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Abstract— We present the design and the validation by means of
state-of-the-art randomness tests of a high-quality true random number
generator which internally exploits a pipeline analog-to-digital converter
modified to operate as a set of interleaved chaotic maps. Developing
the circuit design relying on pipeline A/D technology, which is ubiquity
used in all mixed signal systems, allow us to design a fast and very
reliable TRNG. A prototype has been implemented in AMS 0.35 µm
2P3M technology and has a nominal throughput of 40 Mbits per second.
The active area occupied by the chip is about 0.52 mm2 and the power
consumption is less than 30 mW.

I. INTRODUCTION

By its very definition, a Random Number Generator (RNG) is a
circuit capable of producing infinitely long sequences of perfectly
independent bits, with the property that, if restarted, it does not
reproduce the same sequence (non repeatability). RNGs could find
several applications in many engineering tasks; for instance they are
are widely used in all cryptographic applications, where they are
fundamental in the synthesis of confidential keys for symmetric and
public-key crypto-systems [1].

Of course, actual implementations of RNGs can only approximate
the above definition. They are divided into two main categories,
namely Pseudo-Random generators, or PRNGs, which are numerical
algorithms capable to “expand” short seeds into long, irregular,
random-like bit sequences [1], [2], and True Random generators
(TRNGs), which are based on some microscopic processes that can
be addressed as noise. Of course, this second category is largely
used in all security related applications, where the deterministic (and
so predictable) nature of the PRNGs makes this first category not
suitable for this kind of applications.

Typically TRNGs are based on processes like Johnson thermal
noise [3], shot noise, jitter in PLL or free oscillator [4], but can also
be based on quantum effects like the radioactive decay. Recently,
some RNGs based on photon reflection, see [5]) has been proposed.
They can achieve very good results in terms both of quality and
speed (which are the two most important figures of merit in a RNG)
but they do not represent a solution currently embeddable in silicon
integrated technology.

So if we look for a system-on-a-chip solution, or just for a high
quality low-cost solution, we must relay on processes which could be
easily reproducible in a standard silicon-based embedded technology.

Our solution relays on a simple one dimension chaotic map [6].
The use of discrete-time chaotic maps in the realization of TRNGs has
been known since many years and was firstly suggested by Ulam and
Von Neumann in 1947 [7]. Recently in [8] it was proposed the use of
a pipeline analog-to-digital converters (ADCs) based on 1.5 bit/stage
cells [9] to implement a chaotic circuit that has been theoretically
proved to generate independent and identically distributed - that
is random – symbols. We report here the implementation and the
measure results of a prototype implementing this solution.

The paper is organized as follows. In section II we report some
details of the theory grounding our approach. In section III we present
the design of the circuit, while in section IV we present results for
statistical tests on sequences generated by the prototype.

For the validation we use the test suite provided from the US
National Institute for Standard and Technology (NIST) [10].

II. PIPELINE ADCS AND MARKOV CHAOTIC MAPS

The design of the proposed circuit comes directly from pipeline
ADCs technology. The architecture of a standard pipeline ADC,
including the proposed modifications, is shown in Fig. 1. The figure
depicts a k-stages converter; each i-th stage computes, usually with a
small and fast flash converter, a coarse m-bit representation D(i) =(
d(i,0), . . . , d(i,m−1)

)
of its input v(i) sampled at the time step n,

and then calculates (and rescales) an analog error conversion e(i) to
be passed at the time step n+ 1 to the following stage (i+ 1)-th as
its input v(i+1). Note that the last stage, having nothing downhill,
is composed only by the coarse converter. A digital logic provides
to collect all the intermediate conversions (k · m bits), to elaborate
them, and to supply the l-bits conversion, with l ≤ k ·m.

The modification we propose is to close the entire pipeline into a
loop, discarding the last stage due to the fact that it does not provide
any conversion error, and to substitute the digital correction logic
with a circuit capable of collecting all data end of extracting random
bits from that. Actually, since it is very common to design a pipeline
ADC in which all the stages work alternatively at the two phases of
the clock, 1 we have the additional restriction to close the loop after
an even number of stages.

The relation between the output and the input in a single stage, i.e.
the function v(i+1) = M

(
v(i)

)
is always a piece-wise affine func-

tion. For example, the M function that can be found in 1.5 bit/stage
converter, that is one of the most widely used architecture [9], is
depicted in Fig. 2-A, where the input is assumed ranging in [−1, 1].

Intriguing enough, this function can also be used for designing a
system belonging to the class known as Piece-wise Affine Markov
(PWAM) chaotic maps.

