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ABSTRACT

The sensitivity of recovery algorithms with respect to a perfect
knowledge of the encoding matrix is a general issue in many appli-
cation scenarios in which compressed sensing is an option to acquire
or encode natural signals. Quantifying this sensitivity in order to
predict the result of signal recovery is therefore valuable when no a
priori information can be exploited, e.g., when the encoding matrix
is randomly perturbed without any exploitable structure. We tackle
this aspect by means of a simplified model for the signal recovery
problem, which enables the derivation of an average performance
estimate that depends only on the interaction between the sensing
and perturbation matrices .

The effectiveness of the resulting heuristic is demonstrated by
numerical exploration of signal recovery under three simple pertur-
bation matrix models. Finally, we show how this estimate matches
very well the degradation experienced by non-perfectly informed de-
coders in applications of compressed sensing to protecting the ac-
quired information content in ECG tracks and sensitive images.

Index Terms— Compressed Sensing, Matrix Perturbations, Av-
erage Recovery Performances, Encryption

1. INTRODUCTION

Compressed Sensing (CS) [1] is an acquisition technique in which
the original signal is encoded into a set of measurements by means
of a dimensionality-reducing linear transformation. These measure-
ments can then be fed into a recovery algorithm (or decoder) that, by
exploiting suitable prior information, is able to recover the signal in
its original, high-dimensional domain. For this procedure to work,
however, the decoder requires very accurate knowledge of the linear
mapping used in the encoder i.e., an encoding matrix representing
the above transformation.

In some applications such knowledge may be imperfect, and per-
turbations often arise either due to the nature of the physical mecha-
nism by which the encoding matrix is applied [2, 3] or to intention-
ally missing information at the decoder, i.e., when the decoder only
knows the encoding matrix up to a certain degree of accuracy. In par-
ticular, while calibration [4] may be attempted in the first case, the
latter case can be designed to minimize the possibility of recovering
missing information by systematically using randomly varying en-
coding matrices and perturbations [5]. Fundamental results exist [6]
extending the established theoretical signal recovery guarantees [7]
to such perturbed cases. Yet, as it often happens with worst-case
analyses based on the restricted isometry property [8], the resulting
performance bounds are quite far from the average recovery quality
attained by decoding algorithms.

In this paper, we propose a heuristic that allows a prediction of
the typical recovery quality of a decoder that is subject to imperfect
encoding matrix knowledge represented by an additive perturbation;
while not general, the estimate effectively applies to typical configu-
rations of CS-based acquisition systems. In particular, we will apply
it to predicting the effect of some random perturbation models in the
case of non-perfectly informed CS.

Moreover, we illustrate the use of the developed estimate as a
design tool for some encryption schemes based on CS [5, 9] that
allow the embedding of some security properties directly in the ac-
quisition process, with the only condition that each encoding matrix
is used in a one-time pad fashion [10, 11]. In fact, low-cost encryp-
tion of analog signal sources is obtained as follows: if the encoder
transmits its measurements to the decoder, a prior agreement on a
private key must exist so that they are both aligned on an equal, very
long sequence of (pseudo)random encoding matrices.

In a slightly more sophisticated version of this scheme, decoders
knowing the true encoding matrix with no errors (generated from a
first-class key) are able to retrieve the original signal at full qual-
ity, while second-class decoders are given a (pseudo)randomly per-
turbed version of the encoding matrix (generated from a second-class
key) and their recovery is therefore of limited quality. This enables
different access levels to the protected content, as in other communi-
cation protocols such as global positioning data or digital multimedia
broadcasting.

Since the difference in quality between users of different classes
depends on how much the true encoding matrix differs with respect
to (w.r.t.) its perturbed version provided by the second-class key, in
general larger amounts of perturbation hint at gracefully decreasing
recovery quality; yet, a more quantitative analysis is needed for a
proper design of multiclass encryption. If the aforementioned re-
covery guarantees are modified to account for perturbations [6], the
obtained error bounds are quite pessimistic w.r.t. actual decoding
performances, therefore being of limited help when the errors are not
an undesired effect to counter, but a design parameter to tune against
typical decoding performances. Instead, we will see that the esti-
mate we develop can be used to effectively anticipate quality losses
due to missing information at second-class decoders, and therefore
to design multiclass encryption schemes complying with recovery
quality specifications depending on the users’ class.

