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Regional-scale analysis of extreme precipitation from
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Abstract

Rain gauge is the oldest and most accurate instrument for rainfall mea-
surement, able to provide long series of reliable data. However, rain gauge
records are often plagued by gaps, spatio-temporal discontinuities and in-
homogeneities that could affect their suitability for a statistical assessment
of the characteristics of extreme rainfall. Furthermore, the need to discard
the shorter series for obtaining robust estimates leads to ignore a significant
amount of information which can be essential, especially when large return
periods estimates are sought. This work describes a robust statistical frame-
work for dealing with uneven and fragmented rainfall records on a regional
spatial domain. The proposed technique, named “patched kriging” allows
one to exploit all the information available from the recorded series, inde-
pendently of their length, to provide extreme rainfall estimates in ungauged
areas. The methodology involves the sequential application of the ordinary
kriging equations, producing a homogeneous dataset of synthetic series with
uniform lengths. In this way, the errors inherent to any regional statisti-
cal estimation can be easily represented in the spatial domain and, possibly,
corrected. Furthermore, the homogeneity of the obtained series, provides ro-
bustness toward local artefacts during the parameter-estimation phase. The
application to a case study in the north-western Italy demonstrates the po-
tential of the methodology and provides a significant base for discussing its
advantages over previous techniques.
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1. Introduction

Probabilistic modelling of extreme rainfall has a crucial role in flood risk
estimation and consequently in the design and management of flood protec-
tion projects [1]. The first attempts to establish a mathematical relation
between intensity and frequency of rainfall goes back to as early as 1932 [2].
Since then, many studies (e.g., [3]) have been carried out, aimed at provid-
ing the rainfall depths for different return periods and durations. Complete
overviews on the different approaches adopted from several countries around
the globe can be found, e.g, in [4, 5].

Intensity-Duration-Frequency (IDF ) and Depth-Duration-Frequency (DDF )
curves are commonly adopted in water resources engineering for both plan-
ning, designing and operating of water resource projects and for land and
people protection purposes [6]. These curves are usually developed consid-
ering the historical records for different durations and adopting the index-
rainfall method, in which the quantile of the extreme rainfall comes as the
product of an “index value” (i.e., usually the mean) and a growth curve (i.e.,
the non-dimensional inverse of the frequency distribution F (x)).

Two approaches are commonly adopted for fitting a probability distri-
bution to the series of maxima: (i) the “block” method, that consists in
selecting the maximum rainfall occurring over a fixed period (usually 1 year)
and (ii) the “peak-over-threshold” method, in which all the rainfall data ex-
ceeding some pre-specified threshold are considered [7]. The method (i) is
widely adopted in Italy for design rainfall estimation, and a large dataset of
annual maxima for duration 1-3-6-12-24 hours is available, which dates back
to the early twentieth century.

Due to the significant developments of the theory of extreme value in
the last two decades [7, 8] the methodologies for rainfall frequency analysis
are nowadays quite established and robust, both at the single-station and
at the regional scale. However, the correct reproduction of complex hydro-
meteorological processes requires not only long, but also serially complete and
reliable observations [9, 10] from a dense and spatially uniform monitoring
network. A non-uniform and non-continuous dataset can prevent a reliable
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application of the aforementioned methodologies at the regional scale leading
to inconsistencies.

It is thus evident that, despite the existence of established rainfall fre-
quency analysis techniques, operational and methodological problems con-
cerning their applications still arise.

Rainfall time series are often plagued with missing values creating spo-
radic and/or continuous gaps in their records. The fragmented behaviour
traces back to the activation and dismissal of rain gauges, attributable to
station relocation, service interruptions, replacement/renewal of the sensor,
changes in the ownership of the station, etc. The characteristics of the sta-
tions (location and elevation, type of sensor, etc.) may also change before and
after the interruptions, with consequent problems in attributing the data to a
unique homogeneous sample. Despite these problems are quite common, even
in developed countries, many practical applications and statistical method-
ologies have little or no tolerance to missing values [9, 11]

The treatment of gaps in the records or relocation of rain gauges, espe-
cially when dealing with large databases, requires the set-up of specifically-
conceived methodologies aimed at bypassing or reconciling the inconsistencies
[12]. Two approaches can be adopted for dealing with non-uniform sets of
records: (i) a precautionary approach, that consist in assuming a minimum
acceptable threshold of record length and discard the series shorter than the
threshold and (ii) a preservative approach, focused on the identification of
methodologies aimed at extracting all the available information even from
the shorter records. While, on the one hand the approach (i) can discard
important information hidden in the shorter records, affecting the results of
the regional rainfall frequency analysis, the approach (ii) turns out to be
complex, computationally demanding, and can lead to errors when based on
non-robust assumptions [11].

A number of procedures for recovering information from short records
can be found in the literature. Various authors propose the adoption of
interpolation techniques along the time-axis, to estimate the missing data
of environmental series (linear or logistic regression, polynomial or spline
interpolation, inverse distance weighting, ordinary kriging, etc. - see, e.g.,
[13, 14]). The statistical techniques available include also artificial neural
networks and nearest neighbours [15, 16], approaches based on Kalman filters
[17], non-linear mathematical programming [18] and normal-ratio and inverse
distance weighting methods [19].

