually the estimation of the spatial derivatives of BBB1—, while
the remaining part follows a direct approach. On the other side, the inverse
methods treat the whole MREPT as an inverse problem.

Up to now, the mathematical categories only make sense for global methods, because
all local methods are direct.

In this chapter, the main strategies proposed in literature to implement MREPT
are mentioned and reviewed.

2.1 Standard EPT

The method described in this section appeared for the first time in the pioneering
paper of Haacke and colleagues [62], although there it was not applied to exper-
imental data because of the difficulty in retrieving the needed information. The
technique, in the following denoted by the symbol stdEPT, is the most studied and
developed MREPT implementation [63, 58, 70, 79, 80] and one of the first applied
to experimental measurements [63].

2.1.1 Derivation

For an isotropic and magnetically neutral medium—i.e., whose magnetic perme-
ability is the one of vacuum µ0, as is a reasonable assumption for biological tis-
sues [81]—Maxwell’s equations in time-harmonic domain can be easily combined
to obtain the partial differential equation for the magnetic field HHH = BBB/µ0

∇×
(
ε̃
−1

∇×HHH
)
= ω

2
µ0HHH , (2.1)
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where ε̃ = ε − iσ/ω is the complex permittivity, ε is the electric permittivity and
σ is the electric conductivity. In a homogeneous region, i.e. in points where the
gradient of the complex permittivity is null—or at least negligible—, this relation can
be elaborated by virtue of Gauss’s law for magnetism ∇ ·BBB = µ0∇ ·HHH = 0, leading
to the vector Helmholtz equation

−∇
2HHH = κ

2HHH , (2.2)

where κ2 = ω2µ0ε̃ is the square of the propagation coefficient of the radiation.
The latter vector equation can be specialised for any Cartesian component α of the
magnetic field Hα in

−∇
2Hα = κ

2Hα . (2.3)

In particular, the components in the transverse plane x̂xx⊗ ŷyy (cf. Appendix A) can
be linearly combined to obtain the positively rotating component of the field H+

(cf. lemma A.2). Under the assumption that the transmit sensitivity B+
1 = µ0H+ has

been measured in a set of points—or voxels—and that its second order derivatives
have been estimated in the same points, the complex permittivity can be recovered
voxel by voxel as

ε̃ =− ∇2H+

ω2µ0H+
. (2.4)

The real and the imaginary parts of (2.4) contain the information of the electric
permittivity and conductivity, respectively. Precisely, the relation can be made
explicit for the two properties

ε =−Re
(

∇2H+

ω2µ0H+

)
, σ = Im

(
∇2H+

ωµ0H+

)
. (2.5)

Clearly, stdEPT is a local direct method.

A slightly different version of the local relation (2.4) has been obtained in [58, 70],
where Maxwell equations are elaborated in integral form. Precisely, Faraday’s law
applied to a generic fixed surface Σ centred in xxx leads to∮

∂Σ

EEE · τττ dℓ=−iωµ0

∫
Σ

HHH ·nnn dS , (2.6)

where EEE is the electric field, τττ is the unit vector tangent to the border ∂Σ and nnn is the
unit vector orthogonal to Σ. Similarly, the circulation of Ampère’s law around ∂Σ
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reads ∮
∂Σ

∇×HHH · τττ dℓ= iω
∮

∂Σ

ε̃EEE · τττ dℓ . (2.7)

Taking the ratio between (2.6) and (2.7) leads to∮
∂Σ

∇×HHH · τττ dℓ

ω
2
µ0

∫
Σ

HHH ·nnn dS
=

∮
∂Σ

ε̃EEE · τττ dℓ∮
∂Σ

EEE · τττ dℓ
≃ ε̃(xxx) , (2.8)

where the last approximation is valid if in ∂Σ the spatial variation of ε̃ is negligible
with respect to the variation of the tangential component of the electric field.

Relation (2.8) involves all the components of the magnetic field, but their role
depends on the choice of the surface Σ. However, except than in particular situa-
tions in which only the positively rotating component of the magnetic field H+ is
non-negligible, like for the RF field generated by a birdcage coil with quadrature
feed [58], quantities that cannot be measured appear in (2.8). This issue has been
overcome in [70], where (2.8) is further developed by some complicated mathemat-
ical manipulation which involves a rotating surface Σ. The same result achieved
in [70] can be much more easily and directly obtained by integrating equation (2.3)
over a small region V centred in xxx. If the complex permittivity is constant or with
negligible variations in V , then the resulting equation can be written as

ε̃(xxx)≃−

∫
V

∇
2H+ dV

ω
2
µ0

∫
V

H+ dV
=−

∮
∂V

∇H+ ·nnn dS

ω
2
µ0

∫
V

H+ dV
, (2.9)

being ∂V the surface enclosing V and nnn the outward unit vector orthogonal to ∂V .

Since stdEPT, in both its local (2.5) and integral (2.9) formulations, relies on the
hypothesis of local homogeneity of the electric properties, it presents a systematic
error at the interfaces between different materials, as can be appreciated in Fig. 2.1.
As a consequence, the presence of many interfaces between tissues with different
electric properties in the human body—for example, let’s think about the convolutions
of the brain—makes the method strongly limited in clinical applications. The
systematic error is deeply discussed in [79]. In order to avoid the assumption of
local homogeneity and thus the systematic error, equation (2.1) can be elaborated
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Fig. 2.1 The systematic error in stdEPT is highlighted by the application of the method to a
simple two-dimensional problem. A cylinder of indefinite height, whose transverse section
is a square with sides of 10 cm presenting three different values of relative permittivity and
conductivity, is radiated by a plane wave at 128 MHz. The active part of the magnetic field
H+ has been computed numerically on a very fine discretisation of the domain (with a
resolution of 0.2 mm) in order to make the numerical errors negligible. The errors in the
reconstructions, pictured as signed differences for both the properties, are located at the
interfaces between tissues.

differently by exploiting the Leibniz’s product rule on the left hand side to obtain

∇
(
ε̃
−1)×∇×HHH − ε̃

−1
∇

2HHH = ω
2
µ0HHH , (2.10)

where the Gauss’s law for magnetism has been used. By multiplying both sides of
the latter equation by ∇×HHH, it results that [82]

ε̃ =− ∇2HHH ·∇×HHH
ω2µ0HHH ·∇×HHH

. (2.11)

Although equation (2.11) is achieved with no approximations, it cannot be used
in practice because it requires the knowledge of all the three components of the
magnetic field and because it fails when HHH ·∇×HHH = 0.
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It is interesting that stdEPT, being based on the extremely simple algebraic
relation (2.4), can be easily manipulated and deeply analysed. In particular, by dis-
tinguishing the magnitude |H+| and the phase ϕ+ of H+ = |H+|eiϕ+

, the Laplacian
can be computed explicitly and equations (2.5) become

ε =− ∇2|H+|
ω2µ0|H+|

+
|∇ϕ+|2

ω2µ0
, (2.12)

and

σ =
∇2ϕ+

ωµ0
+2

∇|H+| ·∇ϕ+

ωµ0|H+|
. (2.13)

Thus, under the hypothesis that |∇2|H+||/|H+| ≫ |∇ϕ+|2, the permittivity can be
recovered by the approximate relation

ε ≃− ∇2|H+|
ω2µ0|H+|

, (2.14)

which is referred to as magnitude-based stdEPT [70]. It is worth noting that, in-
volving only non-negative terms, the error in (2.14) is always non-negative, and so
the magnitude-based stdEPT systematically underestimates the permittivity. Simi-
larly, the hypothesis that |∇2ϕ+| ≫ 2|∇|H+| ·∇ϕ+|/|H+| leads to the phase-based
stdEPT for the recovery of the electric conductivity [70]

σ ≃ ∇2ϕ+

ωµ0
. (2.15)

Both relations (2.14) and (2.15) introduce an additional systematic error, which can
be easily deduced by comparison with (2.12) and (2.13).

The hypothesis underlying (2.15) is often fulfilled by the RF magnetic field
generated by the transmit coils, which are usually designed to provide an almost
homogeneous flip angle in the imaged volume. By this way, images of the proton
density with a minimal influence of the transmit sensitivity would be achieved
(cf. Appendix A). In general, the homogeneity of the transmit sensitivity depends on
the static field intensity, on the geometry of the RF coil and so on. The additional
systematic error is depicted in Fig. 2.2, where the electric properties of an indefinite
cylinder have been recovered from the magnetic field H+ generated by a birdcage
coil. In [70] it is reported that phase-based stdEPT introduces a larger error when
ωε ≫ σ , situation that for biological tissues occurs only at very high Larmor
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Fig. 2.2 The error introduced approximating (2.12) and (2.13) by respectively (2.14)
and (2.15) is reported. The same cylinder described in Fig. 2.1 is radiated by the electromag-
netic field generated by a birdcage coil with 16 legs at 128 MHz. The birdcage coil has been
simulated as 16 line sources distributed uniformly on a circle of 10 cm radius, each one driven
by a phase-shifted unitary current. The active part of the magnetic field H+ = |H+|eiϕ+

has
been computed numerically on a very fine discretisation of the domain (with a resolution of
0.2 mm) in order to make the numerical errors negligible. The signed differences in the re-
constructions coincide with |∇ϕ+|2/(ω2µ0ε0) and 2∇|H+| ·∇ϕ+/(ωµ0|H+|), respectively,
as can be deduced by (2.12) and (2.13).

frequencies, above 128 MHz [83]. For this reason, phase-based stdEPT (2.15) has
been deeply developed [60, 83, 84] and extensively applied in many experimental
contexts [9, 10, 85, 86] leading to satisfactory results. Since its hypothesis is less
frequently fulfilled, magnitude-based stdEPT does not share the same fate of phase-
based stdEPT.

2.1.2 Implementation

Despite its simplicity, stdEPT faces some implementation issues which characterise
the MREPT problem. The one which weakens the technique the most is the mea-
surement of the transmit sensitivity B+

1 = µ0|H+|eiϕ+
using the MRI scanner. Many

B1-mapping techniques have been proposed to measure the magnitude µ0|H+| of the
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transmit sensitivity [53–57], but only the so-called transceive phase ϕ± = ϕ+− ϕ̃−,
namely the difference of the phases of the transmit and the receive sensitivities, can
be deduced from the MRI images (cf. Appendix A). The receive sensitivity is denoted
by B̃− = µ0H̃− = µ0|H̃−|eiϕ̃−

. When particular transmit and receive coils are em-
ployed in the MRI examination, as for example the same birdcage coil in quadrature
feed with polarisation switching between transmission and reception [58, 64], half of
the transceive phase can be used as a good approximation of the transmit sensitivity
phase (cf. Appendix A)

ϕ
+ ≃ ϕ±

2
. (2.16)

The use of the latter relation is referred to as transceive phase assumption [64]. In
case of birdcage coils with polarisation switching, the transceive phase assumption
holds for Larmor frequencies up to 128 MHz [64], as can be appreciated in Fig. 2.3.

It is worth noting that the electric properties can be recovered from the receive
sensitivity following the same derivation presented for the transmit sensitivity,

ε̃ =− ∇2(H̃−)∗

ω2µ0(H̃−)∗
, (2.17)

where the asterisk denotes the complex conjugation. Thus, as in (2.13),

σ =−∇2ϕ̃−

ωµ0
−2

∇|H̃−| ·∇ϕ̃−

ωµ0|H̃−|
. (2.18)

If it is true that |∇2ϕ̃−| ≫ 2|∇|H̃−| ·∇ϕ̃−|/|H̃−|, then

σ ≃−∇2ϕ̃−

ωµ0
. (2.19)

Thanks to the linearity of the Laplacian, the arithmetic mean of (2.15) and the latter
relation reads

σ ≃ ∇2ϕ±

2ωµ0
. (2.20)

This means that the transceive phase assumption can be used in phase-based stdEPT
independently of the considered Larmor frequency, provided that the hypotheses
behind (2.15) and (2.19) hold. In order to minimise |∇|H̃−||, the technology of
B+

1 -shimming has been employed to optimally combine the signals measured by
multiple receiver coils [84], which are commonly used in clinical scanners for parallel
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Fig. 2.3 The difference between the transmit phase and half the transceive phase induced by
a birdcage with 16 legs in quadrature alimentation with polarisation switching in presence of
the cylinder described in Fig. 2.1 is reported. Three Larmor frequencies corresponding to
common static fields for MRI are considered. The error introduced by the transceive phase
assumption growths together with the static field intensity.
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imaging [87]. The possibility to employ (2.17) on the single acquisition of multiple
receiver coils is investigated in [88].

Besides measurement issues, the estimation of the Laplacian of the measured,
hence noisy, quantities is a critical task that stdEPT shares with all the direct methods.
Computation of spatial derivatives is an ill-posed problem (cf. Appendix B) and,
as such, it must be performed appropriately in order to handle noisy input. The
easiest way to deal with the noise in the measurements is to apply to the map a
smooth mollifier f , as for example a Gaussian filter [72, 79, 89], and approximate
the derivatives by traditional finite difference schemes. Thus, equation (2.4) becomes

ε̃ =− ∇2 ( f ∗H+)

ω2µ0 ( f ∗H+)
, (2.21)

where ∗ denotes the convolution product. The adoption of non-linear filters has
been proposed in order to preserve the spatial details of the imaged sample [90].
Alternatively, a robust kernel can be adopted for the numerical differentiation, so
that both filtering and derivative estimation are performed at the same time [58,
60, 61, 70, 75, 88]. A common robust differentiation technique is the Savitzky–
Golay filter [91, 92], named after the analytical chemist Abraham Savitzky and the
mathematician Marcel Golay who first published a table of convolution coefficients
for one-dimensional problems [91].

In the three-dimensional case, the Savitzky–Golay filter can be generalised as
follows. Let’s denote with u the generic complex map that has to be filtered. In each
point xxx0, the map u is approximated by the best fitting element from the set Qrrr of
polynomials with complex coefficients of degree equal or less than ri with respect to
the i-th variable for i = 1,2,3, being rrr ∈ N3,

Qrrr =

{
q(xxx) =

r1

∑
i=0

r2

∑
j=0

r3

∑
k=0

ai jkxiy jzk, ai jk ∈ C

}
. (2.22)

Precisely, the polynomial q ∈Qrrr is chosen such that

q(xxx) = u(xxx0 + xxx) , for xxx → 000 , (2.23)

and the derivatives of u in xxx0 are approximated by the derivatives of q in 000. Since the
map u is measured on a finite number of points, in order to choose the polynomial q
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only a set of points xxxm around the central point xxx0 is considered, for m = 1, . . . ,M.
The equations

q(xxxm − xxx0) = u(xxxm) , m = 1, . . . ,M , (2.24)

are collected in a linear system whose unknowns are the coefficients ai jk. In order to
suppress the noise from the map u, the linear system should include more equations
than unknowns and the coefficients should be chosen as those which minimise the
quadratic error. If the map u is measured on a uniform Cartesian grid, the points xxxm

should be chosen as the points within a parallelepiped centred in xxx0. In this way,
since only the relative distance between points appears in the left hand side of (2.24),
the Savitzky–Golay filter can be efficiently implemented by computing just once
the Moore–Penrose pseudoinverse—or the singular value decomposition (SVD)—of
the coefficient matrix. In one-dimension, the described filter coincides with the one
shown in [91].

The effect of estimating the Laplacian from a linear kernel is investigated in [80],
where noise propagation in stdEPT is rigorously studied. To this end, it is convenient
to define a Laplacian estimator as a filter such that (i) it vanishes when applied
to a constant or linear map, and (ii) it is constant, equal to the exact Laplacian,
when applied to a quadratic map. It results that, under the assumption of spacially
independent noise in the input measurement, summing the second derivatives with
respect to xi estimated by Savitzky-Golay filters with rrr = (2,0,0), rrr = (0,2,0) and
rrr = (0,0,2), respectively, leads to the minimum noise propagation factor for a linear
Laplacian estimator [80].

Since stdEPT relies on the assumption of local homogeneity of the electric proper-
ties, the choice of the kernel for the Laplacian computation can affect the recovery. In
particular, when points that belong to different tissues are used for a Laplacian com-
putation, the errors related to the non-fulfillment of the local homogeneity hypothesis
arise. In order to limit, although not remove, this kind of errors, the derivatives
should be estimated separately for each tissue, i.e. employing connected kernels
made of points belonging to the same tissue. In a real case, this can be done by taking
advantage from the images produced by the MRI scan [85, 93]. This can be done
comparing the grey tone of neighbouring pixels—corresponding to near recovery
points—[85], or elaborating the result of a segmentation algorithm [93]. In both
cases, if the reference image is obtained with T1 or T2 weighting, then the hypothesis
that same relaxation time coincides with same electric properties is introduced [64].
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The adoption of shape-varying kernels for the Savitzky-Golay filter can be efficiently
implemented in a computational code in the following way. For each point of the
domain, find the shape of the kernel and check if it has already been used to compute
a filter. If so, retrieve the already computed filter and apply it, else compute the filter,
store it and apply it. An efficient data structure to collect the filters using as key the
shapes is an hash table [94].

2.2 Dual-excitation EPT

Zhang and colleagues proposed the dual-excitation algorithm for MREPT in order
to overcome the hypothesis of local homogeneity of the electric properties [59],
the main drawback of stdEPT. The method, in the following denoted by deEPT,
takes advantage of the technology for parallel transmission (pTX), in which more
transmitter coils are employed and the magnetic field generated independently by
each coil can be measured [95].

2.2.1 Derivation

The method derives from the generalised Helmholtz equation for the magnetic
field (2.10), here repeated for the reader’s convenience

∇
(
ε̃
−1)×∇×HHH − ε̃

−1
∇

2HHH = ω
2
µ0HHH , (2.25)

which makes no assumption other than isotropic electric properties. The transverse
components of the latter equation read

1
ε̃

∂ ε̃

∂ z

(
∂Hx

∂ z
− ∂Hz

∂x

)
+

1
ε̃

∂ ε̃

∂y

(
∂Hx

∂y
−

∂Hy

∂x

)
−ω

2
µ0ε̃Hx = ∇

2Hx , (2.26)

and

1
ε̃

∂ ε̃

∂ z

(
∂Hy

∂ z
− ∂Hz

∂y

)
− 1

ε̃

∂ ε̃

∂x

(
∂Hx

∂y
−

∂Hy

∂x

)
−ω

2
µ0ε̃Hy = ∇

2Hy , (2.27)

where the relation ε̃ ∇(ε̃−1) =−ε̃−1∇ε̃ has been used. The first proposal of deEPT
focuses on these two equations, assuming of begin able to measure the transverse
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Birdcage coil TEM coil

Fig. 2.4 Diagrammatic representation of a 16-legs birdcage coil (on the left) and a 16-legs
TEM coil (on the right). The external circles outline the conductive shields, the black dots
denote the legs and the lines represent the electric connections.

components of the magnetic field Hx and Hy and neglecting the derivatives of the
longitudinal component Hz [59]. The dual-excitation algorithm treats both the
complex permittivity ε̃ and its gradient components as algebraically independent
unknowns. The measurement of the magnetic fields generated by at least a couple
of excitations of the RF coil leads to a system of at least four linearly independent
equations with four unknowns, which can be solved by least squares. Thus, deEPT
is still a local direct method. Only some particular RF coils verify the hypothesis that
the derivatives of the longitudinal component of the magnetic field are negligible.
For example, surface coils are not suitable, whereas transverse electromagnetic
(TEM) volume coils, similar to birdcage coils in which the leg return path follows
the shield rather than the end rings [96, 97] (Fig. 2.4), satisfy the hypothesis better
than birdcage coils [59]. This fact makes the method strongly coil-dependent.

This first and simplified version of the dual-excitation algorithm highlights an
issue that will appear again in the global inverse method based on the contrast source
inversion (CSI) technique (cf. Section 2.5). Since the longitudinal component of the
electric field verifies

Ez =
i

ωε̃

(
∂Hx

∂y
−

∂Hy

∂x

)
, (2.28)

it acts as a denominator in the resolution of both (2.26) and (2.27). As a consequence,
the recovered electric properties are affected by artefacts due to numerical errors in
the regions where the longitudinal electric field component has low intensity [59].
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In order to adapt the deEPT to the knowledge of only the positively rotating
component of the magnetic field, equations (2.26) and (2.27) should be linearly
combined to obtain

1
ε̃

∂ ε̃

∂ z
∂H+

∂ z
+

1
ε̃

(
∂ ε̃

∂y
− i

∂ ε̃

∂x

)
1
2

(
∂Hx

∂y
−

∂Hy

∂x

)
−ω

2
µ0ε̃H+ = ∇

2H+ , (2.29)

where the gradient of the longitudinal component Hz has been neglected. Clearly,
this equation involves explicitly both the transverse components of the magnetic
field. Anyway, by neglecting ∂Hz/∂ z in the Gauss law for magnetism, it is possible
to write

1
2

(
∂Hx

∂y
−

∂Hy

∂x

)
=

1
2

(
∂Hx

∂y
−

∂Hy

∂x
+ i
(

∂Hx

∂x
+

∂Hy

∂y

))
=

∂H+

∂y
+ i

∂H+

∂x
.

(2.30)
Thus, the central equation of deEPT is [98]

1
ε̃

∂ ε̃

∂ z
∂H+

∂ z
+

1
ε̃

(
∂ ε̃

∂y
− i

∂ ε̃

∂x

)(
∂H+

∂y
+ i

∂H+

∂x

)
−ω

2
µ0ε̃H+ = ∇

2H+ . (2.31)

Introducing the vector ggg = ε̃−1∇ε̃ and its rotating component g+ = gx + igy (for
analogy, also g− = gx − igy can be introduced), equation (2.31) can be written with
the compact notation [99]

∇H+ · (g+,−ig+,gz)−ω
2
µ0ε̃H+ = ∇

2H+ . (2.32)

In this case, the algebraically independent unknowns are only three—the complex
permittivity ε̃ and its derivatives g+ and gz—, thus the measurement of at least three
linearly independent transmit sensitivities is required. Usually, in a birdcage coil the
quadrature excitation is achieved by combining two independent linear excitations.
Thus, at most two linearly independent measurements can be obtained by an ordinary
birdcage coil, and special multi-channel transmit coils must be adopted to perform
enough measurements of H+ to solve (2.32). A multi-channel transmit coil that
verifies the hypothesis of negligible spatial derivatives of the longitudinal component
of the magnetic field Hz is the already mentioned TEM volume coil, which is used for
pTX in ultra-high field (UHF) MRI with B0 ≥ 7T [100]. It is worth noting that if it
is known that the properties of the examined body do not vary along the longitudinal
direction, then it is possible to assume gz = 0 and solve the system with respect to
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Fig. 2.5 The electric properties recovered by stdEPT and deEPT are reported for comparison.
The same cylinder described in Fig. 2.1 is radiated by the electromagnetic field generated
by a TEM coil with 8 legs at 128 MHz. The TEM coil has been simulated as 8 couples of
line sources distributed uniformly on two circles of 10 cm and 12 cm radius. The transmit
sensitivity of each couple of line sources H+

j has been computed numerically on a very fine
discretisation of the domain (with a resolution of 0.2 mm) in order to make the numerical
errors negligible. For the stdEPT reconstruction, the transmit sensitivity of the whole coil
H+ has been computed by linearly combining the transmit sensitivity of each leg. Both the
magnitude and the phase of the transmit sensitivities have been assumed known exactly,
although the transceive phase assumption does not fit for multi-channel transmit coils.

only two independent unknowns. In this particular two-dimensional situation, the
measurements of a two-channel birdcage coil would be sufficient to perform deEPT.

The reconstruction of the electric properties achieved by deEPT based on (2.32)
applied to the transmit sensitivities of a TEM coil with 8 legs is reported in Fig. 2.5,
where both magnitude and phase of the measured fields are assumed to be known
exactly. A big improvement with respect to stdEPT can be noticed—no artefacts
are present in the images, just an erroneous smoothing at the interfaces, due to
numerical diffusion, appear. Anyway, this result is optimistic, because only the
transceive phase ϕ± can be measured by MRI scanners and, in general, the transceive
phase assumption (2.16) does not hold for multi-channel transmit coils. Thus, the
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estimation of the actual phase of the transmit sensitivity is a critical issue for a
practical implementation of deEPT [98].