2. A BRIEF REVIEW OF COMPRESSED SENSING

We here consider that a signal x is represented by n Nyquist-rate
samples collected in a vector x =

(
x0 · · · xn−1

)> ∈ Rn. The
fundamental assumption of CS is that x is sparse, i.e., there exists
an n-dimensional sparsity basis D (here considered orthonormal)
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such that for any instance x we have x = Ds, with s having at
most k � n non-zero components. Due to this hypothesis, x can
be recovered from a set of m < n properly designed measurements
(with the minimum value of m = O(k log n/k)) collected as y =
Ax = ADs, with A ∈ Rm×n the encoding matrix.

Remarkably, one can formally guarantee that x can be recovered
from y even in the presence of noise [7] and despite the fact that A
causes a dimensionality reduction. For this to occur, s must be suffi-
ciently sparse so that the linear mapping AD acts as an approximate
isometry w.r.t. all signals of sparsity k, i.e., the singularity of the
mapping is mainly due to the way it transforms dense vectors, while
the distances between sparse vectors are approximately preserved
into their measurements.

If this holds, recovery is possible by enforcing the a priori
knowledge that s is sparse. Sparse signal recovery has been a very
active research field in recent years [12–15]. Many recovery algo-
rithms solve convex optimization problems such as basis pursuit

ŝ = arg min
ξ∈Rn

‖ξ‖1 s.t. y = ADξ (1)

(denoted as BP(y,A,D) to highlight its prior information) or basis
pursuit with denoising,

ŝ = arg min
ξ∈Rn

‖ξ‖1 s.t. ‖ADξ − y‖2 ≤ ε (2)

(denoted as BPDN(y,A,D, ε)) where ‖ · ‖1 is the `1 norm, ‖ · ‖2
is the usual `2 norm, and ε ≥ 0 controls the fidelity with which
noisy measurements are matched. This said, much of the practical
interest in CS comes from the fact that the above requirements on
AD are satisfied when A is a subgaussian random matrix [8] with
independent and identically distributed (i.i.d.) entries, and the formal
guarantees on the solution of (1) or (2) are largely outperformed by
practical signal recovery performances.

3. AN AVERAGE PERFORMANCE ESTIMATE IN THE
PRESENCE OF PERTURBATIONS

In many applications the encoding matrix can be factored as A =
A′ + ∆A where A′ is known to the decoder, while ∆A is a per-
turbation matrix so that the second term of y = A′x + ∆Ax is
signal-dependent noise (∆A being unavailable to the decoder). Such
a decoder may either be naive and solve BP(y,A′, D), or attempt
denoising by BPDN(y,A′, D, ε), albeit with an unknown ε that has
to be chosen carefully. The relative sophistication of such convex
optimization problems prevents an average analysis of the sensitiv-
ity w.r.t. the perturbation matrix in typical recovery problems. For
this reason, in our simplified model we assume that (i) (A′,∆A) are
random matrices with known distributions of entries, (ii) an approx-
imation x′ = Ds′ is obtained by solving BP(y,A′, D) to satisfy
y = A′x′. Pairing this with the original y = Ax, as ∆A = A− A′
we obtain A′∆x = ∆Ax where ∆x = x′ − x. Starting from this,
we further assume that ∆A is indeed a perturbation (its entity is
small w.r.t. A′) so that the approximation error ∆x is small in the
least-squares sense, i.e.,

∆x = arg min
∆ζ∈Rn

‖∆ζ‖22 s.t. A′∆ζ = ∆Ax

whose solution is ∆x = (A′)+∆Ax with ·+ denoting the Moore-
Penrose pseudo-inverse. To investigate the ratio between the ener-
gies of x and of ∆x we may then indicate with K· = E[· ·†] the

correlation matrix of its column vector argument (·† denotes the Her-
mitian transpose) and with tr(·) the matrix trace to write