In [9] it is argued that the complexity and the computational burden
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associated with these techniques often make them unsuitable for an appli-
cation over large scales. This usually leads to the adoption of conceptually
over-simplified approaches (e.g., filling the gaps with fixed values, often cor-
responding to the sample average of the series) not adequate to represent the
complexity of the phenomena. The authors propose a simple method based
on the analysis of the auto-correlation structure of the series, amenable for
a quick filling of sporadic gaps. However, the technique is viable if the per-
centage of missing values in the time series is limited. When the gaps are
frequent and systematic (e.g., in developing countries [20]) and when data
show low auto-correlation in time, this approach is not effective.

Even when long uninterrupted rainfall records are available, an IDF re-
lation is basically valid only at the point where it is estimated. Rain gauges
are generally not evenly distributed in space, and they allow only for a point
estimation of the parameters of the rainfall distribution. To extend esti-
mates to ungauged locations, rainfall data are usually interpolated, either
by considering the distribution parameters estimated at the station location
(e.g., [21, 22]), or by estimating the IDF s after pooling the available data
within homogeneous areas defined by geographical boundaries, or centred
around a location of interest (see, e.g., [23]). In the presence of data scarcity,
some recent studies also propose to include external sources of data (e.g.,
remote sensing data [24]) in the procedure. Regional techniques for rainfall
frequency analysis actually build representative growth curves from larger
samples resulting from pooling. On the other hand, the use of a regional
frequency curve is suitable only when the spatial dependence is weak enough
to enable transferring information to a site of interest from the surrounding
gauged sites [25]. When spatial dependence is significant, as in the presence
of high discontinuity in the rainfall distribution, or due to different climatic
and orographic conditions, different approaches should be preferred. For in-
stance, [26] propose a statistical approach that involves the adoption of a
bootstrap algorithm aimed at providing complete annual maxima series at
each location, taking into account all data observed at surrounding stations
with decreasing importance when distance increases. This kind of approach
allows one to overcome the problem of data filling, but the bootstrap pro-
cedure produces results that deviate significantly from the sample spatial
distribution, ignoring the existence of long and reliable records at some lo-
cations.

In this work, a simple approach able to provide a set of complete series
of rainfall data for each location of the domain under analysis is proposed.
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The methodology, described in section 3.1, is summarized in figure 1. It is
based on the sequential application of the ordinary kriging equation to the
values recorded annually in the region of interest. The so-called “patched
kriging” procedure preserves the spatio-temporal information of the annual
maxima recorded by the monitoring network, “patching” them together, i.e.,
considering each record just like a point in the (x,y,t) space (where x and y
are the planimetric coordinates and t is the time).

Figure 1: Flow chart of the “patched kriging” methodology.

From an operational point of view, this methodology has a low computa-
tional cost and does not require to work with stationary or significantly auto-
correlated data, as it does not involve any interpolation along the time-axis.
This feature proves to be particularly effective when dealing with frequent
rain gauge relocations, allowing on the one hand to maximize the usable in-
formation at gauged sites, and on the other to extend the analysis to the
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ungauged ones.

2. Data and case study

The region considered for the demonstration of the proposed methodology
refers to the Piemonte region, an area of about 30000 km2 in the North-
Western part of Italy, shown in figure 2a. The area is characterized by a
very heterogeneous orography, flat or hilly in the centre, surrounded by the
Alps in the North-West and by the Ligurian Apennines in the South, with
the minimum elevations of the order of a few tens of meters a.s.l. and the
maximum ones exceeding 4000 m a.s.l. Several regional-scale hydrological
analyses have been performed with a focus on this area (e.g. [27, 28, 29]); in
all cases, the availability of accurate extreme-rainfall statistics is an essential
prerequisite for obtaining consistent results.

A dataset of annual maximum rainfall depths over duration intervals of
1, 3, 6, 12 and 24 hours from 1928 to 2010 has been assembled for this
analysis. The data before the ’90s were collected from the publications of
the National Bureau for Hydro-Meteorological Monitoring (SIMN). After
1987 the network was gradually taken over by the Regional Environmental
Agency (ARPA Piemonte) that removed, substituted or relocated some of
the stations. Gauge data from neighbouring regions has also been considered
to limit the edge effects. Overall, nearly 500 gauging stations have worked
for at least one year in the considered period.

Annual maximum values have been extracted from the original rainfall
series by the competent authorities using sliding time windows [30, 31]. The
original series have a resolution in time varying from 1 hour for the oldest
stations to 5 minutes for the most recent ones.

Figure 2b illustrates the data availability over time. It shows how irregu-
lar the available database is. This is a rather typical situation in Italy: only
very few of the stations have a complete uninterrupted record, while the large
majority has experienced interruptions, relocation or replacement/renewal of
the instruments. As a consequence, more than 50% of the considered rain
gauges have series shorter than 20 years, as shown in figure 2c.

In this context it is clear that, despite the large and dense rain gauge
network available, a regional frequency analysis in the study area would
require a preliminary work aimed at tracking the modifications in the network
and harmonizing the whole database.
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Figure 2: (a) The study area and the location of the available stations. (b) Number of
active station per year and (c) number of available series per class of record length in the
study area.
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Numerous examples of gap-filling techniques for time series (see e.g., a
review in [32]) and of space-time interpolation of rainfall data over relatively
coarse grids (e.g., [33, 34]) are available in the literature. Less attention has
been paid to the treatment of discontinuous records coming from a network
of rain gauges with spatially varying positions. In these cases the usual
approach is to exclude the series shorter than a given threshold, setting a
minimum length suitable for the statistical analysis. However, this leads
to exclude a large potential of information, affecting the robustness of the
results. Consider, e.g., a station where less than 20 years of data have been
recorded before being relocated few kilometres apart and that, after the
relocation, has recorded an additional series shorter than 20 years. Setting a
minimum length of the series equal to 20 would lead to lose almost 40 years
of data.

