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Abstract— Testing Random Number Generators (RNGs) is as
important as designing them. Here we consider the NIST test
suite SP 800-22 and we show that, as suggested by NIST itself, to
reveal non-perfect generators a more in-depth analysis should be
performed using the outcomes of the suite over many generated
sequences. Testing these second-level statistics is not trivial and,
relying on a proper model that takes into account the errors
due to the approximations in the first level tests, we propose a
tuning of the parameters in the simplest cases. The validity of
our consideration is widely supported by experimental results on
several RNG currently employed by major IT players, as well as
a chaos-based RNG designed by authors.

I. INTRODUCTION

Random number generators (RNGs) are gaining more and
more interest due, in particular, to the increasing usage of
cryptography, where they represent a critical point [1].

However, if designing a good RNG is a non trivial task,
being able to test and validate it is perhaps more complex. First
of all, random means unpredictable; testing the unpredictabilty
is of course not possible. We can observe a long sequence of
numbers, look for some patterns and, if we identify a model,
try to predict the following number; in this case the examined
generator is discovered not to be random. If we do not identify
any model, it does not necessary mean that no pattern is
present; just that we were unable to find it. Roughly speaking,
we can check the non-randomness of a generator, but we will
never be able to find a proof that a generator is really random.

Also, a test for randomness can be interpreted only in a
probabilistic way. Everybody, looking at a sequence of all 0s,
says that the sequence is not random at all. However for an
ideal RNG this sequence has the same probability of any other
sequence; on the contrary, a RNG not able to generate this
sequence is not ideal.

Many suites of test have been developed in the last years for
checking the quality of a RNG. They are known as statistical
tests for randomness while, in fact, they are tests for non
randomness. They analyze a sequence, assuming that it has
been randomly generated, and try to refute this hypothesis
looking for some recurrent pattern. They also have to be
interpreted in a statistical way, i.e. they are not pass/fail tests,
but they say that the tested generator can be considered random
or not only with a certain probability that can be quantified or
at least bounded.

In this paper we consider the SP 800-22 test suite from
US National Institute of Standard and Technology (NIST) [2].
The main reason is that the suite, from an engineering point of
view, has several appealing properties. First, it is uniform: it
is composed of several different tests, each of them is applied
to the same sequence of n bits (the NIST suggests n = 106)

and gives a P-value that is, roughly speaking, the probability
that the sequence under test is random 1. If a P-value for a test
is determined to be equal to 1, then the sequence appears to
have perfect randomness. A P-value of zero indicates that the
sequence appears to be completely non random. Second, the
suite is composed by a number of well known tests and, for
all of them, an exhaustive mathematical treatment is available.
The source code of all the tests in the suite is public available
[3] and is regularly updated 2.

It is well known that many tests present some flaws [4], [5].
The purpose of this paper is not to change test parameters or
the suite itself; here we consider the suite as is, analyzing the
testing strategy proposed in Section 4 of the NIST publication
to perform a more reliable test, and discussing under which
assumptions this strategy increases the reliability and when,
on the contrary, produces incorrect results.

The paper is organized as follows. In section II we introduce
the NIST suite with a brief mathematical analysis. In section
III we describe one of the methods to aggregate several tests
into a single, second-level, test, and explain why this can
improve the reliability of the test. Then, in section IV we
apply the proposed method to some real generators, and try
to give a bound on the applicability of this method. In the
considered generators we included a RNG recently designed
by the authors; this generator exploits chaotic dynamic and it
is already proven to be a high-quality true-random generator.

In this paper we intensively used software for testing
random sequences. All the software has been executed on
32 bits CPUs with 64 bits FPUs. The code comes directly
from NIST website; only the interface has been rewritten to
handle more easily the results. All additional mathematical
code comes from [6].

II. STATISTICAL TESTS FOR RANDOMNESS

The SP 800-22 test suite is composed of 15 different tests.
Each test analyzes the input sequence, looking for a particular
statistical feature, and expressing it as numerical quantity s0 ∈
S (typically a vector, sometimes a scalar value). This quantity
is then compared to the one s derived for a sequence composed
of truly random bits. Clearly, since perfect random sequences
can be characterized only in terms of probability, s is a random
variable with mean value s and probability density function
fs : S → R+. If we define a norm ‖·‖ : S → R+, ‖s− s‖

1Actually, some of the tests in the suite compute two (the Cumulative
Sum and the Serial tests) or more (Non-Overlapping Template Matching,
Random Excursion and Random Excursion Variant) P-values; however it is
very common considering only one of them.

2At the time of this paper the latest version available is 1.8, March 2005.
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is a new random variable, and we can compute its cumulative
distribution function F‖·‖ : R+ → [0, 1]. Then the P-value p
is computed as p = 1− F‖·‖ (‖s0 − s‖). In this way:

• p = 1, if s0 = s;
• p → 0, if ‖s0 − s‖ → ∞;
• for a perfect random generator, p is a random variable

that is uniformly distributed in [0, 1].