Generally speaking, chaotic maps are 1D discrete-time autonomous
systems, whose evolution is described as xn+1 = M (xn) where
M is a proper function mapping an interval I into itself. A deep
and exhaustive analysis on chaotic maps, as well as a description
of PWAM maps, can be found in [6]. Here is enough to recognize
that the system modified as in Fig. 1 can be analyzed exactly with
the same tools used to analyze chaotic maps. In fact the evolution
of a system composed by k − 1 identical pipeline ADC stages
can be described as, assuming all stages has the same input/output
relationship M :





v
(0)
n+1 = M

(
v
(k−2)
n

)

v
(1)
n+1 = M

(
v
(0)
n

)

· · ·
v
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(
v
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n

)
(1)

1This is used to reduce the latency of the whole conversion since every stage provides
its output with a delay of half clock cycle.
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Fig. 1. Basic structure of a pipeline ADC and modifications proposed (dashed elements) to obtain a TRNG.
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Fig. 2. (A) PWAM map that can be found in 1.5 bit ADC pipeline converter
stage; (B) Markov chain associated to the PWAM; and (C) simplified chain.

It is easy to notice that the system (1) is perfectly equiva-
lent to a system composed by k − 1 independent chaotic maps

x
(i)
n+1 = M

(
x
(i)
n

)
. Moreover, since the map associated to the M

function is a PWAM map, its evolution can be studied through
a Markov chain [6]. If we consider the PWAM map in Fig. 2
the associated Markov chain, obtained considering the transitions
of the map state xn in the four intervals {X0,X1,X2,X3} =
{[−1,−1/2[ , [−1/2, 0[ , [0, 1/2[ , [1/2, 1]}, we get the chain in Fig. 2-B.
Intriguing, if we simply aggregate the states of the graph two by two,
we get the chain of Fig. 2-C, which is exactly the chain describing a
random bit generator. Note that implementing a circuit described by
the chain of Fig. 2-C means effectively implementing a Random Bit
Generator.

To recognize in which of the two macro-states of Fig. 2-C the
system is, it is enough to look at the output of the coarse ADC. So
no additional analog hardware is required in order to implement this
Markov chain (i.e. a RNG) from an ADC stage; what we need to get
a RNG from the closed pipeline is only to re-elaborate the digital
output of all stages, i.e. to substitute the digital correction logic.

In addition we can introduce also a digital post-processing stage. It
consists of an algorithm (typically, based on a very simple hardware)
which elaborates the output bit-stream in order to reduce the residual
correlation, if still present. A post-processing is always used in
TRNGs to improve the quality of the output stream; the most widely
used is probably the Von Nuemann post-processing [11], that has the
property to remove any biasing in the bit-stream.

III. CIRCUIT IMPLEMENTATION

We designed and fabricated a prototype of this TRNG in AMS
0.35 µm 3.3 V CMOS technology. Following the idea described in
the previous section, we based the core of the circuit is the 1.5 bit A/D
cell whose schematic is shown in Fig. 3 [9]. While a single-ended
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Fig. 3. One and half bit ADC stage implemented in the prototype.

configuration is shown for simplicity, the actual implementation is
fully-differential.

Assuming a two-phase clock, its behavior can be described as
follows. In the first phase the capacitors Cs and Cf sample the input
voltage, while in the second the output voltage is being computed.
This is particularly important, since it allow us to directly connect
the input of a stages to the output of the previous one if the two
stages work on the two different phases of the clock. This reflects in
a very important simplification of the pipeline, since the S/H stages
usually required to separate different stages in a pipeline are no more
necessary.

The two comparator indicate the interval in which the map state
is; to perform the state aggregation necessary to obtain the Markov
map of Fig. 2-C it is enough to xor the two bits d(i,0) and d(i,1).

Every stage produces 1 random bit every clock cycle, half of
them in the first stage, half in the opposite phase of the clock. The
throughput of the system with l− 1 stages is so l− 1 bits per clock
cycle.

We designed our prototype including two pipelines. The first one
is composed by two stages and is intended for testing the correct
behavior of the chaotic map, while the second one is composed by
eight stages and its purpose is to work as a random bit generator. They
are biased by two different biasing circuits to avoid interferences. The
layout of the chip is shown in Fig. 4 while the circuit characteristics
are reported in Table I. The circuit has been designed to work with
a clock up to 5 MHz; this means that the circuit maximum output
data rate is up to 40 Mbit/s for the eight-stages pipeline.

In the prototype no post-processing stages have been included;
this because it was intended to test only the analog core. The post
processing stages however have been considered only during the test
phase, processing off-line all the acquired sequences before testing
them.

IV. TEST RESULTS

Even if it is possible to theoretically prove that the proposed archi-
tecture is capable of generate independent and identically distributed
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Fig. 4. Die microphotograph and floor plan of the designed ADC-based
RNG.