The information content of the short series can be significant, especially
in the presence of intense and localized rainfall events. Figure 3a shows
the available series of 24-hour annual maxima for the “Caselle” rain gauge
(45.19◦N, 7.65◦E, WGS84). During year 2008 a severe localized thunderstorm
occurred in the area, with the rain depth approaching 300 mm in 24 hours. In
that year, only the “Caselle” rain gauge recorded such a large rainfall amount,
as shown in figure 3b. All the information related to this severe rainfall event
is contained in a 7-years long time series, that would be ignored in many of
the traditional frequency analysis techniques. In the following sections we
describe how the proposed methodology allows at preserving this kind of
information while maintaining a set of robust statistical procedures for the
estimation of the design rainfall at a generic location.

3. Methods

3.1. The patched kriging technique

The proposed approach, called “patched kriging”, allows one to produce
regular spatial datasets by analysing the available rainfall data year-by-year,
assuming that spatial gradients can act as a proxy for temporal gradients
[35]. In this procedure, each measurement is considered a point in the three
dimensional (x,y,t) space.

The “patched” procedure is amenable for application with any spatial in-
terpolation method (e.g., Inverse Weighted Distance, etc.). In this work, we
propose the use of the kriging interpolation method [36], because it can pro-
vide useful information on the estimation uncertainty at each location. Vari-
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ima for the 24-hours duration recorded during year 2008 at a sub-sample of the database.
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ous kriging methods (i.e., simple kriging, ordinary kriging, universal kriging,
etc.) have been developed based on assumptions about the model. At this
stage, we have not found any significant advantage in choosing a particular
kriging method. Therefore, for the sake of simplicity, ordinary kriging is con-
sidered. Detailed description of the ordinary kriging algorithms is available
in the geostatistical literature (e.g., [37]).

Ordinary kriging assumes that the spatial variation of data is stationary
and ergodic across the domain [38]. Kriging relies on the assumption that
all the random errors are second-order stationary. This means that the co-
variance between any two random errors depends only on the distance and,
possibly, on the direction that separates them, not on their exact locations.
This leads to the need to analyse and remove the possible correlation be-
tween rainfall and elevation, especially in areas characterized by a complex
orography [39]. The analysis of the correlation with topography also allows
one to compensate for the lack of information at the small scale, improv-
ing the global performance of the method [40]. Various approaches have
been adopted in the literature for dealing with this problem: among the
others [41, 42] propose to perform linear regression on precipitation vs eleva-
tion, subtract the regressed elevation effect and perform the kriging on the
elevation-adjusted data. The same approach has been adopted with positive
outcomes in [43] for the Alpine area. Similarly, in this work the relation
between hd (mm), i.e. the annual maximum precipitation with duration d
(h), and elevation z (m) is assumed to follow the equation:

hd = m · ln(z + 1) +m0 + εd (1)

where m is the slope of the regression line, m0 (mm) is the intercept and εd
(mm) the residual. The logarithm of elevation is adopted as an independent
variable, in order to limit the weight that linear interpolation would attribute
to the stations placed at low altitudes. The regression procedure takes into
account the values recorded at all the stations in all the years simultaneously.
This stems from the assumption that the relationships between precipitation
and elevation is invariant over time.

Once assessed the regression significance, de-trended at-station precipi-
tation values hd,0 (mm) are computed for all the durations by removing the
elevation effects from the observed value hd.

The degree of spatial dependence in the kriging approach is expressed
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using a sample variogram given by:

V (L) =
1

n(L)

∑
Lij

(αi − αj)2 (2)

where V (L) is the variance, which is defined over observations αi and αj
lagged successively by lag-distance L, with n(L) representing the number of
pairs of the sample separated by lag L [32].

De-trended values are therefore used to define the annual sample var-
iograms. For each year Y in the observation interval, the annual sample
variogram VY (L) is computed according to equation 2. A global sample vari-
ogram is obtained averaging the annual sample variograms, each weighted by
the number of active stations in the considered year. The sample variogram is
then converted to an analytical function, i.e., the theoretical variogram, γ(L).
Generally, several variogram models are tested before selecting a particular
one. In this study the four most widely used variogram models (i.e., spher-
ical, exponential, Gaussian and circular) have been considered [32]. After a
visual analysis of the empirical variograms for the considered durations and
some preliminary first-attempt fits of the models to the data, the exponential
form is adopted:

γ(L) = c3 + c1(1− e−L/c2) (3)

where L (m) is the lag-distance, c1 (mm2), c2 (m), c3 (m) are the sill, the
range parameters and the nugget of the variogram, respectively [44]. The
nugget effect is neglected by setting c3=0, considering the rain gauge records
not affected from measurement errors. This is a strong assumption, but as
the work deals with annual maximum values, the impact of the instrumental
error can be considered not significant for the aim of the analysis at this
stage. The other variogram parameters are fitted to the data by minimizing
the root mean square error.

We work on a gridded 250 m x 250 m domain that is set equal to the
resolution of the Digital Terrain Model used, after considering a reasonable
balance between the topographic detail and the station spatial density. If
more than one rain gauge falls in the same cell, the largest measured value
is considered.

Ordinary kriging equations are applied independently in each year. For
each location, the values recorded at the nearest gauged cells are weighted ac-
cording to the variogram and used to estimate the local value. Since we have
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neglected the nugget effect, measurements in gauged cells are automatically
preserved.

