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On Known-Plaintext Attacks to a Compressed
Sensing-Based Encryption: A Quantitative Analysis

Valerio Cambareri, Student Member, IEEE, Mauro Mangia, Member, IEEE,
Fabio Pareschi, Member, IEEE, Riccardo Rovatti, Fellow, IEEE, Gianluca Setti, Fellow, IEEE

Abstract—Despite the linearity of its encoding, compressed
sensing may be used to provide a limited form of data protection
when random encoding matrices are used to produce sets of
low-dimensional measurements (ciphertexts). In this paper we
quantify by theoretical means the resistance of the least complex
form of this kind of encoding against known-plaintext attacks.
For both standard compressed sensing with antipodal random
matrices and recent multiclass encryption schemes based on it,
we show how the number of candidate encoding matrices that
match a typical plaintext-ciphertext pair is so large that the
search for the true encoding matrix inconclusive. Such results on
the practical ineffectiveness of known-plaintext attacks underlie
the fact that even closely-related signal recovery under encoding
matrix uncertainty is doomed to fail.

Practical attacks are then exemplified by applying compressed
sensing with antipodal random matrices as a multiclass encryp-
tion scheme to signals such as images and electrocardiographic
tracks, showing that the extracted information on the true
encoding matrix from a plaintext-ciphertext pair leads to no
significant signal recovery quality increase. This theoretical and
empirical evidence clarifies that, although not perfectly secure,
both standard compressed sensing and multiclass encryption
schemes feature a noteworthy level of security against known-
plaintext attacks, therefore increasing its appeal as a negligible-
cost encryption method for resource-limited sensing applications.

Index Terms—Compressed sensing, encryption, security, secure
communications

I. INTRODUCTION

THIS paper elaborates on the possibility of exploiting
Compressed Sensing (CS) [1], [2] not only to reduce

the resource requirements for signal acquisition, but also to
protect the acquired data so that their information is hidden
from unauthorised receivers. A number of prior analyses [3]–
[7] show that, although the encoding performed by CS cannot
be regarded as perfectly secure, practical encryption is still
provided at a very limited cost, either at the analog-to-digital
interface or immediately after it, in early digital-to-digital
processing stages.

Such a lightweight encryption scheme may be particularly
beneficial to acquisition systems within the framework of
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wireless sensor networks [8] where large amounts of data are
locally acquired by sensor nodes with extremely tight resource
budgets, and afterwards transmitted to a remote node for
further processing. When the security of these transmissions
is an issue, low-resource techniques that help balancing the
trade-off between encryption strength and computational cost
may offer an attractive design alternative to the deployment of
separate conventional encryption stages.

An encryption scheme based on CS leverages the fact that,
in its framework, a high-dimensional signal is encoded by
linear projection on a random subspace, thus producing a set
of low-dimensional measurements. These can be mapped back
to the acquired signal only under prior assumptions on its
sparsity [9] and a careful choice of random subspaces such as
those defined by antipodal random (also known as Bernoulli
random [10], [11]) encoding matrices. In addition, suitable
sparse signal recovery algorithms [12]–[14] are required to
decode the original signal. These must be applied with an exact
knowledge of the subspace on which the signal was projected.
In complete absence of this information the acquired signal is
unrecoverable. Hence, this subspace may be generated from a
shared secret between the transmitter and intended receivers
that enables their high-quality signal recovery.

If, on the other hand, the above subspace is only par-
tially known, a low-quality version of the signal may be
recovered from its measurements, with a degradation that
increases gracefully with the amount of missing information
on the projection subspace. By exploiting this effect, multiclass
encryption schemes were devised [5], [7] in which high-class
users are able to decode high-quality information starting from
a complete knowledge of the shared secret, while lower-class
users only recover a low-quality approximation of the acquired
signal starting from partial knowledge of the secret. In order
to take full advantage of this scheme, its security must be
quantitatively assessed against potential cryptanalyses. The
theoretical and empirical evidence provided in [7] dealt with
statistical attacks on the measurements produced by universal
random encoding matrices [10].

In this paper we address the resistance of an embodi-
ment of CS against Known-Plaintext Attacks (KPAs), i.e.,
in threatening situations where a malicious eavesdropper has
gained access to an instance of the signal (plaintext) and its
corresponding random measurements (ciphertext), and from
this information tries to infer the corresponding instance of an
antipodal random encoding matrix. KPAs are more threatening
than attacks solely based on observing the ciphertext. Yet, we
will show how both simple and multiclass encryption based on
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CS exhibit a noteworthy level of resistance against this class
of attacks due to the nature of the encoding.

The paper is organised as follows. In Section II we briefly
review the fundamentals of CS and multiclass encryption in
the two-class case, which distinguishes between first-class
receivers authorised to reconstruct the signal with full quality
and second-class receivers with reduced decoding quality.

Section III describes KPAs as delivered both by eavesdrop-
pers and second-class receivers who aim at improving the
quality of their signal recovery. There, it is shown that the
expected number of candidate solutions matching a plaintext-
ciphertext pair is enormous, thus implying that finding the
true encoding matrix among such a huge solution set is
practically infeasible. To extend this analysis, we also attack
the two-class encryption scheme by using recovery algorithms
that compensate encoding matrix perturbations [15], [16] as
suffered by a second-class receiver. Their performances are
shown to be equal to a standard decoding algorithm [13] that
does not attempt such compensation, i.e., that legitimately
recovers the acquired signal at the prescribed quality level.

In Section IV the previous KPAs are exemplified for elec-
trocardiographic tracks (ECG) and images containing sensitive
identification text. For all these cases we give empirical
evidence on how, even in favourable attack conditions, the
encoding matrices produced by KPAs perform poorly when
trying to decode any further ciphertext. Theoretical and empir-
ical evidence allows us to conclude that compressed sensing-
based encryption, albeit not perfectly secure [3], provides
some security properties and defines a framework in which
their violation is non-trivial. The Appendices report the proofs
of the Propositions and Theorems given in Section III.

A. Relation to Prior Work

To prove how CS and multiclass encryption provide a sat-
isfying level of privacy even against informed attacks, this
work addresses the problem of finding all the instances of an
antipodal random encoding matrix that map a known plaintext
to the corresponding ciphertext, when both quantities are
deterministic and digitally represented. Our analysis hinges on
the connection between linear encoding by antipodal random
matrices, the subset-sum problem [17] and its expected number
of solutions [18]. While the authors of [3] proved how CS
lacks perfect secrecy in the Shannon sense [19], both [3]
and [4] contrasted this with computational security evidence
substantially based on brute-force attacks. Our improvement in
the specific, yet practically important case of antipodal random
encoding matrices is in that our analysis predicts how the
expected number of candidate solutions to a KPA varies with
the plaintext dimensionality and its digital representation.

In addition, we evaluate specific attacks to multiclass en-
cryption by CS in the case of lower-class users attempting to
upgrade their recovery quality. To assess the resistance of this
strategy against KPAs, we apply a similar theoretical analysis.
Then, we extend the attacks to include sparse signal recovery
under matrix uncertainty [15], [16] based on the idea that
missing information [20], perturbations [21], [22] and basis
mismatches [23] could be partially compensated, although we

verify that is not the case with the random perturbation entailed
by multiclass encryption.