2.2.2 Phase retrieval

Before introducing algorithms for the determination of the phase of the transmit
sensitivity of a RF coil, it is convenient to clarify which information is contained in
the transceive phase. At least two situations can be distinguished for a multi-channel
transmit coil:

i. The receive coil is different from the transmit coil and has only one channel. In
this case, the transceive phase measured for the j-th channel is ϕ

±
j = ϕ

+
j − ϕ̃−

and the relative transmit phase of channel j with respect to channel k can be
computed without approximations as ϕ

+
j −ϕ

+
k = ϕ

±
j −ϕ

±
k . Adopting ϕ

+
0 as

reference phase, the j-th transmit sensitivity can be written as

µ0H+
j = µ0|H+

j |e
i(ϕ+

0 +ϕ
+;r
j ) , (2.33)

where ϕ
+;r
j denotes the relative transmit phase of channel j with respect to the

reference phase.

ii. The transmit coil is used also as receive coil. In this case the RF coil is usually
referred to as multi-channel transceive coil [61, 98] and a different signal is
measured by each channel. The transceive phase measured by the n-th receiver
channel for the j-th transmit channel is ϕ

±
jn = ϕ

+
j −ϕ−

n , where the receive
phase is written without the tilde because it is the actual phase of the negatively
rotating component of BBB1,n. As in the previous case, this allows to compute
without approximations the relative phases and to write for the j-th channel in
addition to (2.33)

µ0H−
j = µ0|H−

j |e
i(ϕ+

0 −ϕ
±
0 j) . (2.34)

Both the cases have been investigated for phase retrieval in [61, 101, 102].

Assuming locally homogeneous electric properties, permittivity and conductivity
can be written as functions of the transmit magnitude and phase for each channel
as described for stdEPT. Since constant, the properties are independent of the
considered channel. So, the right hand sides of (2.12) and (2.13) can be made equal
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for the generic channel j ̸= 0 and the reference channel j = 0 leading respectively
to [102]

2∇ϕ
+;r
j ·∇ϕ

+
0 =

∇2|H+
j |

|H+
j |

−
∇2|H+

0 |
|H+

0 |
− |∇ϕ

+;r
j |2 , (2.35)

and (
∇|H+

0 |
|H+

0 |
−

∇|H+
j |

|H+
j |

)
·∇ϕ

+
0 =

1
2

∇
2
ϕ
+;r
j +

∇|H+
j |

|H+
j |

·∇ϕ
+;r
j . (2.36)

The unknown spatial derivatives of the reference phase ϕ
+
0 can be estimated solving

in the least squares sense a system of the latter equations written for at least a couple
of channels j ̸= 0 [102]. The gradient of the reference phase is enough to perform
deEPT [103]. Anyway, it can be integrated assuming a null phase in any point of
the domain to know the absolute phase of any channel. An analogous procedure is
described in [101], where the receive phase ϕ̃− is recovered instead of the reference
phase.

The hypothesis of local homogeneity introduces errors in the estimated gradient
similar to the ones described in the discussion of stdEPT. To avoid this issue, a
different procedure based on the Gauss law for magnetism has been proposed assum-
ing a negligible spatial derivative for the longitudinal component of the magnetic
field [61],

∂Hx

∂x
+

∂Hy

∂y
=

∂H+

∂x
− i

∂H+

∂y
+

∂ (H−)∗

∂x
+ i

∂ (H−)∗

∂y
= 0 . (2.37)

The negatively rotating component H− can be partially measured by multi-channel
transceive coils. In particular, its phase can be expressed as a function of the reference
phase as depicted in (2.34), whereas its magnitude can be empirically estimated
under symmetry assumptions on the coil structure and the examined body [61].
By replacing expressions (2.33) and (2.34) in (2.37) and dividing it by eiϕ+

0 , the
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following equation is obtained for each channel j,(
∂ |H−

j |
∂x

+ i
∂ |H−

j |
∂y

+ i|H−
j |

(
∂ϕ

±
0 j

∂x
+ i

∂ϕ
±
0 j

∂y

))
eiϕ±

0 j e−i2ϕ
+
0 +

i|H+
j |e

iϕ+;r
j

(
∂ϕ

+
0

∂x
− i

∂ϕ
+
0

∂y

)
− i|H−

j |e
iϕ±

0 j

(
∂ϕ

+
0

∂x
+ i

∂ϕ
+
0

∂y

)
e−i2ϕ

+
0 =

−

(
∂ |H+

j |
∂x

− i
∂ |H+

j |
∂y

+ i|H+
j |

(
∂ϕ

+;r
j

∂x
− i

∂ϕ
+;r
j

∂y

))
eiϕ+;r

j .

(2.38)

The latter equation is treated as non-linear in [61]. Anyway, a linear system to be
solved in the least squares sense can be deduced adopting as algebraically indepen-
dent unknowns (∂ϕ

+
0 /∂x− i∂ϕ

+
0 /∂y), e−i2ϕ

+
0 and (∂ϕ

+
0 /∂x+ i∂ϕ

+
0 /∂y)e−i2ϕ

+
0 ,

similarly to the treatment of non-linearity used in [99, 103]. As can be seen in
Fig. 2.6, by solving (2.38), the gradient of the reference phase is retrieved without the
systematic error at the interfaces between materials with different electric properties
that occurs with the previous method. Anyway, since its strong assumptions, this
efficient approach can be applied only when particular multi-channel transceive coils
are employed and the ensemble of RF coil and examined sample satisfies symmetry
assumptions.

2.2.3 Extensions of the method

As shown during the description of the techniques for the absolute phase retrieval of
BBB1, both transmit and receive sensitivities can be measured in particular situations.
The equation for the receive sensitivity H−

j of the j-th coil

∇
(
H̃−)∗ · (g−, ig−,gz)−ω

2
µ0ε̃

(
H̃−)∗ = ∇

2 (H̃−)∗ (2.39)

can be derived in the same way as (2.32) observing that

1
2

(
∂Hx

∂y
−

∂Hy

∂x

)
=

1
2

(
∂Hx

∂y
−

∂Hy

∂x
− i
(

∂Hx

∂x
+

∂Hy

∂y

))
=

∂ (H−)∗

∂y
− i

∂ (H−)∗

∂x
,

(2.40)
in analogy with (2.30). Equation (2.39) can be coupled with (2.32) interpreting as
algebraically independent unknowns the complex permittivity ε̃ and its derivatives
g+, g− and gz. It is worth noting that in this case at least four equations are required
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Fig. 2.6 The x and y components of the gradient of the reference phase recovered by both
techniques for phase retrieval are reported for comparison. The same cylinder described in
Fig. 2.1 is radiated by the same source described in Fig. 2.5. The magnitude of transmit and
receive sensitivity, the relative receive phases and the transceive phases have been computed
numerically on a very fine discretisation of the domain (with a resolution of 0.2 mm) and
have been used as noise-free input for the reconstructions. The systematic error that appears
solving (2.35) and (2.36) is not present in the solution of (2.38).

to solve the system, namely the measurement of the transmit and receive sensitivities
of at least two linearly independent excitations are needed. This fact justifies the
choice of the name dual-excitation algorithm.

Since the knowledge of g+, g− and gz implies the whole knowledge of the
gradient ggg = ε̃−1∇ε̃ = ∇ log ε̃ , it is possible to estimate the electric properties by
integration of ggg with the information of a seed point as initial value. This procedure
has proved to be more robust in the treatment of noisy input than the direct deEPT,
because of the low-pass filtering effect of the integration, and has been called gradient-
based EPT (gEPT) [99]. Because of the integration step, gEPT is a borderline
technique between local and global methods. Together with the introduction of gEPT,
in [99] it is suggested to consider the reference phase gradient as an unknown of the
inverse problem itself. It is possible to recover both ggg and ∇ϕ

+
0 solving in the least

squares sense a linear system obtained introducing the measured quantities H+;r
j =
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|H+
j |e

iϕ+;r
j and H−;r

j = |H−
j |e

−iϕ±
0 j , which, in accordance with (2.33) and (2.34), leads

to H+
j = H+;r

j eiϕ+
0 and H−

j = H−;r
j eiϕ+

0 . By computing explicitly the gradient and
the Laplacian of the sensitivities, equations (2.32) and (2.39) can be rewritten as

− i2∇H+;r
j ·∇ϕ

+
0 +∇H+;r

j · (g+,−ig+,gz)+H+;r
j ϑ+ = ∇

2H+;r
j , (2.41)

and

i2∇(H−;r
j )∗ ·∇ϕ

+
0 +∇(H−;r

j )∗ · (g−, ig−,gz)+(H−;r
j )∗ϑ− = ∇

2(H+;r
j )∗ , (2.42)

where ϑ+ = |∇ϕ
+
0 |2− i∇2ϕ

+
0 + i∇ϕ

+
0 · (g+,−ig+,gz)−ω2µ0ε̃ and ϑ− = |∇ϕ

+
0 |2+

i∇2ϕ
+
0 − i∇ϕ

+
0 · (g−, ig−,gz)−ω2µ0ε̃ collect the non-linearities of the equations.

Thus, the algebraically independent unknowns are the real gradient of the reference
phase ∇ϕ

+
0 , the complex gradient ggg and the complex auxiliary variables ϑ+ and

ϑ−. At least four linearly independent excitations are needed in order to solve this
problem.

A major issue in deEPT and, in particular, gEPT is the estimation of the mag-
nitude of the receive sensitivity |H−

j |, which relies on symmetry assumptions on
the coil structure and the examined body [61]. The quantity that actually can be
measured is the product between the equivalent proton density ρ and the receive
magnitude, which, in general, cannot be easily disentangled. In order to reduce the
coil- and subject-dependence of the method, two alternatives have been proposed:

i. Since the measurable part of the receive sensitivity is H−;s
j = ρH−;r

j , equa-

tion (2.39) can be elaborated by noting that H−
j = ρ−1H−;s

j eiϕ+
0 to obtain

i2∇(H−;s
j )∗ ·∇ϕ

+
0 −2∇(H−;s

j )∗ ·∇ logγ+

∇(H−;s
j )∗ · (g−, ig−,gz)+(H−;s

j )∗ϑ
s
− =∇

2(H−;s
j )∗ ,

(2.43)

where γ = ρ−1 and ϑ s
− = ϑ−−∇2 logγ −|∇ logγ|2 +∇ logγ · (g−, ig−,gz)+

i2∇ϕ
+
0 ·∇ logγ . The latter equation, coupled with (2.41), can be solved in

the least squares sense with respect to the linearly independent unknowns
∇ϕ

+
0 , ∇ logγ , ggg, ϑ+ and ϑ

p
−, provided that at least four linearly independent

excitations are available in order to collect enough equations [104, 103]. It
is worth noting that ∇ϕ

+
0 and ∇ logγ are real vectors, whereas the remaining

unknowns are complex. This approach is very similar to the local Maxwell
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tomography (LMT) proposed by Sodickson and colleagues as a particular
implementation of MREPT that makes no assumptions on non-measurable
quantities [71, 105].

ii. Relying just on (2.41) it is possible to recover ∇ϕ
+
0 , g+, gz and ϑ+. These

quantities can be elaborated to extract an estimation of the complex permittivity
ε̃0 from ϑ+. In order to take advantage of the low-pass filtering properties of
the integral operator, the information stored in g+ and gz can be exploited by
estimating the complex permittivity in the whole region as

ε̃εε = argmin
ε̃εε
∗

(∥∥g̃gg+−ggg+
∥∥2

+
∥∥g̃ggz −gggz

∥∥2
+λ

∥∥∥∥log
ε̃εε

ε̃εε0

∥∥∥∥2
)

, (2.44)

where the bold symbols denote the lists of the corresponding quantities eval-
uated in each voxel of the domain, g̃gg = ∇ log ε̃ and λ is a regularisation
coefficient, which can be chosen following the L-curve method [106]. In the
last norm of the latter relation, the logarithm has been introduced in order
to allow to find the minimum by solving a linear system. More recently, the
possibility to estimate gx and gy from (2.41) by performing a rigid rotation of
both the sample and the RF coil inside the MRI scanner has been proposed
in [107].

2.3 Zero echo-time EPT

Both stdEPT and deEPT are based on B1-mapping techniques, which usually require
a long scan time and have a low signal-to-noise ratio (SNR) with respect to other
clinical imaging sequences [75]. In particular, in order to perform deEPT or gEPT,
the B1-mapping scan must be repeated for each transmit channel increasing the
total scan time for the patient significantly. MREPT from zero echo-time sequences
(zteEPT) has been proposed to reduce the scan time and to increase the SNR of
the input [75]. This method deserves an in-depth discussion because, by using as
input a complex image instead of the usual transmit sensitivity, it leads to unique
advantages [108].
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When the MRI scan is performed with low flip angle α , such that sinα ∼ α , the
achieved image can be approximately described by the relation (cf. Appendix A)

I= I0 B+
1
(
B̃−)∗ , (2.45)

where I0 is the complex image determined by the effective proton density and other
tissue properties and independent of the transmit and the receive sensitivities. Rela-
tion (2.45) has been used in the first iterative implementation of MREPT [62]. In
general, the phase of I0 can vary in space because of the presence of BBB0 inhomo-
geneities, chemical shifts and magnetic fields due to the eddy currents induced in
the RF coil by the gradient coils switching [60]. Anyway, the adoption of a zero
echo-time sequence with limited gradient switching reduces the error in neglecting
I0 phase [75, 109].

Under the hypothesis of locally homogeneous electric properties, the Helmholtz
equation (2.3) can be specialised for both transmit and receive sensitivities. By
adding the first specialisation multiplied by (H̃−)∗ and the second one multiplied by
H+, the following equation results,

∇
2 (H+(H̃−)∗

)
+2κ

2H+(H̃−)∗−2∇H+ ·∇(H̃−)∗ = 0 , (2.46)

where κ2 = ω2µ0ε̃ is the square of the propagation coefficient of the radiation. By
introducing the variables a =

√
H+(H̃−)∗ and b =

√
(H̃−)∗/H+, the latter equation

divided by 2a2 can be rewritten as

∇2a
a

+κ
2 +

|∇a|2

a2 − 1
a2 ∇

(a
b

)
·∇(ab)︸ ︷︷ ︸

κ
2
err

= 0 . (2.47)

The quantity κ2
err is neglected in zteEPT, in which it plays the role of a distributed

systematic error additional to the systematic error at the interfaces due to the almost
homogeneous assumption. It can be compared to the systematic error introduced
in stdEPT by the transceive phase assumption (2.16). Precisely, κ2

err can be further
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elaborated to get

κ
2
err =

1
a2

(
|∇a|2 −

(
∇a
b

− a
b2 ∇b

)
· (a∇b+b∇a)

)
=

1
b2 |∇b|2 = 1

4
|∇ logb2|2 = 1

4

∣∣∣∣∇ log
(
(H̃−)∗

H+

)∣∣∣∣2 , (2.48)

which is null when H+ = (H̃−)∗ and is negligible when the equality is almost true,
like in the case of birdcage coil in quadrature feed with polarisation switching. In
particular, κ2

err tends towards zero as the square of the relative difference between
H+ and (H̃−)∗ [75], whereas the error introduced in stdEPT by the transceive phase
assumption decreases linearly with the difference of transmit and receive phases [75].
Thus, the electric properties recovered by zteEPT are theoretically more accurate
than those obtained by stdEPT with the transceive phase assumption.

Neglecting κ2
err in (2.47), the fundamental equation for zteEPT reads

ε̃ =− ∇2
√

H+(H̃−)∗

ω2µ0
√

H+(H̃−)∗
. (2.49)

The latter equation does not change if multiplied and divided by µ0
√
I0. Depending

just on the physical properties of the examined body, I0 can be assumed to be constant
in each tissue. Therefore, I0 can be moved in the Laplacian operator introducing an
error located only at the interfaces between tissues, where the assumption of local
homogeneity already makes the electric properties recovery untrustworthy. So, the
image (2.45) can be directly used as input for zteEPT using the equation [75]

ε̃ =− ∇2
√
I

ω2µ0I
. (2.50)

The image-based reconstruction (2.50) has been adopted also in [108], although
in this case a fast spin-echo sequence is used, which involves a high flip angle. The
error made in this way has been estimated to be less than the systematic error due to
the phase-based stdEPT approach in a 3 T scanner [108].
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2.4 Convection-reaction EPT

Although deEPT leads to more accurate results than stdEPT by including the gradi-
ent of the electric properties in the Helmholtz equation, it requires more than one
measurement of linearly independent transmit sensitivities to work. In order to per-
form the imaging of the electric properties relying on just one measurement and not
neglecting the gradient of the electric properties, a linear convection-reaction equa-
tion can be written for the properties and solved numerically as a partial differential
equation (PDE) problem [72]. This method is denoted by crEPT.

2.4.1 Derivation

Equation (2.32), which has been derived from the generalised Helmholtz equa-
tion (2.10) under the assumption of negligible derivatives of the longitudinal com-
ponent of the magnetic field, can be written focusing on the complex permittivity ε̃

as
ε̃
−1

∇ε̃ ·βββ+−ω
2
µ0ε̃H+ = ∇

2H+ , (2.51)

where βββ
+ = ∇H+− i∇× (H+ẑzz). Although, the latter equation is non-linear with

respect to ε̃ , since ε̃−2∇ε̃ =−∇(ε̃−1), the change of variable u = ε̃−1 leads to the
linear equation with respect to the inverse of the complex permittivity [72]

βββ
+ ·∇u+∇

2H+u =−ω
2
µ0H+ . (2.52)

Despite its parameters and its unknown are complex-valued functions, this equation
looks like the classic convection-reaction equation. Thus, provided appropriate
boundary conditions for u, equation (2.52) can be solved approximately by some
numerical discretisation. Although this method requires the estimation of the spatial
derivatives of the transmit sensitivity, which is a very noise-sensitive task, it integrates
the results in a global fashion by solving a PDE. Thus, it limits the noise propagation
with respect to stdEPT as is the case for gEPT. In the proposed taxonomy for
MREPT techniques, crEPT turns out to be a global direct method.

In [72], the problem is solved in two dimensions—in a transverse section—by a
finite difference method based on an unstructured triangular mesh assuming Dirichlet
boundary conditions—namely, the electric properties are given on the boundary of
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the examined domain. Precisely, the unknown function u is approximated with a
piecewise affine function uδ such that

uδ (x,y) =
3

∑
i=1

ue,iφe,i(x,y) , (x,y) ∈ Te , (2.53)

being Te the e-th triangle of the mesh, ue,i the value of uδ at the i-th vertex of Te

and φe,i(x,y) the linear shape function whose value is 1 at the i-th vertex of Te and 0
at the other vertices of Te. By writing φe,i(x,y) = ae,ix+be,iy+ ce,i, because of the
linearity of the derivative operator, it follows that

∇uδ (x,y) =
3

∑
i=1

ue,i(ae,i,be,i) , (x,y) ∈ Te . (2.54)

Thus, the evaluation of (2.52) in the barycentre of triangle Te leads to the algebraic
equation

3

∑
i=1

(
(ae,i,be,i) ·βββ+

e +
1
3
(∇2H+)e

)
ue,i =−ω

2
µ0H+

e . (2.55)

In βββ
+
e , (∇2H+)e and H+

e the subscript e denotes the evaluation in the barycentre of Te.
For nodes on the boundary, ue,i is given by the Dirichlet condition and its term in the
sum can be moved on the right hand side. The collection of equation (2.55) written
for each triangle in the mesh is an algebraic linear system with more equations than
unknowns, which can be solved in the least squares sense. Reasoning with tetrahedra
instead of triangles, the same procedure can be described in three dimensions.

The finite difference method on triangular meshes described above [72] is used
effectively on unstructured meshes in [72], but it appears to be unstable when
applied to structured meshes, as the ones that are obtained naturally from the results
given by a MRI experiment, collected in a Cartesian grid. The discretisation of the
conservative form of (2.52) seems to be more stable from a numerical viewpoint.
By virtue of the definition of βββ

+, since the divergence of a rotation is always null,
equation (2.52) can be written in conservative form as

∇ ·
(
βββ
+u
)
=−ω

2
µ0H+ . (2.56)

The latter equation can be efficiently discretised employing the finite difference
method or the finite volume method. At first order of accuracy, both methods
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discretise (2.56) with the same algebraic equation for the generic node (xi,y j,zk) of
a uniform Cartesian grid,

(β+
x u)i+1, j,k − (β+

x u)i−1, j,k

2∆x
+

(β+
y u)i, j+1,k − (β+

y u)i, j−1,k

2∆y
+

(β+
z u)i, j,k+1 − (β+

z u)i, j,k−1

2∆z
=−ω

2
µ0H+

i, j,k ,

(2.57)

where the subscripts denote the node in which the considered quantity is evaluated
and ∆x, ∆y and ∆z are the steps of the grid. Besides the stability of the results,
that shows anyway high frequency spurious oscillations, the use of the conservative
form (2.56) has the benefit of avoiding the estimation of the Laplacian from noisy
measurements, which is instead needed in (2.55).

The reconstruction achieved by the discretisation (2.57) of the conservative form
applied to a two-dimensional model problem is reported in Fig. 2.7. The presence
of high frequency spurious oscillations whose wavelength is about two pixels can
be appreciated. Anyway, this error can be easily removed by post-processing the
solution, for example applying a low-pass Gaussian filter with a standard deviation
of 1 pixel (Fig. 2.7), so it does not undermine the method. In addition, the region
around the centre of the domain shows an artefact in the recovery of both the electric
properties. As described above for the dual-excitation algorithm (cf. Section 2.2) and
below for the global inverse method based on the CSI technique (cf. Section 2.5),
this fact is related to the low intensity of the longitudinal component of the electric
field

Ez =
i

ωε̃

(
∂Hx

∂y
−

∂Hy

∂x

)
, (2.58)

which corresponds to negligible x and y components of βββ
+ [72]. A couple of

strategies have been proposed in [72] to overcome this issue:

i. In the region of low Ez, the so-called constrained crEPT recovers the electric
properties by stdEPT. The obtained values are then used as additional Dirichlet
boundary conditions for the PDE. This technique is unreliable when there are
material boundaries in the artefact region;

ii. The dual-excitation crEPT uses two sets of transmit sensitivity measurements
that have disjoint regions of low Ez, so that every node in the domain has
at least one informative equation. By this way, the number of equations in
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Fig. 2.7 The electric properties recovered by crEPT are reported for a two-dimensional model
problem. The same cylinder described in Fig. 2.1 is radiated by the electromagnetic field
generated by the same birdcage coil described in Fig. 2.2. The transmit sensitivity H+ has
been computed numerically on a very fine discretisation of the domain (with a resolution
of 0.2 mm) in order to make the numerical errors negligible. Both magnitude and phase of
H+ are assumed known exactly. The properties recovered by crEPT are filtered in order to
remove the spurious oscillations by applying a Gaussian filter with a standard deviation of
1 pixel.

the linear system that discretises the problem is doubled and the system is
solved in the least squares sense. In order to guarantee the validity of the
transceive phase assumption for each measurement, a traditional birdcage coil
can be used to measure the transmit sensitivity just in presence of the body and
when a padding of gels and slurries is attached to the body. Since it requires
more than one measurement and the introduction of external components (the
padding), this one may not be the preferable solution.