According to the literature, the number of nearest gauged cells to be
considered is arbitrary and depends on the sampling pattern and on the
covariance matrix structure [45]. While, on the one hand, using the whole
sample for applying the kriging equations could grant shorter computational
cost, as the estimation domain is the same for all the cells of the grid, on
the other hand, smaller neighbourhoods are preferred when there is the need
to represent small-scale variability. Moreover, some authors [46] underline
that the use of large neighbourhoods does not lead to a significant increase
in the robustness of the estimation, as the weight associated to a distant
observation quickly tends to zero [45]. Therefore, usually, only the stations
in a neighbourhood of the estimation point are considered. Some authors
suggest to consider a number of stations around 10-20 [47], even though the
size of the neighbourhood should be selected according to the c2 parameters
of the variogram. In this work, the significant variations of both the number
and the spatial distribution of the stations along the time axis leads to the
need of summarizing the spatial information in a weighted mean variogram.
Considering the value of the range of this variogram for assuming the width
of the estimation domain could affect the results, specially in years and in
areas with a low density of information, leading to consider an insufficient
number of rain gauges. After a preliminary sensitivity analysis, aimed at
preventing the flattening of the estimated values on a global regional mean,
the estimation domain is therefore limited to the nearest 10 rain gauges, for
all the cells, for all the years.

Sequential kriging application leads to the development of a set of grids
(as many as the considered years), containing the estimated values of pre-
cipitation maxima for each location of the study area, configuring a “cube”
of rainfall data in the (x,y,t) space (figure 4a), which will be referred to as
the “rainfall cube”. The ordinary kriging equation provides also a “variance
cube”, containing the kriging variance for each cell in each year. The krig-
ing variance is a measure of the uncertainty of the estimation for the values
predicted by kriging.

“Coring” the “cube” along the t-axis (i.e., extracting a complete series,
once fixed a pair of x and y coordinates, by varying t) one can obtain complete
“cored series” (i.e., complete series extracted from the cube) for each x-y pair
(figure 4b). Each uninterrupted annual maxima series, related to a generic
cell in the considered domain, is associated to a series of kriging variances,
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informing about the uncertainty of each data. The length of all the series
equals the length of the considered time period.
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Figure 4: (a) The “rainfall cube” obtained with the “patched kriging”. (b) Example of
the extraction of a “cored series” from the “rainfall cube”.

3.2. Application

The “patched kriging” technique is applied to the study area in Piemonte.
Annual extremes for each duration d are considered as separate series, so as
to obtain 5 different series per rain gauge, leading to 5 rainfall and variance
cubes.
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Table 1: Parameters of the regression equation 1 for precipitation versus elevation, for
different durations (* indicates a significant trend at a 5% level).

d (h) m m0 (mm)

1 -3.56∗ 48.73
3 -2.57∗ 55.72
6 -0.32 54.59
12 3.52∗ 49.08
24 8.34∗ 44.54

Regression of rainfall depths with the logarithm of elevation has been
carried out, considering equation 1 for the 5 durations. Results are reported
in table 1. The trends significance is evaluated with a Student’s t test with
an acceptance level α=0.05.

Referring to the coefficients in table 1, the maximum annual precipitations
of duration 1 and 3 hours show a declining trend with elevation, which loses
significance for the duration 6 hours and becomes a positive trend for the
durations of 12 and 24 hours. This justifies the absence of the expected
increasing trend of the intercept of the regression lines with the duration, and
is consistent with the findings of [43] that relate the different behaviour with
the nature of the events typical of the different durations (mostly convective
for shorter durations, stratiform for longer ones).

Using the coefficients reported in table 1, the de-trended precipitation
(hd,0) is obtained. For d=6, we set h6,0=h6, due to the lack of significance of
the hypothesis m 6= 0.

We then proceed with the definition of the sample and theoretical var-
iograms according to equation 3. Annual sample variograms (not shown)
are characterized by a large annual variability, partially ascribable to the low
data density in the first analysed years, that leads to sample variograms with
large variance. To avoid loss of robustness, as previously noted, the annual
variograms are weighted according to the number of annual active stations.
Table 2 reports the coefficients of the obtained theoretical variograms for the
different durations.

With the application of the ordinary kriging equations, as described in
section 3.1 a set of 5 “rainfall cubes” (one per duration) with the related
“variance cubes” is obtained.
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Table 2: Estimated parameters for the theoretical exponential variograms

d (h) c1 (mm2) c2 (m)

1 142 6709
3 334.7 8798
6 574.2 10240
12 1051 11520
24 2028 13650

3.3. Weighting the L-moments

In order to guarantee a robust data-based approach, the proposed method-
ology aims at preserving as much as possible the statistics of the original
series in the cored ones. This operation should be treated with caution, con-
sidering the different length of the original series [11] (e.g., extracting the
characteristics of a 80 years long series from a subset of 10-20 data can lead
to large bias, as the characteristics of the sample can be not consistent with
the characteristics of the corresponding complete series). The “patched krig-
ing” technique helps to increase the robustness of the operation. It allows
one to preserve the recorded data, filling in the gaps with spatially estimated
values.

