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Low-Complexity Multiclass Encryption
by Compressed Sensing

Valerio Cambareri, Student Member, IEEE, Mauro Mangia, Member, IEEE,
Fabio Pareschi, Member, IEEE, Riccardo Rovatti, Fellow, IEEE, Gianluca Setti, Fellow, IEEE

Abstract—The idea that compressed sensing may be used to
encrypt information from unauthorised receivers has already
been envisioned, but never explored in depth since its security
may seem compromised by the linearity of its encoding process.

In this paper we apply this simple encoding to define a general
private-key encryption scheme in which a transmitter distributes
the same encoded measurements to receivers of different classes,
which are provided partially corrupted encoding matrices and are
thus allowed to decode the acquired signal at provably different
levels of recovery quality.

The security properties of this scheme are thoroughly anal-
ysed: firstly, the properties of our multiclass encryption are
theoretically investigated by deriving performance bounds on the
recovery quality attained by lower-class receivers with respect to
high-class ones. Then we perform a statistical analysis of the
measurements to show that, although not perfectly secure, com-
pressed sensing grants some level of security that comes at almost-
zero cost and thus may benefit resource-limited applications.

In addition to this we report some exemplary applications of
multiclass encryption by compressed sensing of speech signals,
electrocardiographic tracks and images, in which quality degra-
dation is quantified as the impossibility of some feature extraction
algorithms to obtain sensitive information from suitably degraded
signal recoveries.

Index Terms—Compressed sensing, encryption, security, secure
communications

I. INTRODUCTION

W ITH the rise of paradigms such as wireless sensor
networks [1] where a large amount of data is locally

acquired by sensor nodes and transmitted remotely for further
processing, defending the privacy of digital data gathered and
distributed by such networks is a relevant issue. This privacy
requirement is normally met by means of encryption stages
securing the transmission channel [2], implemented in the
digital domain and preceded by analog-to-digital conversion
of the signal. Due to their complexity, these cryptographic
modules (e.g. those implementing the Advanced Encryption
Standard (AES) [3]) may require a considerable amount of
resources, especially in terms of power consumption.

Copyright c©2015 IEEE. Personal use of this material is permitted. How-
ever, permission to use this material for any other purposes must be obtained
from the IEEE by sending a request to pubs-permissions@ieee.org.

V. Cambareri and R. Rovatti are with the Department of Electrical,
Electronic and Information Engineering (DEI), University of Bologna, Italy
(e-mail: valerio.cambareri@unibo.it, riccardo.rovatti@unibo.it).

M. Mangia is with the Advanced Research Center on Electronic Systems
(ARCES), University of Bologna, Italy (e-mail: mmangia@arces.unibo.it).

F. Pareschi and G. Setti are with the Engineering Department in Fer-
rara (ENDIF), University of Ferrara, Italy (e-mail: fabio.pareschi@unife.it,
gianluca.setti@unife.it).

Compressed Sensing (CS) [4], [5] is a mature signal pro-
cessing technique used in the development of novel data ac-
quisition schemes. CS exploits the structure of certain signals
to simultaneously perform data compression and acquisition at
the physical interface between the analog and digital domain,
thus allowing acquisition at sub-Nyquist rates [6], [7]. This
efficient acquisition is commonly followed by a decoding
algorithm that maps an undersampled set of CS-encoded mea-
surements into a recovery of the original signal. Within this
framework, many sensing architectures have been proposed
for the acquisition of a variety of signals [8]–[10].

We investigate on the possibility of using CS with Bernoulli
random encoding matrices [11] as a physical-layer method to
embed security properties in the acquisition process. Although
it is well known that CS cannot be regarded as perfectly secure
[12] we will formalise its main weaknesses and strengths as an
exploration of the trade-off between achievable security prop-
erties and resource requirements in low-complexity acquisition
systems, for which an almost-zero cost encryption mechanism
is an appealing option.

In more detail, we here devise an encryption strategy relying
on the fact that any receiver attempting to decode the CS
measurements must know the true encoding matrix used in the
acquisition process to attain exact signal recovery. In partial
or complete defect of this information, the recovered signal
will be subject to a significant amount of recovery noise [13].

We exploit this decoder-side sensitivity to provide multiple
recovery quality-based levels (i.e. classes) of access to the in-
formation carried in the signal. In fact, when the true encoding
matrix is completely unknown the signal is fully encrypted,
whereas if a receiver knows it up to some random perturbations
the signal will still be recoverable, albeit with limited quality.
We therefore aim to control the recovery performances of users
(receivers) belonging to the same class by exploiting their
ignorance of the true encoding matrix. Since these encoding
matrices are generated from the available private keys at
the corresponding decoders, high-class receivers are given a
complete key and thus the true encoding matrix, lower-class
receivers are given an incomplete key resulting in a partially
corrupted encoding matrix. To ensure that this mismatch goes
undetected by lower-class receivers, we only alter the sign of
a randomly chosen subset of the entries of the true encoding
matrix, which is itself assumed to be a realisation of a ±1-
valued Bernoulli random matrix.