Working frequency: 5 MHz
Data throughput: 5 Mbit/s per stage

(two-stages pipeline): 10 Mbit/s
(eight-stages pipeline): 40 Mbit/s

Area (with pads): 2.400 mm2

(1480 µm x 1620 µm)
Area (without pads): 0.752 mm2

(two-stages pipeline): 0.234 mm2

(eight-stages pipeline): 0.518 mm2

Power supply voltage: 3.3 V
Power consumption: 56 mW

(two-stages pipeline): 27 mW
(eight-stages pipeline): 29 mW

TABLE I
CIRCUIT CHARACTERISTIC FOR THE DESIGNED ADC-BASED RNG.

symbols, a real implementation could be quite far from the ideal
one, due to unavoidable implementation errors. For this reason, it is
important to accurately test the real implementation of the circuit.

The most natural idea for checking the ideality of a RNG would
be compute the entropy of the generated sequences. According to
Shannon [12] the entropy H measured in bit of any message is:

H = −
n−1∑

i=0

pi log2 pi (2)

where pi is the probability of state i out of n possible states. In
case of a random bit generator that produces k-bits binary sequences,
the possible sequences are n = 2k and every sequence should have
the same probability, i.e. pi = 2−k. Thus, for a perfect random
bit generator, the associated entropy is k bits, i.e. the number of
generated bits.

However, this is only a stochastic definition. To get a measurement
of the entropy of a system, we have to assume that the system
is ergodic, so we can measure the frequency of all 2k sequences
and consider it as their probability, and calculate the entropy. The
closer the system to the ideal one, the closer the entropy to k bits.
Also, the value of k should be as large as possible, since an ideal
random number generator has to produce infinite-length sequences.
It is obvious that this approach is not possible.

In order to overcome the impasse, some statistical test has been
developed to analyze a sequence of bit and evaluate if it can be
considered random. We presents results from NIST SP 800-22 test
suite [10] which is, to the best of the authors’ knowledge, the most
reliable test suite currently available. The code we used for the testing
comes directly from NIST website [13] and is the latest version
available the moment (version 1.8). We also have considered the FIPS
140.2 test suite [14] from NIST, and Marsaglia’s DieHard test suite
[15]; results are very similar and they are not reported here.

To test our RNG we have acquired sequences of bits generated at
different speed, post-processed them and tested with the suite. We

M-bits SR

m2-bits SRm1-bits SR

interleaved section
m2m1

F1 F2

m1 m2

Fig. 5. Block scheme of the finite-state machine used for the non linear shift
register post-processing.

have considered three different post-processing techniques:
• Von Neumann post processing. This post processing has been

introduced by Von Neumann in 1951 [11]. This technique consist
of converting the bit pair ‘01’ into the output 0, the bit pair ‘10’
into the output 1, and of discarding bit pairs ‘00’ and ‘11’. The
expected decimation is 1:4.

• Parity-based post processing. The output of the system is
computed as the parity of non-overlapping string of n bit,
resulting in a decimation of 1:n. It is also known as Xor post-
processing. We have considered a depth equal to 4 to have the
same decimation as in the Von Neumann post processing.

• Non-linear shift register post processing. This scheme operates
at no throughput loss. The block diagram of the overall system
can be found in Figure 5 and it is a simplification of the SHA
algorithm. For a more detailed discussion about this scheme, see
[16].

Here we present results for the sequences obtained by the 8 stages
pipeline, working at the nominal speed of 5 MHz, with a throughput
of 40 Mbit/s. The length of the analyzed sequences has been set,
after the post processing stage, to 1 Mbit.

The NIST suite is composed of 15 tests. Each test has to be
interpreted in a statistical way [10], i.e. it analyzes a binary sequence
and gives a probability (called P-value) that the sequence has been
randomly generated. A P-value equal to 1 means that the sequence
has the maximum probability to be generated by an ideal generator,
a value near to 0 means that it is very unlikely, though still possible,
that the sequence is effectively random.

Due to this reason, we have to be very careful when looking at
randomness tests results. A single P-value can hardly be considered
indicative for a generator; slightly better, and this is the most common
approach to test physical RNGs, is to consider all P-values from all
different tests in a suite.