Despite its demanding computational cost and its numerical instability problems,
crEPT is an interesting technique that combines the quality of deEPT—taking into
account the gradient of the electric properties—with the need of stdEPT of just few
measurements. Thus, crEPT has been further investigated in [110] looking for a
phase-based version along the lines of (2.15).
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2.4.2 Phase-based convection-reaction EPT

In order to obtain a PDE for the electric conductivity whose coefficients are related
only to the measurable transceive phase, it is convenient to start again from the
generalised Helmholtz equation (2.51). By distinguishing between the magnitude and
the phase of the transmit sensitivity H+ = |H+|eiϕ+

, the convective-like coefficient
βββ
+ can be expressed as

βββ
+ =

(
∇|H+|− i∇× (|H+|ẑzz)

)
eiϕ+

+
(
∇ϕ

+− i∇× (ϕ+ẑzz)
)

iH+ . (2.59)

For all the transmit coils that look for an almost homogeneous flip angle, like
for example the birdcage coil, the magnitude of H+ can be assumed constant,
making the first term of (2.59) negligible. Under the assumption that such a coil
is used, in the following it is assumed that βββ

+ = (∇ϕ+− i∇× (ϕ+ẑzz))iH+, and
consequently ∇2H+ = ∇ ·βββ+ = (∇2ϕ++ i|∇ϕ+|2)iH+. Thus, equation (2.51) can
be approximated with

ε̃
−1

∇ε̃ ·
(
∇ϕ

+− i∇× (ϕ+ẑzz)
)
+ iω2

µ0ε̃ = ∇
2
ϕ
++ i|∇ϕ

+|2 . (2.60)

Similarly, it is possible to write equation (2.39), whose components involve the
receive sensitivity H̃− = |H̃−|eiϕ̃−

, as

ε̃
−1

∇ε̃ ·βββ−−ω
2
µ0ε̃(H̃−)∗ = ∇

2(H̃−)∗ , (2.61)

where βββ
− = (∇H̃−− i∇× (H̃−ẑzz))∗, and so ∇ · βββ

− = ∇2(H̃−)∗. The possibility
to perform imaging using the latter equation instead of (2.52) in order to take
advantage of the many simultaneous measurements available from multiple receiver
coils has been investigated in [111]. Assuming that the receive sensitivity fulfills
relation |∇|H̃−|| ≃ 0—also the linear combination of multiple receive sensitivities
can be used to this end [84]—the coefficients of (2.61) can be approximated by
βββ
− = −(∇ϕ̃−+ i∇× (ϕ̃−ẑzz))i(H̃−)∗ and ∇2(H̃−)∗ = (−∇2ϕ̃−+ i|∇ϕ̃−|2)i(H̃−)∗.

So, equation (2.61) leads to

ε̃
−1

∇ε̃ ·
(
−∇ϕ̃

−− i∇× (ϕ̃−ẑzz)
)
+ iω2

µ0ε̃ =−∇
2
ϕ̃
−+ i|∇ϕ̃

−|2 . (2.62)
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The measurable transceive phase ϕ± = ϕ+− ϕ̃− appears in the sum of (2.60)
and (2.62),

ε̃
−1

∇ε̃ ·
(
∇ϕ

±− i∇× ((ϕ++ ϕ̃−)ẑzz)
)
+2iω2

µ0ε̃ = ∇
2
ϕ
±+ i

(
|∇ϕ

+|2 + |∇ϕ̃
−|2
)
.

(2.63)
In order to isolate the electric conductivity from the latter equation, it is convenient
to consider only its real part. In particular, the real part of the first term of the left
hand side can be expressed as

Re
(
ε̃
−1

∇ε̃
)
·∇ϕ

±+ Im
(
ε̃
−1

∇ε̃
)
·∇× ((ϕ++ ϕ̃

−)ẑzz) . (2.64)

The term involving the sum of the phases is often negligible with respect to the other
one. For example, it is negligible whenever the transceive phase assumption holds,
since it entails ϕ+ ≃−ϕ̃−. Simulations endorse its negligibility also in some cases
in which the transmit and the receive coils are different coils [110]. Finally, it must
be noted that

Re
(
ε̃
−1

∇ε̃
)
= Re(∇ log ε̃) = ∇ log

√
ε2 +

σ2

ω2 = ∇ log
√

ω2ε2 +σ2 . (2.65)

For the materials whose conductivity dominates the permittivity, namely σ ≫ ωε ,
the latter implies

Re
(
ε̃
−1

∇ε̃
)
≃ σ

−1
∇σ . (2.66)

In [70], it has been shown that phase-based stdEPT (2.15) introduces larger errors
when ωε ≫ σ . So, the last hypothesis, although quite strong, is very related to
the ones of phase-base stdEPT and is verified by many tissues in operative clinical
conditions (at Larmor frequencies below 128 MHz [83]). The ratio σ/(ωε) is plotted
against the frequency of the radiation for some biological materials in Fig. 2.8, which
shows that the validity of the hypothesis depends on both the examined tissues and
the Larmor frequency of the MRI scanner. The electric properties of the tissues have
been estimated adopting the 4th order Cole–Cole dispersive model [30] and using
the measurements collected in the IT’IS Foundation database [112]. By virtue of all
these considerations, the real part of (2.63) reads

∇ϕ
± ·∇ρ +∇

2
ϕ
±

ρ = 2ωµ0 , (2.67)
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Fig. 2.8 The ratio σ/(ωε) is plotted against frequency. A dashed black line highlights where
the ratio is equal to one.

where the resistivity ρ = σ−1 has been introduced in order make the equation linear
with respect to the unknown. Unlike (2.52), phase-based crEPT (2.67) is a real-
valued equation and so it is actually the classic convection-reaction equation. In
conservative form, the latter equation reads

∇ ·
(
∇ϕ

±
ρ
)
= 2ωµ0 . (2.68)

Equation (2.67) and its conservative form (2.68) cannot be solved easily, because
of the presence of a numerical instability in their discretisation with common nu-
merical techniques, like the finite difference method or the finite volume method.
The numerical instability arises from the absence of a diffusion term in the equation
and the consequent infinite Péclet number [113]. For this reason, the issue cannot be
solved simply reducing the mesh size. In order to recover the numerical stability, a
small constant artificial diffusion, whose coefficient is denoted by λ , is introduced in
the equation, which becomes [110]

λ∇
2
ρ +∇ ·

(
∇ϕ

±
ρ
)
= 2ωµ0 . (2.69)

The choice of the coefficient λ is a trade-off between spurious oscillations and a
blurring effect in the recovered conductivity [110]. Actually, being (2.68) a real-
valued conservative equation, some stable finite difference technique like the up-wind
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Fig. 2.9 The electric conductivity recovered by phase-based stdEPT and phase-based crEPT
applied on the transceive phase are reported for a two-dimensional model problem. The same
operative conditions of Fig. 2.7 are used. The crEPT technique is implemented with finite
difference up-wind discretisation and artificial diffusion coefficient λ = 0 and 0.01. In order
to force the Dirichlet boundary condition, equation (2.69) is solved in a restricted domain
that lies inside the conductive cylinder. The dashed lines depict the restricted domain.

discretisation of the convective term, typical in computational fluid dynamics [114],
can be adopted. In its easiest form, the up-wind discretisation reads

(
∂

∂x

(
β
±
x ρ
))

i, j,k
≃


(β±

x ρ)i, j,k − (β±
x ρ)i−1, j,k

∆x
, if (β±

x )i, j,k > 0

(β±
x ρ)i+1, j,k − (β±

x ρ)i, j,k

∆x
, if (β±

x )i, j,k < 0
(2.70)

and so on for the other directions, where the same notation introduced for (2.57)
has been used and βββ

± = ∇ϕ±. Although the up-wind discretisation is stable also
when λ = 0, the presence of artificial diffusion helps in managing the input noise
and should be considered.

The results obtained applying the phase-based stdEPT (2.20) and the phase-based
crEPT (2.69) with finite difference up-wind discretisation are reported in Fig. 2.9,
both in absence of artificial diffusion and with λ = 0.01. In both cases, it is possible
to appreciate the smooth gradient between the electric conductivities of adjacent
materials recovered by crEPT. In addition, the artificial diffusion reduces the artefacts
due to the non-fulfilment of the method hypotheses. Since the conductivity of the air
is null σ = 0, the resistivity ρ is not defined in air. Thus, a domain that lies inside
the conductive cylinder has been used for crEPT. It is worth noting that in presence
of artificial diffusion the problem depends continuously on the Dirichlet boundary
conditions and the reconstruction is perturbed by wrong boundary conditions only
around the boundary itself, making the method robust against errors in the boundary
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conditions [110]. For example, with λ = 0.01, the same result of Fig. 2.9 is achieved
assuming at the boundary the double of the actual conductivity.

2.5 Contrast source inversion EPT

The need of a MREPT technique that recovers the electric properties at tissues
interfaces and that does not rely on many measurements from multiple transmitter
coils leads to the development, in addition to crEPT, of various inverse methods [73,
74, 76, 115, 116]. Amongst them, the method based on the contrast source inversion
(CSI) technique [74, 117] is particularly interesting because of its efficiency and
flexibility. In addition, this method, denoted by the symbol csiEPT, has the intrinsic
advantage of recovering the whole electromagnetic field generated by the transmit
coil as well as the electric properties distribution [74, 118]. This fact makes the
method appealing for dosimetric and safety applications (cfr. Section 3.1). In this
section, csiEPT is briefly introduced in its original form, whereas the next chapter is
completely devoted to a generalised and detailed analysis of the method.

2.5.1 Derivation

The csiEPT requires the knowledge of the electromagnetic field that the transmit
coil generates in vacuum, the so-called incident field, in addition to the measurement
of the transmit sensitivity in presence of the sample [74, 118]. If the design of the
transmit coil is known, then an estimation of the incident field can be obtained by
means of simulations, otherwise measurements must be used.

In a boundary-free domain, Maxwell’s equations are analytically solved by
convolution of the dyadic Green’s functions with the forced current density [119].
In particular, the scattered field in presence of the examined body, namely the
electromagnetic field generated by the body as a reaction to the incident field, can be
expressed as [43]

EEEs[www](xxx) =
∫
R3

((
∇∇+κ

2
0I
)

ψ(xxx− yyy)
)

www(yyy) dyyy , (2.71)

and
HHHs[www](xxx) =

∫
R3

iωε0∇ψ(xxx− yyy)×www(yyy) dyyy , (2.72)
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where I is the identity operator, ψ is the fundamental solution of the Helmholtz
equation with propagation coefficient κ0 = ω

√
ε0µ0, and www = χ(EEE i +EEEs[www]) is the

so-called contrast source. The contrast χ = ε̃/ε0−1 is the actual unknown of csiEPT,
whereas the contrast source plays the role of an auxiliary unknown. The superscripts
i and s denote the incident and the scattered field, respectively. In three dimensions,
the fundamental solution of the Helmholtz equation is

ψ(rrr) =
e−iκ0|rrr|

4π|rrr|
. (2.73)

When, instead, a two-dimensional problem is solved, the fundamental solution reads

ψ(rrr) =−
iH(2)

0 (κ0|rrr|)
4

, (2.74)

being H(2)
0 the zeroth order Hankel function of the second kind. It is worth noting

that the support of the contrast function χ is the bounded volume occupied by the
examined sample, so both integrals are well defined. The scattered field described by
relations (2.71) and (2.72) can be interpreted physically as the electromagnetic field
generated in air by an equivalent current density JJJs = iωε0www that takes the place of
the scatterer, which is, instead, removed by the domain.

Two error functions for the contrast source www and the contrast χ can be determined
based on relations (2.71) and (2.72). On the one hand, a data residual ρ that quantifies
the difference between the scattered part of the measured transmit sensitivity H+;s

and the one estimated by a guess of the contrast source www is introduced as [74, 118]

ρ[www] = H+;s −
Hs

x [www]+ iHs
y [www]

2
. (2.75)

On the other hand, a state residual rrr that measures the discrepancy between the actual
incident electric field EEE i and the one estimated by a guess couple of contrast source
www and contrast χ is defined as [74, 118]

rrr[www,χ] = χEEE i −www+χEEEs[www] . (2.76)

Both the residuals are null for the actual values of www and χ . Therefore, csiEPT
method recasts the inverse problem as the minimisation of the cost functional F that
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combines the aforementioned residuals,

F [www,χ] =
1

2∥H+;s∥2∥ρ[www]∥2 +
1

2∥χEEE i∥2
∥rrr[www,χ]∥2 , (2.77)

where ∥ · ∥ denotes the L2-norm. Thanks to the weights chosen in (2.77), the two
residuals have the same relevance in the definition of the cost.

Despite the linear dependency of the scattered electromagnetic field on the
contrast source www, the minimisation of the cost functional (2.77) is not trivial because
of the non-linearity that appears in the state residual. Here, the contrast χ multiplies
the scattered electric field EEEs[www], and the state residual weight involves the unknown
contrast. In order to overcome this non-linearity, the numerical minimisation of (2.77)
is performed by a two-step alternating conjugate gradient method [120]. Precisely, a
guess of the contrast source and the contrast (wwwn−1,χn−1) is assumed to be known.
In the first step, the contrast χn−1 is kept fixed and the contrast source is updated
to wwwn by the conjugate gradient method with Polak-Ribière direction applied to
the quadratic cost functional F [ · ,χn−1]. Then, in the second step, the contrast is
updated to χn by applying the formula

χ
n =

wwwn · (EEE i +EEEs[wwwn])∗

|EEE i +EEEs[wwwn]|2
, (2.78)

namely minimising the L2-norm of the state residual rrr[wwwn, · ], where the newly
estimated contrast source wwwn is kept fixed. The convenience of this approach relies
also on the fact that the gradient of the cost functional with respect to the contrast
source can be computed analytically making the implementation of the conjugate
gradient easy. More details on the numerical minimisation are provided in the next
chapter.

The electric properties recovered by csiEPT after 250 and 1000 iterative steps
are reported in Fig. 2.10. The reconstructions are affected by numerical diffusion,
which is reduced by increasing the number of iterative steps. The numerical diffusion
can be exploited as the artificial diffusion in phase-based crEPT, so that in presence
of noise only a limited number of iterative steps is performed, as the author has
shown in [121]. Independently of the number of steps, a localised artefact can be
identified in the estimated properties distribution. As already seen for deEPT and
crEPT, the singular behaviour is located where the total electric field—i.e., the sum
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Fig. 2.10 The electric properties recovered by csiEPT are reported for a two-dimensional
model problem. The same operative conditions of Fig. 2.7 are used. Both magnitude and
phase of H+ are assumed to be known exactly. The properties are displayed after 250 and
1000 iterative steps of the conjugate gradient method.

of the incident and the scattered fields—tends to zero. This fact happens because
the total electric field intensity appears in the denominator of (2.78) and is strictly
related to local noise propagation [121], as depicted in the next chapter. It is worth
noting that csiEPT recovers the contrast source www as well as the contrast χ . Thus, at
the end of the iterative procedure, the knowledge of the whole RF electromagnetic
field is stored in the contrast source by means of relations (2.71) and (2.72).

2.6 Other methods

Despite its extension, the proposed overview is not exhaustive. Many other methods
have been proposed in literature in the last few years, each one with strengths and
weaknesses. A brief presentation of the most recent techniques is proposed below.
Table 2.1 summarises the methods described above and the ones sketched out below.
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2.6.1 Fourier transform-based EPT

Inspired by the integral approach of csiEPT, a global direct technique that exploits
relation (2.72) has been proposed in [78]. In particular, the relation between the
scattered part of the transmit sensitivity and the contrast source can be seen as
the convolution product of a proper dyadic Green’s function G+ and the contrast
source www = χEEE. Since the convolution product in spatial coordinates corresponds
to the pointwise product in the Fourier domain, in a transverse section where it is
reasonable to assume that Ex, Ey and Hz are null it is possible to write

H+;s = F−1{F {
G+
}

F {χEz}
}
, (2.79)

where F denotes the Fourier transform operator. The latter equation can be rear-
ranged to find the following explicit expression for the contrast χ ,

χ =
1
Ez

F−1
{

F {H+;s}
F {G+}

}
. (2.80)

Whereas H+;s can be obtained by MRI measurements, the electric field is unknown.
In [78], it is assumed that the electric field can be approximated by the one generated

Table 2.1 List of the MREPT methods proposed in literature.

Name (Section §) Symbol Taxonomy References

Standard EPT (2.1) stdEPT local direct [58, 60, 70, 84]
Dual-excitation EPT (2.2) deEPT local direct [59, 95, 98]
Gradient-based EPT (2.2) gEPT global direct [99, 103, 107]
Local Maxwell tomography (2.2) LMT local direct [71, 105]
Zero echo-time EPT (2.3) zteEPT local direct [75]
Convection-reaction EPT (2.4) crEPT global direct [72, 110, 111]
Contrast source inversion EPT (2.5) csiEPT global inverse [74, 122]
Fourier transform-based EPT (2.6) — global direct [78]
Optimisation-based EPT (2.6) — global inverse [73, 76, 116]
Water content-based EPT (2.6) — — [123, 124]
Cauchy formula-based EPT (2.6) — global direct [77, 125]
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by the same source in a homogeneous sample, like a phantom with known properties,

Ez ≃
1

χconst
F−1

{
F
{

H+;s
χconst

}
F {G+}

}
. (2.81)

By this way, the method leads to an estimation of the electric properties that makes
no assumptions on the sample homogeneity.

2.6.2 Optimisation-based EPT

Many inverse methods, based on fitting a mathematical model to measured data by
means of the optimisation theory, have been proposed for MREPT in addition to
csiEPT [73, 76, 115, 116, 126]. A couple of methods have been developed starting
from the phase-based stdEPT equation (2.15) [76, 116, 127]. In both cases, instead
of estimating the Laplacian of the transmit phase, a cost functional like

F [σ ] = ∥ϕ
+[σ ]−ϕ

+
meas∥2 +λψ[σ ] (2.82)

is minimised. In (2.82), ϕ+[σ ] is the solution of the Poisson equation ∇2ϕ+ =ωµ0σ

with suitable boundary conditions, ϕ+
meas is the measured transmit phase, ψ[σ ] is

a regularisation functional and λ is the corresponding regularisation factor. This
approach has many advantages: it handles the noise globally and naturally thanks
to regularisation; by choosing properly the regularisation functional, it is possible
to adapt the method to a priori knowledge [76]; similarly, the cost functional can
be changed and complicated by the introduction of masks and non-linear terms
without changing the mathematical nature of the minimisation problem [116]. The
generalised Helmholtz equation is considered in [73, 115], where the possibility
to solve the MREPT problem by minimising iteratively a cost functional is proved
mathematically. In [115], the properties are estimated by stdEPT first, then only at
the interfaces between different tissues the solution is iteratively refined. On the
other hand, in the paper of Ammari and colleagues [73] the properties in the whole
domain are recovered iteratively by performing a constrained minimisation. Last but
not least, the Global Maxwell Tomography (GMT) proposed in [126] minimises the
discrepancy in the modelled and the measured magnitude of the transmit sensitivity
only, which is achieved from the electric properties by solving the Maxwell equations.
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2.6.3 Water content-based EPT

It has been shown that macroscopically the permittivity of biological tissues at RF
is mainly determined by the volume ratio of water, whereas the capacitive effect
of the cell membrane gets negligible [128]. In particular, the determination of the
electric properties of biological tissues from the content of water is highly precise at
the Larmor frequency of UHF MRI [124]. Since there exists an evident correlation
between the water content of biological tissues and their spin-lattice relaxation time
T1, which can be expressed by an explicit formula whose coefficients are determined
by the main field strength B0 of the MRI scanner, it is possible to measure the volume
ratio of water employing peculiar MRI sequences. Thus, once a model that relates
the electric properties with the water content has been found, it is possible to perform
MREPT by elaborating the water volume ratio maps [123, 124]. This approach
was proposed for the first time by Farace and colleagues in 1997 [123], when the
term MREPT had not yet been coined, in order to advance in the patient-specific
hyperthermia treatment planning. Recently, it has been reintroduced in the context
of electric properties tomography by Michel and colleagues [124], who discovered,
by fitting measurements available in literature for the brain tissues, an exponential
dependency of the conductivity from the water volume ratio and a parabolic relation
for the permittivity. To the best of this author’s knowledge, this is the only technique
for MREPT that does not make use of Maxwell equations and transmit/receive
sensitivity estimation, so it does not fit in the proposed taxonomy for MREPT
methods.

2.6.4 Cauchy formula-based EPT

The application of advanced complex analysis concepts has led Palamodov to the
definition of an analytical solution of the MREPT problem when the transmit sen-
sitivity H+ is completely known [77]. By performing dimensional analysis it is
possible to find an incorrect equation in the derivation of the explicit relation [125].
The inaccuracy has been corrected by Nara and colleagues in [125], where accuracy
and robustness to noise of the method are verified numerically. In order to get the
analytical expression, the generalised Helmholtz equation is elaborated in complex
domain until a so-called ∂̄ -problem (or DBAR problem) [129] is obtained. The
∂̄ -problem is solved by the Cauchy formula, which involves the integration of the
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forcing term in the domain and of the unknown variable on the boundary, where an
estimation of the electric properties must be provided [125]. The formula has been
obtained under the assumption that ∂H+/∂ z = 0, anyway the result can be iteratively
corrected in order to account for the non-null longitudinal derivative [125].



Chapter 3

Contrast source inversion electric
properties tomography

The contrast source inversion (CSI) technique was firstly proposed to solve inverse
scattering problems for both acoustic and electromagnetic radiations [47]. Indeed,
the physics of acoustic and electromagnetic scattering are very similar [43]. In par-
ticular, in the context of electromagnetic scattering, CSI has been formerly applied
to microwave tomography for many purposes, e.g. in medicine [48], elasticity [130],
geology [131], through-wall imaging [132], agronomy [49], forest product indus-
try [133] and so on.

In microwave tomography, a radar system composed of a set of transmitter and
receiver antennas is arranged outside the investigated sample. As a consequence,
because of the shortage of measurable information, the inverse scattering problem is
strongly ill-posed and the maximum achievable resolution is very limited [46, 51].
The introduction of the MRI scanner as a transmitter and receiver device that allows
measuring RF magnetic fields inside a body can benefit the CSI technique, mainly
with an increasing resolution. Clearly, since the MRI scanner employing B1-mapping
techniques [53–57] can measure only the transmit sensitivity of the RF coil, some
variations on CSI have been introduced giving rise to csiEPT [117], briefly described
in the previous chapter.

As shown in the previous chapter, csiEPT is just one among a plethora of MREPT
methods, but it is the only one that recovers the electric properties as well as the whole
electromagnetic field generated by the MRI transmit coil in the body [74, 118]. Thus,
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despite its severe computational burden, which must be handled by coding an efficient
parallel algorithm, csiEPT is particularly interesting for MRI safety [118, 134].
Indeed, the RF transmitter coil of MRI scanners can induce dangerous localised
hot-spots of deposited power in the human body, with a risk increased in high field
MRI because of the small wavelength of the radiation [135]. Thus, the local specific
absorption rate (SAR) of the RF electromagnetic field should be estimated on-line in
a patient-specific framework.

This chapter is devoted to an in-depth analysis of csiEPT. In Section 3.1, the
convenience in MRI safety of csiEPT, as it has been described in the previous
chapter, with respect to the other MREPT methods is shown. Then, Section 3.2
describes a general and abstract formalism for csiEPT that increases the applicability
of the method to many physical situations. Finally, the possibility of neglecting the
presence of a magnetic shield around the RF coil in the mathematical model inverted
by the generalised csiEPT is analysed in Section 3.3 and the noise propagation in
the method is studied in Section 3.4.

3.1 Local specific absorption rate estimation

The specific absorption rate (SAR) is the power deposited by the electromagnetic
radiation in the tissues per unit of mass,

SAR =
σ |EEE|2

2δ
, (3.1)

where σ is the effective conductivity, δ is the volumetric mass density and the phasor
of the electric field EEE is defined with reference to the peak value of the field. The
SAR is an element of concern in MRI, because it quantifies the electromagnetic
power absorbed by the patient body. In particular, it appears explicitly in the bioheat
transfer equation [136], which describes the temperature increase in the human body,
the actual biological effect due to exposure to RF electromagnetic fields.