To be considered good, a test should look at statistical features
that are sensitive to the presence of pattern or regularities.
In this way, the computed P-value drops to zero whenever a
pattern is recognized.

This allows us to interpret the statistical test in the following
way. If H0 is the hypothesis that the sequence under test
comes from a perfect random generator, we reject H0 (i.e.
we consider the test failed) if p < α, while we accept H0

if p ≥ α. Of course, this is not an exact test, since we can
commit two errors:

• reject H0 when the sequence is generated by a perfect
random generator (Type I error)

• accept H0 when the sequence is generated by a generator
that is non random (Type II error).

As far as the Type I error is concerned, we can compute
its probability since we have a complete characterization of
the sequences generated by a perfect RNG. If p is uniformly
distributed, the probability of a Type I error is simply α. For
this reason, α is also called level of significance. The value of
α is usually small; we use α = 0.01 as suggested by NIST.

In the following, as an example, we describe two very easy
tests in the suite.

A. Frequency Test

Given an input sequence of bits ξi = {+1,−1}, i = 0...n−1
the balance between bit −1 and bit +1 is given by

s =

n−1∑

i=0

ξi (1)

s is a zero average random variable which is binomial dis-
tributed. If n is large, we can assume that is normal distributed,
with σ2 = n. If s is normal, then |s| is half normal (i.e.
f|s| (ξ) = 2fs (ξ) , ξ ≥ 0). It is very easy to see that

p = 1− F|s| (|s|) = 1− (2Fs (|s|)− 1) = erfc

( |s|√
2n

)
(2)

where erfc (·) is the complementary error function.

B. Matrix Rank Test

Divide the n bits input sequence in m contiguous non-
overlapping sequences of 1024 bits. With these, build m binary
32x32 matrices and, for each matrix, compute its rank r,
0 ≤ r ≤ 32. The probability pr that a matrix has rank r
is:

pr = 2r(64−r)−1024
r−1∏

i=0

(
1− 2i−32

)2

(1− 2i−r)
(3)

The distance of the observed frequency from the expected
probability is measured with a chi-square goodness of fit test,
and it is then expressed with a P-value.

second level test
SP800-22 test single test χ2 KS

Frequency
Block Frequency
Cumulative Sums
Runs
Longest Run of Ones
Matrix Rank
Spectral (DFT)
NOT Matching
OT Matching
Universal
Average Entropy
Random Excursion
Random Exc. Variant
Serial
Linear Complexity

0.713479
0.129962
0.833869
0.768154
0.736930
0.224896
0.060580
0.085400
0.105840
0.711080
0.029426
0.692131
0.280164
0.870041
0.998535

0.000037
0.001542
0.001617
0.611109
0.664904
0.740669
0.000117
0.752961
0.020062
0.018867
0.429767
0.815752
0.297997
0.043204
0.661848

0.000001
0.000011
0.000001
0.158852
0.101711
0.312901
0.000022
0.174745
0.001076
0.000247
0.390263
0.737741
0.489387
0.016218
0.209730

(a)
second level test

SP800-22 test single test χ2 KS
Frequency
Block Frequency
Cumulative Sums
Runs
Longest Run of Ones
Matrix Rank
Spectral (DFT)
NOT Matching
OT Matching
Universal
Average Entropy
Random Excursion
Random Exc. Variant
Serial
Linear Complexity

0.783016
0.214954
0.790206
0.719370
0.991280
0.027857
0.152641
0.392848
0.358323
0.505726
0.730140
0.715979
0.288537
0.520702
0.814581

0.497291
0.425844
0.563001
0.157584
0.858312
0.527570
0.005823
0.682907
0.507020
0.283450
0.116893
0.450995
0.462840
0.834313
0.969684

0.901241
0.721963
0.400115
0.351341
0.691410
0.493364
0.001789
0.287446
0.150185
0.021532
0.030692
0.274106
0.537302
0.316490
0.887421

(b)

TABLE I
RESULTS OF RANDOMNESS TEST FOR THE KISS (A) AND FOR THE BBS

(B) GENERATOR.

III. SECOND LEVEL TEST

The usual way to test a true-random or pseudo-random
number generator is to generate a sequence of n bits and
analyze it with the test suite. Given a level of significance
α, the sequence is considered random if all tests in the suite
produce P-values greater then α, always remembering the
possibility to commit a Type I or Type II error.

This approach presents a serious weakness. It is well known
that some pseudo-random generators can easily pass all tests.
For example a periodic (and thus, non random) generator
always passes the above Frequency Test if the number of 1s
and of 0s in the period is balanced.