E[‖∆x‖22] = tr (K∆x) =

= tr
{
EA′,∆A,x

[
(A′)+∆Axx†∆A†

[
(A′)+]†]}

= tr
{
EA′,∆A

[
(A′)+∆AKx∆A†

[
(A′)+]†]}

so that the ratio

E[‖∆x‖22]

E[‖x‖22]
= tr

{
EA′,∆A

[
(A′)+∆A Kx

tr(Kx)
∆A†

[
(A′)+]†]} (3)

where the energy-normalized correlation matrix Kx/tr(Kx) takes into
account the second-order statistical properties of the signal to ac-
quire. If the sparsity basis D is orthonormal we may adopt the
widely employed sparsity model considering each of

(
n
k

)
supports of

s with the same probability, and its k non-null components as i.i.d.
zero-mean random variables. With this, the correlation Ks/tr(Ks) =
n−1In and Kx = DKsD

† = n−1tr(Ks)In, where In is the
n-dimensional identity matrix. In this case, a simplified evalua-
tion of the Average Recovery Signal-to-Noise Ratio, ARSNR =
E[‖x‖22]/E[‖∆x‖22] due to perturbation of the encoding matrix is

ARSNR ' ntr−1
{
EA′,∆A

[
(A′)+∆A∆A†

[
(A′)+]†]} (4)

The expectation onA′ and ∆A depends on the system we are consid-
ering and may be effectively computed by Monte Carlo simulations
for any given perturbation policy. From this point of view, the more
suggestive and equivalent

ARSNR ' E−1
A′,∆A

[
1

n

n−1∑

j=0

(σj)
2
(A′)+∆A

]

that links the expected performance to the average of the singular
values

{
(σj)(A′)+∆A

}n−1

j=0
is much less attractive due to a higher

computational need.
Note that such an estimate has clear limitations. First, since it fo-

cuses on non-denoising recovery (i.e., the solution of BP(y,A′, D) )
it underestimates the attained recovery quality when the disturbance
due to the perturbation can be compensated by the relative abun-
dance of information on the problem due to (i) the availability of a
large number of measurements in excess of the minimum required
for recovery (therefore allowing efficient denoising) and (ii) know-
ing each instance’s error norm ε? = ‖∆Ax‖2 (the so-called “genie”
tuning) with which BPDN(y,A′, D, ε?) may be solved.

Secondly, the estimate will lose its validity for small values ofm
that do not allow an effective recovery, i.e., when even BP(y,A,D)
fully informed on A fails. In this case it is not sensible to assume
that either (1) or (2) identify a good approximation of the true sig-
nal; thus, in a small-m setting the assumption that ‖∆x‖22 is very
small is violated, and the estimate will not yield a relevant predic-
tion of the recovery quality. Overall, (4) and the more general (3)
are expected to be most effective whenm is so that the phase transi-
tion of BP(y,A,D) has occured [16], but not much larger than the
minimum m required to achieve it. Actually, this is how CS-based
acquisition systems are commonly designed and why (4) will match
the examples presented below.

While a variety of algorithms and problem formulations tackle
the general case of signal recovery under perturbations [17, 18],
significant improvements are therein shown to be possible when
some structure in ∆A can be leveraged. In the absence of this side-
information, e.g., if ∆A is a random matrix with i.i.d. entries drawn
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(b) ARSNR vs. PPR for k = 16 and DGA
perturbation
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(c) ARSNR vs. PPR for k = 16 and DUM
perturbation
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(d) ARSNR vs. PPR for k = 16 and SSF
perturbation
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(e) ARSNR vs. PPR for k = 8 and DGA
perturbation
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(f) ARSNR vs. PPR for k = 32 and DGA
perturbation

Fig. 1: Comparison of the average performance estimate in (4) (dashed) against BP(y,A′, D) (empty circles), BPDN(y,A′, D, ε?) (filled
circles), OLS(y,A′, D, T ) (solid line)

at each instance of x, as noted in [18] the performances approach
those of the non-perfectly informed oracle least-squares estimator,
OLS(y,A′, D, T ), i.e.,

ŝ =

{
ŝT = (A′DT )+y, T = supp(s), |T | = k

ŝTc = 0n−k, T c = [0, n− 1] \ supp(s)
(5)

(·T denotes restriction to the basis vectors of index T ) while, more
realistically, the average recovery performances without support in-
formation will lie between BP(y,A′, D) and BPDN(y,A′, D, ε?).