3.1.1 Legislative regulation

The relevant standard for the legal regulation of MRI equipment for medical diagnosis
is IEC 60601-2-33 [137], which states, among other things, some safety requirements
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about the SAR of the RF radiation. In particular, it must be ensured that the global
SAR in the head of the patient is below 3.2 Wkg−1 and the global SAR in the whole
body is below 2.0 Wkg−1 in normal operating mode or 4.0 Wkg−1 in first level
controlled operating mode. The normal operating mode is such that no physiological
stress can be cause to the patient by the MRI scanner, whereas the first level controlled
operating mode can cause some physiological stress to the patient, who needs to be
monitored by medical supervision [137]. In order to comply with these limits, it is
sufficient to check the ratio of the measurable absorbed RF power and patient mass.
Usually, the manufacturer builds this monitoring in the MRI scanner. In addition, a
constraint in the locally deposited power is stated: in normal operating mode, the
local SAR averaged over 10 g of tissue have to be kept below 10 Wkg−1 everywhere
in the examined body but in extremities, where it may reach 20 Wkg−1. All the
mentioned values must be averaged on 6 minutes intervals. This constraint is the
same as the one prescribed for occupational exposure by ICNIRP (International
Commission on Non-Ionizing Radiation Protection) guidelines [138].

Since, unlike global SAR, local SAR cannot be measured directly during MRI
examinations, the standard states to use theoretical models or experiments for its
determination. Numerical simulations of the field generated by typical RF coils in
presence of anatomical human models, like the ones provided by the Visible Human
Project [139] and the Virtual Family [140, 141], suggest that compliance with the
standard for global SAR implies compliance for local SAR when ordinary equipment
with static field B0 up to 3 T are employed. Thus, to monitor the global SAR is
sufficient for many clinical applications. Nonetheless, an explicit verification of
compliance with the local SAR limits must be performed in some particular cases:

i. When scanners with ultra-high field (B0 = 7T) are used, because localised
peaks of the local SAR, referred to as hot-spots, may arise. This fact is due
to the wavelength of the RF field in tissues being comparable with the body
dimensions [142].

ii. When surface coils or multi-channel transmit coils for parallel transmission
(pTX) are used, because strongly inhomogeneous fields may be generated
independently of the wavelength [135].

In these situations, local SAR should be estimated by performing numerical simu-
lations on patient-specific models. A strategy has been proposed to obtain quickly
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patient-specific anatomical models [143], which can be used in accurate numerical
simulations. Anyway, the electromagnetic simulations remain the bottleneck of such
procedures because of their very high computational cost, which goes from tens
of minutes up to some hours depending on the used numerical method and on the
aimed accuracy. In order to avoid this step, nowadays a database of fields is produced
by simulating numerically the RF coil in presence of different anatomical models
at many positions. During the examination, a simulated model is assigned to the
patient based on some traits—like age, height, weight, gender, and so on—then, by
comparison of the selected simulation with the result of a preliminary B1-mapping
scan, the simulated local SAR is scaled to fit with the patient [144]. Such a database
could be dynamically updated with simulations performed on the patient-specific
anatomical models mentioned above [143]. However, this procedure cannot deal
with exceptional cases, whose responses to the RF field is sensibly different from
the simulated ones because of peculiar electric properties in some regions, e.g. the
higher conductivity of some tumours.

3.1.2 Electric properties tomography

In order to perform a truly patient-specific estimation of local SAR, it would be
very useful to know the actual distribution of the electric properties at the Lar-
mor frequency inside the patient body. If just a segmentation is achieved [143],
electric properties would be assigned from some database, like the one of IT’IS
Foundation [112], which estimates the properties adopting the 4th order Cole–Cole
dispersive model [30]. The main drawback of this kind of database is that measure-
ments are usually performed on freshly excised specimen, whose electric properties
may be substantially different from the ones of the in vivo tissue. In addition, by
relying on the average of a few measurements, the information about the statistical
variation of the electric properties between different individuals or between different
conditions of the same individual can hardly be obtained from databases. For this
reason, MREPT would play a fundamental role in local SAR estimation.

The heterogeneous map of the electric properties estimated by any MREPT
technique may be used in many ways in order to evaluate the local SAR distribution:

i. The most straightforward approach consists in using the knowledge of the elec-
tric properties distribution and of the RF coil design to simulate numerically
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the transmitted electromagnetic field and obtain the local SAR accordingly.
As stated above, this procedure is not feasible because of the too high compu-
tational cost. Anyway, it would provide a more reliable dynamical update of
the database of maximum local SARs described above.

ii. The components of the magnetic field measured by the MRI scanner and used
to perform MREPT can be reused for a fast estimation of the electric field
generated by the RF coil, and as a consequence the local SAR. Precisely,
Ampère’s law in time-harmonic domain reads

EEE =− i
ωε̃

∇×HHH . (3.2)

Therefore, the electric field can be estimated locally employing the recovered
electric properties ε̃ and approximating the magnetic field HHH by its measurable
parts [58, 98, 101, 118, 145, 146]. Assuming that only the transmit sensitivity
is measurable—in the previous chapter it has been shown that it is possible to
approximately estimate also the receive sensitivity when using multi-channel
transceive coils [98]—the magnetic field can be approximated neglecting all
its components but H+ = (Hx + iHy)/2. In Cartesian components, this results
in

HHH =
(
H++(H−)∗, i

(
(H−)∗−H+

)
,Hz
)
≃
(
H+,−iH+,0

)
. (3.3)

Thus, the electric field intensity can be estimated as

|EEE|2 ≃ 1
ω2|ε̃|2

(
2
∣∣∣∣∂H+

∂ z

∣∣∣∣2 + ∣∣∣∣i∂H+

∂x
+

∂H+

∂y

∣∣∣∣2
)

, (3.4)

where the spatial derivatives must be approximated by a robust numerical al-
gorithm, such as the three-dimensional Savitzky-Golay filter (cf. Section 2.1).
As shown in the following example, neglecting Hz and, especially, H− in the
electric field estimation leads to a precise location of local SAR hot-spots, but
strongly underestimates their intensity. The error committed in this way ap-
pears to increase with increasing Larmor frequency [145]. It would be possible
to improve the electric field estimation by iteratively applying in alternation
Ampère’s law and Faraday’s law as described in [147]. The iterations are
proven to converge to the actual field if both H+ and H− are known, but it can
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lead to satisfactory results also when only H+ is measured [147]. However, to
the best of this author’s knowledge, this iterative approach has not been tested
in vivo yet.

iii. As briefly described in the previous chapter and reworded in a general context
in the next section, csiEPT recovers the contrast χ , from which the electric
properties are deduced, as well as the contrast source www, an auxiliary unknown
that describes the scattered field with the relations (2.71) and (2.72). In this
case, the particular MREPT implementation gives the additional information
necessary for a full-wave estimation of the electric field, without neglecting
any contribution,

EEE[www] = EEE i +EEEs[www] . (3.5)

3.1.3 Model problem

In order to check the capability of the methods to estimate the specific absorption rate,
a realistic two-dimensional model problem is investigated. An unshielded 16-legs
birdcage coil with a radius of 14 cm is simulated at 128 MHz, the Larmor frequency
of protons corresponding to a static field B0 = 3T. Precisely, the mid-plane of
the birdcage—parallel to x̂xx⊗ ŷyy—is approximated by the transverse magnetic (TM)
assumption, namely Hx, Hy and Ez are assumed to be the only non-null components
of the electromagnetic field. This allows handling the problem as a two-dimensional
one in the plane, where the legs of the birdcage are modelled as line sources uniformly
distributed on a circle. The current in each line source has the same intensity I as in
the other lines and a time delay such that the positively rotating component of the
magnetic field H+ inside the birdcage is almost homogeneous and it is predominant
over the negatively rotating one H−. Numerically, assuming to number the line
sources clockwise with the index k = 1, . . . ,16, the current in the k-th source is

Ik = Ieikπ/8 . (3.6)

In order to simulate the electromagnetic field generated by the coil in presence of
a head, the TM assumption is maintained and just a section of the head is considered.
In particular, the anatomical human model Duke of the Virtual Family [140, 141] has
been considered for this study and the section depicted in Fig. 3.1, where the corpus
callosum can be easily recognised, has been selected. The electric properties are
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Fig. 3.1 Section of the head of the anatomical human model Duke of the Virtual Family [140,
141] that has been employed for the numerical simulations. In the section, each colour
denotes a different biological tissue.
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Fig. 3.2 Maps of the electric properties assigned to the section of the head taken into account.

assigned to each tissue in the section by applying the 4th order Cole–Cole dispersive
model [30] to the measurements collected in the IT’IS Foundation database [112].
The result is the heterogeneous distributions shown in Fig. 3.2. Whereas the incident
electromagnetic field is known analytically, the scattered electric field is computed
by solving numerically—employing the biconjugate gradient method and the fast
Fourier transform (FFT) algorithm—the electric field integral equation (EFIE) (2.71)
and, consequently, the scattered magnetic field is obtained by (2.72).

The electromagnetic field computed on a uniform Cartesian grid with 1 mm
resolution is used as virtual measurement with no further post-processing in order to
simulate noise-free measurements. In particular, the positively rotating component is
assumed to be known exactly, neglecting the transceive phase assumption. Although
such an ideal context is favourable for the MREPT techniques and does not stress
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Fig. 3.3 Electric properties of the head section recovered by different MREPT techniques.
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Fig. 3.4 Trend of the cost functional in csiEPT against the iterative step of the numerical
minimisation procedure.

their capabilities, it highlights how good the estimation of the local SAR using
different MREPT techniques could be. The techniques compared are stdEPT, deEPT,
crEPT and csiEPT, as described in the previous chapter. Since the model problem
is noise-free, the spatial derivatives of the magnetic field H+ have been computed,
for the techniques which need them, using second order centred finite difference
schemes. For deEPT four independent fields are obtained by feeding just four line
sources at each time such that four 4-legs birdcage coils are mimicked.

The electric properties recovered by the four methods are collected in Fig. 3.3.
Reconstructed values that are negative or unrealistically high—over 200 for the
relative permittivity and over 5 Sm−1 for the conductivity—are discarded and not
displayed in the pictures. Because of the many tissues’ interfaces, primarily due to
the brain gyri, the local homogeneity hypothesis—the basis of stdEPT—is unfulfilled
in many points, in which, therefore, the recovered properties are discarded. Despite
deEPT makes no assumptions on the homogeneity of the electric properties, also
for this method a few negative or too high values are obtained at tissues’ interfaces,
where the Laplacian is not well defined and so it is difficult to be estimated. The
error is further reduced by crEPT and csiEPT, which do not retrieve any anomalous
value. Although crEPT, as deEPT, is based on the estimation of the Laplacian of H+,
the low-pass filtering effect of solving a PDE makes crEPT more robust than deEPT.
In this particular case, crEPT does not seems to suffer from the low electric field
intensity issue. In addition, no spurious oscillations are present in the distributions
recovered by the finite difference method—the results reported in Fig. 3.3 have not
been post-processed. On the other hand, the low electric field intensity issue appears
in the csiEPT estimation of the properties, which is affected by numerical diffusion
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Fig. 3.5 Boxplots divided in quartiles of the estimated electric properties in the more sig-
nificant tissues. The black horizontal lines indicate the actual values of the properties. The
values out of the range 1 to 200 for the relative permittivity and 0 Sm−1 to 5 Sm−1 for the
electric conductivity are outliers.

due to stopping the iterative procedure after 1000 steps. By increasing the maximum
number of iterations, both the issues would be gradually reduced. Anyway, after
1000 steps the result is already satisfactory, so it has been used in the comparison.
In addition, as can be seen in Fig. 3.4, the decreasing rate of the cost function after
1000 steps is very low with respect to the rate in the first iterations, suggesting that
further small corrections in the estimated maps would require many additional steps.

A more quantitative analysis can be performed referring to the boxplots reported
in Fig. 3.5. Boxplots are a very common and powerful tool to visualise statistical
information on samples [148]. Each horizontal line in the boxes denotes a quartile of
the underlying distribution and the whiskers go from the minimum to the maximum
of the samples. In Fig. 3.5, the boxplots have been produced from the properties
recovered pixel-by-pixel in the most significant tissues in the brain, whose distribu-
tion in the section is depicted in Fig. 3.6. It is worth noting that corpus callosum
is made of the same material as the white matter, anyway the distinction between
the two tissues is convenient for commenting on the data. Both properties of the
cerebrospinal fluid are recovered with a sensible spatial variability by all the studied
MREPT techniques. The apparent small variability of stdEPT estimation is because
just the values recovered in the extended central x-shaped region are not treated
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Fig. 3.6 Map of the most significant tissues in the considered section of the head.

as outliers. The variability in crEPT and csiEPT is mainly due to the numerical
diffusion, which strongly affects the recovery of the small components of the cere-
brospinal fluid. Corpus callosum and white matter constitute a very large region
with few interfaces. Consequently, their properties are recovered very precisely and
uniformly by all the techniques. An anomalous spatial variability can be appreciated
just in the properties recovered by csiEPT in the corpus callosum. This happens
because of the low electric field intensity issue. Indeed, the electric field has its
minimum intensity in the corpus callosum. Finally, grey matter shows a sensible
spatial variability, especially for stdEPT, because of the many gyri.

Fig. 3.5 is very important because it shows that for each method, when the outliers
are not taken into account, the medians of the properties estimated in each tissue
are very close to the actual properties of the tissue. Since the outliers, in particular
the negative values, would lead to wrong and unphysical results when used in (3.1)
and (3.4) for local SAR estimation, the distributions achieved by stdEPT and deEPT
are post-processed assuming to have a segmentation of the domain. In practice it
would be possible to segment the images produced by MRI during H+ measurement.
The post-processing is performed as follow. The median values estimated in each
tissue neglecting the outliers are assigned to all the pixels of the tissue. In order to
compute the median avoiding the ordering of the values, the iterative Weiszfeld’s
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Fig. 3.7 Estimations of the electric properties distributions achieved by post-processing
stdEPT and deEPTrecoveries. The medians of the properties estimated in each tissue ne-
glecting the outliers are assigned to all the pixels that belong to the tissue.

algorithm has been used [149]. The homogenised distributions obtained in this way
are reported in Fig. 3.7.

Finally, the local SAR is estimated based on the electric properties estimated by
the MREPT techniques. For stdEPT and deEPT the post-processed reconstruction
is used, whereas the distributions estimated by crEPT and csiEPT are directly used
with no further post-processing. The electric field intensity is estimated by the
first three techniques using (3.4), where the contribution of the unknown negatively
rotating component is neglected. On the other hand, csiEPT estimates the electric
field by (3.5) thanks to the auxiliary unknown contrast source www, which implicitly
considers the effects of the unknown components of the magnetic field. Thus, the
non-averaged local SAR is estimated by (3.1), where the mass density is assumed
constant and equal to the one of water, δ = 1000kgm−3, for all the biological tissues.
The same hypothesis on the mass density has been used in the actual local SAR
computation. The actual local SAR due to the 16-legs birdcage coil and its four
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Fig. 3.8 The maps of the actual and estimated non-averaged local SAR due to a 16-legs
birdcage coil of radius 14 cm rescaled such that the actual local SAR maximum is equal to
10 Wkg−1.

estimated maps are collected in Fig. 3.8, where the results have been rescaled in order
to have the maximum of the actual local SAR equal to 10 Wkg−1. Only csiEPT
allows approximating quantitatively the local SAR, whereas the other techniques
strongly underestimates it because of neglecting the unknown components of the
magnetic field. However, the hot-spots are precisely localised by all the techniques,
confirming the results presented in [145] for stdEPT. It is worth noting that for
special transmit coils that generate a non-negligible longitudinal component of the
magnetic field Hz, the discrepancy between csiEPT and other MREPT techniques
can further grow in terms of local SAR estimation capability.

The analysis performed in this section reproduces, with some variations and
integrations, the one published by the author in [118]. The safety application is the
main reason for an in-depth research about csiEPT.
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3.2 Generalised formulation

Although csiEPT has been originally described in terms of integral equations for
homogeneous boundary-free domains [74], the technique can be presented in a
more general fashion, based on the functional point of view published by the author
in [122], from which the original formulation can be deduced as a special case. A
precise description of all the physical and mathematical objects involved in csiEPT
is necessary in order to provide the generalised framework.

The electromagnetic field generated by the RF coil in absence of the examined
body is called incident field and is denoted as {EEE i,HHH i}. The background, namely the
linear, non-magnetic (µb = µ0) and possibly heterogeneous medium of the incident
field, is characterised by its electric conductivity σb and permittivity εb, which
are conveniently gathered in the complex permittivity ε̃b = εb − iσb/ω , being ω

the angular frequency of the radiation. The total field {EEE,HHH} is defined as the
electromagnetic field generated by the same source of the incident field when the
examined body is present and alters the background. The medium of the total field
remains linear and non-magnetic, as it is a reasonable assumption for biological
tissues [81], and it is characterised by the heterogeneous complex permittivity
ε̃ = ε − iσ/ω . Finally, the scattered field is the difference between the total and the
incident fields {EEEs,HHHs}= {EEE −EEE i,HHH −HHH i}. It can be interpreted physically as the
distortion to the incident field induced by the presence of the body.

Given the linearity of the media, the scattered field solves the system of equivalent
Maxwell equations obtained by subtracting the equations for the total and the incident
fields, {

∇×EEEs =−iωµ0HHHs

∇×HHHs = iωε̃bEEEs + JJJs
(3.7)

where JJJs = iωε̃bwww is an equivalent scattering current, www = χEEE is the contrast source
and χ is the contrast. In csiEPT, both the contrast source and the contrast are un-
knowns. In the most general anisotropic case, in which the complex permittivities
are tensors, the contrast is the tensor χ = ε̃

−1
b ε̃ − I, being I the identity matrix. How-

ever, only isotropic media are considered in the following, so the easiest definition
χ = ε̃/ε̃b −1 is used. Equations (3.7) are defined in a domain of interest Ω ⊂ R3,
on whose boundary ∂Ω—or at infinity for unbounded Ω—reasonable boundary
conditions are provided. It is worth noting that any forcing term that appears in
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the equations of the incident field are also present in the equations of the total field.
Thus, the only forcing term for the scattered field is the equivalent scattering cur-
rent JJJs and any boundary condition is homogeneous. Under these hypothesis, the
partial differential equation (PDE) problem is solved by one and only one couple
{EEEs,HHHs}, which depends continuously on JJJs, or, by composition, on the contrast
source www [32, 119]. In more technical words, there exists a couple of linear and
bounded operators Se and Sh such that

EEEs = Sewww , HHHs = Shwww . (3.8)

3.2.1 Cost functional

In order to define a cost functional whose minimum solves the inverse problem,
a couple of error functions for the contrast source www and the contrast χ must be
identified.

In the following it is assumed that the transmit sensitivity B+
1 = µ0H+ is com-

pletely measured by the MRI scanner—the magnitude mapped by any B1-mapping
technique and the phase retrieved by the transceive phase assumption or some other
technique (cfr. Chapter 2). Thus, a data residual ρ can be introduced to quantify
the difference between the measured transmit sensitivity and a guess of the contrast
source www. In order to write the data residual with a convenient notation, a couple
of operators should be introduced. First, the positively rotating part operator P

receives as input a vector field uuu and returns the scalar field

Puuu =
ux + iuy

2
. (3.9)

Clearly, returning a linear combination of the Cartesian components of the input
field, P is a linear and bounded operator. Next, an observation operator O that
models mathematically the measurement of the magnetic field starting from its
actual distribution is needed in order to make the discrete measured sample and
the continuous guess map comparable. Different implementations of O can be
suggested:

i. If the transmit sensitivity is measured in an ordered collection of N points
(xxxi)

N
i=1, the measurement can be modelled as the evaluation of the generic
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input scalar field u in the points

Ou =
(
u(xxxi)

)N
i=1 . (3.10)

From a mathematical point of view, this definition is critical when the input
field u belongs to some Lebesgue or Sobolev space, because in this case the
evaluation of u in a point is not well defined. The issue is particularly evident
when u has a jump discontinuity.

ii. If the mean value of the transmit sensitivity is measured in an ordered collection
of N regions (the voxels) (Vi)

N
i=1, the measurement of the generic input scalar

field u can be modelled as

Ou =

(
1
|Vi|

∫
Vi

u(xxx)dxxx
)N

i=1
, (3.11)

where |Vi| is the volume of Vi. This definition solves the previous mathematical
issue and, despite looking awkward, it models quite precisely the measurement
operation of MRI scanners.

Both definitions (3.10) and (3.11) lead to a linear and bounded observation operator.
Finally, the data residual is

ρ[www] = B+;s
1 /µ0 −OS +

h www , (3.12)

where the scattered part of the transmit sensitivity B+;s
1 and the composed operator

S +
h = PSh have been introduced.

On the other hand, the definition of the contrast source

www = χEEE = χEEE i +χEEEs = χEEE i +χSewww , (3.13)

leads naturally to the state residual rrr, which estimates the difference between the
actual incident electric field EEE i and the guess couple of contrast source and contrast,

rrr[www,χ] = χEEE i −www+χSewww . (3.14)

The incident electromagnetic field is an input of csiEPT for the computation of both
B+;s

1 and EEE i. If the RF coil design is known, then an accurate numerical simulation of
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the coil in free space can estimate the incident field. Otherwise, it can be measured
once and for all during the coil characterisation. If the incident field is known by
means of measurements, the result can be interpolated in order to obtain a continuous
map of EEE i, otherwise another observation operator must be introduced for the state
residual. In the following, the knowledge of a map of EEE i is assumed.

The two residuals are combined in the definition of the cost functional F that
must be minimised in order to obtain the electric properties distributions [122],

F [www,χ] =
ηd

2
∥ρ[www]∥2

D+
ηs[χ]

2
∥rrr[www,χ]∥2

S . (3.15)

In the latter equation, ηd = ∥B+;s
1 /µ0∥−2

D and ηs[χ] = ∥χEEE i∥−2
S are the weights that

keep the two errors at the same relevance in the overall cost. The symbols ∥ · ∥D and
∥ · ∥S denote the norm of the Banach spaces D, the discrete space of the data, and
S, the continuous space of the state, respectively. In the following computations,
for sake of simplicity, it is assumed that both D and S are Hilbert spaces with inner
products (·|·)D and (·|·)S, respectively.

3.2.2 Numerical minimisation

As it is common use in CSI tradition, the cost functional F is minimised numerically
by a two-step alternating conjugate gradient method [47, 74, 120]. The two-step
approach allows to deal easily with the non-linearity of the problem due to the
presence of the product between χ and www in the state residual and to the dependence
on χ of the weight ηs. This numerical procedure has been criticised and a couple of
alternative algorithms have been proposed [150], anyway the method is very common
and it has been proven robust in many experimental contexts [48, 49, 131–133].

Starting from an initial guess couple (wwwn,χn)—the result of the n-th iterative
step—, the contrast source is updated first keeping the contrast map fixed. The
update is done using the conjugate gradient iterative scheme

wwwn+1 = wwwn +α
nvvvn , (3.16)
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where αn is the optimal real-valued step length and vvvn is the Polak-Ribière direc-
tion [151], which is defined iteratively as

vvv0 = 000

vvvn = gggn +

(
gggn|gggn −gggn−1)

S

∥gggn−1∥2
S

vvvn−1 , if n > 0
(3.17)

In (3.17), gggn is the gradient of the cost functional F with respect to the contrast
source www evaluated in the couple (wwwn,χn). Since S is assumed to be an Hilbert space,
the gradient gggn is the Riesz representation of the Fréchet differential dwwwF |(wwwn,χn), so
it can be computed using the definition of the Gâteaux derivative as follows.

For simplicity of notation, the quantities ηn
s = ηs[χ

n], ρn = ρ[wwwn] and rrrn =

rrr[wwwn,χn] are introduced. For any generic field uuu ∈ S,

(gggn|uuu)S = dwwwF |(wwwn,χn) [uuu] = lim
h→0

F [wwwn +huuu,χn]−F [wwwn,χn]

h
=

ηd

2
lim
h→0

∥ρ[wwwn +huuu]∥2
D−∥ρn∥2

D
h

+
ηn

s
2

lim
h→0

∥rrr[wwwn +huuu,χn]∥2
S−∥rrrn∥2

S
h

.