II. MULTICLASS ENCRYPTION BY COMPRESSED SENSING

A. A Brief Review of Compressed Sensing

The encryption schemes we consider in this paper are based on
Compressed Sensing (CS) [1], [2], a mathematical framework
in which a signal represented by a vector x ∈ Rn is acquired
by applying a linear, dimensionality-reducing transformation
A : Rn → Rm (i.e., the encoding matrix) to generate a vector
of measurements y = Ax, y ∈ Rm,m < n. To enable the
recovery of x given y, CS leverages the fact that x is known
to be sparse in a proper basis D, i.e., for any instance of x
its representation is x = Ds where s ∈ Rn has a number
of non-zero entries at most k � n. The results presented
in this paper are independent of D, which we consider an
orthonormal basis for the sake of simplicity. In addition, the
encoding matrix A must obey some information-preserving
guarantees [24], [25] that we assume verified throughout this
paper and essentially impose that m = O(k log n). The most
relevant fact here is that when A is a typical realisation of a
random matrix with independent and identically distributed
(i.i.d.) entries following a subgaussian distribution [26] we
are reassured that signal recovery is possible regardless of the
chosen basis D. In fact, some signal recovery algorithms exist
for which guarantees can be given with very high probability
[12] along with an ever-growing plethora of fast iterative
methods capable of reconstructing x starting from y, A and
D. An essential decoding scheme is the convex optimisation
problem known as basis pursuit with denoising,

x̂ = arg min
ξ∈Rn

∥∥D−1ξ
∥∥

1
s.t. ‖Aξ − y‖2 ≤ ω (BPDN)

where the `1-norm in the objective function promotes the
sparsity of x̂ with respect to D, while the `2-norm constraint
enforces its fidelity to the measurements up to a threshold
ω ≥ 0 that accounts for noise sources. In particular, we
here concentrate on operators A ∈ {−1, 1}m×n that are
realisations of an antipodal random matrix with i.i.d. entries
and equiprobable symbols {−1, 1} [10]; such matrices are
known to verify the above guarantees, and are remarkably (i)
simple, and therefore suitable to be generated, implemented
and stored in digital devices (ii) random in nature, thus
suggesting the possibility of exploiting such randomness to
generate an encryption mechanism using the linear encoding
scheme of CS. Due to their limited set of possible symbols
{−1, 1}, such antipodal random matrices are more easily
subject to cryptanalysis; for this reason, we tackle them as
a baseline for those defined by a larger set of symbols.

B. Security and Two-Class Encryption by Compressed Sensing

1) A Security Perspective: the knowledge of A is necessary
in the recovery of x from y, since any error in its entries
reflects on the quality of the recovered signal [21]. A number
of security analyses leveraging this fundamental fact were
introduced [3], [4], [7] in which CS is regarded as a symmetric
encryption scheme, where the plaintext x is mapped to the
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ciphertext y by means of the linear transformation operated
by A, i.e., the encryption algorithm. The ciphertext is then
stored or transmitted, and its intended receivers may decrypt
x by knowing y, the sparsity basis D, and by having a
prior agreement on the encryption key or shared secret that
is necessary to reproduce A.

The ideal requirement for a secure application of CS (as
noted in [3], [27]) is that any encoding matrix instance is
used for at most one plaintext-ciphertext pair; this implies the
use of a potentially infinite sequence of encoding matrices
{A[t]}t∈N. In violation of this non-repeatability hypothesis,
each A[t] could be simply recovered by collecting n linearly
independent plaintext-ciphertext pairs related by it, i.e., by
solving a linear system of equations with the mn entries of
A[t] as the unknowns.

In practice, the encoding matrices are obtained by algorith-
mic expansion of the shared secret, e.g., by using the key as
the seed of a pseudo-random number generator (PRNG) which
outputs a reproducible bitstream. Due to its deterministic and
finite-state nature, this stream yields a periodic sequence of
encoding matrices {A[t mod P ]}t∈N repeating with period P ,
where each A[t] is obtained by mapping mn distinct bits to
antipodal symbols.

Thus, the non-repeatability hypothesis will be granted by
a system-level choice of an encryption key and PRNG that
makes P large enough to exceed any reasonable observation
time.

However, such pseudo-random bitstreams may themselves
be vulnerable to cryptanalysis if a few of their bits are
exposed. As a simple example of this threat, assume that the
encoding matrices are generated by a maximal-length shift
register sequence [28, Chapter 4], for which a Bkey bit seed
grants P =

⌊
2Bkey−1
mn

⌋
. Regrettably, such a sequence is easily

cryptanalysed from only 2Bkey of its bits by the well-known
Berlekamp-Massey algorithm [29].

Hence, a successful KPA that retrieves even part of an
encoding matrix, e.g., one of its rows, may expose just
enough information to reveal the key and therefore break
a CS-based encryption. To contrast this type of threat, our
analysis shows how KPAs are incapable of revealing missing
information on the true encoding matrices, whose symbols
remain undetermined.

2) Two-Class Encryption: in an extended version of
this encryption framework, i.e., two-class encryption by
CS [5], [7], we consider a first sequence of matrices
{A(0),[t]}t∈N, A(0),[t] ∈ {−1, 1}m×n obtained by pseudo-
random expansion of a seed Key

(
A(0)

)
. In parallel, a se-

quence of index pair sets {C(0),[t]}t∈N, C(0),[t] ⊂ {0, . . . ,m−
1} × {0, . . . , n− 1} is obtained by pseudo-random expansion
of a seed Key

(
C(0)

)
. We then generate a second sequence of

matrices {A(1),[t]}t∈N whose elements A(1),[t] are obtained by
combining A(0),[t], C(0),[t] as

A
(1),[t]
j,l =

{
A

(0),[t]
j,l if (j, l) 6∈ C(0),[t]

−A(0),[t]
j,l if (j, l) ∈ C(0),[t]

(1)

with C(0),[t] indicating which entries of A(0),[t] must be sign-
flipped to obtain A(1),[t], that is then used to encode x into

y. Thus, we consider a cardinality c for every C(0),[t], define
η = c/mn the sign flipping density, and let A(0), A(1), C(0) be
generic, unique random matrix instances (that is, the matrix
sequences will be implicitly considered from now on). Given
any plaintext x, the corresponding ciphertext y is produced
as y = A(1)x, A(1) being the true encoding matrix. Two-
class encryption is then achieved by distributing Key

(
A(0)

)
to all authorised receivers and Key

(
C(0)

)
only to first-class

receivers. In fact, when y is communicated, receivers knowing
both Key

(
A(0)

)
and Key

(
C(0)

)
are able to rebuild the

corresponding A(1) used in the encoding and reconstruct x
with full quality by solving BPDN with ω = 0.

On the other hand, second-class receivers may only rebuild
A(0) from their available information. For 0 < η � 1 such
a matrix is an approximation of the corresponding A(1), thus
allowing signal recovery with lower quality than that achieved
by first-class receivers. Furthermore, any receiver not knowing
Key

(
A(0)

)
has no information on the encoding matrix and is

consequently unable to recover x, which remains encrypted.
In [7] we have characterised the effectiveness of this scheme

by showing how eavesdroppers trying to compensate their
ignorance of the key by means of straightforward statistical
analysis of y are presented with approximately Gaussian-
distributed ciphertexts (converging with rate O(n−1)). In
addition, if A(0) is an antipodal random matrix, the same can
be said of A(1) since the statistics of its equiprobable symbols
are unaltered by C(0) used to build the latter from the former.
Hence, the ciphertext is statistically indistinguishable from the
one that could be produced by encoding the same plaintext
with A(0) instead of A(1), and second-class users will also be
unable to exploit the statistical properties of y.