In order to take into account the different nature of the data (i.e., part of
the core is measured and part is estimated by kriging) differential weight is
given to each value in the evaluation of the characteristics of the cored series
(i.e., more weight is given to the measured values and to the values estimated
in years with more observations). The kriging variance is then considered to
weight the contribution of each value to the estimation of the sample L-
moments of the series. The kriging variance is a measure of the uncertainty
of the estimation: it is larger in cells far from gauged locations and, for a fixed
cell, it increases/decreases when the number of annual available stations in its
proximity decreases/increases. For instance, in figure 5a the fast increase of
the kriging variance when getting far from the stations is shown. Moreover,
considering the northern part of the study area, for year 1987 (5a above),
when it totally lacks active stations, the variance reaches very large values
while it shows generally lower values (around 1700 mm2) for year 2010, when
a dense network is available.

In the detail, for evaluating the sample L-moments of a cored series, a
weight wi = σ2

max/σ
2
i is assigned to the i-th value of the series, characterized
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by the σ2
i kriging variance (with σ2

max = max(σ2
i ) for the considered series).

Further details are available in the Appendix A.
As an example, the “Caselle” station, mentioned in section 2, was in-

stalled in 2004. The cored series of the annual maxima for 24 hour duration
of the cell related to its location is reported in figure 5b. The mean of the
cored series (i.e., the red dashed line) turns out to be significantly lower than
the one of the original series of 7 data (i.e.,the yellow line). Analysing the
series of the kriging variance of the “Caselle” location (figure 5c) one can note
the sensitivity of this parameter to the number of globally available stations:
as previously mentioned, the kriging variance increases/decreases with the
decrease/increase of the number of active gauges. It drastically decreases in
year 2004, when the station has been activated.

From figure 5b we can also observe that the weighted mean, evaluated
with the weights reported in figure 5d (left axis), is almost equal to the mean
related to the period 2004-2010. When a station is located in a previously
ungauged cell, the kriging variance decreases drastically and this leads to give
virtually zero weight to all the previously kriged values. Considering the lack
of reliability of L-moments estimated on short series, this phenomenon should
be avoided, as this would undermine the benefit of the “patched kriging”
methodology. A maximum threshold wmax is therefore set. For wi > wmax,
wi=wmax is considered. After some sensitivity analysis, aimed at giving large
enough weight to the measured values without denying the contribution of
the reconstructed ones, we set wmax=10. The final weights adopted for the
“Caselle” cell are reported in figure 5d (right axis), and the resulting mean
values is shown in figure 5a with a black line.

4. Analysis and validation of the patched series

4.1. Series validation

At first, in points where sample data are available, the cored series are
validated by comparing their L-moments with those of the measured series.
L-moments have been considered for evaluating the quality of the results, as
they provide information on the underlying probability distributions.

Given the lack of significance of the shorter series from a statistical point
of view (i.e., as previously mentioned, the L-moments estimated from short
fragmented series can be not-consistent with the real characteristics of the
related uninterrupted series) the validation is restricted to the series with
more than 20 years of data. Figure 6 reports the comparison between τ , τ3
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Figure 5: (a) Map of the kriging variance for year 1987 (above) and year 2010 (below).
The red cross shows the location of the “Caselle” rain gauge (45.19◦N, 7.65◦E, WGS84),
installed in 2004. (b) Cored series of the “Caselle” rain gauge for 24 hours duration. The
red circles mark the recorded values. All the other values are estimated with the “patched
kriging” technique. The mean of the series, the weighted mean and the weighted mean
with wmax threshold are also shown. (b) Kriging variance series for the “Caselle” location
(left axis) related to the number of active gauge per year (right axis). (c) Series of the
weights related to the “Caselle” series (left axis). The right axis refers to the same series,
after correcting it, by setting wmax=10.
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and τ4 (i.e., the coefficient of L-variation, L-skewness and L-kurtosis respec-
tively [7]) of the measured versus the estimated series for the five durations
mentioned above.
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Figure 6: (a) τ , (b) τ3 and (c) τ4 of the measured (i.e., orig) versus the cored (i.e., cor)
series for all the durations. The chromatic scale refers to the length of the series.

The comparison demonstrates the ability of the methodology to preserve
the L-moments, except for a slight underestimation of the τ of the cored
series, as seen in panel (a) in figure 6 that compares the measured with the
cored series for all the durations.

To assess the performance of the methodology even in cells without sam-
ple data, or with a number of data that does not allow for a robust estimation
of the sample L-moments, the clouds of the sample L-moments of the cored
series in the L-moments ratio diagrams [23] are compared with those of the
original series with more than 20 years of data, considering all the durations
together (figure 7a-b).

A significant underestimation of the second order L-moment (τ) is ev-
ident from the analysis of panel (b), while a slight underestimation of the
τ3 and τ4 values appears from panel (a); this implies that the cored series
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denote smaller variability along the time axis than the original ones. This
is an expected drawback when applying a spatial interpolation technique,
and is consistent with what emerges from the analysis of the gauged cells
in figure 6a. As the underestimation of τ leads to underestimation of the
design rainfall, a correction procedure has been developed, as described in
the following section.
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Figure 7: L-moments ratio diagrams (a),(b) before and (c),(d) after the correction con-
sidering all the durations. The greyscaled cloud of points represent the cored series. The
greyscale is proportional to the density of points. The coloured dots represent the original
series. The colourscale is related to the length of the series.
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4.2. Correction of the bias in the variance

By construction, a weighted average of identically distributed random
variables has a different statistical distribution than the variables themselves.
The “patched kriging” technique involves merging the locally observed values
and the interpolated ones, which can therefore have different statistical dis-
tributions. This operation can potentially introduce bias and, in particular,
lead to reduce the coefficient of variation of the estimates. To correct this
behaviour a bias-correction procedure is proposed, conceived at increasing
the variance of the cored series.