To overcome the impasse, a more intensive test is necessary,
involving a number N of different sequences generated by the
RNG under test. NIST suggests two strategies, i.e. (a) to check
if the number of sequences passing the test is compatible with
the expected value N(1−α); and (b) to check if the P-values
are uniformly distributed in the interval [0, 1] with a goodness
of fit test. We follow the second approach and call it second-
level test, to be distinguished from the standard basic (or first-
level) test.

The effectiveness of this approach can be shown by an
example. We have considered two pseudo-random generator,
the 32 bits version of the KISS [7], which is a very simple
but effective generator, and the BBS generator (also known
as x2 mod n) that is a computationally very heavy pseudo-
random generator that has proven to be cryptographically
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BBS idQuantique VIA PadLock chaos-based [11]
SP800-22 test χ2 KS χ2 KS χ2 KS χ2 KS

Frequency
Block Frequency
Cumulative Sums
Runs
Longest Run of Ones
Matrix Rank
Spectral (DFT)
NOT Matching
OT Matching
Universal
Average Entropy
Random Excursion
Random Exc. Variant
Serial
Linear Complexity

0.003718
0.255425
0.800947
0.256956
0.007613
0.000000
0.000000
0.828875
0.000000
0.000000
0.006100
0.000053
0.000006
0.897125
0.326050

0.548951
0.359622
0.166991
0.369664
0.015715
0.000006
0.000000
0.984424
0.000000
0.000000
0.000272
0.000002
0.000328
0.537821
0.224488

0.013303
0.127159
0.043241
0.181876
0.016752
0.000000
0.000000
0.379925
0.000000
0.000000
0.044520
0.123659
0.000000
0.681278
0.824617

0.194091
0.280038
0.550849
0.035706
0.019724
0.000015
0.000000
0.174608
0.000000
0.000000
0.000079
0.333511
0.000197
0.182290
0.461214

0.011355
0.418624
0.995862
0.874245
0.000212
0.000000
0.000000
0.491052
0.000000
0.000000
0.009827
0.004256
0.000000
0.753251
0.569766

0.014578
0.159548
0.789873
0.148838
0.001203
0.000054
0.000000
0.317815
0.000000
0.000000
0.000055
0.024853
0.000021
0.693649
0.221725

0.080238
0.735449
0.209272
0.229527
0.023731
0.000000
0.000000
0.744362
0.000000
0.000000
0.000157
0.036014
0.000267
0.933284
0.131702

0.236429
0.618841
0.663020
0.354083
0.068167
0.001051
0.000000
0.286197
0.000000
0.000000
0.000041
0.059785
0.000333
0.679118
0.639498

TABLE II
RESULTS OF SECOND-LEVEL RANDOMNESS TEST FOR DIFFERENT RNG, WITH N = 150, 000 SEQUENCES.

secure (i.e. it passes al polynomial-time tests)[8]. For both
generators we performed a first level test on a single se-
quence, and a second level test, checking the uniformity of
N = 10, 000 P-values obtained from the same number of
different sequences both with a chi-square test over 16 bins,
and with a Kolmogorov-Smirnov test. We used both these
goodness of fit tests since they are two completely different
tests and, even if in the most cases they produce very similar
results, we can expect a different sensitivity.

Both tests consider a set of values, compare their distribu-
tion with a reference one (in our case, the uniform distribution
in [0, 1]) and compute a P-value, that has to be interpreted
exactly as explained above; i.e. p = 1 means that the two
distribution are identical, while we get p = 0 if they cannot
be considered similar. In this case, H0 correspond to “the
two distributions match”; again, we reject H0 if p < α′ and
accept H0 if p ≥ α′. Even if NIST suggests α′ = 0.0001,
we set also in this case α′ = 0.01 to make possible a direct
comparison between a first and a second level test. Note
that the comparison may seem unfair, since a first level test
considers n bits, while a second level nN . Yet, we can remark
the example of the periodic generator and the frequency test:
regardless of the sequence length, a basic test is always passed,
while the advantage of the second level test is that it is able
to recognize that a generator that always passes a basic test is
not random.

Results are shown in Table I, where all P-values smaller
than the level of significance have been stressed in bold. Both
generators pass all first level tests; however (apart from the
Spectral test that is well-known to require improvements) only
the BBS generator passes the second level tests. The proposed
second level test is able to recognize the non-randomicity of
the KISS generator, while a simple first level test fails in this
attempt.

IV. SECOND LEVEL TEST ON REAL RNGS

In addition to the above test, we considered a second one
involving a much larger number of sequences generated with
the BBS algorithm (we set N = 150, 000 sequences) in order
to obtain more reliable results. The test was also repeated on
three high-end physical process based true-random generators:
the quantic generator developed by idQuantique [9], based on
single photon reflection on a semi-transparent mirror; the VIA
PadLock generator [10] integrated in a VIA C3 processor of

an EPIA MX-II 10000 system; and also a RNG designed by
the authors and presented in [11]. This last generator is based
on a discretization of chaotic trajectories generated by a set of
pipelined chaotic maps and is proved to generate high-quality
random streams.