C. Signal Models and Assumptions

Since the attacks we present rely on deterministic knowledge
of x and y, we assume throughout the paper that both
plaintexts and ciphertexts are represented by digital words.
For simplicity, we let x = {xl}n−1

l=0 be such that xl ∈
{−L, . . . ,−1, 0, 1, . . . , L} for some integer L > 0. Note that
the number of bits representing the plaintext in this fashion is
at least Bx = dlog2(2L+ 1)e, so we may assume Bx is less
than a few tens in typical embodiments (actually, Bx ≤ 32 bit
in typical signal processing applications). Consequently, the
ciphertext will be represented by {yl}m−1

l=0 , where each yl
is quantised with By = Bx + dlog2 ne bit that avoid any
information loss.

III. KNOWN-PLAINTEXT ATTACKS

In view of quantifying the resistance of this scheme to threat-
ening cryptanalyses, we now consider situations in which an
attacker gains access to a given, exact value of the plaintext
x corresponding to a ciphertext y. Based on this knowledge,
the attacker aims at computing the true encoding A(1) such
that y = A(1)x. In the following we will consider a KPA
by assuming that only one (x, y) pair is known for a certain
A(1), consistently with the hypothesis that A(1) is never reused
in the encoding (as detailed in Section II-B1). This type of
attack gives rise to different strategies (see Fig. 1) whether
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Fig. 1. A two-class encryption scheme and the known-plaintext attacks being
analysed from an eavesdropper (Eve) and a second-class user (Steve).

the attacker knows nothing except the (x, y) pair (a pure
eavesdropper, Eve) or it is a second-class receiver knowing
also the partially correct encoding A(0) and attempting to
complete its knowledge of A(1) (we will call this malicious
second-class user Steve and its KPA a class-upgrade).

For the sake of simplicity, both KPAs are here characterised
on a single row1 of A(1), while a complete KPA will entail
m of such attacks. Furthermore, we note that the analysis
is carried out in full compliance with Kerckhoffs’s principle
[30], i.e., the only information that the attackers are missing
is their respective part of the encryption key, while any other
detail on the sparsity basis, as well as two-class encryption
specifications is here regarded as known.

A. Eavesdropper’s Known-Plaintext Attack

Given a plaintext x and the corresponding ciphertext y =
A(1)x we now assume the perspective of Eve and attempt to re-
cover A(1)

j with a set of antipodal symbols Â(1)
j = {Â(1)

j,l }
n−1
l=0

such that

yj =

n−1∑
l=0

Â
(1)
j,l xl (2)

Moreover, to favour the attacker2 we assume all xl 6= 0. We
now introduce a combinatorial optimisation problem at the
core of the analysed KPAs.

Definition 1 (Subset-Sum Problem). Let {ul}n−1
l=0 , ul ∈

{1, . . . , L} ⊂ N+ and υ ∈ N+. We define subset-sum
problem (SSP) [17, Chap. 4] the problem of assigning n binary
variables bl ∈ {0, 1}, l = 0, . . . , n− 1 such that

υ =

n−1∑
l=0

blul (3)

We define solution any {bl}n−1
l=0 verifying (3). With the above

definitions, the density of this problem is defined as [31]

δ(n,L) =
n

log2 L
(4)

Although in general a SSP is NP-complete, not all of its
instances are equally hard. In fact, it is known that high-density
instances (i.e., δ(n,L) > 1) have plenty of solutions found or

1We denote with Aj the j-th row of a matrix A.
2If any xl = 0 each corresponding summand would give no contribution

to the sum (2), thus making Â(1)
j,l an undetermined variable in the attack.

Fig. 2. Sample average of the number of solutions for Eve’s KPA compared
to the theoretical value of (5) for L = 104.

approximated by, e.g., dynamic programming, whereas low-
density instances are typically hard, although for special cases
polynomial-time algorithms have been found [31]. Moreover,
such low-density hard SSP instances have been used in
cryptography to develop the family of public-key knapsack
cryptosystems [32], [33] although most have been broken with
polynomial-time algorithms [34].

Proposition 1 (Eve’s KPA). The KPA to A(1)
j given (x, y) is

equivalent to a SSP where each ul = |xl|, the variables bl =
1
2 (sign (xl) Â

(1)
j,l + 1) and the sum υ = 1

2

(
yj +

∑n−1
l=0 |xl|

)
.

This SSP has a true solution {b̄l}n−1
l=0 that is mapped to the

row A
(1)
j , and other candidate solutions that verify (3) but

correspond to matrix rows Â(1)
j 6= A

(1)
j .

This mapping is explained in Appendix A, and we define
(x, y,A

(1)
j ) a problem instance. In our case we see that the

density (4) is high since n is large and log2 L is fixed by the
digital representation of x (e.g., so that Bx ≤ 64). We are
therefore operating in a region in which a solution of the SSP
(3) is typically found in polynomial time. In fact, the resistance
of the analysed embodiment of CS against KPAs is not due to
the hardness of the corresponding SSP but, as we show below,
to the huge number of candidate solutions as n increases,
among which an attacker should find the only true solution
to guess a single row of A(1). Since no a priori criterion
exists to select them, we consider them indistinguishable. The
next Theorem3 calculates the expected number of candidate
solutions to Eve’s KPA by applying the theory developed in
[18].

Theorem 1 (Expected number of solutions for Eve’s KPA).
For large n, the expected number of candidate solutions of the
KPA in Proposition 1, in which (i) all the coefficients {ul}n−1

l=0

are i.i.d. uniformly drawn from {1, . . . , L}, and (ii) the true
solution {b̄l}n−1

l=0 is drawn with equiprobable and independent

3 n→∞' denotes asymptotic equality as n→∞.
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binary values, is

SEve(n,L)
n→∞' 2n

L

√
3

πn
(5)

The proof of Theorem 1 is given in Appendix A. This
result (as well as the whole statistical mechanics framework
from which it is derived) gives no hint on how much (5)
is representative of finite-n behaviours. To compensate for
that, we here enumerate by means of the binary programming
solver in CPLEX [35] all the solutions to several small-n
problem instances of Proposition 1 and verify that, even non-
asymptotically, the expression (5) can be used to effectively
estimate the expected number of candidate solutions to Eve’s
KPA. Such numerical evidence is reported in Fig. 2, where
the sample average of the number of solutions ŜEve(n,L) to
50 randomly generated problem instances with L = 104 and
n = 16, . . . , 32 is plotted and compared with (5).

The remarkable matching observed therein allows us to
estimate, for example, that a KPA to the encoding of a
grayscale image of n = 64 × 64 pixel quantised with Bx =
8 bit (unsigned, i.e., L = 128, n = 4096) would have to
discriminate on the average between 1.25 · 101229 equally
good candidate solutions for each of the rows of the encoding
matrix. This number is not far from the total possible rows,
24096 = 1.04 · 101233. Hence, any attacker using this strategy
is faced with a deluge of candidate solutions, from which it
would choose one presumed to be exact to attempt a guess on
a single row of A(1).

A legitimate concern when the attacker is presented with
such a set of solutions is that most of them could be good
approximations of the true encoding matrix row A

(1)
j . To see

whether this is the case, we quantify the difference between
A

(1)
j and the corresponding candidates Â(1)

j resulting from a
KPA in terms of their Hamming distance, i.e., as the number
of entries in which they differ.

Theorem 2 (Expected number of solutions for Eve’s KPA
at Hamming distance h from the true one). The expected
number of candidate solutions at Hamming distance h from
the true solution of the KPA in Proposition 1, in which
(i) all the coefficients {ul}n−1

l=0 are i.i.d. uniformly drawn
from {1, . . . , L}, (ii) the true solution {b̄l}n−1

l=0 is drawn with
equiprobable and independent binary values, is

S(h)
Eve(n,L) =

(
n

h

)
Ph(L)

2hLh
(6)

where Ph(L) is a polynomial in L whose coefficients are
reported in Table I for h = 2, . . . , 15.