In this paper we consider a completely different approach. If
considering and testing a single sequences is not enough to make
a good characterization of a RNG, we can repeat the test several
times on different sequences, and check the overall results. The
higher the number of sequences tested, the higher the accuracy of
the characterization. So, we acquired 5000 different sequences and
we analyzed all of then, comparing the results obtained with the
results expected when testing several true random sequences

As a first test (first level test, since we consider each sequence
stand-alone), we can check the probability that a single sequences has
to pass the test, simply computing the ratio of sequences effectively
passing the tests. According to NIST, we can say that a test is
passed if we get a P-value greater than a chosen significance level
α, which NIST suggests to take equal to α = 0.01. When analyzing
a large number of sequences, due to a small but non-zero probability
that sequences generated by an ideal random generator have to fail
the test, we have an expected ratio of “good” sequences equal to
1− α = 0.99. Since we analyze only a finite number of sequences,
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Ratio of sequences with P-values χ2 test on the uniformly
greater than alpha = 0.01 distribution of P-values

SP800-22 test NEUM XOR4 NLSR NEUM XOR4 NLSR
Frequency 0.000000 0.991000 0.988200 0.000000 0.650296 0.138401
Block Frequency 0.434000 0.990400 0.987600 0.000000 0.131124 0.661143
Cumulative Sums 0.000000 0.990600 0.989000 0.000000 0.741332 0.063258
Runs 0.000000 0.990000 0.991600 0.000000 0.849924 0.139410
Longest Run of Ones 0.000000 0.988400 0.990000 0.000000 0.774201 0.950563
Matrix Rank 0.989600 0.988400 0.991600 0.273925 0.135018 0.700255
Spectral (DFT) 0.984400 0.987000 0.988800 0.000024 0.435680 0.041253
NOT Matching 0.000000 0.990600 0.990800 0.000000 0.931229 0.715335
OT Matching 0.000000 0.989200 0.987000 0.000000 0.131895 0.067738
Universal 0.082200 0.985800 0.985800 0.000000 0.106533 0.202878
Average Entropy 0.000000 0.989200 0.987200 0.000000 0.036178 0.087978
Random Excursion N/A 0.989780 0.990542 N/A 0.299634 0.986286
Random Exc. Variant N/A 0.993612 0.993380 N/A 0.616292 0.216608
Serial 0.985400 0.989800 0.987200 0.042983 0.321094 0.297790
Linear Complexity 0.989000 0.986200 0.988600 0.643672 0.480524 0.994013

TABLE II
RESULTS OF RANDOMNESS TEST FOR THE EIGHT-STAGES PIPELINE OF THE CHAOTIC-RNG RUNNING AT 40 MBIT/S.

we may expect some deviation from this number. If we adopt the
three-σ criterion, we say that the number of passing chunks is
compatible with the randomness of the source if it lies in the range
1− α± 3

√
α (1− α) /T , where T is the number of tested strings.

Since in our case T = 5000, the acceptable range is the interval
[0.9857, 0.9942].

Here we present also a second level test, involving the results of
the tests on all sequences together. Since the P-value for a RNG is a
random variable that has to be uniformly distributed in [0, 1], we can
check if the P-values obtained from the tests can be considered as
coming from an uniform distribution. We performed a χ2 test over
16 bins; the result of this test is another probability value that can
be considered as a second level P-value. As in the first level test, we
can chose another significance level α′, and consider the test passed
if this second level P-value is greater than α′. We can consider, as
in the previous case, α′ = 0.01.

Results are shown in table II. In bold are indicated the tests whose
results are not in the expected range.

As can we see, a part from the Von Neumann post processing,
which ah shown to be inappropriate for this generator, with all
other post processing techniques results are in the expected range
for all tests in the suite, i.e. the generator in combination with these
post processing can be effectively considered as a true RNG. The
characterization we have presented here is not based just on the test
of a single sequence, but based on the tests of thousands of sequences,
providing results that are high reliable.

The other figure of merit in a RNG is the throughput. Even
applying an Xor-4 post-processing, which has a decimation ratio of
1:4, the throughput is still 10 Mbit/s. This is a considerably high
speed, especially when compared the the other generators available.
An high-end quantic RNG like the one described in [5], which is one
of the fastest available, achieves a throughput of 4 Mbit/s with a much
higher power consumption. If we instead compare our performance
with other silicon-based architecture, we get very different results.
For example the Intel TRNG [3], which is base on Johnson Thermal
noise and on Von Neumann post processing, achieves only an average
speed of 75 Kbit/sec. VIA declares [4] that its generator can achieve
a data-rate from 4 to 9 Mbits/sec, but with a much smaller entropy
rate. However, no results from testing is presented in both cases.

V. CONCLUSION

By exploiting the statistical approach to the study of non-linear
dynamics, we are able to recognize that the architecture used for
common pipeline ADCs can be reused for designing a chaotic circuit
very appealing for the generation of random numbers.

Following this approach we have designed a prototype of a True-
Random Number Generator in 0.35 µm CMOS technology capable

of generating up to 40 Mbit/sec. We tested our prototype with the
most advanced tests for randomness available considering few very
simple post processing stages.

The results of the tests, as well as the quality of the testing, that
has not involved a single sequence but thousands of them, indicate
that the proposed circuit can be considered a high quality TRNG,
suitable for the most advanced security-related applications.
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