Consider a situation when a series xi(t) is obtained from the “patched
kriging” methodology. The temporal average is x̄i and, as shown in figure
7b, the xi(t) values are underdispersed around x̄i. A natural way to avoid
the underdispersion would be to inflate the distance from the mean through
multiplication by a factor K0:

x̂i(t)− x̄i = K0 · (xi(t)− x̄i) (4)

with K0 > 1. However, equation 4 can lead to negative rainfall values, that
are obviously not acceptable. Equation 4 is thus applied to the logarithms
of the variables, leading to:

K =
ln(x̂i(t))− ln(x̄i)

ln(xi(t))− ln(x̄i)
(5)

the correction equation then reads:

x̂i(t) = x̄i

(
xi(t)

x̄i

)K
. (6)

For calibrating the K coefficient we start from the heuristic observation
that the distance of the analysed location from the closer gauged cells is one
of the main determinants of the bias. Cells far from gauging stations are
expected to be more affected by the smoothing effect of the interpolation
and thus to show less variability around the average. Hence:

• If the target point is close to a gauging station, the distribution of the
cored series will likely be very similar to the one of the original series,
and then correction should be very limited.
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• When the target point moves further away from the gauging stations,
the smoothing effect becomes very relevant and the correction becomes
essential.

We therefore expect the correction factor K to be an increasing function of
the distance from the rain gauges, i.e.

K = f(Ds) (7)

where Ds is the distance, f is an increasing function and f(Ds = 0) = 1.
The distance from the rain gauges is computed as follows. For each year

we assign to each cell a Ds (km) value, representing the inverse average
distance of the cell from the nearest 10 gauged cells (the ones considered
when the kriging equations are applied), evaluated as:

Ds =
1

1
10

∑10
j=1( 1

δj
)

(8)

with δj being the distance of the cell from the j-th closest gauged one. We
consider the inverse average distance (and not the standard average distance)
in order to assign a Ds value approaching zero when the cell coincides with
a gauged cell.

In order to estimate the dependence of K on Ds, we take the average
of equation 5, conditioned on Ds. We note that, on the right-hand side of
equation 5, we have at the numerator a variable which is independent of Ds,
by definition (otherwise the correction would not be effective). The average
thus reads:

∆(Ds)

a0

= E

[
1

| ln(xi(t))− ln(x̄i)|

∣∣∣∣
Ds

]
= f(Ds) (9)

where E

[
1

| ln(xi(t))−ln(x̄i)|

∣∣∣∣
Ds

]
is the average, conditioned on a specific Ds value,

and a0 = E

[
1

| ln(xi(t))−ln(x̄i)|

∣∣∣∣
Ds=0

]
.

In practice, the ∆(Ds) value is estimated separately for each duration.
For each year, we build equally consistent Ds classes to compute ∆(Ds), con-
sidering all the cells belonging to each class. The (∆(Ds),Ds) pairs belonging
to all years are then pooled together and the median value for each Ds class
is considered. They are represented as dots in figure 8.
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Figure 8: Median value of ∆(Ds) for equally spaced Ds classes. Regression lines refers to
the [0, 25] km range.

The increase of ∆(Ds) with increasing distance is clear for all durations,
for Ds values up to 25 Km, which confirms our hypotheses on the influence
of the distance on the distribution of the bias. Furthermore, it emerges from
figure 8 that in this range the relation betweenDs and ∆ can be approximated
with a linear equation:

∆(Ds) = a0 + a1 ·Ds (10)

with a1 (km−1) representing the slope of the regression line. Combining
equation 10 with equations 9 and 7 we obtain:

K(Ds) = 1 + β ·Ds (11)

with β = a1
a0

(km−1). For Ds > 25 km the behaviour becomes less consistent,
probably due to the small number of stations with large Ds available: due to
the difficulty of calibrating a proper relationship, K is kept constant in this
range. Considering that, as previously mentioned, the slope of the regression
line changes for the different durations, the final correction factor reads:

K(Ds, d) =
{ 1 + β(d) ·Ds Ds ≤ 25,

1 + β(d) · 25 Ds > 25.
(12)
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Table 3: Coefficients β of the correction function K(Ds, d) for the different durations d.

d (h) β (km−1)
1 0.034
3 0.020
6 0.015
12 0.013
24 0.010

β(d) values for the different durations are reported in table 3.
Once assigned to each cell of each year a suitable correction factor (equa-

tion 12), all the “rainfall cubes” are corrected according to equation 6 and
the L-moments ratio diagrams are re-computed. Results are reported in fig-
ure 7. Comparing the diagrams of the corrected values (panels (c) and (d))
with those of the original cored series (panels (a) and (b)), it is evident that
the correction procedure works correctly, making the τ and τ3 values of the
cored series consistent with the L-coefficients of the observed ones. Consider-
ing the position of the centroid of the cloud of the cored series and comparing
it with the one of the data, it is indeed clear that, after the correction, the
methodology is able to provide unbiased results.

For further assessing the quality of the obtained results, for each duration,
the 26 series with more than 50 years of data are considered for carrying out
a leave-one-out cross-validation procedure. The limit of 50 years of data
has been selected for limiting the computational burden of the operation,
that would be extremely large if considering the whole dataset. Leave-one-
out cross-validation is a special case of cross-validation where the number of
folds equals the number of instances in the dataset [48]. The whole “patched
kriging” technique is then performed leaving one of the series out at-a-time,
obtaining interpolated values year by year, and correcting those values with
equation 6. Figure 9 compares each recorded annual maximum value with the
corresponding cored one, obtained from the cross-validation procedure. The
shape of the scatter suggests that the “patched kriging” technique is able to
provide not only patched series with L-moments consistent with those of the
original ones, but also to reconstruct reliable annual maxima at ungauged
areas.
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Figure 9: Comparison between the annual maxima for the different durations of the series
with more than 50 years of data and the corresponding cored values, estimated with
the “patched kriging” technique in a cross-validation environment. The colourscale is
proportional to the density of the points.