The proof of this Theorem and the derivation of Table I are
reported in Appendix B. As before, we collect some empirical
evidence that the expression (6) correctly anticipates the ex-
pected number of solutions at a given Hamming distance from
the true one, noting that Theorem 2 holds for finite n. Figure
3 reports for n = {21, 23, . . . , 31} the sample average, over
the same 50 problem instances generated in the experimental
evaluation of (5), of the number of solutions to Eve’s KPA
whose Hamming distance from the true one is a given value
h = {2, . . . , 15}. This sample average is compared against

Fig. 3. Sample average of the number of solutions for Eve’s KPA at Hamming
distance h from the true one, compared to the theoretical value of (6) for
L = 104 and n = 21, 23, . . . , 31.

the value predicted by (6) with the polynomial coefficients in
Table I. The remarkable matching we observe allows us to
estimate that, resuming the case of a grayscale image with
n = 4096, L = 128, only 1.95 · 1041 candidate solutions out
of the average 1.25 · 101229 are expected to have a Hamming
distance h ≤ 16, while 6.33 · 1076 attain a Hamming distance
h ≤ 32. Since these results apply to each row of the matrix
being inferred, this indicates how the chance that a randomly
chosen candidate solution is close to the true one is negligible.

Under repeated threat of Eve’s KPA, a system-level per-
spective would impose a change of encryption key (i.e., of
encoding matrix sequence) whenever the probability of failure
of repeated KPAs, pfail, drops below a desired security level
ζ ∈ (0, 1), i.e., at any time pfail ≥ ζ. Some insight on
the encryption key lifetime T that guarantees this is then
obtained by modelling the repeated KPAs as i.i.d. Bernoulli
trials, each leading to a successful choice of the true solution
with a probability that can be estimated with SEve(n,L)−1

in case of Eve’s KPA. With this pfail = P [T KPA fail] =
(1 − SEve(n,L)−1)T , so we may choose the key lifetime as
T ≤

[
log
(
1− SEve(n,L)−1

)]−1
log ζ to ensure the security

level set by ζ. Thus, we measure the key lifetime T in attack
opportunities for Eve; however, since SEve(n,L) is typically
huge, the resulting T is also very large. As an example, by
plugging n = 4096, L = 128 in (5) and assuming ζ = 0.9999,
we obtain a key lifetime equivalent to at most T = 1.25·101225

attack opportunities.

B. Class-Upgrade Known-Plaintext Attack

A known-plaintext attack may also be attempted by Steve, a
second-class receiver aiming to improve its signal recovery
performances with the intent of reaching the same quality of
a first-class receiver. In this KPA, a partially correct encoding
matrix A(0) that differs from A(1) in c entries is also known
in addition to x and y. With this prior, Steve may compute
ε = y − A(0)x = ∆Ax where ∆A = A(1) − A(0) here is
an unknown matrix with ternary entries in {−2, 0, 2}. Hence,
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h ph1 ph2 ph3 ph4 ph5 ph6 ph7 ph8 ph9 ph10 ph11 ph12 ph13 ph14
2 2

3 −3 3

4
14

3
−4

16

3

5 −
15

2

65

12
−
15

2

115

12

6
62

5
−
15

2
11 −

27

2

88

5

7 −21
959

90
−
203

12

707

36
−
301

12

5887

180

8
254

7
−
140

9

1226

45
−
266

9

334

9
−
422

9

19328

315

9 −
255

4

2613

112
−
731

16

14701

320
−
457

8

2233

32
−
1415

16

259723

2240

10
1022

9
−
2585

72

359105

4536
−
7055

96

9869

108
−
1725

16

28625

216
−
48325

288

124952

567

11 −
1023

5

16973

300
−
60775

432

5463953

45360
−
435941

2880

7449761

43200
−
19811

96

1091629

4320
−
2764663

8640

381773117

907200

12
4094

11
−
2277

25

687791

2700
−
72523

360

3907067

15120
−
341143

1200

599327

1800
−
7909

20

1045349

2160
−
2205833

3600

41931328

51975

13 −
1365

2

591721

3960
−
2020421

4320

44385419

129600
−
7815847

17280

116257063

241920
−
3192163

5760

110721221

172800
−
13148473

17280

19285357

20736
−
20345507

17280

20646903199

13305600

14
16382

13
−
44863

180

34353347

39600
−
38237381

64800

1292711

1600
−
42972293

51840

122732801

129600
−
92420419

86400

53508931

43200
−
76095383

51840

77441609

43200
−
588168119

259200

866732192

289575

15 −
16383

7

1074679

2548
−
583763

360

113982839

110880
−
12673507

8640

58584511

40320
−
400088153

241920

1033251187

564480
−
23927713

11520

193398181

80640
−
98109773

34560

279340567

80640
−
1060693411

241920

467168310097

80720640

TABLE I
TABLE OF COEFFICIENTS OF THE POLYNOMIALS Ph(L) =

∑h−1
j=1 p

h
j L

j IN (6) FOR h = 2, . . . , 15.

Steve performs a KPA by searching for a set of ternary
symbols {∆Aj,l}n−1

l=0 such that

εj =

n−1∑
l=0

∆Aj,lxl (7)

of which it is known that ∆Aj,l 6= 0 only in c cases. Moreover,
to ease the solution of this problem and make it row-wise
separable, we assume that Steve has access to an even more
accurate information, i.e., the exact number cj of non-zero
entries for each row ∆Aj or equivalently the number of sign
flips mapping A

(0)
j into the corresponding A

(1)
j (clearly, the

total number of non-zero entries in ∆A is c =
∑m−1
j=0 cj). By

assuming this, we may prove the equivalence between Steve’s
KPA to each row of A(1) and a slightly adjusted SSP.

Definition 2 (γ-cardinality Subset-Sum Problem). Let
{ul}n−1

l=0 , ul ∈ {1, . . . , Q} ⊂ N+, γ ∈ {1, . . . , n} ⊂ N+

and υ ∈ N+. We define γ-cardinality subset-sum problem (γ-
SSP) the problem of assigning n binary variables bl ∈ {0, 1},
l = 0, . . . , n− 1 such that

υ =

n−1∑
l=0

blul (8)

γ =

n−1∑
l=0

bl (9)

We define solution any {bl}n−1
l=0 verifying (8) and (9).

Proposition 2 (Steve’s KPA). The KPA to A
(1)
j given

(x, y,A(0), cj), is equivalent to a γ-SSP where γ = cj ,
Q = 2L, υ = 1

2εj + Lcj , ul = −A(0)
j,l xl + L and

bl = 1
2

(
1− Â

(1)
j,l

A
(0)
j,l

)
. This SSP has a true solution {b̄l}n−1

l=0 that

is mapped to the row A
(1)
j , and other candidate solutions that

verify (8) and (9) but correspond to matrix rows Â(1)
j 6= A

(1)
j .

The derivation of Proposition 2 is reported in Appendix
C. We define (x, y,A

(0)
j , A

(1)
j ) a problem instance. In the

following, we will denote with r = cj/n the row-density
of perturbations. Since in [18] the γ-cardinality SSP case is
obtained as an extension of the results on the unconstrained
SSP, we obtain the following Theorem.