(3.18)

The first addendum of the latter equation reads

ηd

2
lim
h→0

h2
∥∥OS +

h uuu
∥∥2
D−2h

(
ρn|OS +

h uuu
)
D

h
=−ηd

(
S +;⋆

h O⋆
ρ

n|uuu
)
S , (3.19)

whereas the second addendum is

ηn
s

2
lim
h→0

h2 ∥χnSeuuu−uuu∥2
S+2h(rrrn|χnSeuuu−uuu)S

h
= η

n
s (S

⋆
e [χ

n,∗rrrn]− rrrn|uuu)S ,
(3.20)

where the superscript star denotes the adjoint operators (cfr. Appendix B) and the
asterisk the complex conjugation. Given the generality of uuu ∈ S, it results that

gggn =−ηdS
+;⋆

h O⋆
ρ

n +η
n
s (S

⋆
e [χ

n,∗rrrn]− rrrn) . (3.21)

Similarly, also the optimal step length αn can be computed analytically in the
general framework. Once the update direction vvvn is known, the step length αn is
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chosen by solving the line minimisation problem

min
α∈R

F [wwwn +αvvvn,χn] , (3.22)

which, being unconstrained, is solved by the solution of the Euler equation

d
dα

F [wwwn +αvvvn,χn]

∣∣∣∣
α=αn

= 0 . (3.23)

The left hand side of the latter equation can be elaborated by the chain-rule to obtain

dwwwF |(wwwn+αnvvvn,χn) [vvv
n] = (gggn|vvvn)S+α

n (
ηd∥OS +

h vvvn∥2
D+η

n
s ∥χ

nSevvvn − vvvn∥2
S
)
= 0 ,

(3.24)
and so

α
n =

−(gggn|vvvn)S
ηd∥OS +

h vvvn∥2
D+ηn

s ∥χnSevvvn − vvvn∥2
S
. (3.25)

It is worth noting that both the gradient gggn and the optimal step length αn have been
computed analytically by just assuming that the operators are linear and bounded.
The actual implementation or the numerical discretisation of the operators does not
change the results, which are completely general.

The application of the contrast source update step leads to the intermediate
guess couple (wwwn+1,χn), in which the contrast χn is updated keeping the contrast
source fixed. The contrast affects the cost functional F only by means of the state
residual, so to minimise the cost functional with respect to the contrast is equivalent
to minimise the weighted state error

Fs[wwwn+1,χ] =
∥rrr[wwwn+1,χ]∥2

S
2∥χEEE i∥2

S
. (3.26)

This problem is not trivial because of the non-linearity due to the presence of the
contrast both in numerator and in denominator. Usually, in order to deal analytically
with this minimisation, the weight is assumed constant and just the norm of the
state residual ∥rrr[wwwn+1,χ]∥2

S is minimised [47, 120]. This simplification is criticised
in [150] because it leads to a solution that is not the actual minimiser of F . Anyway,
this trick prevents the procedure from converging towards degenerate solutions [150],
justifying its spread in many CSI applications. Since the simplified functional is
convex, the contrast update can be performed analytically by solving the Euler
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equation

lim
h→0

∥rrr[wwwn+1,χn+1 +hu]∥2
S−∥rrr[wwwn+1,χn+1]∥2

S
h

=

lim
h→0

h2
∥∥u
(
EEE i +Sewwwn+1)∥∥2

S+2h
(
rrr[wwwn+1,χn+1]|u

(
EEE i +Sewww

))
S

h
=

2
(
rrr[wwwn+1,χn+1]|u

(
EEE i +Sewww

))
S =

2
(∣∣EEE i +Sewwwn+1∣∣2χ

n+1 −wwwn+1 ·
(
EEE i +Sewwwn+1)∗|u)X = 0 ,

(3.27)

for any scalar field u ∈ X, being X the continuous space of the contrast. Given the
generality of the test function u ∈ X, the latter equation is solved by

χ
n+1 =

wwwn+1 ·
(
EEE i +Sewwwn+1)∗∣∣EEE i +Sewwwn+1

∣∣2 , (3.28)

where EEE[wwwn+1] = EEE i +Sewwwn+1 is the current estimation of the total electric field.
As before, also in this case, the update has been performed analytically with no
assumptions about the actual implementation or the numerical discretisation of the
linear and bounded operators that appear in the cost function definition.

The iterative procedure that has been described performs an unconstrained min-
imisation, but it can be easily adapted to respect some a priori knowledge modelled
as convex constraint for the contrast. Precisely, if C ⊂ X is a convex subset of X and
the contrast is constrained to belong to C, it is sufficient to project the result of each
contrast update (3.28) into C to converge towards the constrained solution [120]. A
typical example of convex constraint is the positivity and negativity of the real and
imaginary parts of χ , respectively, due to the positivity of the physical properties ε

and σ . To enforce this constraint by projection consists in setting, after the contrast
update, the real or the imaginary part of χ equal to zero in the regions where they are
negative or positive, respectively. In addition, since the MRI scanner cannot measure
any signal in air, it is possible to identify a region of null contrast by elaborating the
measured data. The imposition χ = 0 in that region is a convex constraint that can be
enforced by setting the contrast in that region equal to zero after the contrast update.

In order to make the iterative procedure start, an initial guess is done on the
contrast source, which is selected by back propagation [120], namely www0 is the
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contrast sources that minimises the data residual norm ∥ρ[www]∥2
D,

www0 =

∥∥S +;⋆
h O⋆B+;s

1

∥∥2
S∥∥OS +

h S +;⋆
h O⋆B+;s

1

∥∥2
D

S +;⋆
h O⋆B+;s

1 /µ0 . (3.29)

By applying (3.28), the initial contrast χ0 is then obtained.

Being based on a functional point of view, the proposed formalism is completely
general and makes no hypothesis on the homogeneity of the background—ε̃b may
be heterogeneous—or the adoption of particular boundary conditions. In addition,
the whole procedure has been described with no assumptions on the numerical
implementation of the resolvent operators Se and Sh, which can rely on semi-
analytical solutions [120], on the finite difference method [132], on the finite element
method [152], on the wavelet transform [153] and so on in order to model the
scattered electromagnetic field in the most precise and efficient way.

3.2.3 Implementation for the boundary-free domain

In the generalised framework described above, to implement the csiEPT technique
for a particular situation means to define properly the linear and bounded resolvent
operators Se and Sh and to compute their adjoint operators S ⋆

e and S ⋆
h .

In this section, the generalised framework is specialised for a homogeneous and
boundary-free domain as the one originally considered in [74] and presented in
the previous chapter. In this way, the original proposal of csiEPT is recovered as
a particular case of the generalised formulation presented in this thesis [122]. In
such a domain, Maxwell equations are solved by the convolution integral of the
dyadic Green’s functions with the imposed current density [119]. Thus, the resolvent
operators for the scattered electromagnetic field are for any input www ∈ S [43]

(
Sewww

)
(xxx) =

∫
R3

((
∇∇+κ

2
bI
)

ψ(xxx− yyy)
)

www(yyy) dyyy , (3.30)

and (
Shwww

)
(xxx) =

∫
R3

iωε̃b∇ψ(xxx− yyy)×www(yyy) dyyy . (3.31)

In the latter relations, I is the identity operator and ψ is the fundamental solution
of the Helmholtz equation with propagation coefficient κb = ω

√
ε̃bµ0—in three
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dimensions it is

ψ(rrr) =
e−iκb|rrr|

4π|rrr|
, (3.32)

whereas in two dimensions it is

ψ(rrr) =−
iH(2)

0 (κb|rrr|)
4

, (3.33)

where H(2)
0 is the zeroth order Hankel function of the second kind. These relations

hold for homogeneous, possibly dissipative, backgrounds. Since the contrast source
www has a bounded support—it coincides with the bounded volume of the examined
body—, both the operators are well defined. Relations (3.30) and (3.31) are the same
as (2.71) and (2.72) from the previous chapter when the background is air.

Since the adjoint operators are defined by means of inner products, it is necessary
to explicitly choose the functional spaces D and S in order to compute them. Given
the discrete nature of the measurements, which can be interpreted as an ordered
collection of N complex values each one associated to a point in space or to a
voxel—with reference to the definitions of the observation operator (3.10) and (3.11),
respectively—, it is reasonable that D= CN , and that for any u,v ∈ D

(u|v)D = Re
N

∑
i=1

uiv∗i . (3.34)

Being a continuous space, there is more freedom in the definition of the state space
S. For sake of simplicity, in the following it is set that S= L2(Ω,C3) and so for any
uuu,vvv ∈ S

(uuu|vvv)S = Re
∫

Ω

uuu(xxx) · vvv∗(xxx) dxxx . (3.35)

In this particular case the domain is the whole space, so Ω = R3.

Once the inner products are defined, it is possible to compute the adjoint oper-
ators simply applying their definition (cfr. Appendix B). For the scattered electric
field resolvent Se the following equalities, where Fubini’s theorem [154] and the
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symmetry of the dyadic Green’s function are used, hold for any uuu,vvv ∈ S,

(uuu|Sevvv)S = Re
∫
R3

uuu(xxx) ·
(∫

R3

((
∇∇+κ

2
0I
)

ψ(xxx− yyy)
)

vvv(yyy) dyyy
)∗

dxxx =

Re
∫
R3×R3

uuu(xxx) ·
(((

∇∇+κ
∗
0

2I
)
ψ

∗(xxx− yyy)
)
vvv∗(yyy)

)
dxxx dyyy =

Re
∫
R3×R3

(((
∇∇+κ

∗
0

2I
)
ψ

∗(xxx− yyy)
)
uuu(xxx)

)
· vvv∗(yyy) dxxx dyyy =

Re
∫
R3

(∫
R3

((
∇∇+κ

∗
0

2I
)
ψ

∗(xxx− yyy)
)
uuu(xxx) dxxx

)
· vvv∗(yyy) dyyy = (S ⋆

e uuu|vvv)S .

(3.36)
Similarly, for the scattered magnetic field resolvent Sh the following equalities,
where Fubini’s theorem and the relation aaa · (bbb× ccc) =−ccc · (bbb×aaa) are used, hold for
any uuu,vvv ∈ S,

(uuu|Shvvv)S = Re
∫
R3

uuu(xxx) ·
(∫

R3
iωε̃b∇ψ(xxx− yyy)× vvv(yyy) dyyy

)∗
dxxx =

Re
∫
R3×R3

uuu(xxx) ·
(
− iωε̃

∗
b ∇ψ

∗(xxx− yyy)× vvv∗(yyy)
)

dxxx dyyy =

Re
∫
R3×R3

(
iωε̃

∗
b ∇ψ

∗(xxx− yyy)×uuu(xxx)
)
· vvv∗(yyy) dxxx dyyy =

Re
∫
R3

(∫
R3

iωε̃
∗
b ∇ψ

∗(xxx− yyy)×uuu(xxx) dxxx
)
· vvv∗(yyy) dyyy = (S ⋆

h uuu|vvv)S .

(3.37)
Thus, the adjoint of the resolvent operators are the correlation products of the
complex conjugate transpose of the dyadic Green’s functions and the input fields,

(
S ⋆

e uuu
)
(yyy) =

∫
R3

((
∇∇+κ

∗
0

2I
)
ψ

∗(xxx− yyy)
)
uuu(xxx) dxxx , (3.38)

and (
S ⋆

h uuu
)
(yyy) =

∫
R3

iωε̃
∗
b ∇ψ

∗(xxx− yyy)×uuu(xxx) dxxx , (3.39)

for any field u ∈ S. The derivation proposed here is based on the assumption that
Se : S→ S and Sh : S→ S, which is reasonable for S= L2(Ω,C3).

For the positively rotating part operator, it is convenient to underline that P :
S→ L2(Ω,C) and that for any u,v ∈ L2(Ω,C)

(u|v)L2(Ω,C) = Re
∫

Ω

u(xxx)v∗(xxx) dxxx . (3.40)
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Thus, the adjoint operator P⋆ : L2(Ω,C)→ S is obtained noting that for any u ∈
L2(Ω,C) and vvv ∈ S,

(u|Pvvv)L2(Ω,C) = Re
∫

Ω

u(xxx)
(

vx(xxx)+ ivy(xxx)
2

)∗
dxxx =

Re
∫

Ω

(
u(xxx)

2
x̂xx− i

u(xxx)
2

ŷyy
)
· vvv∗(xxx) dxxx = (P⋆u|vvv)S ,

(3.41)

namely, for any u ∈ L2(Ω,C),

P⋆u =
u
2

x̂xx− i
u
2

ŷyy . (3.42)

It is worth noting that S +;⋆
h = S ⋆

h P⋆.

Finally, for the observation operator a couple of definitions have been proposed.
Each definition leads to a different adjoint operator, so the two must be treated
separately:

i. In the pointwise evaluations case (3.10), the domain of the observation operator
is the subset of L2(Ω,C) of continuous functions, O : dom(O)⊂ L2(Ω,C)→
D. The domain of O is dense in L2(Ω,C), so it excludes just few elements,
which can be approximated with arbitrary precision by continuous functions.
The inner product reads for any u ∈ D and v ∈ dom(O)

(u,Ov)D = Re
N

∑
i=1

uiv∗(xxxi) = Re
N

∑
i=1

ui

∫
R3

v∗(xxx)δxxxi(xxx) dxxx =

Re
∫
R3

(
N

∑
i=1

uiδxxxi(xxx)

)
v∗(xxx) dxxx = (O⋆u,v)L2(Ω,C) ,

(3.43)

where δxxxi(xxx) is the Dirac delta centred in xxxi and the linearity of integration has
been employed. Therefore, using the definition of the observation operator by
means of pointwise evaluations (3.10), for any u ∈ D

(
O⋆u

)
(xxx) =

N

∑
i=1

uiδxxxi(xxx) . (3.44)

ii. In the case in which the observation is defined by mean values of regions (3.11),
the operator O : L2(Ω,C) → D is well defined for every element of the
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Lebesgue space. For any u ∈ D and v ∈ L2(Ω,C), the inner product is

(u|Ov)D = Re
N

∑
i=1

ui
1
|Vi|

∫
Vi

v∗(xxx) dxxx = Re
N

∑
i=1

ui
1
|Vi|

∫
R3

v∗(xxx)1Vi(xxx) dxxx =

Re
∫
R3

(
N

∑
i=1

ui

|Vi|
1Vi(xxx)

)
v∗(xxx) dxxx = (O⋆u|v)L2(Ω,C) ,

(3.45)
where 1Vi(xxx) is the indicator function of Vi, equal to one inside Vi and to zero
elsewhere. The linearity of integration has been used in the latter equalities.
Thus, if the observation operator is defined as in (3.11), then for any u ∈ D

(
O⋆u

)
(xxx) =

N

∑
i=1

ui

|Vi|
1Vi(xxx) . (3.46)

3.2.4 Extension to multi-channel transmit coils

The cost functional (3.15) can be modified in order to incorporate the measurements
of the transmit sensitivities of different sources, such as in the case of multiple coil
settings [74] or for multi-channel transmit coils [121]. Assuming that for each of J
settings, being J the number of considered sources, the scattered part of the transmit
sensitivity B+;j

1, j and the incident electric field EEE i
j are known—by measurements and

by simulations, respectively—, a contrast source www j for each setting and a common
contrast χ are unknowns. Thus, by introducing for each coil setting a data residual

ρ j[www j] = B+;s
1, j /µ0 −OS +

h www j , (3.47)

and a state residual
rrr j[www j,χ] = χEEE i

j −www j +χSewww j , (3.48)

the cost functional becomes [74, 121]

F
[(

www j
)J

j=1 ,χ
]
=

ηd

2

J

∑
j=1

∥ρ j[www j]∥2
D+

ηs[χ]

2

J

∑
j=1

∥rrr j[www j,χ]∥2
S , (3.49)

where ηd = (∑J
j=1 ∥B+;s

1, j /µ0∥2
D)

−1 and ηs[χ] = (∑J
j=1 ∥χEEE i

j∥2
S)

−1. The summations
of the square norms of the residuals are the naturally induced square norms in the
product spaces DJ and SJ , where the minimisation takes place.
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The minimisation procedure described above applies also for (3.49) with just few
variations [120]. The first step is the contrast sources (www j)

J
j=1 update. It is performed

using the conjugate gradient method with Polak-Ribière directions. Since just one
contrast source appears in each addendum of the cost function F , this step is easily
performed for each j = 1, . . . ,J by

wwwn+1
j = wwwn

j +α
nvvvn

j , (3.50)

where the direction vvvn
j is defined by (3.17) using the gradient of the cost functional

with respect to the j-th contrast source,

gggn
j =−ηdS

+;⋆
h O⋆

ρ
n
j +η

n
s (S

⋆
e [χ

n,∗rrrn
j ]− rrrn

j) . (3.51)

The step length αn is chosen as the optimal real-valued step that minimises the cost
functional along the selected direction,

α
n = argmin

α∈R
F
[(

wwwn
j +α

nvvvn
j
)J

j=1 ,χ
n
]
. (3.52)

The optimal step length can be computed analytically following the same procedure
as for the single-measurement case, namely by solving the Euler equation of the line
minimisation problem. The result is

α
n =

−
J

∑
j=1

(
gggn

j |vvvn
j
)
S

ηd

J

∑
j=1

∥OS +
h vvvn

j∥2
D+η

n
s

J

∑
j=1

∥χ
nSevvvn

j − vvvn
j∥2

S

, (3.53)

which is equivalent to (3.25), but the inner product and the norms are the ones
induced in the product spaces DJ and SJ .

Similarly, the contrast is updated by minimising analytically the SJ-norm of the
state residual ∑

J
j=1 ∥rrr j[wwwn+1

j ,χ]∥2
S. To solve the Euler equation associated to this
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minimisation problem leads to the following result, analogous to relation (3.28),

χ
n+1 =

J

∑
j=1

wwwn+1
j ·

(
EEE i

j +Sewwwn+1
j

)∗
J

∑
j=1

∣∣∣EEE i +Sewwwn+1
j

∣∣∣2 . (3.54)

Finally, the initial guess on the contrast source is done by back propagation [120],
namely the vector (www0

j)
J
j=1 is the minimiser of the DJ-norm of the data residual

∑
J
j=1 ∥ρ j[www j]∥2

D. Being the addendum of the sum all positive, it is equivalent to
choose www0

j such that it minimises ∥ρ j[www j]∥2
D, that is, for each j = 1, . . . ,J [120],

www0
j =

∥∥∥S +;⋆
h O⋆B+;s

1, j

∥∥∥2

S∥∥∥OS +
h S +;⋆

h O⋆B+;s
1, j

∥∥∥2

D

S +;⋆
h O⋆B+;s

1, j /µ0 . (3.55)

The extension of csiEPT to multiple coil settings may be extremely useful in
MRI safety applications when multi-channel transmit coils are used for parallel trans-
mission (pTX), because it allows to estimate the electric field EEE j[www j] = EEE i

j +Sewww j

generated by each channel. Indeed, thanks to the linearity of the electromagnetic
problem, the electric field generated by whichever feed of the channels is a linear
combination of the field generated by each channel. This fact opens up the possibility
of introducing a constraint on the maximum local SAR as a selection criterion when
looking for the optimal feed in pTX.

3.3 The importance of modelling physics

The intrinsic advantage of the generalised framework described in the previous
section is the possibility to adapt the csiEPT technique to different physical situations
by properly defining the linear and bounded operators Se and Sh. Since csiEPT is
an iterative procedure that applies many times the mentioned operators, the right
balance between accuracy and efficiency of the implementation must be found in
order to perform a reasonable estimate of the electric properties in few minutes.
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Since birdcage coils are usually shielded with conductive materials in order to
avoid the propagation of the RF field in the surrounding environment, avoid detuning
when the coil is inserted in the static magnetic field and increase efficiency, the
problem of a shielded birdcage coil is considered in this section. For such a problem,
the boundary-free implementation introduced above [74] is a rough approximation
of the physical system, which is better modelled by a numerical solution of Maxwell
equations [122].

3.3.1 2D implementation for a shielded birdcage coil

The mid-plane of a shielded birdcage coil, which is parallel to the transverse plane
x̂xx⊗ ŷyy, can be approximately modelled by the TM assumption, i.e. Hz = Ex = Ey =

0. This approximation is quite accurate when the coil is unloaded, anyway, it is
maintained in presence of a body, of which just a section is considered. Usually, the
shield for a birdcage coil is a cylinder concentric with the birdcage itself and made
of an electrically conductive material. In the following, the shield is assumed to be
made of a perfect electric conductor (PEC), i.e. it is assumed to have an infinite
electric conductivity. Mathematically, this means that the electric field must be
perpendicular to the surface of the shield, or equivalently that the component of the
electric field tangential to the surface of the shield must vanish, which reads like a
homogeneous Dirichlet boundary condition for the Es

z unknown.

The equivalent Maxwell equations (3.7) can be combined in a single second-order
equation for the scattered electric field by explicating the magnetic field from the
equivalent Faraday’s law

HHHs =
i

ωµ0
∇×EEEs , (3.56)

and substituting it in the equivalent Ampère’s law

∇×∇×EEEs = κ
2
b EEEs +κ

2
b www . (3.57)

In the particular case in which EEEs = Es
z ẑzz, the latter equation is the two-dimensional

Helmholtz equation. Thus, the mid-plane of a shielded birdcage coil can be modelled
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by the following problem,{
−∇

2Es
z −κ

2
b Es

z = κ
2
b wz , in Ω

Es
z = 0 , on ∂Ω

(3.58)

whose domain Ω is the circle bounded by the PEC shield. The linear and bounded
operator Se is conveniently interpreted as the resolvent of problem (3.58). Differently
from the boundary-free implementation (3.30), where an explicit representation of
Se is achieved, in this case the implicit definition is the best result that can be reached,
since no analytical solutions are known for the considered Helmholtz problem.

Being the resolvent operator Se defined implicitly, the computation of the adjoint
operator S ⋆

e is a little trickier than for the boundary-free implementation. In order to
perform this computation, it is convenient to introduce an abstract explicit definition
for the operator. Precisely, the Helmholtz problem with homogeneous Dirichlet
boundary conditions is denoted by the operator H , and the operator K is introduced
such that, for any u ∈ S, K u = κ2

b u. Thus, the problem (3.58) can be rewritten as
H Es

z = K wz, and the resolvent operator is

Se = H −1K , (3.59)

whose adjoint is (cfr. Appendix B)

S ⋆
e = K ⋆

(
H −1)⋆ = K ⋆ (H ⋆)−1 . (3.60)

On the one hand, whatever the choice of S is, it is easy to show that, for any u ∈ S,
K ⋆u = κ∗

b
2u. Indeed, for any u,v ∈ S,(

u|K v
)
S =

(
u|κ2

b v
)
S =

(
κ
∗
b

2u|v
)
S =

(
K ⋆u|v

)
S . (3.61)

On the other hand, the operator H ⋆ is associated to the partial differential equation
problem that is the dual of the Helmholtz one with homogeneous Dirichlet boundary
conditions. In summary, to apply the adjoint operator S ⋆

e to any field u ∈ S is
equivalent to multiply by κ∗

b
2 the solution v ∈ S to the dual problem [131]{
−∇

2v−κ
∗
b

2v = u , in Ω

v = 0 , on ∂Ω
(3.62)
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The resolvent operator for the scattered magnetic field Sh can be defined starting
from Se, because of Faraday’s law (3.56). Under the TM assumption, Faraday’s law
can be written in operator notation as

(
Hs

x ,H
s
y
)
= DEs

z =
i

ωµ0

(
∂Es

z

∂y
,−

∂Es
z

∂x

)
, (3.63)

where D is the differential operator proportional to the curl. Thus, the resolvent
operator for the magnetic field is defined by composition as Sh = DSe, whose
adjoint is S ⋆

h = S ⋆
e D⋆. In order to compute the adjoint operator D⋆, it is worth

noting that, by construction, the range of Se : S → ran(Se) ⊂ S is a subset of S
whose functions are null at the boundary ∂Ω. Therefore, for any "magnetic" field
uuu ∈ L2(Ω,C2) and any "electric" field v ∈ ran(Se)

(uuu|Dv)L2(Ω,C2) = Re
∫

Ω

uuu(xxx) ·
(

i
ωµ0

(
∂v
∂y

(xxx),−∂v
∂x

(xxx)
))∗

=

Re
∫

Ω

−i
ωµ0

(
∂uy

∂x
(xxx)− ∂ux

∂y
(xxx)
)

v∗(xxx) dxxx = (D⋆uuu|v)S ,
(3.64)

where Green’s identities have been used to move the derivatives from v to uuu and the
integral on the boundary vanishes because v = 0 on ∂Ω. As a consequence, D⋆ is
the formal adjoint of the differential operator D , namely for any field uuu ∈ L2(Ω,C2)

D⋆uuu =
−i

ωµ0

(
∂uy

∂x
− ∂ux

∂y

)
. (3.65)

The particular two-dimensional implementation of csiEPT for a shielded birdcage
coil developed in this section has been proposed for the first time by the author
in [122].