All three generators have been considered with an additional
post processing stage, composed by a very simple IIR filter
[12], followed by a SHA function with a decimation rate equal
to 20/32; this in order to hide all possible imperfections and
be sure to analyze a streams as close as possible to sequences
of independent and balanced bits.

Results are shown in Table II. However, they are far from
the desired ones, since too many tests fail.

In order to identify the problem, we focus now on the simple
Frequency test. This test is not a particularly critical one;
however we can see that the obtained P-values are, especially
in the chi-square test, very near to the significance level for
all generator, i.e. all the observed distributions of P-values are
quite far from being uniform.

Figure 1-(a) shows the observed distribution of the P-values
for this test applied to the BBS generator, in k = 16 bins. If we
consider the theoretical standard deviation in the distribution
of N independent, uniformly distributed values over k bins,
we easily get σ =

√
N (k − 1)/k. In this case, σ � 95; as

can we see in the figure, the observed deviation is far from
this value.

Conversely, we may identify this deviation with an error
propagated from the computation of the P-value in the first-
level test, and due to the introduced approximations. In (1),
s is a random variable with a binomial distribution, which
is however assumed to be normal. From Berry and Esseen
theorem, we know that the error of this approximation, under
the assumptions of the central theorem limit, is bounded by
[13]:

sup |Fs (x)− Φ (x)| ≤ CE
[
|ξi|3

]

σ3
√
n

(4)

where Φ (·) is the gaussian cumulative distribution function;
n the number of independent variables ξi summed in (1), i.e.
the number of bits in the sequence; σ = 1; the third order
moment is E

[
|ξi|3

]
= 1; and C � 0.8. The maximum error

ε on p is the error on the F|s| and from (2) is twice the above
error, i.e. ε = 2C/

√
n. If n = 106, then ε = 1.6 · 10−3.
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Fig. 1. Comparison between expected deviation and measured deviation in the distribution of P-values in the interval [0, 1] it the cases: (a) n = 106,
N = 150000; (b) n = 107, N = 150000.

SP800-22 test χ2 KS
Frequency
Matrix Rank

0.959299
0.913093

0.902933
0.902201

TABLE III
RESULTS SECOND-LEVEL RANDOMNESS TEST FOR THE BBS GENERATOR,

WITH n = 107 , N = 150000.

Assuming this bound on the error in the computation of
a P-value, we can bound also the maximum error in the
distribution of N P-values in k bins. A P-value that should
belong to a bin can be found into the nearby one only if its
the distance from the border of the two bins is less than ε. If
we have N P-values uniformly distributed in [0, 1] the number
of P-values that can be found in the wrong bin is εN . This is
independent of the numbers of bins.

Since all bins (but the first and the last), have two neighbors,
the maximum error ∆ in the number of P-values in a bin is
∆ = 2Nε. In our case, N = 150, 000, so ∆ � 480. This
value is compatible with what we can observe in the plot.

If our analysis is correct, increasing n we should see this
propagated error decreasing as 1/

√
n. To get an experimental

verification, we repeated this second-level Frequency test
setting n = 107 bits. In this case ∆ � 150; the obtained
distribution is shown in Figure 1-(b); as expected the observed
error is bounded in an interval about three times smaller than
in the previous case.

More generally, increasing n will reduce the error in the
first-level P-value and so the reliability of a second level test,
for all tests in the suite.

We have repeated the second-level test using the NIST
suite with n = 107 and N = 150000, considering only the
above described Frequency and the Rank Tests, since they are
simple tests whose only parameter is the number of bits in the
input sequence, and can be easily applied to sequence of any
numbers of bits. Results confirm that in this case the test is
passed; for the BBS generator they are shown in Table III.

V. CONCLUSION

In this paper we have presented a new methodology for
testing RNG involving the well known NIST SP 800-22 test
suite. This approach is proved to increase the reliability of
the test, since it is able to recognize the pseudo-random KISS
as not random. However it is sensitive to approximation error

introduced in the computing of the P-values; in this paper we
considered a simple test, and we elaborated a mathematical
theory for the explanation of the systematic error. In particular,
the systematic error is dependent only on n, that is the number
of bits in the analyzed sequences; for a reliable second-level
test, this error should be smaller, ot at least, approximately
equal to the random variance, which depends on the number
of analyzed sequences N . In this case, the systematic error
can be confused with a random probabilistic error, and does
not affect the results of the test. Based on the analysis on the
frequency test and with n = 106, we suggest to use a number
of sequences in the second-level test N ≤ 20, 000.
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