Theorem 3 (Expected number of solutions for Steve’s KPA).
For large n, the expected number of candidate solutions of
the KPA in Proposition 2, in which (i) all the coefficients
{ul}n−1

l=0 are i.i.d. uniformly drawn from {1, . . . , 2L}, and
(ii) the true solution {b̄l}n−1

l=0 is drawn with equiprobable
independent binary values, is

SSteve(n,L, r)
n→∞'

√
3

2

r−1−nr (1− r)−1−n(1−r)

2πnL
(10)

The proof of Theorem 3 is reported in Appendix C. The
number of candidate solutions found by Steve’s KPA is by
many orders of magnitude smaller than Eve’s KPA, the reason
being that Steve requires much less information to achieve
complete knowledge of the true encoding A(1). In order to
provide numerical evidence, we find all the solutions to Steve’s
KPA by means of the binary programming solver in CPLEX on
a set of 50 randomly generated problem instances for L = 5 ·
103, a row-density of perturbations r = 5/n, 10/n, 15/n and n =
20, . . . , 32 (except for r = 5/n, whose solution enumeration
is still computationally feasible up to n = 48). The sample
average of the number of solutions, ŜSteve(n,L, r), is reported
in Fig. 4 and well predicted by the theoretical value in (10);
note that this approximation is increasingly accurate for large
n. Moreover, by resuming the previous example our n = 64×
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(a) (b) (c)

Fig. 4. Sample average of the number of solutions for Steve’s KPA compared to the theoretical value of (10) for L = 5 ·103 with row-density of perturbations
r = 5/n, 10/n, 15/n.

64 pixel grayscale image quantised at Bx = 8 bit and encoded
with two-class CS using ∆A with r = 0.03 will have on the
average 6.25 · 10234 candidate solutions of indistinguishable
quality.

In terms of encryption key lifetime, leveraging the
same considerations of Section III-A and simply replacing
SEve(n,L) with SSteve(n,L, r) yields the key lifetimes T with
respect to class-upgrade attacks; as an example, plugging n =
4096, L = 128, r = 0.03 in (10) and assuming ζ = 0.9999,
yields at most T = 1.25 ·10231 attack opportunities for Steve.

The previous KPA analyses hinge on a counting argument
in a general setting, without any other side information on
the structure of A(1) or ∆A. As we will show in the exper-
iments of Section IV, KPAs yield no advantage in terms of
recovery performances to unintended receivers. Obviously, as
further prior information becomes available (for example the
knowledge that the unknown ∆A has additional structure, or
that the original signal is distributed is a non-uniform fashion
[36], [37]) revealing the hidden information may be easier.
Yet, this is true for any encryption scheme in which either the
encryption key or the plaintext have a non-uniform distribution
and is out of the scope of this analysis.

C. Signal Recovery-Based Class-Upgrade Attacks

Class-upgrade attacks to two-class encryption schemes are
closely related to a recovery problem setting that has attracted
some attention in prior works, i.e., sparse signal recovery
under matrix uncertainty. To recast our problem in this setting,
we may construct such a signal recovery-based attack by
letting A(1) = A(0) + ∆A as the encoding matrix, where A(0)

is known a priori and ∆A is an unknown random perturbation
matrix. This information is paired with the knowledge of the
ciphertext y and a prior on the unknown plaintext x, that is
known to be sparse in a basis D. Thus, we attempt the joint
recovery of x and ∆A, eventually just leading to a refine-
ment of the estimated x̂. Two main algorithms are capable
of addressing specifically this problem setup for a generic
∆A, namely Generalised Approximate Message-Passing under
Matrix Uncertainty (MU-GAMP [16]) and Sparsity-cognisant
Total Least-Squares (S-TLS [15]).

Although appealing, this joint recovery approach can be
anticipated to fail for multiple reasons. First, this attack is
intrinsically harder than Steve’s KPA in that the true plaintext
x is here unknown. Whatever ∆A is a candidate solution
to Steve’s KPA given x, is also a possible solution of joint
recovery with the same x as a further part of the solution.
Since we know from Section III-B that Steve’s KPA typically
has a huge number of indistinguishable and equally-sparse
candidate solutions, at least as many will verify the joint
recovery problem when the plaintext is also unknown. Hence,
this approach has negligible odds of yielding more information
on ∆A than Steve’s KPA.

Note that this relationship between the set of solutions to
Steve’s KPA and joint recovery-based attacks also prevents the
latter from being of any use as a refinement step to improve
∆A after its guess by an initial KPA. In fact, recovering an
estimate of x in this case would be to no avail, since the true
x must be known a priori in the initial KPA.

Notwithstanding this, the above joint recovery approach es-
timates x along with a new ∆A; thus, the best-case achievable
signal recovery is the true x, for which the candidate solutions
in ∆A are at best identical to those of the initial KPA, as by
(7) they must verify ε = ∆Ax. No improvement is therefore
obtained by applying joint recovery after Steve’s KPA.

Furthermore, going back to simple joint-recovery, note that
it amounts to solving y = A(0)x + ∆Ax with ∆A and
x unknown, that is clearly a non-linear equality involving
non-convex/non-concave operators. In general, this is a hard
problem; both the aforementioned algorithms are indeed able
to effectively compensate matrix uncertainties when ∆A de-
pends on a low-dimensional, deterministic set of parameters.
However, such a model does not apply to two-class encryption:
even if ∆A is c-sparse, it has no deterministic structure – to
make it so, one would need to know the exact set C(0) of
c index pairs at which the sign flipping randomly occurred,
which by itself entails a combinatorial search.

In fact, ∆A is uniform in the sense of [16] since it may
be regarded as a realisation of a random matrix with i.i.d.
zero-mean, bounded-variance entries (as also detailed in [7]).
Hence, we expect the accuracy of the estimate x̂ with joint
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Fig. 5. Average recovery signal-to-noise ratio performances of a class-upgrade
attack using signal recovery under matrix uncertainty algorithms.

recovery (both using S-TLS and MU-GAMP) to agree with
the uniform matrix uncertainty case of [16], where negligible
improvement is shown with respect to the (non-joint) recovery
algorithm GAMP [13]. The advocated reason is that the
perturbation noise ε = ∆Ax is asymptotically Gaussian for
a given x [16, Proposition 2.1].

We now provide some empirical evidence on the ineffective-
ness of joint recovery as a class-upgrade attack for finite n,m
and sparsity k. As an example, we let n = 256, m = 128,
k = 20 and η = c

mn ∈ [0.005, 0.1] and generate 100 random
instances of x = Ds with s which is k-sparse with respect to
a randomly selected, known orthonormal basis D. For each η,
we also generate 100 pairs of matrices (A(0), A(1)) related as
(1) and encode x by y = A(1)x. Signal recovery is performed
by MU-GAMP, S-TLS and GAMP. To maximise their perfor-
mances, each of the algorithms is run with parameters provided
by a “genie” revealing the exact value of the unknown features
of x. In particular, MU-GAMP and GAMP are provided with
an i.i.d. Bernoulli-Gaussian sparsity-enforcing signal model
[13], [38] having the exact mean, variance and sparsity level of
the instances s. As far as the perturbation ∆A is concerned,
MU-GAMP is given the probability distribution of its i.i.d.
entries. On the other hand, GAMP is initialised with the noise
variance of ε = ∆Ax, that is assumed Gaussian with i.i.d.
entries. S-TLS is run in its locally-optimal, polynomial-time
version [15, Section IV-B] and fine-tuned with respect to its
regularisation parameter as η varies.

We here focus on measuring the Average4 Recov-
ery Signal-to-Noise Ratio of the latter, ARSNR (dB) =

10 log10 Ê
(
‖x‖22
‖x−x̂‖22

)
reported in Fig. 5. The standard deviation

from this average is less than 1.71 dB in all the reported
curves. The maximum ARSNR performance gap between
GAMP and MU-GAMP is 1.22 dB while S-TLS attains
generally lower performances for high values of η. These
observed performances confirm what is also found in [16],
i.e., that GAMP, MU-GAMP and S-TLS substantially attain
the same performances under uniform matrix uncertainty. As
expected, class-upgrade attacks based on joint recovery are
ineffective even for finite n and m, since GAMP under the
same conditions is the reference case adopted in [7, Section
IV] for the design of two-class encryption schemes.