3.3.2 Numerical coding of the csiEPT implementations

The generalised procedure for csiEPT described above has been coded in C++ with
an extensive use of the object-oriented programming paradigm and the template
metaprogramming technique [155]. The adoption of such an advanced programming
set-up allows translating naturally in C++ code the abstract mathematical formalism
used in this chapter. Since the two-step iterative procedure for cost minimisation has
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been coded once and for all, different implementations of csiEPT are obtained just
by coding properly the resolvent operators Se and Sh and their adjoint operators.

Boundary-free implementation

The boundary-free domain implementation is characterised by convolution integrals
with a kernel G(xxx− yyy) for both the resolvent operators (3.30), (3.31). In this case,
given a generic input field f (xxx), the application of any of the operators can be
discretised on a uniform Cartesian grid of a parallelepiped big enough to contain the
support of f as the discrete linear convolution

ui, j,k = ∆x∆y∆z
Nx

∑
i′=1

Ny

∑
j′=1

Nz

∑
k′=1

Gi−i′, j− j′,k−k′ fi′, j′,k′ , (3.66)

where the subscripts i, j, k denote the evaluation of the quantity in the node xxxi, j,k of
the grid, ∆x, ∆y and ∆z are the steps in the three Cartesian directions of the grid and
Nx, Ny and Nz are the number of nodes in the grid for each direction.

In order to compute efficiently a discrete linear convolution, the discrete Fourier
transform can be used, as it is shown in the following with reference to the one-
dimensional case

ui =
N

∑
i′=1

Gi−i′ fi′ , for i = 1, . . . ,N . (3.67)

Clearly, the kernel Gi−i′ is the longest vector in the convolution relation, because
its index i− i′ goes from −N +1 to N −1, for a total of L = 2N −1 elements. The
discrete linear convolution can be computed by the discrete Fourier transform after
the introduction of the zero-padded input quantity

f̂i =

{
fi, if 1 ≤ i ≤ N

0, if N +1 ≤ i ≤ L
(3.68)

By assuming that all the sequences are extended from {1, . . . ,L} to Z by periodicity,
the following proposition is proven [156].

Proposition 3.1. The following relation holds,

N

∑
i′=1

Gi−i′ fi′ =
1
L

L

∑
k=1

θ
−ik

L

∑
m=1

Gmθ
mk

L

∑
n=1

f̂nθ
nk , (3.69)
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with θ = e−i2π/L. Namely, the discrete Fourier transform of a discrete linear convo-
lution is equal to the component wise product of the discrete Fourier transforms of
the zero-padded periodically extended factors of the convolution.

Proof. The right hand side of (3.69) is elaborated first to obtain

φi =
1
L

L

∑
k=1

θ
−ik

L

∑
m=1

Gmθ
mk

L

∑
n=1

f̂nθ
nk =

N

∑
n=1

L

∑
m=1

Gm fn
1
L

L

∑
k=1

θ
(m+n−i)k .

The summation of the θ powers can be computed analytically. Indeed, if the exponent of θ is
a multiple of L, i.e., there exists an integer s ∈ Z such that m+n− i = sL, then the addenda
of the summation are all equal to one and the result is L; otherwise—when the exponent of θ

is not a multiple of L—the sum is null. This can be seen geometrically by observing that
the addenda are disposed in the Argand diagram as the vertices of the regular polygon with
L sides inscribed in the circumference of radius 1 centred at the origin. Thus, the previous
relation can be further elaborated by using the Kronecker delta notation,

φi =
N

∑
n=1

L

∑
m=1

Gm fnδm+n−i,sL =
N

∑
n=1

Gi−n+sL fn , ∀s ∈ Z .

By choosing s = 0, the latter relation is equivalent to the left hand side of (3.69). ♦

This result is naturally extended to two or three dimensions by linearity. Since the
discrete Fourier transform is computed very efficiently by the fast Fourier transform
(FFT) algorithm [156], proposition 3.1 is extremely useful for the efficient coding of
the boundary-free implementation. The computational cost of the FFT is linearithmic
with respect to the number of nodes in the Cartesian grid. Precisely, the complexity
of computing the convolution (3.67) using the FFT algorithm is O(L logL), whereas
the complexity of the direct computation of the sum is O(N2), so, despite L > N, for
a grid with enough nodes the convenience of FFT is massive [157]. The efficient
implementation of the FFT algorithm in the library FFTW 3.3.4 [158] has been used
for the C++ coding of the operators.

In a completely analogous fashion, it is possible to apply the adjoint opera-
tors (3.38) and (3.39) by using the FFT algorithm. Both the operators are correlation
products whose kernels are the complex conjugate of the primal operators’ kernels.
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The one-dimensional case of study reads

ui =
N

∑
i′=1

G∗
i′−i fi′ , for i = 1, . . . ,N . (3.70)

In this case, it is true that

ui =
1
L

L

∑
k=1

θ
−ik

L

∑
m=1

G∗
mθ

−mk
L

∑
n=1

f̂nθ
nk =

1
L

L

∑
k=1

θ
−ik

(
L

∑
m=1

Gmθ
mk

)∗ L

∑
n=1

f̂nθ
nk .

(3.71)
The latter relation can be proven in the same way as proposition 3.1. It is worth noting
that the forward discrete Fourier transform of the kernel, ∑

L
m=1 Gmθ mk, appears in

both the convolution (3.69) and the correlation (3.71). Therefore, the code can be
optimised by performing the FFT of the two kernels once and for all during the
whole minimisation procedure.

Shielded birdcage coil 2D implementation

In the two-dimensional implementation for a shielded birdcage coil, the resolvent
operator Se and its adjoint are defined implicitly by the differential problems (3.58)
and (3.62). Since these problems cannot be solved analytically, the application of
the operators is performed relying on some numerical method. Precisely, the finite
element method (FEM) with linear elements on a triangular mesh is used in the
following. The result resembles what is described in [152].

Thanks to FEM, both the problems can be approximated as algebraic linear
systems, which have to be solved any time the operators are applied. It is possible
to solve the linear systems in an advantageous way for the iterative procedure
by noting that the stiffness matrices depend only on the electric properties of the
background. This fact allows to factorise the matrices only once before the start of
iterations and to perform just a back and a forward substitutions for each operator
application [132, 152]. In this way, the computational cost for the application of the
resolvent operators in csiEPT is quadratic with respect to the number of unknowns—
its complexity is O(N2). In order to code in C++ the electric field resolvent and its
adjoint operator, the linear algebra has been handled using the open source library
Eigen 3.3.3 [159].
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e

Σ

∂Σ

Fig. 3.9 Detail of the triangular mesh with a dual cell (dark green area). A diagrammatic
representation of the terms involved in (3.72) is reported on the picture.

The discrete implementation of the operators Sh and S ⋆
h is a little trickier. First,

being the electric field Es
z approximated by FEM with a continuous function that

is affine in each triangle of the mesh, the differential operator D can be applied
analytically on the discrete field to obtain an approximated magnetic field HHHs, which
is homogeneous on each triangle. As a consequence, the sets on which the discrete
adjoint operator D⋆ works are the set of "magnetic" fields that are constants in each
triangle of the mesh—the domain—and the set of "electric" fields that are continuous
and affine in each triangle of the mesh—the codomain. Thus, for any approximated
"magnetic" field uuu, D⋆uuu should assign a value to each node of the triangular mesh,
where the derivatives of the discontinuous field are not well-defined. To perform this,
Stokes’ theorem is employed as follows [122],

(D⋆uuu)e ≃
1

|Σe|

∫
Σe

(D⋆uuu)(xxx) dxxx =
−i

ωµ0|Σe|

∮
∂Σe

uuu(xxx) · τττ(xxx) dl(xxx) , (3.72)

where e is the index of the node where the output is evaluated, Σe is the cell of the dual
mesh corresponding to the node of index e and τττ is the unit vector counter clockwise
tangent to ∂Σe, as shown in Fig. 3.9. The dual mesh is defined by connecting the
barycentres of the triangles with the barycentres of the edges of the triangular mesh.
Since uuu is known and constant in each triangle, the circulation in the latter equation
is computed analytically for each node of the mesh. This approach is analogous to
the one proposed in [160] for the computation of the divergence.
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3.3.3 Model problem

The presented boundary free implementation (from now on referred to as FFT-CSI) is
computationally more efficient than the two-dimensional implementation in presence
of a conductive shield coded as described above (in the following referred to as
FEM-CSI). Indeed, in general FFT-CSI requires less time than FEM-CSI to perform
the same number of iterative steps [122]. This fact suggests the adoption of FFT-CSI
to recover the electric properties independently of the presence of a conductive
shield, in the expectation that the error introduced by disregarding the shield is
negligible with respect to the numerical approximation. In order to quantify the
discrepancy in the electric properties estimations achieved by FFT-CSI and FEM-CSI
in presence of a conductive shield, the two implementations are tested on a realistic
two-dimensional model problem.

A 16-legs birdcage coil with radius 16 cm is surrounded by a circular concentric
PEC shield with radius 20 cm. The mid-plane of the birdcage—parallel to x̂xx⊗ ŷyy—is
simulated under the TM assumption at 128 MHz, corresponding to a static field
B0 = 3T. Each leg of the birdcage is modelled as a line source in the same way
described in Section 3.1.3. The TM assumption is used also when the head of
the anatomical human model Duke of the Virtual Family [140, 141] is inserted
inside the birdcage coil. Only the section of the head pictured in figure 3.1 is
considered. The electric properties are assigned to each tissue by elaborating the
measurements collected in [112] in accordance to the 4th order Cole–Cole dispersive
model [30]. This procedure leads to the heterogeneous distributions depicted in
Fig. 3.2, which are considered as the reference ones. In this case, both the incident
and the total field are simulated numerically by the FEM applied to the triangular
mesh pictured in Fig. 3.10, which has been obtained by the open source software
Triangle 1.6 [161, 162]. The section of the head is located inside the inner structured
portion of the mesh, which has 1 mm sides.

The electromagnetic field computed in this way is used as virtual measurement
with no further post-processing, so it simulates a noise-free measurement where both
the magnitude and the phase of the transmit sensitivity are known exactly. This ideal
situation allows to study the error due to the physical modelling and the numerical
procedure without the additional influence of other assumptions and noise. For both
FFT-CSI and FEM-CSI, just a measurement of the transmit sensitivity is used as
input. Since FFT-CSI works on a uniform Cartesian grid, only the values on the
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Fig. 3.10 Mesh on which the FEM has been applied. On the right, a detail of the structured
portion of the mesh with 1 mm sides is shown.

structured portion of the mesh are used as input for it. The domain reduction implies
a speed increase in FFT-CSI with respect to FEM-CSI.

The virtual measurements are performed as a point-wise evaluation (3.10). The
measurement points are selected as the points of a uniform Cartesian grid with
1 mm resolution that fall inside the section of the head. This choice leads to an
accurate modelling of the measurement that are performed by a MRI scanner, since
no significant nuclear magnetic resonance signal is emitted by air due to the rareness
of protons. Because of the steep change of electric properties from air to skin, the
knowledge of the transmit sensitivity in some points in air is useful for a precise
recovery of the properties. On the other hand, the lack of this information affects
csiEPT [122]. Anyway, the accuracy is restored by the introduction of some a priori
knowledge. Precisely, the non-negativity of the electric conductivity (σ ≥ 0) and of
the real part of the contrast (εr ≥ 1) are imposed, together with a null contrast in air,
as convex constraints. Clearly, the nodes in air can be deduced as the points where
the transmit sensitivity cannot be measured by the MRI scanner.

Fig. 3.11 collects the electric properties distributions reconstructed by the two
implementations of csiEPT after 5000 iterative steps of the minimisation procedure.
The values estimated to be equal to the corresponding property of air (εr = 1 or
σ = 0) are discarded and not displayed in the pictures. FFT-CSI is not able to recover
the whole section, many points at the boundary are recovered as air, especially for
the electric conductivity, whose reasonable reconstruction begins at the depth of the
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Fig. 3.11 The actual distributions of the electric properties of the head section and the ones
recovered by the two implementations of csiEPT. The points where the estimated property
is the same as the one of air (εr = 1 or σ = 0) are not displayed.
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Fig. 3.12 Distributions of the actual electric properties and of the estimated ones along the
line depicted in the insets.

brain. Although the electric conductivity is recovered by FFT-CSI with an acceptable
accuracy inside the brain, the relative permittivity shows anomalous variations and
heterogeneities with respect to the actual value. On the other hand, both the electric
properties are accurately recovered by FEM-CSI. In this case, small errors in relative
permittivity appear at some tissues’ boundaries. They are related to the triangular
mesh. Indeed, the errors change if the structured mesh is oriented differently and
they would presumably disappear if quadrangular finite elements were employed.
The distributions recovered by the two implementations can be compared more
quantitatively in the plots of Fig. 3.12, where the trends of the actual and estimated
electric properties along a line are reported. Limiting the analysis to the recovered
points, the errors introduced by FFT-CSI are a little larger in relative permittivity
than in electric conductivity, whereas a very precise reconstruction is obtained by
FEM-CSI. However, the discontinuities at tissues’ boundaries are located very
precisely by both the methods.

It is worth noting that the discrepacies between FFT-CSI and FEM-CSI estima-
tions grow up when the measurements of the transmit sensitivity are performed on
coarser grids. The distributions recovered on a grid with 4 mm sides are reported
in Fig. 3.13, where the values estimated as the properties of air are not displayed.
Despite the low resolution, FEM-CSI recovers the tissues extension as well as the
value of the properties. On the other hand, from the FFT-CSI result it is possible just
to guess the boundaries of some tissues. It results that a robust implementation of
csiEPT requires an accurate modelling of the physics of the measurements.



3.3 The importance of modelling physics 87Relative permittivityFFT-CSI reconstruction  0 10 20 30 40 50 60 70 80 90 Electric conductivity (S/m)  0 0.5 1 1.5 2 2.5Relative permittivityFEM-CSI reconstruction  0 10 20 30 40 50 60 70 80 90 Electric conductivity (S/m)  0 0.5 1 1.5 2 2.5
Fig. 3.13 Distributions of the electric properties estimated by the two implementation of
csiEPT on a measurement and computational grid of 4 mm sides. The points where the
estimated property is the same as the one of air (εr = 1 or σ = 0) are not displayed.

Differently from the current case study, in [122] a section of the abdomen in a
whole-body coil of radius 35.6 cm has been studied. That situation results in a more
sensible discrepancy between the two implementation than the current case study.
In addition, that case gives more freedom in the positioning of the body inside the
coil, so it has been moved near the shield in an asymmetric configuration. Despite
this peripheral position of the body is not representative of a real imaging situation,
it stresses the role played by the shield in the scattered field definition, because of
the closeness of the equivalent scattering current with the conductive shield. In this
extreme case, FEM-CSI still recovers precisely both the electric properties, whereas
the errors committed by FFT-CSI grow up so much that the estimated distributions
are completely wrong, although the interfaces between tissues are still localised [122].
This fact leads to the same consideration stated in the previous paragraph, namely
that modelling the physics of the measurements as much accurately as possible is
recommended for a more robust implementation of csiEPT.
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Fig. 3.14 Trends of the cost function F [www,χ] (above) and of the L2 norm of the error in the
contrast χ (below) during the iterative procedures.

A global description of the behaviour of the two implementations is reported in
Fig. 3.14, where the cost functional F [wwwn,χn] and the integral error ∥χn −χ∥L2(Ω),
being χ the actual contrast map, are plotted against the number of iterations. The
analysis of the cost functional’s trends shows that FFT-CSI has converged to a
positive optimal cost that is about three orders of magnitude higher than the cost
reached after 5000 iterations by FEM-CSI. It is worth noting that FEM-CSI appears
to be still decreasing. Analogously, because of the implicit relation that exists
between the cost functional and the recovery error, FEM-CSI converges towards a
contrast whose integral error tends to zero, whereas the integral error of the contrast
estimated by FFT-CSI does not go below a positive minimum value.

Finally, because of the great value that csiEPT has in MRI safety applications,
where an online estimation of the local SAR is required (cfr. 3.1), a comparison in
the local SAR estimation by FFT-CSI and FEM-CSI is performed. The local SAR
recovered by the two implementations and the actual local SAR, computed assuming
a constant density δ = 1000kgm−3 equal to the density of water, are collected
in Fig. 3.15, where only the positive values are displayed. Despite FFT-CSI can
estimate the local SAR only inside the brain, because it has been unable to retrieve the
electric conductivity outside of it, it locates and quantifies as well as FEM-CSI the
peak values, which are slightly overestimated by both the implementations. This fact
happens because the local SAR is completely determined by the electric conductivity
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Fig. 3.15 The maps of the actual and estimated non-averaged local SAR due to a 16-legs
birdcage coil of radius 14 cm rescaled such that the actual local SAR maximum is equal
to 10 Wkg−1. The results are referred to the two-dimensional model problem with TM
assumption of an unshielded birdcage coil.

σ and the contrast source www, whose reconstructions are more precise than the one
of the relative permittivity εr. Clearly, the map of local SAR obtained by FFT-CSI
strongly deteriorates in stressed conditions like in proximity of the conductive shield
or in presence of coarse computational meshes.

The results achieved in this section show the importance of modelling accurately
the physics of the problem in order to obtain a robust model. In addition, because
of the higher computational cost of FEM-CSI with respect to FFT-CSI, the results
suggest the search for efficient implementations of the involved operators.

3.4 Noise propagation

Since MREPT is a quantitative imaging technique that produces images in which
every pixel brings numerical information, it is important to know how the uncertainty
propagates from the input to the output. The uncertainty in the input is due to the
adoption of a measurement procedure and can arise from thermal noise in addition to
random as well as systematic errors. Clearly, to study how the uncertainty associated
to the B1-mapping result propagates through the MREPT method is essential in
order to make it reliable for in vivo applications. Anyway, up to the best of the
author’s knowledge, besides the work developed in this thesis and published in [121]
relatively to csiEPT, just a few efforts have been done to investigate on this topic
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Fig. 3.16 Plots of the medians (solid lines) and shortest 95 % coverage intervals (bands) of
the L2 norm of the errors in relative permittivity εr and in electric conductivity σ against
the iterative step of csiEPT. For each SNR, the statistics are computed on 1000 random
extractions of noisy input obtained simulating a 16-legs birdcage coil loaded with a human
head.

relatively to stdEPT [80]. In this section, uncertainty (or noise, these two words are
used as synonym in the following) propagation in csiEPT is studied focusing on the
electric properties estimation. The uncertainty in the estimated contrast source www,
and consequently in the estimated electromagnetic fields, is not investigated.

A peculiar difficulty in the uncertainty assessment of MREPT is that, as stated
above, it is an ill-posed problem in the sense of Hadamard. Precisely, as a conse-
quence of the compactness of the resolvent operators Se and Sh, the dependence of
the electric properties distributions on the measured field is not continuous [51]. This
kind of ill-posedness translates in ill-conditioning of the discretised MREPT problem,
namely the presence of noise in the input data can strongly affect the recovery of the
electric properties maps. Since csiEPT solves the inverse problem by minimising
a cost functional with the conjugate gradient method, the ill-posedness appears in
the property of semi-convergence of the iterative procedure. Precisely, during the
iterations, the global error in the estimated properties starts decreasing until it reaches
a minimum after a finite number of iterations, then it increases towards an asymptotic
value.

The characteristic trend of the global error can be appreciated in the stochas-
tic representation of Fig. 3.16, where the medians and the shortest 95 % coverage
intervals of the global errors in the estimated relative permittivity and electric con-
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ductivity are plotted with respect to the number of iterations. The model problem
that leads to the data represented in Fig. 3.16 is the same considered in Section 3.1.3,
an unshielded 16-legs birdcage coil loaded with a human head, with the addition of
random noise to the simulated transmit sensitivity such that certain signal-to-noise
ratios (SNR) are modelled. The SNR and the extraction procedure are technically
described in the following of this section. A couple of valuable observations can be
done looking at the stochastic trends of the errors:

i. The property of semi-convergence of csiEPT is more pronounced in the relative
permittivity than in the electric conductivity. Indeed, the minimum of the
error in εr is reached after less iterative steps than the steps needed to reach
the minimum in σ . This fact recalls the comparison between FFT-CSI and
FEM-CSI, in which the computation of the electric conductivity appears to be
more robust than that of the relative permittivity.

ii. The property of semi-convergence is intrinsically related to randomness. In
the first iterations, the error is almost independent of the noise in the input, its
behaviour can be interpreted as deterministic. On the other hand, the role of
the noise becomes more and more important coming closer to the minimum
error and going on with the number of iterations, as can be seen from the
spreading of the coverage intervals.

In order to reduce the influence of the noise in the recovered maps of the electric
properties, and thus deal with the ill-posedness of the inverse problem, a regular-
isation strategy must be used. Since the contrast source www is already regularised
by the state error, which, for this reason, is sometimes referred to as Maxwell’s
regulariser [163], only the contrast χ needs additional a priori information. Many
regularisation strategies have been proposed in literature for the inverse scatter-
ing techniques in general and for the CSI method in particular, like, for example,
the adoption of a special basis with few elements for the description of the con-
trast [51, 164], or the introduction of additive or multiplicative regularisation terms
to the cost functional [165–167]. The multiplicative regularisation has been widely
used in association with CSI [48, 120, 160] and it has been applied with good results
to the original proposal of csiEPT [74]. Despite its diffusion, in this thesis the
multiplicative regularisation has not been used because of its computational burden.
Instead, in the following an early stopping criterion based on the data reported in
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Fig. 3.16 is used as regularisation strategy. This naïve approach is not so far from us-
ing a small basis or from adding a Tikhonov regularisation term to the cost function,
but it does not involve any additional computational cost.

3.4.1 Monte Carlo method

Since csiEPT is a non-linear minimisation problem and its linearisation could lead
to an inadequate representation, the noise propagation through it is studied with the
application of the Monte Carlo method (MCM), as prescribed by the Supplement 1
to GUM (Guide to the expression of Uncertainty in Measurement) [168].

As stated in [168], in the framework of uncertainty assessment the MCM does
not simulate a random physical process like in other applications, but provides a
numerical representation of the probability distribution of the output of a mathe-
matical model when the input is a known random variable. So, the MCM is used
to solve approximately a deterministic problem. In order to achieve the result, the
MCM follows a very simple procedure: a given number M of realisations of the input
random variable are sampled and for each one the mathematical model provides the
output. The sorted collection of the outputs is the searched numerical representation
of the propagated probability distribution.

In order to apply the MCM to the noise propagation in csiEPT the direct elec-
tromagnetic problem is simulated numerically so that the incident and the total
fields, used as input virtual measurements, are known exactly. The measurement
uncertainty (or noise) is modelled as an additive Gaussian noise and it is added only
to the transmit sensitivity. In this assessment, the incident electric field is assumed
noise-free. This assumption, done for sake of simplicity, is justified by the fact
that the incident electric field can be estimated, by simulations or by measurements,
with a supervised accuracy once and for all before any other measurement, so it is
reasonably expected to play a minor role in noise propagation with respect to the
transmit sensitivity mapping. Clearly, the results obtained by this investigation can
be further improved by using a richer error budget which takes into account the
uncertainty in the incident field measurement, in the possible misalignment of the
incident field and the measured transmit sensitivity and so on.