4. NUMERICAL EXPERIMENTS

In this numerical experiment1 we consider a simple setting of dimen-
sionality n = 256 and assume D is the Discrete Cosine Trasform
(DCT) basis; we generate s by assuming each of its

(
n
k

)
possible sup-

ports equally probable, with its k non-null components being i.i.d.
random variables distributed as N (0, 1/k), and let k = 8, 16, 32 as
prototypes of high-, medium-, and low-sparsity signals.

The matrix A′ ∈ Rm×n is here considered a Gaussian random
matrix with i.i.d. entries of unit variance. As noted in the previ-
ous Section, we expect the estimate (4) to apply after BP(y,A,D)
solves a problem with sufficiently large m. For a quantitative evalu-
ation of this aspect, we generate 200 signal instances, encode them
with no perturbation and then solve BP(y,A,D) to measure the
ARSNR with different values ofm by means of SPGL1 [19]. Given

1The code to reproduce and extend them is available at https://
sites.google.com/site/ssigprocs/CS/avpert

that the maximum achievable signal-to-noise ratio with this solver is
≈ 120 dB, by looking at the evidence in Fig. 1a we derive that an
almost maximum target ARSNR level of 110 dB is reached when
m = 103 for k = 8, m = 138 for k = 16 and m = 184 for
k = 32, at which it is safe to assume that the decoder is operat-
ing after the phase transition. At these (m, k) pairs we explore the
effect of perturbations and how closely it is predicted by (4): we
choose random ∆A and introduce the projection-perturbation ratio
PPR = E[‖A‖2F ]/E[‖∆A‖2F ], i.e., the relative average energy of A′

w.r.t. ∆A to control its impact. In particular, the perturbation matrix
∆A is generated from one of three random models:

1. Dense Gaussian Additive (DGA): the entries of ∆A are i.i.d.
with ∆Aj,l ∼ N (0, σ2

∆A), with σ2
∆A = 1

PPR
;

2. Dense Uniform Multiplicative (DUM): ∆A = U�A′, where
� is the Hadamard product, U is independent of A′ and its

entries are i.i.d. with Uj,l ∼ U
(
−β

2
, β

2

)
and β = 2

√
3

PPR
;

3. Sparse Sign Flipping (SSF): a random set of index pairs J is
independently generated so that each entry

∆Aj,l =

{
−2A′

j,l, (j, l) ∈ J

0, (j, l) /∈ J

corresponds to a sign flipping of an element of A′ with prob-
ability η. The resulting sparse perturbation matrix has a den-
sity η which controls σ2

∆A = 4η with η = 1
4 PPR

.

The distribution parameters are chosen to obtain a given PPR ∈
{0, 5, . . . , 80} dB. On these three models and for the chosen
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(m, k), we generate 200 instances of (s,A′,∆A), encode x = Ds
with A = A′ + ∆A and attempt to recover x̂ = Dŝ by the
naive BP(y,A′, D); BPDN(y,A′, D, ε?) where ε? = ‖∆Ax‖2
is “genie”-tuned for each instance; the non-perfectly informed
OLS(y,A′, D, T ). These three results are compared with the out-
come of a Monte Carlo simulation of our estimate in (4) averaged
over 200 instances of (A′,∆A).

The results are depicted in Fig. 1b,1c,1d for fixed k = 16 and
the three different perturbation models; the ARSNR of each decoder
can be compared with the estimate as the PPR increases (i.e., the
perturbation is progressively smaller). Moreover, since the estimate
has negligible variations w.r.t. the perturbation model, we fix the
latter to DGA and explore the effect of different sparsity levels at
values for which the phase transition has occurred; the results are
reported in Fig. 1e,1b and 1f. Note that, although it is only an es-
timate, (4) appears to be quite effective in anticipating the average
performances right between BP(y,A′, D) and BPDN(y,A′, D, ε).
This is coherent with its derivation that starts from a non-denoising,
naive basis pursuit but assumes that the recovery has the ability of
coming as close as possible to the true solution in the least-squares
sense.