4.3. IDF curves

By considering the cored series, the coefficients a and n of the average
IDF in the commonly adopted form h̄ = adn are estimated for each cell in
the study area.

Figure 10a-b shows the parameters distribution over the study area. To
assess the validity of the results, the relative differences between the values
of the parameters evaluated with the original series and the ones estimated
with the cored ones is considered. The maps of the the spatial distribution
of the differences (omitted) shows that no particular spatial clustering can
be observed. Significant differences between the two sets of parameters are
mainly related to the length of the original series, as shown in figure 10c-d.
Comparing the differences with the length of the series, a decreasing trend
with the length of the series is obtained, as explainable from the sampling
variance theory. The “patched kriging” allows for a robust data-based spatial
estimation of the IDF curves by increasing the robustness of the estimation
at gauged sites, by filling the gaps in the series with data spatially consistent
with the surrounding stations, and by allowing for the spatialization of the
parameters to ungauged areas.
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Figure 10: (a) a and (b) n parameters of the mean IDF curve. (c) a and (d) n parameters
of the mean IDF curve estimated with the original and cored series. The colourscale refers
to the length of the original series.
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5. Frequency analysis at ungauged sites

In order to estimate the design rainfall for a given return period for a
generic point in the domain under analysis, it is necessary to identify a prob-
ability distribution representing the annual maxima. It would be then pos-
sible to estimate the rainfall depth ĥd,T related to a duration d and a return
period T , using the average IDF curve previously identified and the growth
factor KT :

ĥd,T = adnKT (13)

Different probability distributions have been used in the literature to sta-
tistically represent the growth factor. Even if the identification of the best
probability distribution lies beyond the scope of this work, in this section we
illustrate a preliminary analysis of the distribution of the considered dataset,
aimed at showing the potentiality of the “patched kriging” in providing a
spatially consistent frequency analysis.

Figure 11a shows the points and curves representing different distributions
commonly used in the analysis of extreme values. Plotting the L-moments
of the cored series allows one to visually evaluate the global behaviour of the
samples.

The diagram confirms that the Gumbel distribution is a good candidate to
represent extreme precipitations at the regional scale, despite the centroid of
the cloud of points is slightly shifted towards larger τ3 values. To identify the
amount of variability due to the sample size with a Monte Carlo procedure,
25000 series with a length of 72 year have been randomly extracted from a
Gumbel distribution with scale and position parameters set to 1. This allows
one to build a region in the (τ3,τ4) space occupied by parameters resampled
from the original Gumbel function. In this region it is easy to delimit the
90% and 95% acceptance areas, that have been overlapped to the points
estimated from the actual samples (see figure 11a). Most of the actual points
fall into the domain of the Gumbel distribution. For the series characterized
by larger skewness and kurtosis values the GEV distribution can be a viable
alternative, despite the use of distributions with three parameters increases
the uncertainty associated to the estimates. This uncertainty depends on
the inherent difficulty in estimating the shape parameter of the distribution,
especially in the presence of short and unevenly distributed records.

Figure 11b shows the spatial distribution of the cells whose L-moments
fall inside the theoretical acceptance area of the Gumbel distribution. As
expected, a regular pattern of Gumbel and non-Gumbel cores can be hardly
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Figure 11: (a) L-moments ratio diagram related to the cored series. The ellipses represent
respectively the 95% (green) and the 90% (red) acceptance area, defined by bootstrapping
from a Gumbel distribution. The colour scale is proportional to the density of the points.
Key to distributions: E - Exponential, G - Gumbel, N - Normal, U - Uniform, GPA
- Generalized Pareto, GEV - Generalized Extreme Value, GLO - Generalized Logistic,
LN3 - Lognormal, PE3 - Pearson type III. OLB is the overall lower bound of L-kurtosis
as function of τ3. (b) Spatial distribution of the cells falling inside the 90% and 95%
acceptance area of the Gumbel distribution. Dimensionless scale (θ∗2) parameter of the
(c) Gumbel and (d) GEV distribution, normalized on the mean rainfall depth. (e) Shape
parameter (θ3) of the GEV distribution.
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defined, due to the complex topography and to the different characteristics of
the events generating annual maxima for different durations at the regional
scale [5]. The mixture of scales involved in data generation (local and synop-
tic scale events) and the effect of orography on storm generation (particularly
significant in the north-western Alpine and south-eastern Appenninic areas)
does not allow the identification of a unique regional probability distribution.
In addition, boundaries effects may occur at the edge of the analysed domain.

The growth factor of the GEV distribution can be expressed for a given
return period T by the equation [49]:

KT = 1− θ∗2
θ3

[
Γ(1− θ3)−

(
− ln

(T − 1

T

))−θ3]
(14)

with θ∗2 = θ2
µ

, where µ is the mean, θ2 >0 as the scale parameter and θ3 as
the non-dimensional shape parameter. When θ3=0, the GEV reduces to the
Gumbel distribution [1]:

KT = 1 + θ∗2

[
−γE − ln

(
− ln

(T − 1

T

))]
(15)

with γE as the Euler-Mascheroni constant.
We estimate the parameters of the distributions for each cell of the grid,

both with the constraint θ3=0 (forcing the use of a Gumbel distribution) and
letting the shape parameter be freely estimated.