Precisely, the noise in the measured transmit sensitivity is modelled as a random
vector ΞΞΞ = (Ξi)

N
i=1 with multivariate complex Gaussian distribution. Each compo-
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nent Ξi of ΞΞΞ represents the random noise that appears in the measurement performed
in the i-th measurement node (or voxel), namely if B+

1,i denotes the actual transmit
sensitivity in the i-th node (or voxel), then the measured one is a realisation of the
random variable B+

1,i+Ξi. Despite some spatial correlations between the components
of ΞΞΞ may exist, for sake of simplicity it is assumed that they are statistically indepen-
dent. More strictly, it is assumed that (Re(Ξi), Im(Ξi))

N
i=1 is a set of independent and

identically distributed random variables with null mean and standard deviation u.

Since in the imaging community the concept of SNR is more common than that
of standard deviation, u is described in terms of SNR. For any random variable f ,
the SNR is defined as the ratio between the mean value of the magnitude of f and
the standard deviation of f [59] and it is denoted as SNR[ f ]. Thus, the SNR of the
i-th measurement is SNR[B+

1,i +Ξi] = |B+
1,i|/u. A typical parameter of the images

obtained by MRI examinations is the spatially averaged SNR, that for the transmit
sensitivity map is 〈

SNR[B+
1 +ΞΞΞ]

〉
=

〈
|B+

1 |
〉

u
, (3.73)

where u is assumed constant in space and the diamond brackets denote the spatial
averages. Given a spatially averaged SNR for the input map, the standard deviation
of the noise u is obtained from the latter relation. Clearly, the SNR is used in the
comments to the output of the MCM as well as for the input. In the following, the
spatial averaged SNR is referred to as global SNR, whereas its evaluation pixel-by-
pixel is referred to as local SNR.

For each analysed coil setting and considered global SNR of the transmit sen-
sitivity maps, M = 1000 realisations of noise are extracted and used by the MCM.
Fewer trials than that prescribed by [168] are used because of the significant com-
putational burden of the minimisation procedure. However, the distributions of the
output quantities are approximated reliably in this way, as can be seen looking at the
histograms below, especially the ones with a small variance.

3.4.2 Noise propagation from birdcage coil measures

The mid-plane of an unshielded 16-legs birdcage coil loaded with the head of the
anatomical human model Duke from the Virtual Family [140, 141], as the model
problem considered in Section 3.1.3, is analysed. The legs are positioned on a circle
of radius 14 cm. In order to take advantage of csiEPT for multi-channel transmit



94 Contrast source inversion electric properties tomography

 0

 10

 20

 30

 40

 50

 60

 0  100  200  300  400  500

L
2
 e

rr
o
r

Number of iterations

Relative permittivity

 0

 1

 2

 3

 4

 5

 6

 0  100  200  300  400  500

L
2
 e

rr
o
r 

(t
im

es
 1

0
0
0
)

Number of iterations

Electric conductivity

SNR 20 - J=1

SNR 50 - J=1

SNR 200 - J=1

SNR 20 - J=3

Fig. 3.17 Plots of the medians (solid lines) and shortest 95 % coverage intervals (bands) of
the L2 norm of the errors in relative permittivity εr and in electric conductivity σ against the
iterative step of csiEPT. For each global SNR, the statistics are computed on 1000 random
extractions of noisy input obtained simulating an unshielded 16-legs birdcage coil loaded
with a human head. In the cases J = 1 the birdcage is excited in quadrature, whereas in the
case J = 3 two linear and a quadrature excitations are used.

coils, some realistic excitations of birdcage coils are considered. Usual quadrature
birdcage coils are double-tuned by two ports located in such a way to form an angle
of 90°. The feed of each port leads to a linear excitation, one with a spatial phase
shift of 90° with respect to the other. Assuming that the 16 line sources are numbered
clockwise with the index k = 1, . . . ,16, the current in the k-th source within the two
linear excitations is, respectively,

Il1
k = I cos

(
kπ

8

)
, Il2

k = I cos
(

kπ

8

)
. (3.74)

The conventional quadrature excitation (3.6) is obtained by summing up the linear
excitations with a time delay of a quarter of period, viz.:

Iq
k = Il1

k + iIl2
k . (3.75)

Thus, it is possible to use csiEPT from the measurement of the transmit sensitivity
of a birdcage coil in quadrature (case J = 1), or from the measurements of all the
sensitivities obtainable by the three excitations (case J = 3), where the number
of measurements used to describe the cost functional (3.49) is denoted by J. In
Fig. 3.16, the stochastic behaviour of the global error, measured as the L2 norm of



3.4 Noise propagation 95

-100% -50% 0% 50% 100% -100% -50% 0% 50% 100%

Relative permittivity
error distributions

Electric conductivity
error distributions

10
0 

ite
ra

tio
ns

20
0 

ite
ra

tio
ns

SNR 20 SNR 50 SNR 200

Fig. 3.18 Relative frequency histograms of the relative error of the estimated electric proper-
ties in the point of white matter indicated in the inset map. The properties recovered after 100
and 200 iterative steps are considered for different amount of SNR in the transmit sensitivity
of a quadrature birdcage coil. The vertical blue lines denote the intrinsic bias, namely the
relative error in the estimation in absence of noise. The vertical red lines denote the extremes
of the shortest 95 % coverage intervals of the approximated distributions.

the difference between the actual and the estimated values, is reported for different
amount of noise (global SNR 20, 50 and 200) in the case J = 1. The trend of the
error in the case J = 3 when the input data have global SNR 20 is compared with the
others in Fig. 3.17, which makes clear the advantage of using multiple measurements
in csiEPT. Indeed, despite the higher amount of noise, the evolution of the red line
(global SNR 20 and J = 3) is very close to that of the blue line (global SNR 50 and
J = 1).

In Fig. 3.18, the relative frequency histograms of the relative error in the estima-
tion of the electric properties after 100 and 200 iterations are reported for different
amounts of noise. Reasonably, the uncertainty in the output is higher when it is
higher in the input. Moreover, as can be envisaged from the trends of Fig. 3.16, the
variance of the output distributions increases with the number of iterations of the
minimisation procedure. The distributions are all approximately symmetric, but the
one obtained after 200 steps with an input SNR equal to 20. In this case, a localised
peak is present at −100 % for both the properties as a consequence of the positivity
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Fig. 3.19 Relative frequency histograms of the relative error of the estimated electric proper-
ties in the point of cerebrospinal fluid indicated in the inset map. The properties recovered
after 100 and 200 iterative steps are considered for different amount of SNR in the transmit
sensitivity of a quadrature birdcage coil. The vertical blue lines denote the intrinsic bias,
namely the relative error in the estimation in absence of noise. The vertical red lines denote
the extremes of the shortest 95 % coverage intervals of the approximated distributions.

constraint applied to the minimisation problem. It is worth noting that the mean
value of the approximated distributions does not coincides exactly with 0 %. Instead,
the distributions show a bias that is independent of the input SNR but depends on
the number of iterations. Precisely, the intrinsic bias is the relative error committed
by csiEPT in absence of noise. Since the point considered in Fig. 3.18 lies in an
extended homogeneous region, in this case the intrinsic bias is quite low already
after 100 iterations suggesting the convenience in stopping the iterative procedure
after 100 steps in order to bound the uncertainty in the estimated properties.

Similarly, the relative frequency histograms for a pixel of a very narrow tissue
are shown in Fig. 3.19. Besides the variance of the distributions increases with the
number of iterations, the presence of a strong bias cannot be ignored in this situation.
Thus, the uncertainty assessment benefits from the root mean square (RMS) statistic,
which is defined as the sum of the square of the mean and the variance of the
considered distribution. By this way, the error is quantified by taking into account
both the deterministic bias and the stochastic variance. The RMS appears to decrease
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Fig. 3.20 Local SNR for the output properties after 100 iterative steps. Different input global
SNR are considered.

when moving from 100 to 200 iterations only for the electric conductivity when the
input SNR is the highest (equal to 200). For all the other cases, the reduction of bias
is not strong enough to compensate the increase in the variance. Thus, also for this
pixel, to stop the iterative procedure after 100 steps seems to be a convenient choice.

The comparison between Fig. 3.18 and Fig. 3.19 suggests a strong dependence
of the result with respect to the spatial position. This fact is confirmed by Fig. 3.20,
where the maps of the local SNR of the electric properties estimated after 100
iterative steps are collected for different input SNR. It results that the maximum
local SNR depends quadratically on the input SNR and that its spatial distribution
is independent of the input SNR. Actually, the author has shown in [121] that the
spatial distribution of the SNR shows a strong correlation with the intensity of the
total electric field. This observation can be seen as the statistical interpretation of
the issue in the recovery of the properties by csiEPT in the minimum field intensity
region. The quadratic fit holds also for the global SNR, which is equal to 62 for the
relative permittivity and 11.8×103 for the electric conductivity when the input SNR
is equal to 200. It is worth noting that, despite the global SNR in electric conductivity
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Fig. 3.21 Relative frequency histograms of the relative error of the estimated electric proper-
ties in the pixels (cerebrospinal fluid on top and white matter on bottom) indicated in the
inset maps on the left. The properties recovered after 100 iterative steps are considered
for different amount of SNR in the transmit sensitivity of a quadrature birdcage coil with
different excitations. The vertical blue lines denote the intrinsic bias, namely the relative
error in the estimation in absence of noise. The vertical red lines denote the extremes of the
shortest 95 % coverage intervals of the approximated distributions.

is higher that the input SNR, the uncertainty is kept large by the strong bias, as can
be seen in Fig. 3.19.

The adoption of multiple measurements obtained by employing three excitations
of the birdcage coil strongly improves the estimation of the properties, as can be
deduced from the relative frequency histograms of Fig. 3.21. Indeed, despite the
noisy input with global SNR 20, the use of three measurements (J = 3) leads to
coverage intervals narrower than the ones reached when the input SNR is equal to
50 and just a measurement of the transmit sensitivity is used (J = 1). Globally, the
SNR is ten times higher than that obtained from J = 1 with input global SNR 20.
Precisely, it is equal to 6.5 for the relative permittivity and 1.12×103 for the electric
conductivity, which remains strongly biased in the small tissues.
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3.4.3 Noise propagation from TEM coil measures

Since the advantage that has been proven above introduced by the adoption of
measurements of multiple transmit sensitivities, the TEM coils, traditional multi-
channel transmit coils, are studied in the following. The appearance of a volume
TEM coil is very similar to that of a birdcage coil, but instead of using end-rings,
each leg is usually joined to the conductive shield which plays the role of returning
line [97]. Despite TEM coils are often driven in quadrature like birdcage coils, their
design allows that each leg is driven independently from the other ones leading to as
many possible excitations as the number of legs in the coil. This coil is modelled in
a boundary-free domain by setting a second circle of line sources around an inner
one analogous to that described for birdcage coils [121]. Each couple of lines, the
inner and the corresponding outer, constitutes an independent system and reflects a
possible excitation of the coil. Formally, assuming the presence of J legs numbered
clockwise by k = 1, . . . ,J, the j-th excitation is assumed to have in the inner circle
the currents

ITEM, j
k = δ j,kIei2πk/J , (3.76)

and in the outer circle the currents −ITEM, j
k . In the latter relation, δ j,k is the Kronecker

delta, equal to one when j = k and to zero otherwise. Thus, only one leg at the time
is run by current.

TEM coils with inner radius 14 cm and outer radius 16 cm are analysed varying
the number of legs J. Precisely, the cases with J = 8, 12, 16 and 24 legs are
considered. The integral errors of both the electric properties fall very quickly
and in a deterministic fashion—with narrow coverage intervals. The plot of the
convergence is not reported because the trend of the errors for the four cases are
overlaid and cannot be distinguished. Despite the minimum of the median global
errors is not reached there, the procedure is stopped after 60 iterative steps because
of the computational burden. It is worth noting that after 60 steps, the properties
estimated in absence of noise with the 8-legs TEM coil are much more precise
than that estimated after 100 steps with a quadrature birdcage coil; indeed, they are
comparable with the properties estimated with a quadrature birdcage coil after 300
steps. In addition, the low field intensity issue of csiEPT, which is present also when
using the birdcage coil with three excitations, is completely absent when using a
TEM coil, probably because of the wide heterogeneity in the transmit sensitivities of
the legs.
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Fig. 3.22 Relative frequency histograms of the relative error of the estimated electric proper-
ties in the pixels (cerebrospinal fluid on top and white matter on bottom) indicated in the
inset maps on the left. The properties recovered after 60 iterative steps are considered for
TEM coils with different number of legs, and so of excitations. The input global SNR is
equal to 20. The vertical blue lines denote the intrinsic bias, namely the relative error in the
estimation in absence of noise. The vertical red lines denote the extremes of the shortest
95 % coverage intervals of the approximated distributions.

The relative frequency histograms of Fig. 3.22 represents the probability distri-
bution of the relative error of the electric properties estimated in a couple of pixels.
As already seen studying the birdcage coil, the error committed in the pixel in the
middle of the wide tissue—white matter—has a larger variance than the error in the
narrow tissue—cerebrospinal fluid. On the other hand, the error in the cerebrospinal
fluid has a larger intrinsic bias than the one in the white matter. The approximated
distributions are symmetric and centred around the value that would be estimated
by csiEPT in absence of noise. This observation allows a precise estimation of the
deterministic bias. As expected, the distributions get narrower with increasing the
number of legs and so the corresponding number of input.
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is equal to 20. TEM coils with different number of legs are considered.
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Fig. 3.24 Electric properties maps estimated by csiEPT from noisy virtual measurements of
transmit sensitivities generated by a 16-legs birdcage coil with three excitations and an 8-leg
TEM coil with 8 excitations. The input global SNR is equal to 20.
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Looking at the histograms it appears that TEM coils reduce the width of relative
error coverage intervals similarly to using three excitation for the birdcage coil.
Actually, the advantage of using TEM coils is greater because of a lower spatial
variability of the output SNR than the one achieved from birdcage coil measurements.
This fact is clear in Fig. 3.23, where the SNR assumes everywhere a positive value
and does not tend to zero in the inner region like happens in Fig. 3.20. The existence
of a linear dependence of the output local SNR with respect to the number of legs is
made clear by the varying extremes of the chromatic bars in Fig. 3.23. This linear
tendency is found also in the global SNR, which in the case of 8 legs is equal to 2 for
the relative permittivity and 375 for the electric conductivity. Despite these values
are lower than that achieved by a birdcage coil with just three measurements, they
are preferable because obtained as average values of more homogeneous maps.

The improvement in accuracy due to the adoption of multi-channel TEM coils can
be appreciated more directly in the maps of Fig. 3.24, where the electric properties
recovered starting from a couple of realisations of the virtual input measurements are
reported. Despite the fewer number of iterative steps, the maps recovered from the
transmit sensitivities of an 8-legs TEM coil are more detailed than the ones obtained
elaborating the transmit sensitivities of a 16-legs birdcage coil with three excitations.
In addition, there are no artefacts in the inner region of the estimations from the TEM
coil. Clearly, the use of multiple measurements increases the computational cost of
the minimisation procedure linearly with respect to the number of measurements J.
However, the additional computational burden can be handled efficiently by code
parallelisation, since all the expensive computations—relations (3.49), (3.51), (3.53)
and (3.54)—can be parallelised trivially with respect to the setting index j. By this
way, on a fully equipped hardware, csiEPT execution would be independent from
the number J and the use of multiple measurements would not be a load.

These results show the convenience of applying csiEPT to multi-channel TEM
coils because of the low number of required iterative steps, the absence of the
minimum field intensity issue and the high SNR of the output, even without the
adoption of sophisticated regularisation strategies. Thus, it seems feasible to apply
csiEPT to local SAR monitoring during the optimal feed selection in pTX.



Chapter 4

Conclusions and future perspectives

In this thesis, the magnetic resonance-based electric properties tomography (MREPT)
has been deeply investigated starting from a thorough review of the plethora of im-
plementation approaches proposed in literature (cf. Chapter 2). In particular, several
methods have been coded and applied to a simple two-dimensional model problem
in order to illustrate their characteristics. The responsiveness of the very simple
standard EPT (stdEPT) is countered by large systematic errors in the estimated elec-
tric properties [63]. A higher accuracy is achieved by the dual-excitation algorithm
(deEPT) at the cost of more measurements and some requirements about the transmit
coil [59]. An interesting trade-off between precision in the estimation and number
of needed measurements is obtained by interpreting the electric properties as the
solution of a convection-reaction partial differential equation (crEPT), the numerical
solution of which is a significant computational burden [111]. A similar compromise
is reached by csiEPT, which pursues an optimal control approach based on the
contrast source inversion technique [74].

Amongst all the methods, csiEPT has been selected for further studies, reported
in Chapter 3, because of the capability of this method to quantitatively estimate,
besides the electric properties distributions, the local specific absorption rate (SAR)
of the RF coil of the MRI scanner as a by-product [118, 134]. This characteristic
opens the possibility to apply csiEPT for safety purposes, which are relevant, for
example, in parallel transmission (pTX) or in ultra-high field MRI [135]. Thus, a
generalised mathematical framework, based on the functional point of view, has
been proposed for csiEPT [122]. Differently from the original proposal of the
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method, this generalised framework can be easily adapted in order to apply csiEPT
in different contexts. This flexibility has been exploited in the thesis to show the
importance in csiEPT of an accurate modelling of the measurement system. In
particular, virtual measurements have been produced simulating a RF birdcage
coil in presence of a cylindrical conductive shield, usually present in practice, and
csiEPT has been applied assuming both the presence and the absence of the shield.
Predictably, taking into account the presence of the shield leads to estimations
far more accurate by csiEPT [122]. Lastly, noise propagation through the inverse
technique has been studied by means of the Monte Carlo method applied to a
particular model problem—a section of the human head has been considered. Since
MREPT is an ill-posed inverse problem, managing noisy input requires special cares,
as described in Chapter 3. Anyway, it appears that csiEPT is highly robust to noise
when RF multi-channel transmit coils—a typical instrument for pTX—are used [121].
This result is particularly interesting, because it suggests good performances of
csiEPT in a context in which local SAR estimation is very important for safety
purposes [135].

The analyses and the results collected in this thesis prove the convenience of
further developing MREPT and in particular csiEPT. The next steps in order to
make csiEPT ready for in vivo applications would be the development of a three-
dimensional software implementation of the method, alongside the overcoming
of the issues related to transmit sensitivity phase mapping. On the one hand, an
efficient three-dimensional code for csiEPT can be achieved by exploiting special
hardware, possibly involving accelerators like graphical processing units (GPUs), and
parallel programming paradigms. On the other hand, special MRI sequences should
be developed to map the transmit sensitivity phase without strong hypotheses—
like the present transceive phase assumption. Or alternatively, the possibility of
performing csiEPT with a partial knowledge of the transmit phase—or even without
it—should be investigated, as was the case for deEPT and local Maxwell tomography
(cf. Chapter 2). The proposed development of csiEPT would allow its application in
real contexts, leading to the in vivo validation of the method as a final fundamental
step. Because of the relevance of csiEPT in improving pTX and ultra high field MRI
safety by leading to a real-time patient-specific local SAR evaluation, this method
would likely have a positive impact on the clinical introduction of these advanced
MRI equipments.



Appendix A

Magnetic resonance imaging

Magnetic resonance imaging (MRI) is a non-invasive technique able of producing
images of sections of human bodies by measuring, in an effective sense that will
be clarified in the following, the density of hydrogen nuclei—i.e., protons—in the
different tissues. In order to achieve this result, the patient is exposed to three
different magnetic fields, whose task is to excite the hydrogen nuclei’s spins and to
make them rotate with certain time-varying space-dependent phases, such that the
nuclear magnetic resonance (NMR) signal emitted by the body brings a retrievable
spatial information [169, 35, 170]. The following is a rough description of the
involved magnetic fields and their role in MRI (Fig. A.1):

i. The static field BBB0 produces a net orientation of the protons’ spins and prepares
them to rotate around its direction. The static field identifies a longitudinal
direction with unit vector ẑzz such that BBB0 =−B0ẑzz, being B0 the field magnitude.
The induced spins’ rotation is called Larmor precession and its frequency—
called Larmor frequency—is proportional to B0 [169]. In order to generate a
static field as much as possible homogeneous in the imaging region, particular
conductive/superconductive coils are used [171].

ii. The radiofrequency (RF) field BBB1 is orthogonal to the static field and has
almost circular polarisation. Its purpose is to resonate with the Larmor pre-
cession in order to provide to the protons’ spins the energy necessary to emit
the NMR signal. Indeed, the RF field flips the spins from the longitudinal
direction of BBB0 towards the transverse plane x̂xx⊗ ŷyy, being x̂xx, ŷyy and ẑzz the unit
vectors of a Cartesian coordinate system. Thus, it actually triggers the Larmor
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Fig. A.1 Schematic diagram of the coils which generate the three magnetic fields for MRI.

precession [169]. The RF field BBB1 is produced by special coils designed for
MRI [97].

iii. The gradient field BBBGGG is directed as the static field, but it is spatially non-
homogeneous—indeed, its name derives from its non-null spatial gradient.
During a MRI examination, this field is turned on and off according to a certain
sequence in order to make the spins rotate at different Larmor frequencies
depending on their position in the body. In this way, each point in the body
accumulates a different phase and the emitted NMR signal can be elaborated
to retrieve this spatial information [169].

The principles of the MRI technology, which have been just outlined above, can
be rigorously described relying on the phenomenological Bloch equations [172],

Ṁx = γ (MyBz −MzBy)−Mx/T2

Ṁy = γ (MzBx −MxBz)−My/T2

Ṁz = γ (MxBy −MyBx)− (Mz −M0)/T1

(A.1)

which describe the evolution of the macroscopic magnetisation MMM due to protons’
spins with gyromagnetic ratio γ = 267.513×106 rads−1 T−1 when exposed to an
external magnetic field BBB, in which the static field BBB0 is the contribution with highest
intensity. The relaxation times T1 and T2—called respectively spin-lattice and spin-
spin relaxation times because mainly due to the interaction of the spins with the
background and with the other spins—and the asymptotic magnetisation M0 are
the phenomenological terms added by Bloch to the macroscopic Larmor precession
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equation [172]
ṀMM = γMMM×BBB . (A.2)

A.1 Larmor equation and image recovery

To understand how the images are generated by the MRI scanners, it is convenient
to neglect the relaxation effects and focus on the Larmor equation (A.2), which, in
presence of the static field BBB0 =−B0ẑzz only, becomes

ṀMM =−γB0 (Myx̂xx−Mxŷyy) . (A.3)

The transverse component of this vector equation can be treated as a complex
scalar one by interpreting the transverse plane x̂xx⊗ ŷyy as the complex Argand plane,
namely by biunivocally associating the complex number M⊥ = Mx + iMy, being i
the imaginary unit such that i2 = −1, to the transverse vector MMM⊥ = Mxx̂xx+Myŷyy.
In the following, the underlined symbols denote complex numbers that have to be
interpreted according to this description of the transverse plane—which is far from
the usual definition of phasors! Thus, it is possible to write the evolution of the
transverse component of the magnetisation as

Ṁ⊥ = iω0M⊥ ⇒ M⊥(t) = M0,⊥eiω0t , (A.4)

where ω0 = γB0 is the Larmor angular frequency and M0,⊥ is the transverse compo-
nent of the initial condition. By definition of the complex exponential function, this
relation depicts the counterclockwise precession of the magnetisation vector around
the z-axis and is the basis of the signal emitted by the body during MRI examination.