5. APPLICATION TO MULTICLASS ENCRYPTION BY
COMPRESSED SENSING

To embed a private-key security scheme into CS [5, 9–11, 20]
we assume A ∈ {−1,+1}m×n, and partition the generation of
A′,∆A into two pseudo-random number generators, PRNGA′and
PRNG∆Awhich respectively expand the seeds ωA′ and ω∆A.

By assuming that the PRNGs have sufficiently long periods and
statistical properties to mimic truly random bitstreams, we may con-
siderA′ an i.i.d. Bernoulli random matrix whose symbols have equal
probability. Thus, if PRNG∆Ais used to generate SSF perturbation
matrices with J containing ηmn (η ∈ (0, 1)) index pairs (j, l), the
two matrices (A,A′) share the same distribution (the sign flipping
occurs independently and randomly for each instance ofA′) and it is
not possible to derive one from the other, or even tell whether the true
encoding matrix is either A or A′ without some side-information.

The measurements are then produced by encoding x with A as
y = Ax, with the first-class key being K(1) = (ωA′ , ω∆A) and
allowing first-class decoders to construct A (the true encoding ma-
trix), whereas the second-class key, K(2) = ωA′ only allows second-
class decoders to construct A′, i.e., a version of the encoding ma-
trix affected by a perturbation whose energy is controlled by η. The
amount of privacy provided by this scheme is investigated in [9]. We
here address the problem of linking η with the average loss in recov-
ery quality experienced by second-class decoders, which was previ-
ously tackled by quite loose upper- and lower-bounding [9]. This
said, the heuristic in (4) is well-suited to anticipate the quality loss
experienced by a second-class decoder in the multi-class encryption
scheme described above. This is shown here by considering two ex-
emplary signals: ECG tracks and images.

5.1. ECG Tracks

We elaborate this example by processing a large subset of ECG sig-
nals from the MIT PhysioNet database [21] sampled at fs = 256 Hz.
In particular we use 500 windows of n = 256 samples from the
ECG track e0108 and encode them with m = 144 measurements;
D is here assumed as the Symmlet-6 [22] orthonormal wavelet basis.

In this real-world setting, the ARSNR performances fall in a
different range with respect to ideal, perfectly sparse synthetic sig-
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Fig. 2: The effect of SSF on i.i.d. Bernoulli random matrices used to
acquire real-world ECGs (η is the fraction of flipped matrix entries).
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Fig. 3: The effect of SSF on i.i.d. Bernoulli random matrices used to
acquire real-world images (η is the fraction of flipped matrix entries).

nals. Yet, the first-class decoder is still able to recover the original
signal with ARSNR = 26.49 dB. The performances of a typi-
cal second-class decoder are exemplified by the BP(y,A′, D) and
BPDN(y,A′, D, ε?) tracks in Fig. 2. In the same Figure note that,
as in the synthetic case, (3) is able to substantially anticipate the ef-
fect of SSF on the recovery quality of a real world-signal.

5.2. Sensitive text in images

Again, we expand this case from [9] in which we consider an image
dataset of people holding printed identification text, and apply mul-
ticlass CS-based encryption to selectively hide this sensitive content
to lower-class users. The 640×512 pixel images are encoded by CS
in 10× 8 blocks, each of 64× 64 pixel while the two-class strategy
is only applied to a sensitive image area of 3 × 4 blocks. The spar-
sity basis D is the 2D Daubechies-4 wavelet basis [22]. Each block
of n = 4096 pixels is then encoded with m = 1860 measurements,
and the performances are averaged over 100 instances of (A′,∆A).
In an unperturbed case, this allows an ARSNR of 29.25 dB that
is progressively reduced by perturbation as reported in Fig. 3 and
effectively predicted by (3).

6. CONCLUSION

We have proposed an estimate of the average recovery performances
attained by CS under random perturbation of the entries of its en-
coding matrix. This heuristic is simply calculated by estimating an
expectation with Monte Carlo trials, and requires no prior informa-
tion on the signal support; however, it applies only after the phase
transition of the corresponding recovery problem. The estimate was
shown to adhere with practical average recovery performances both
by synthetic numerical experiments and with real-world signals.
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