4Ê(·) denotes the sample average over a set of trials.

IV. NUMERICAL EXAMPLES

This Section aims at providing an intuitive appreciation
of the poor quality obtained by signal recovery with KPA
solutions. While the objective of KPAs is cryptanalysing the
true encoding matrix to ultimately retrieve the encryption key,
we here focus on the properties of KPA solutions as encoding
matrix guesses that can, in the attackers’ belief, improve their
signal recovery quality. Thus, we verify that this improvement
does not occur by exemplifying practical cases of KPAs in a
common framework, which follows this procedure:

1) Attack: an attacker performing a KPA gains access to
a single plaintext-ciphertext pair (x′, y′), and attacks the
corresponding true encoding matrix A(1) row-by-row; we
here infer each row A

(1)
j by generating instances of an i.i.d.

antipodal random vector until a large number of candidate
solutions Â(1)

j that verify y′j = Â
(1)
j x′ is found.

Thus, the inferred Â(1) is composed by collecting the
outputs of m Monte Carlo random searches for the
corresponding matrix rows. This generation approach is
preferable to solving each attacker’s KPA by means of
CPLEX’s binary programming solver for two reasons.
Firstly, it is known from Theorem 1 that the expected
number of solutions is very large and thus the probability of
finding one by random search is far from being negligible,
while its computational cost is relatively low. Secondly,
the theoretical conditions [24] that guarantee x′ can be
retrieved from y′ despite the dimensionality reduction are
applicable when A(1) is a typical realisation of an antipodal
random matrix. On the contrary, integer programming
solvers explore solutions in a systematic way, and tend to
generate them in an ordered fashion. When only some of
these solutions are considered (as obliged when n is large),
this ordered approach yields non-typical sets of Â(1)

j that
could be very distant from A

(1)
j ;

2) Signal Recovery: to test its guess Â(1), the attacker may
then pretend to ignore the known x′ and recover an approx-
imation x̂′ from (y′, Â(1)) by using a high-performance
signal recovery algorithm such as GAMP [13], optimally
tuned as in Section III-C. In this setting we measure its
accuracy by the Recovery Signal-to-Noise Ratio, RSNR′ =

10 log10
‖x′‖22
‖x′−x̂′‖22

, which is the only quality indicator in the

attacker’s perspective for Â(1). The RSNR′ performances
are here expected to match those of a (first-class) receiver
fully informed on A(1), as the equality y′ = Â(1)x′ is
verified regardless of the exactness of Â(1);

3) Verification: as a further test of Â(1), the attacker attempts
the recovery of a second, unknown plaintext x′′ encoded
as y′′ = A(1)x′′, of which it is only known that it was
obtained with the same encoding matrix as y′.
The recovery x̂′′ is then obtained by means of GAMP,
yielding a new RSNR′′ = 10 log10

‖x′′‖22
‖x′′−x̂′′‖22

unknown to
the attacker. If any point with high RSNR′′ ≈ RSNR′ is
found, this will indicate the attacker’s success at guessing
Â(1) close to the true A(1). We will show how this
never occurs with a large number of candidate solutions,
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(a) (b)

Fig. 6. Effectiveness of (a) Eve and (b) Steve’s KPA in recovering a hidden ECG. Each point is a guess of the encoding matrix A(1) whose quality is
assessed by decoding the ciphertext y′ corresponding to the known plaintext x′ (RSNR′) and by decoding a new ciphertext y′′ (RSNR′′). The Euclidean
distance from the average (RSNR′,RSNR′′) is highlighted by colour gradient.

and detail how the observed (RSNR′,RSNR′′) pairs are
distributed.

Both the practical examples of Eve and Steve’s KPA follow the
same procedure, with the exception that Eve directly generates
Â

(1)
j , whereas Steve generates each row Â

(1)
j by random search

of the index set C(0)
j that maps the known A(0)

j to the guess
Â

(1)
j that verifies y′j = Â

(1)
j x′. Coherently with the theoretical

setting of Section III-B, we also assume that Steve knows
that exactly cj entries of A(0) have been flipped in each row
of A(1). Repeating this search for m rows in both attacks
provides Eve and Steve’s candidate solutions Â(1), of which
we will study how the corresponding (RSNR′,RSNR′′) pairs
are distributed as mentioned above.

A. Electrocardiographic Signals

We now consider ECG signals from the MIT PhysioNet
database [39] sampled at fs = 256 Hz and encoded as
described, from two windows x′, x′′ of n = 256 samples (and
quantised with Bx = 12 bit) into the measurement vectors
y′, y′′ of dimensionality m = 90. Decoding is allowed by the
sparsity level of the windowed signal when decomposed with
D chosen as a Symmlet-6 orthonormal wavelet basis [40].

We generate 2000 candidate solutions for both Eve and
Steve’s KPA that correspond to the recovery performances
reported in Fig. 6. While both malicious users are able to
reconstruct the known plaintext x′ with a relatively high
average RSNR′ ≈ 25 dB (their KPAs indeed yield solutions
to y′ = Â(1)x′), on the second window of samples x′′ the
eavesdropper achieves an average RSNR′′ ≈ −0.20 dB (Fig.
6a), whereas the second-class decoder achieves an average
RSNR′′ ≈ 12.15 dB (Fig. 6b) when the two-class encryption
scheme is set to a sign flipping density η = c/mn = 0.03
between A(0) and A(1). In this case, the nominal second-
class RSNR = 11.08 dB when reconstructing x′′ from y′′

with A(0), while the correlation coefficient between RSNR′

and RSNR′′ is 0.0140; these figures clearly highlight the

ineffectiveness of KPAs at inferring A(1) in this case. This is
also confirmed by the perceptual quality of x̂′′ corresponding
to the maximum RSNR′′ highlighted in Fig. 6.

B. Sensitive Text in Images

In this example we consider the same test images used in
[7], i.e., 640 × 512 pixel grayscale images of people holding
a printed identification text concealed by means of two-class
encryption. To reduce the computational burden of KPAs we
assume a block size of 64 × 64 pixel, Bx = 8 bit per pixel,
and encode the resulting n = 4096 pixels into m = 2048
measurements. Signal recovery is performed by assuming the
blocks have a sparse representation on a 2D Daubechies-4
wavelet basis [40]. Two-class encryption is applied on the
blocks containing printed text: we choose two adjacent blocks
x′, x′′ containing some letters and encoded with the same
A(1); in this case, the second-class decoder nominally achieves
RSNR = 12.57 dB without attempting class-upgrade due
to the flipping of c = 251658 entries (corresponding to a
perturbation density η = 0.03) in the encoding matrix.

In order to test Eve and Steve’s KPA we randomly generate
2000 solutions for the j-th row of the encoding given x′, y′:
it is worth noting that while in the previous case the signal
dimensionality is sufficiently small to produce a solution set in
less than two minutes, in this case generating 2000 different
solutions for a single row may take up to several hours for
some particularly hard instances.