Lemma A.1. Let be AAA(t)=Ax cos(ωt+ϕx)x̂xx+Ay cos(ωt+ϕy)ŷyy a generic harmonic
vector with angular frequency ω , and let be{

x̂xx+(t) = cos(ωt)x̂xx+ sin(ωt)ŷyy

ŷyy+(t) =−sin(ωt)x̂xx+ cos(ωt)ŷyy

{
x̂xx−(t) = cos(ωt)x̂xx− sin(ωt)ŷyy

ŷyy−(t) = sin(ωt)x̂xx+ cos(ωt)ŷyy

two reference frames rotating at the same angular frequency ω counterclockwise
and clockwise, respectively. There exists one and only one description of AAA with
respect to the four rotating axis with stationary coefficients.
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Proof. Existence and unicity of the coefficients are proven in a constructive way. Let be A+
x ,

A+
y , A−

x and A−
y the four unknown constant coefficients, then

AAA(t) =
(
(A+

x +A−
x )cos(ωt)+(A−

y −A+
y )sin(ωt)

)
x̂xx+(

(A+
x −A−

x )sin(ωt)+(A−
y +A+

y )cos(ωt)
)

ŷyy .

At the same time,

AAA(t) =
(
Ax cos(ϕx)cos(ωt)−Ax sin(ϕx)sin(ωt)

)
x̂xx+(

Ay cos(ϕy)cos(ωt)−Ay sin(ϕy)sin(ωt)
)
ŷyy .

Since x̂xx and ŷyy are linearly independent vectors and cos(ωt) and sin(ωt) are linearly indepen-
dent functions, the two equalities lead to a non-singular linear system of four equations in
four unknowns whose solution is

A+
x = (Ax cos(ϕx)−Ay sin(ϕy))/2 , A+

y = (Ay cos(ϕy)+Ax sin(ϕx))/2 ,

A−
x = (Ax cos(ϕx)+Ay sin(ϕy))/2 , A−

y = (Ay cos(ϕy)−Ax sin(ϕx))/2 .

♦

Lemma A.2. Let AAA(t) = A+
x x̂xx+(t)+A+

y ŷyy+(t)+A−
x x̂xx−(t)+A−

y ŷyy−(t) be a generic
harmonic vector whose components are defined as in lemma A.1, and let AAA =

Axx̂xx+Ayŷyy be its phasor. The following relations hold,

A+ =
(
Ax + iAy

)
/2 , A− =

(
Ax − iAy

)∗
/2 ,

where A+ = A+
x + iA+

y and A− = A−
x + iA−

y are respectively the positively and the
negatively rotating components in the rotating Argand planes, and the asterisk
denotes the complex conjugation.

Proof. The thesis derives straightforward from the proof of lemma A.1. ♦

As expected, the transverse component of the magnetisation has only the counter-
clockwise—or positively—rotating component at the Larmor frequency, MMM⊥ =

MMM+
⊥ = M+

⊥,xx̂xx++M+
⊥,yŷyy+. Relation (A.4) can also be written in the rotating frame as

M+
⊥ = M0,⊥ = M0,⊥eiϕ0 , being M0,⊥ the magnitude of the transverse component.

Experimental observations and quantum mechanical considerations—as well as
the phenomenological Bloch equations—show that the application of a strong static
field induces a net magnetisation MMM0 directed as the static field itself and proportional
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to both the static field BBB0 and the proton density [169, 170]. Thus no precession
happens, because, despite the transverse component of the magnetisation would
rotate around BBB0, initially only the z-component is present. In order to provide a non-
null transverse magnetisation, the RF field BBB1 is introduced. To clearly understand
its effect, it is convenient to describe the Larmor precession in the positively rotating
reference frame at the Larmor frequency defined by the unit vectors x̂xx+, ŷyy+ and ẑzz. In
this case

ṀMM =
∂M+

x
∂ t

x̂xx++
∂M+

y

∂ t
ŷyy++

∂Mz

∂ t
ẑzz︸ ︷︷ ︸

Eulerian derivative

+M+
x

∂ x̂xx+

∂ t
+M+

y
∂ ŷyy+

∂ t︸ ︷︷ ︸
Fictitious transport term

. (A.5)

By computing the time derivatives of the rotating basis vectors, it is easy to show
that the fictitious transport term is equal to γMMM×BBB0. Thus, denoting the Eulerian
derivative by (∂MMM/∂ t)+, the Larmor equation in presence of both the static and the
RF fields in the positively rotating frame is(

∂MMM
∂ t

)+

= γMMM×BBB1 . (A.6)

The RF coils for MRI are designed to generate BBB1 in the transverse plane as an
almost positively rotating field at the Larmor frequency. Moreover, in equation (A.6)
the negatively rotating component of BBB1 would have an apparent frequency equal
to the double of the Larmor frequency—fast enough to be neglected. Thus, it is
possible to assume that only BBB+

1 , which is stationary in the rotating frame, plays
a role in (A.6) [35]. In the same way as for the precession around the static field,
the RF component BBB+

1 makes the magnetisation vector rotate around its direction at
the angular frequency ω1 = γB+

1 , providing the transverse component M0,⊥. The
magnitude of the RF field is denoted by B+

1 .

Precisely, after an exposure to the RF field of duration τ , the magnetisation
vector forms an angle, usually called flip angle, α = ω1τ with its previous direction.
Assuming MMM(0) =−M0ẑzz as an initial condition, the transverse component induced
by B+

1 = B+
1 eiϑ is obtained by simple trigonometric considerations [35],

M0,⊥ = iM0 sin
(
γB+

1 τ
) B+

1
B+

1
. (A.7)
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By rotating the magnetisation towards the transverse plane, the RF field—in partic-
ular its positively rotating part—gives to the protons the energy that they need to
revolve around BBB0 and, consequently, to emit a signal. Clearly, the largest transverse
magnetisation is reached by the optimum flip angle α = π/2 and the exposure time
τ needs to be carefully set.

Before introducing the gradient field BBBGGG, it is convenient to see what the measured
signal is by exploiting the reciprocity principle [173, 170]. The magnetic field BBBMMM

due to the magnetisation MMM can be expressed as the solution of the equation

∇×BBBMMM = ∇×MMM , (A.8)

where the conduction and displacement currents have been neglected [173]. The
equation is solved by the Biot-Savart formula

BBBMMM(xxx, t) = µ0 ∇xxx ×
∫
R3

∇yyy ×
(
MMM(yyy, t)

)
ψ(xxx− yyy) dV (yyy)

= µ0 ∇xxx ×
∫
R3

∇xxxψ(xxx− yyy)×MMM(yyy, t) dV (yyy) ,
(A.9)

where ψ(rrr) is the Green’s function of the Laplace problem in free space with
Sommerfeld radiation conditions. The last equality in (A.9) can be proven applying
the Green’s identities and noticing that the integral on the boundary is null because
supp(MMM(·, t)) = Ω ⊂ R3 is bounded at each instant t, being Ω the volume occupied
by the examined body. According to Faraday’s law, the difference of potential at the
terminals of a generic coil ∂A induced by the magnetisation is

V (t) =−
∮

∂A
EEEMMM(xxx, t) · dlll(xxx) =

∫
A

∂BBBMMM

∂ t
(xxx, t) · dSSS(xxx)

=
∮

∂A

(
µ0

∫
R3

∇xxxψ(xxx− yyy)× ∂MMM
∂ t

(yyy, t) dV (yyy)
)
· dlll(xxx) ,

(A.10)

where Stokes’ theorem has been exploited in the last step. Finally, by inverting the
order of integration, it is possible to write the electromotive force in the coil as

V (t) =
∫
R3

∂MMM
∂ t

(yyy, t) · B̃BB(yyy) dV (yyy) , (A.11)
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where B̃BB denotes the magnetic field that would be induced by a fictitious unitary
current running in ∂A,

B̃BB(yyy) =−µ0

∮
∂A

∇xxxψ(xxx− yyy)× dlll(xxx) . (A.12)

The relation (A.11), due to David Hoult [174, 175], is a milestone in MRI history and
is usually referred to as an example of the reciprocity principle [35, 170]. Exploiting
the harmonic dependence of MMM on time, (A.11) can be derived in a more general
framework, where B̃BB denotes the ratio between the field generated by the receiver in
presence of the examined body and the current which induces it [176]—in this case
no approximations are performed. Under the assumption that the magnetisation in
each point of the body Ω is given by (A.4), that is equivalent to

MMM(yyy, t) = Re
(
−(ix̂xx+ ŷyy) iM0,⊥(yyy)e

iω0t
)
, (A.13)

the electromotive force in the coil is

V (t) =−ω0Re
(∫

R3
iM0,⊥(yyy)

(
B̃x(yyy)− iB̃y(yyy)

)
eiω0t dV (yyy)

)
. (A.14)

Interpreting B̃BB as the phasor of the magnetic field induced by a unitary harmonic
current in the coil as in [176], by lemma A.2 it is possible to recognise 2B̃−,∗

=

B̃x − iB̃y in (A.14). The electromotive force can be measured and elaborated in a
couple of channels—the real and the imaginary one—by means of demodulation
and filtering in order to view it from the rotating reference frame at the Larmor
frequency [170]. The two channels are combined in the complex signal

s(t) = ω0

∫
R3

M0,⊥(yyy)B̃−(yyy)ei(ϑ̃−(yyy)−ϕ0(yyy))ei(ω0t−φ(yyy,t)) dV (yyy) , (A.15)

where B̃−
= B̃−eiϑ̃−

and φ(yyy, t) is the whole phase accumulated by the transverse
component of the magnetisation according to Bloch equations—if only the static
field is present, φ(yyy, t) = ω0t. The images generated by MRI scanners are maps of
the quantity

m(yyy) = ω0M0,⊥(yyy)B̃−(yyy)ei(ϑ̃−(yyy)−ϕ0(yyy)) , (A.16)

a kind of effective spin density [170]. It is worth noting that the map m(yyy) is affected
by both the positively rotating component B+

1 of the RF field and the clockwise—or
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negatively—rotating component B̃− of the normalised field that the receiver coil
would generate in presence of a harmonic current. For this reason, they are called
transmit and receive sensitivity of the MRI scanner, respectively.

Finally, the gradient field BBBGGG is introduced in order to make the phase accu-
mulation φ(yyy, t) vary in space in such a way to make equation (A.15) invertible
with respect to m(yyy). It is a time-varying magnetic field parallel to BBB0 which varies
linearly with the position, and so it is completely defined by its gradient GGG(t)

BBBGGG(yyy, t) = (GGG(t) · rrr(yyy)) ẑzz , (A.17)

where rrr(yyy) is the vector distance of point yyy from the isocentre of the MRI scanner.
For convenience, in the following the isocentre is assumed to coincide with the origin
of the reference system, therefore rrr(yyy) = yyy. Usually, the gradient field is turned on
after the exposure to the RF field, so the Larmor precession of the magnetisation
happens at angular frequency ω(yyy, t) depending on space and time. The resulting
phase accumulation is

φ(yyy, t) =
∫ t

0
ω(yyy, t ′) dt ′ = ω0t + γ

(∫ t

0
GGG(t ′) dt ′

)
· yyy . (A.18)

In the common case of two-dimensional imaging, Gz is switched on simultaneously
with the RF field in order to excite a particular slice of the body only. In equa-
tion (A.15), the contribution to the angular frequency due to the gradient field has
been neglected in the multiplying factor, because the variation in the Larmor fre-
quency induced by the gradient field is very small (at most a few hundred kilohertz)
if compared with the carrier frequency of the static field (from 64MHz for 1.5T
scanners up to 300MHz for 7T scanners) [170]. Nonetheless, this variation cannot
be neglected in the phase of the signal. Introducing the spatial frequency

kkk(t) =
γ

2π

∫ t

0
GGG(t ′) dt ′ , (A.19)

the complex demodulated signal (A.15) can be written as

s(kkk(t)) =
∫
R3

m(yyy)e−i2πkkk(t)·yyy dyyy , (A.20)
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which describes s(kkk(t)) as the Fourier transform of m(yyy). Thus, the inverse Fourier
transform can be employed to recover the desired image,

m(yyy) =
∫
R3

s(kkk)e2πkkk·yyy dkkk . (A.21)

In order to compute the inverse Fourier transform, s(kkk(t)) must be sampled in
the so-called k-space by turning on and off the three components of the gradient
field according to a predefined sequence [169, 35, 170]. Often, the inverse Fourier
transform is performed in two dimensions. This is made possible by turning on the
z-component of the gradient field during the exposure to the RF field, which in this
way resonates with only a slice of the body.

Sequence design is an important field in MRI, since the choice of an optimal path
in the k-space can save time and power consumption. Moreover, the sequences must
be designed taking into account the relaxations described by the phenomenologically
corrected Bloch equations (A.1)—neglected in this description where the easier
Larmor equation (A.2) has been used. Despite the many results achieved exploiting
Bloch equations, certain cases may require models that are more difficult. For
example, in presence of protons diffusion by Brownian motion in a fluid, the Bloch-
Torrey equations must be used to describe the magnetisation vector evolution [177].

The elaboration of the complex map m(yyy) measured by the MRI scanner can
lead to the knowledge of physical quantities inside the human body. Some examples
are described in the following.

A.2 Current density imaging

As mentioned in Chapter 1, the quasi-static current density induced in a sample by
an external source is obtained by applying Ampère’s law to the induced magnetic
field HHH, whose longitudinal component Hz can be measured with the MRI. Rotation
of the sample in the scanner would lead to the whole knowledge of HHH [38]. If the
current density is induced with a pulse of duration Tc after the RF excitation of the
hydrogen nuclei’s spin but before the motion in the k-space due to the gradient field,
the spins experience an additional dephasing proportional to Hz and the measured
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effective spin density reads

m+(yyy) = ω0M0,⊥(yyy)B̃−(yyy)ei(ϑ̃−(yyy)−ϕ0(yyy)−γµ0Hz(yyy)Tc) . (A.22)

Likewise, if the opposite current density is induced, the magnetic field is −HHH and
the measured signal is

m−(yyy) = ω0M0,⊥(yyy)B̃−(yyy)ei(ϑ̃−(yyy)−ϕ0(yyy)+γµ0Hz(yyy)Tc) . (A.23)

Since
m−(yyy)
m+(yyy)

= e2γµ0Hz(yyy)Tc , (A.24)

the longitudinal component of the magnetic field can be easily recovered from the
difference of the obtained phase maps [38, 37].

A.3 B1-mapping

Many methods have been proposed to measure the magnitude B+
1 of the RF field [53–

57]. The easiest one, although not the most efficient, is the double-angle method
proposed in [53]. It requires the production of two images of the same object obtained
employing first the flip angle α = γB+

1 τ , then the double flip angle 2α . Since the
measured complex map is

m(yyy,α) = ω0M0,⊥(yyy,α)B̃−(yyy)ei(ϑ̃−(yyy)−ϕ0(yyy,α)) , (A.25)

where the dependence on the flip angle has been made explicit, the ratio of the
magnitude of the two images is

M0,⊥(yyy,2α)

M0,⊥(yyy,α)
=

sin
(
2γB+

1 τ
)

sin
(
γB+

1 τ
) = 2cos

(
γB+

1 τ
)
. (A.26)

This relation, which is directly obtained from (A.7), can be easily inverted with
respect to B+

1 under the assumption that the flip angle does not exceed π/2. Other
techniques, like Bloch-Siegert shift methods [56, 57], rely on the phase of the
complex map instead of its magnitude in order to obtain more accurate estimations.
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The phase of B+
1 is more difficult to be recovered. Up to now, only few articles

have explicitly dealt with this task, which is of fundamental importance in electric
properties tomography [60, 61]. The only strategy based on traditional MRI scanners
relies on the particular choice of a transmit and receive coil, like the birdcage coil,
which allows to switch the polarisation between transmission and reception [58]. In
this way, transmit and receive sensitivity would have almost opposite phases and so

m(yyy)∼= ω0M0,⊥(yyy)B̃−(yyy)e−i2φ0 , (A.27)

where φ0 is the phase of B+
1 as can be deduced from (A.7). The phase of the map

m(yyy) achieved by the polarisation switching is usually called transceive phase and the
hypothesis that it coincides with the double of the transmit phase is called transceive
phase assumption [64].



Appendix B

Elements of mathematics

Some basic knowledges of linear algebra, real analysis and topology are necessary in
order to benefit from the following. A more detailed description of the topics treated
in this appendix can be found, for example, in [154, 178].

B.1 Functional analysis

Definition B.1. A complete normed linear space U, whose norm is denoted by ∥ ·∥U,
is said to be a Banach space. Iff the norm is induced by a scalar product (·|·)U, then
U is said to be a Hilbert space.

Definition B.2. A subset A ⊂ U of the Banach space U is said to be bounded iff
there exists a positive constant M > 0 such that ∥u∥U < M for any u ∈ U.

Definition B.3. A linear operator T : U→ V between the Banach spaces U and V is
said to be bounded iff for any bounded subset A ⊂U its image T (A)⊂V is bounded.

Definition B.4. A linear operator T : U→ V between the Banach spaces U and V
is said to be continuous in u0 ∈ U iff for any positive constant ε > 0 there exists a
positive constant δ > 0 such that ∥u−u0∥U < δ ⇒∥Tu−Tu0∥V < ε .

Theorem B.5. If the linear operator T : U→ V between the Banach spaces U and
V is continuous in u0 ∈ U, then it is continuous everywhere in U.

Proof. Since T is linear, for any u,u1 ∈ U

∥Tu−Tu1∥V = ∥Tu+T (u0 −u1)−T (u0 −u1)−Tu1∥V = ∥T (u−u1 +u0)−Tu0∥V .
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Since T is continuous in u0, for any positive constant ε > 0 there exists a positive constant
δ > 0 such that

∥(u−u1 +u0)−u0∥U = ∥u−u1∥U < δ ⇒

∥T (u−u1 +u0)−Tu0∥V = ∥Tu−Tu1∥V < ε .

♦

Theorem B.6. For a linear operator T : U→ V between the Banach spaces U and
V, the conditions of being bounded and being continuous are equivalent.

Proof. If T is continuous, then it is continuous in 0 ∈ U, namely for any positive constant
ε > 0 there exists a positive constant δ > 0 such that ∥u∥U < δ ⇒ ∥Tu∥V < ε . Let us
consider a bounded subset A ⊂ U such that u ∈ A ⇒∥u∥U < M, where M > 0 is a positive
constant, then

u ∈ A ⇒
∥∥∥∥ δ

M
u
∥∥∥∥
U
< δ ⇒ ∥Tu∥V =

M
δ

∥∥∥∥T
(

δ

M
u
)∥∥∥∥

V
<

M
δ

ε ,

namely T (A) is bounded.

Vice versa, if T is bounded, then for any u ∈ U\{0}

∥Tu∥V = ∥u∥U
∥∥∥∥T
(

u
∥u∥U

)∥∥∥∥
V
< M∥u∥U ,

for a positive constant M > 0, because u/∥u∥U = 1 < 2 denotes a bounded set. Thus, for any
positive constant ε > 0, δ = ε/M > 0 is such that ∥u∥U < δ ⇒∥Tu∥V < M∥u∥U < ε . ♦

The following concept of adjoint operators could be introduced for operators
between Banach spaces. However, for sake of simplicity, here it is described for
operators between Hilbert spaces.

Definition B.7. For any linear operator T : U→V between the Hilbert spaces U and
V, the adjoint operator T ⋆ : V→ U is defined such that for any u ∈ U and v ∈ V,

(v|Tu)V = (T ⋆v|u)U .

Theorem B.8. The following properties hold:

i. The adjoint operator of the composition of two linear operators T : U→V and
S : V→W between Hilbert spaces is the composition of the adjoint operators
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T ⋆ : V→ U and S⋆ : W→ V in reverse order

(ST )⋆ = T ⋆S⋆ .

ii. The adjoint operator of the inverse of a linear operator T : U→ V between
Hilbert spaces is the inverse of the adjoint operator T ⋆ : V→ U(

T−1)⋆ = (T ⋆)−1 .

Proof. The properties are proven in order:

i. From the definition of adjoint operator it derives that for any u ∈ U and w ∈W

(w|STu)W = (S⋆w|Tu)V = (T ⋆S⋆w|u)U .

ii. Since the composition T−1T = I is the identity operator and (T−1T )⋆ = T ⋆(T−1)⋆,
then for any u1,u2 ∈ U

(u1|u2)U =
(
u1|T−1Tu2

)
U =

(
T ⋆
(
T−1)⋆ u1|u2

)
U
.

Given the generality of u2 ∈ U, it follows that for any u1 ∈ U

T ⋆
(
T−1)⋆ u1 = u1 ,

or equivalently T ⋆
(
T−1

)⋆
= I.

♦

Definition B.9. A subset A ⊂ U of the Banach space U is said to be (sequentially)
compact iff any sequence ai ∈ A has a convergent subsequence which converges to a
point a ∈ A.

Theorem B.10. Any compact subset A ⊂ U of the Banach space U is bounded.

Proof. Ab absurdo, if A is not bounded, then there exists a divergent sequence in A. ♦

Definition B.11. A subset A ⊂U of the Banach space U is said to be precompact iff
its closure in U is compact.

Remark B.12. Despite, by virtue of the Heine–Borel theorem, in finite-dimensional
spaces the definition of boundedness and precompactness are equivalent, this is not
true in infinite-dimensional spaces.
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Definition B.13. A linear operator T : U→ V between the Banach spaces U and
V is said to be compact iff for any bounded subset A ⊂ U its image T (A) ⊂ V is
precompact.

Theorem B.14. If T : U→ V is a linear and compact operator and S : V→W and
R : W→ U are linear and bounded operators between the Banach spaces U, V and
W, then the compositions T R and ST are compact operators.

Proof. If A ⊂W is bounded, then R(A)⊂U is bounded, and so T (R(A))⊂V is precompact.
Vice versa, if A ⊂ U is bounded, then T (A) ⊂ V is precompact, and so, because of the
continuity of S, S(T (A))⊂W is precompact. ♦

Corollary B.15. In infinite-dimensional spaces, the inverse of a compact operator
is not continuous.

Proof. Ab absurdo, being T a compact operator, if T−1 is continuous, then the identity
operator I = T T−1 is compact, which is false because of remark B.12. ♦

Remark B.16. Because of the latter corollary, when the solution to a direct problem
is obtained by a compact operator, then the corresponding inverse problem is ill-
posed in the sense of Hadamard. Based on that, the following example shows that
derivation is an ill-posed inverse problem.

Lemma B.17. The linear operator A : L2(0,1)→ L2(0,1) such that

(Au)(x) =
∫ 1

0
K(x,y)u(y) dy ,

with kernel K(x,y) square summable, is a compact operator. Such an operator is
called Hilbert–Schmidt integral operator.

Example B.18. Let us consider the operator A defined like in lemma B.17 with kernel

K(x,y) =

{
1, if x ≥ y

0, elsewhere

Clearly, the kernel is square summable (∥K∥2
L2 = 1/2 <+∞), so A is compact. The

considered Hilbert–Schmidt integral operator reads

(Au)(x) =
∫ x

0
u(y) dy ,
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which is the well-known inverse of the derivative operator as it appears in the
fundamental theorem of calculus. As a consequence, the derivative operator,(

A−1u
)
(x) = u′(x) ,

is not continuous. The same conclusion can be achieved in a more straightforward
way by using a counterexample to the continuity of A−1. Let us consider the
convergent sequence of functions

un(x) = x+n−1/2 sin(nx)→ u(x) = x , in L2(0,1) .

Ab absurdo, if A−1 is continuous, then A−1un → u, but(
A−1un

)
(x) = u′n(x) = 1+n1/2 cos(nx)

is a divergent sequence.

B.2 Derivatives of a phase

The gradient of a phase ϕ : Rd → [0,2π) can be computed by noting that

∇eiϕ = eiϕ i∇ϕ ⇒ ∇ϕ =−i
∇eiϕ

eiϕ . (B.1)

By this way, the discontinuities induced by the wrap mechanism of the real map in the
interval [0,2π) are ignored and, actually, the derivative of the so-called unwrapped
phase is computed. The Laplacian of ϕ can be computed similarly,

∇
2
ϕ =−i

(
∇2eiϕ

eiϕ +∇

(
1

eiϕ

)
·∇eiϕ

)
=−i

(
∇2eiϕ

eiϕ − |∇eiϕ |2

ei2ϕ

)
. (B.2)
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