For the parameter estimation of both the distributions we adopt the
L-moments methodology [50]. In detail, we use the average weighted L-
moments among the different durations for estimating the dimensionless
parameters of the Gumbel and GEV distribution. Maps of the estimated
parameters are reported in figure 11, panels (c),(d) and (e).

The “patched kriging” allows not only for a consistent spatialization of
the local information to ungauged areas but, as it emerges from the maps, to
pursue a more robust estimation of the distribution parameters. For instance,
the shape parameter of the GEV distribution, estimated with the original
series, takes on values between -1 and 6. However, the shape parameter
usually assumes values in a much narrower range, smaller or larger values
being ascribable to an excessive sampling variability in small samples (see
figure 11e). Moreover, negative shape parameters of the GEV distribution
may be just an artefact of the data, attributable to bias in the estimation of
the sample L-moments [51, 52]. In this study we obtain values in the [-0.2,0.4]
range, with the large majority of data cores providing a θ3 >0 value.
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6. Conclusions

We propose a methodology for estimating rainfall extremes at ungauged
sites in the presence of short and fragmented records, providing the basis for
a spatially homogeneous and reliable frequency analysis of rainfall extremes
on wide areas.

Treating each recorded annual maximum like a point in the (x,y,t) space,
the “patched kriging” technique allows one to overcome the problems con-
cerning the filling and merging of fragmented records, exploiting in the same
time all the available information from the measurements, providing series
consistent with the available measurements. Once a suitable correction factor
for increasing the variability of the obtained series is applied, the “patched
kriging” technique is able to reconstruct reliable annual maximum values also
in ungauged areas.

The “rainfall cube” produced by the “patched kriging” technique provides
greater robustness during the distribution estimation phase than other avail-
able procedures. The information concerning the estimation uncertainty is
carried out thanks to a “variance cube” assembled with the estimation vari-
ance, per location, per year.

The “best” probability distribution can be therefore estimated at each
location in the gridded domain. Despite a complete frequency analysis is
beyond the aims of this paper, a exploratory methodology aimed at defining
the global behaviour of different distributions at the regional scale is also
proposed. Referring to the Piemonte region case study, the methodology
confirmed good performances of the Gumbel distribution at a regional scale.
As the procedure provides specific patterns of the areas of acceptability of the
different distributions, application results allow for more in-depth meteoro-
logical and morphological analyses aimed at explaining the spatial variability
of extreme rainfall.

From this perspective, the proposed methodology offers a powerful and
expeditious procedure, suitable to grant an at-site evaluation of the best
distribution and of the related quantiles, in the framework of a regional
frequency analysis always consistent with the available data.
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Appendix A. Weighted L-moments

Given a sample with size n sorted in ascending order: x1:n ≤ x2:n ≤ ... ≤
xn:n, and considering:

br = n−1

n∑
i=r+1

(i− 1)(i− 2)...(i− r)
(n− 1)(n− 2)...(n− r)

xi:n (A.1)

the sample L-moments can be written as:
l1 = b0

l2 = 2b1 − b0

l3 = 6b2 − 6b1 + b0

and, in general:

lr+1 =
r∑

k=0

p∗r,kbk (A.2)

with r=0,1,...,n-1 and p∗r,k = (−1)r−k(r+k)!
(k!)2(r−k)!

.
In order to take into account the different nature of the data each value

is weighted according to the estimation variance associated with it. In the
detail, to the i-th value of the considered cored series, characterized by σ2

i

estimation variance, is assigned a weight wi = σ2
max/σ

2
i , with σ2

max = max(σ2
i )

for the considered series. Once defined Wi =
∑i

k=1 wi, each cored series (all
characterized by the same length n) acquires an effective length m = Wn.
Concretely, the weighting procedure inserts a number of virtual ties, aimed
at giving more weight to some values than to others, so the effective length
of a cored series equals the sum of its weights. Considering the yj:m elements
of the series series including the virtual ties, sorted in ascending order, the
equivalent of equation A.1 for the weighted series can be written as:

br = m−1

m∑
j=r+1

(j − 1)(j − 2)...(j − r)
(m− 1)(m− 2)...(m− r)

yj:m (A.3)
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with y(j)=x(i) for 1 +Wi−1 ≤ j ≤ Wi.
Evaluating equation A.3, the L-moments weighted on the estimation vari-

ances can be obtained from A.2. For simplicity we report in the following
the explicit form of A.3 for r = 1, 2, 3, 4, used in this study.

b0 =
1

m

n∑
i=1

wix(i) (A.4)

b1 =
1

m(m− 1)

n∑
i=1

wix(i)

(
Wi−1 +

1

2
(wi − 1)

)
(A.5)

b2 =
1

m(m− 1)(m− 2)

n∑
i=1

wix(i)

(1

3
w2
i +wi(Wi−1− 1) +

2

3
− 2Wi−1 +W 2

i−1

)
(A.6)

b3 = 1
m(m−1)(m−2)(m−3)

∑n
i=1

1
4
wix(i)

(
w3
i + w2

i (4Wi−1 − 6)+

+wi(6W
2
i−1 − 18Wi−1 + 11) + 4W 3

i−1 − 18W 2
i−1 + 22Wi−1 − 6)

) (A.7)
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