By using these candidate solutions to find x̂′, x̂′′ we obtain
the results of Figure 7: while both attackers attain an average
RSNR′ ≈ 33 dB on x′, Eve is only capable of reconstructing
x′′ with an average RSNR′′ ≈ 0.14 dB where Steve reaches
an average RSNR′′ ≈ 12.80 dB with η = 0.03. Note also that,
although some lucky guesses exist with RSNR′′ > 12.57 dB,
it is impossible to identify them by looking at RSNR′

since the correlation coefficient between RSNR′ and RSNR′′

is −0.0041. Therefore, Steve cannot rely on observing the
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(a) (b)

Fig. 7. Effectiveness of (a) Eve and (b) Steve’s KPA in recovering hidden image blocks. Each point is a guess of the encoding matrix A(1) whose quality is
assessed by decoding the ciphertext y′ corresponding to the known plaintext x′ (RSNR′) and by decoding a new ciphertext y′′ (RSNR′′). The Euclidean
distance from the average (RSNR′,RSNR′′) is highlighted by colour gradient.

RSNR′ to choose the best performing solution Â(1), so both
Eve and Steve’s KPAs are inconclusive. As a further perceptual
evidence of this, the best recoveries according to the RSNR′′

are reported in Fig. 7.

V. CONCLUSION

In this paper we have analysed known-plaintext attacks as they
may be carried out on standard CS schemes with antipodal
random encoding matrices as well as on the particular multi-
class protocol developed in [7]. In particular, the analysis was
carried out from the two perspectives of an eavesdropper and a
second-class user trying to guess the true encoding matrix. In
both cases we have mapped multiclass CS into a collection of
subset-sum problems with the aim of counting the candidate
encoding matrices that match a given plaintext-ciphertext pair.
In the eavesdropper case we have found that for each row
the expected number grows as O(n−

1
2 · 2n) – finding the

true solution among such huge sets is infeasible. A further
study of the candidate solutions’ Hamming distance from the
true one showed that, as the dimensionality n increases, the
expected number of solutions close to the true one is only a
small fraction of the solution set. As for the second-class user
we have shown that depending on the available information
on the true encoding matrix, the expected number of solutions
is significantly smaller, yet sufficiently high for large n to
reassure that a second-class user will not be able to perform
class-upgrade. Moreover, other class-upgrade attacks based on
signal recovery under matrix uncertainty were shown to yield
almost identical performances to those of a standard decoding
algorithm.

Finally, we showed some simulated cases of KPAs on real-
world signals such as ECG traces and images by running a
random search for a solution set corresponding to realistic
plaintext-ciphertext pairs, and afterwards tested whether any of
the returned candidate solutions could lead to finding the true
encoding matrix by testing them on a successive ciphertext.

In all the observed cases, we have found that the decoding
performances match the average RSNR level prescribed by the
multiclass encryption protocol, i.e., both malicious users are
unable to successfully decode other plaintexts with significant
and stable quality improvements with respect to their available
prior information.

APPENDIX A
PROOFS ON EAVESDROPPER’S KPA

The following definition is used in Appendices A and C.

Definition 3. We define the functions

Fp(a, b) =

∫ 1

0

ξp

1 + eaξ−b
dξ (11)

Gp(a, b) =

∫ 1

0

ξp

(1 + eaξ−b) (1 + eb−aξ)
dξ (12)

Proof of Proposition 1. Define the binary variables bl ∈
{0, 1} so that sign (xl) Â

(1)
j,l = 2bl − 1 and the positive

coefficients ul = |xl|. With this choice (2) is equivalent to
yj =

∑n−1
l=0 (2bl − 1)ul which leads to a SSP with υ =

1
2

(
yj +

∑n−1
l=0 |xl|

)
. Since we know that each measurement

yj must correspond to the inner product between x and the
row A

(1)
j , the latter’s entries are straightforwardly mapped to

the true solution of this SSP, {b̄l}n−1
l=0 .

Proof of Theorem 1. Let us first note that, for large n, υ in
Proposition 1 is an integer in the range {0, . . . , nL/2}, with the
values outside this interval being asymptotically unachievable
as n → ∞ (see [18, Section 4]). We let τ = υ/nL, τ ∈
[0, 1/2], and a(τ) be the solution in a of the equation τ =
F1(a, 0) (i.e. [18, (4.2)]) that is unique since Fp(a, 0) in (11)
is monotonically decreasing in a.

From [18, (4.1)] the number of solutions of a SSP with in-
teger coefficients {ul}n−1

l=0 uniformly distributed in {1, . . . , L}
is

SEve(τ, n, L)
n→∞' en[a(τ)τ+

∫ 1
0

log(1+e−a(τ)ξ)dξ]√
2πnL2G2(a(τ), 0)
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Fig. 8. Gaussian approximation of SEve(τ, n, L) for n = 64, L = 104 by
letting σ2 ≈ 1/12n.

that we anticipate to have an approximately Gaussian profile
(see Fig. 8). We now compute the average of SEve(τ, n, L) in
τ , that clearly depends on the probability of selecting any value
of υ ∈ {0, . . . , nL2 }, i.e., of τ ∈ [0, 1

2 ]. Since it is the result of
a linear combination, the probability that a specific value of
υ appears in a random instance of the SSP is proportional to
the number of solutions associated to it. In normalised terms,
the PDF of τ must be proportional to SEve(τ, n, L), i.e., τ is
distributed as

fτ (t) =
1∫ 1

2

0
SEve(ξ, n, L)dξ

{
SEve(t, n, L), 0 ≤ t ≤ 1

2

0, otherwise

With fτ (t) we can compute the expected number of solutions:

Eτ [SEve(τ, n, L)] =

∫ 1
2

0

S2
Eve(ξ, n, L)dξ∫ 1

2

0

SEve(ξ, n, L)dξ

(13)

Although we could resort to numerical integration, (13)
can be simplified by exploiting what noted above, i.e., that
SEve(τ, n, L) has an approximately Gaussian profile in τ (Fig.
8) with a maximum in τ = 1/4. Hence, the expectation in τ
becomes

Eτ [SEve(τ, n, L)]
n→∞' SEve

(
1

4
, n, L

) ∫ ∞
−∞

(
e−

(ξ− 1
4 )

2

2σ2

)2

dξ

∫ ∞
−∞

e−
(ξ− 1

4 )
2

2σ2 dξ

= SEve

(
1

4
, n, L

)
1√
2

=
2n

L

√
3

πn
(14)

that is actually independent of the σ2 used in the Gaussian
approximation, and in which we have exploited a(1/4) = 0 to
obtain the statement of the theorem.

APPENDIX B
HAMMING DISTANCE OF KPA SOLUTIONS

Proof of Theorem 2. We here concentrate on counting the
number of candidate solutions {bl}n−1

l=0 to Eve’s KPA that

differ from the true one, {b̄l}n−1
l=0 , by exactly h components

(at Hamming distance h). We assume that K ⊆ {0, . . . , n−1}
is the set of indexes for which there is a disagreement, i.e.,
for all l ∈ K we have bl = 1 − b̄l; this set has cardinality
h, and is one among

(
n
h

)
possible sets. Since both {bl}n−1

l=0

and {b̄l}n−1
l=0 are solutions to the same SSP, and that bl = b̄l

are identical for l /∈ K,
∑
l∈K

(
1− b̄l

)
ul =

∑
l∈K b̄lul must

hold, implying the equality∑
l∈K
b̄l=0

ul −
∑
l∈K
b̄l=1

ul = 0 (15)

Although (15) recalls the well-known partition problem, in our
case K is chosen by each problem instance that sets all ul and
b̄l. Thus, (15) holds in a number of cases that depends on how
many of the 2hLh possible assignments of all ul and b̄l satisfy
it. The only feasible cases are for h > 1, and to analyse them
we assume K = {0, . . . , h − 1} (the disagreements occur in
the first h ordered indexes) without loss of generality.

Moreover, when (15) holds for some {b̄l}n−1
l=0 it also holds

for {1− b̄l}n−1
l=0 . Hence, we may count the configurations that

verify (15) with b̄0 = 0, knowing that their number will be
only half of the total. With this, the configurations with b̄0 = 0
must have b̄l = 1 for at least one l > 0 in order to satisfy
(15), giving 2h−1 − 1 total cases to check.

The following paragraphs illustrate that, for h < L, the
number of configurations that verify (15) can be written as a
polynomial of order h−1. With this in mind we can start with
the explicit computation for h = {2, 3}. For h = 2, there is
only one feasible assignment for the {b̄l}n−1

l=0 , so u0 = u1 in
(15), which makes 2L cases out of 22L2. For h = 3, one has
3 feasible assignments for the {b̄l}n−1

l=0 . Due to the symmetry
of (15) all the configurations have the same behaviour and we
may focus on, e.g., b̄0 = b̄1 = 0 and b̄2 = 1⇒ u0 + u1 = u2;
this can be satisfied only when u0 + u1 ≤ L, i.e., for L(L−1)

2

configurations. This makes a total of 2·3· L(L−1)
2 = 3L(L−1)

over the 23L3 possible configurations.
For h > 3, this procedure is much less intuitive; neverthe-

less, we can at least prove that the function Ph(L) counting
the configurations for which (15) holds is a polynomial in L
of degree h− 1. To show this, let us proceed in three steps.

1) Indicate with πb̄ the (h − 1)-dimensional subspace of
Rh defined by

∑
l∈K
b̄l=0

ξl −
∑

l∈K
b̄l=1

ξl = 0, ξ ∈ Rh. The

intersection αb̄(L) = {1, . . . , L}h ∩ πb̄ is such that each
assignment of {ul}h−1

l=0 ∈ {1, . . . , L}h satisfying (15)
is an integer point in αb̄. To count those points define
βb̄(L) = {0, . . . , L + 1} ∩ πb̄ and note that the number
of integer points in αb̄ is equal to the number of integer
points in the interior of βb̄ (the points on the frontier of
βb̄ have at least one coordinate that is either 0 or L+ 1).
Note how {0, . . . , L+1}h scales linearly with L+1 while
πb̄ is a subspace and therefore scale-invariant. Hence,
their intersection βb̄(L) is an h−1-dimensional polytope
that scales proportionally to the integer L+1, as required
by Ehrhart’s theorem [41]. The number Eb̄(L) of integer
points in βb̄(L) is then a polynomial in L+ 1 (and so L)
of degree equal to the dimensionality of βb̄(L), i.e., h−1.
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From Ehrhart-Macdonald’s reciprocity theorem [42] we
know that the number of integer points in the interior
of βb̄ and thus in αb̄ is (−1)h−1Eb̄(−L), that is also a
polynomial in L of degree h− 1.

2) If two different assignments {b̄′l}
h−1
l=0 and {b̄′′l }

h−1
l=0 are

considered, then αb̄′(L)∩ αb̄′′(L) = {1, . . . , L}h ∩ πb̄′ ∩
πb̄′′ . The same argument we used above tells us that
the number of integer points in such an intersection is
a polynomial in L of degree h − 2 and, in general that
the number of integer points in the intersection of any
number of polytopes αb̄(L) is a polynomial of degree
not larger than h− 1.

3) The number of configurations of {ul}h−1
l=0 and {b̄l}h−1

l=0

that satisfy (15) with respect to the above K is the number
of integer points in the union of all possible polytopes αb̄,
i.e.,

⋃
{b̄l}h−1

l=0
αb̄(L). Such a number can be computed by

the inclusion-exclusion principle that amounts to properly
summing and subtracting the number of integer points in
those polytopes and their various intersections. Since sum
and subtraction of polynomials yield polynomials of non-
increasing degree, we know that number is the evaluation
of a polynomial Ph(L) with degree not greater than h−1.

Let us then write Ph(L) =
∑h−1
j=0 p

h
jL

j . In order to com-
pute its coefficients phj we may fix a binary configuration
{bl}h−1

l=0 , count the points {ul}h−1
l=0 ∈ Nh+ for which (15)

is verified by means of integer partition functions (that also
have a polynomial expansion), and subtract the points in
which {ul}h−1

l=0 /∈ {1, . . . , L}h. By summation over all binary
configurations, one can extract the coefficients associated with
Lj for each h. Table I reports the result of this procedure as
carried out by symbolic computation for h ≤ 15.

APPENDIX C
PROOFS ON THE CLASS-UPGRADE KPA

Proof of Proposition 2. In this case the attacker knows
(A(0), x, y), and is able to calculate εj = yj−

∑n−1
l=0 A

(0)
j,l xl =∑n−1

l=0 ∆Aj,lxl where the ∆Aj,l are unknown. For the j-th
row, the attacker also knows there are cj non-zero elements in
∆Aj,l = −2A

(0)
j,l bl with bl ∈ {0, 1} binary variables that are

1 if the flipping occurred and 0 otherwise. Note that from the
above information cj =

∑n−1
l=0 bl. With this we define a set of

even weights Dl = −2A
(0)
j,l xl ∈ {−2L, . . . ,−2, 0, 2, . . . , 2L}

so the KPA is defined by satisfying the equalities

εj =

n−1∑
l=0

Dlbl (16)

cj =

n−1∑
l=0

bl (17)

To obtain a standard γ-SSP with positive weights and γ = cj
we sum 2L to all Dl so (16) becomes εj + 2L

∑n−1
l=0 bl =∑n−1

l=0 (Dl + 2L)bl. Multiplying both sides by 1/2 and using
(17) yields υ = 1

2εj + Lcj =
∑n−1
l=0 ulbl where ul =

−A(0)
j,l xl + L ∈ {0, . . . , Q}. Q = 2L. Finally, we exclude

ul = 0 to facilitate the attack.

Proof of Theorem 3. Assume Fp(a, b) and Gp(a, b) as in
(11),(12). Define the normalised constraint r =

cj
n and two

quantities a(τ, r) and b(τ, r) that are the solutions of the
following system of equalities

r = F0(a, b)

τ = F1(a, b)

that are respectively equivalent to [18, (5.3-4)]. We also define

G(τ, r) =

(
G0(a (τ, r) , b (τ, r)) G1(a (τ, r) , b (τ, r)
G1(a (τ, r) , b (τ, r) G2(a (τ, r) , b (τ, r))

)
With this, [18, (5.8-9)] prove that the number of solutions of a
γ-SSP with integer coefficients {ul}n−1

l=0 uniformly distributed
in {1, . . . , Q}, Q = 2L, γ = cj is

SSteve(τ, n, L, r) =
en(a(τ,r)τ−b(τ,r)r)

4πnL
√

det (G(τ, r))
· (18)

· e
n

∫ 1

0

log
[
1 + eb(τ,r)−a(τ,r)ξ

]
dξ

Using the same arguments as in the proof of Theorem 1, we
average on τ and obtain an expression identical to (13) for the
computation of Eτ [SSteve(τ, n, L, r)]. Since SSteve(τ, n, L, r)
has once again an approximately Gaussian profile in τ with a
maximum in τ = r

2 we approximate the expectation in τ ,

Eτ [SSteve(τ, n, L, r)]
n→∞' SSteve

(r
2
, n, L, r

) 1√
2

=

√
3

2

r−1−nρ (1− r)−1−n(1−r)

2πnL
(19)

by using the fact that a
(
r
2 , r
)

= 0 and b
(
r
2 , r
)

= log
(

r
1−r

)
.
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