This contribution is structured as follows: in Section II
we briefly review the theoretical framework of CS, introduce
the mathematical model of two-class and multiclass CS, and
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perform upper and lower bound analyses on the recovery
error norm suffered by lower-class receivers depending on the
chosen amount of perturbation.

Section III addresses the robustness of CS with universal
random encoding matrices [11] against straightforward statis-
tical attacks. While CS is not perfectly secret in the Shannon
sense [12] and in general suffers from continuity due to its
linear nature, we prove that, asymptotically, nothing can be
inferred about the encoded signal except for its power and
formalise this fact in a relaxed secrecy condition. Moreover,
we show how the convergence to this behaviour is sharp for
finite signal dimensions. Hence, eavesdroppers are practically
unable to extract but a very limited amount of information
from the sole statistical analysis of CS measurements. Other
non-statistical attacks of a more threatening nature will be
treated separately in a future contribution.

In Section IV we propose example applications of multiclass
CS to concealing sensitive information in images, electrocar-
diographic tracks and speech signals. The recovery perfor-
mances are evaluated in a signal processing perspective to
prove the efficacy of this strategy at integrating some security
properties in the sensing process, with the additional degree
of freedom of allowing multiple quality levels and eventually
hiding selected signal features to certain user classes.

A. Relation to Prior Work

This contribution mainly improves on two separate lines of
research: (i) statistical security analyses of the CS encoding
and (ii) the effect of encoding matrix perturbations on signal
recovery. Line (i) stems from the security analysis in [12].
Both [12] and [14] showed how brute-force attacks are com-
putationally infeasible, so that some security properties could
indeed be provided in relevant applications [15], [16]. We
deepen the results in [12] by introducing an asymptotic notion
of secrecy for signals having the same power, and by verifying
it for CS. We assess its consequences for finite dimensions
by means of hypothesis testing and develop a non-asymptotic
analysis of the rate at which acquired signals having the
same energy become indistinguishable when observing the
probability distribution of their subgaussian CS measurements.
This is obtained by adapting a recent result in probability
theory [17]. On the other hand, line (ii) relates to studying
the effect of our particular sparse random perturbation matrix
on signal recovery performances, a field that is closely re-
lated to statistical sparse regression with corrupted or missing
predictors [18], [19]. The authors of [13] quantify this effect
in a general framework: we will adapt these results to our
case for a formal analysis of the worst-case signal recovery
performances of lower-class users, while developing some new
arguments to find their best-case recovery performances – our
aim being the distinction between different user classes.

II. MULTICLASS COMPRESSED SENSING

A. Brief Review of Compressed Sensing

Compressed sensing [4], [5] is summarised by considering
the following setting: let x be a vector in Rn and y ∈ Rm a

vector of measurements obtained from x by applying a linear
dimensionality-reducing transformation y = Ax, i.e.

yj =

n−1∑
l=0

Aj,lxl , j = 0, . . . ,m− 1 (1)

with Am×n the encoding matrix. Under suitable assumptions,
fundamental results [4], [20], [21] showed it is possible to
recover x from y even if m < n.

The first of such assumptions is that x has a k-sparse
representation, i.e. we assume that there exists a sparsity basis
Dn×n such that x = Ds, with s ∈ Rn having a support of
cardinality k. This cardinality is also indicated as ‖s‖0 = k
with k � n. Asserting that x is represented by k < m < n
non-zero coefficients in a suitable domain intuitively means
that its intrinsic information content is smaller than the appar-
ent dimensionality. In the following we will assume that D is
an orthonormal basis (ONB).

A second assumption must be made on the structure of
A. Many conditions have been formulated in the literature
(e.g. the restricted isometry property, RIP [22]) to guarantee
that the information in s is preserved through the mapping
y = ADs. To the purpose of this paper it suffices to say
that the most universal option (i.e. independently of D) is
choosing A as typical realisations of a random matrix with
independent and identically distributed (i.i.d.) entries from a
subgaussian distribution, e.g. an i.i.d. Gaussian or Bernoulli
random matrix [11]. We will let A be an m× n i.i.d. Bernoulli
random matrix1 unless otherwise noted.

When both these conditions hold, s can be recovered from
y = ADs as the sparsest vector solving the hard problem

s = arg min
ξ∈Rn

‖ξ‖0 s. t. y = ADξ (P0)

Moreover, if the dimensionality of the measurements m ∼
k log n

k is not too small w.r.t. that of x and its sparsity w.r.t.
D, (P0) can be relaxed to the convex `1-norm minimisation

ŝ = arg min
ξ∈Rn

‖ξ‖1 s. t. y = ADξ (P1)

still yielding ŝ = s (provided that A is carefully chosen [21]),
with (P1) being a linear programming problem solved with
polynomial-time algorithms [20]. In the following, we will
refer to this problem as the min `1 decoder (also known as
basis pursuit, BP).

B. A Cryptographic Perspective

Standard CS may be interpreted as a private key cryp-
tosystem where x is the plaintext, the measurement vector
y is the ciphertext and the encryption algorithm is a linear
transformation operated by the encoding matrix A defining
the acquisition process. In the classic setting, Alice acquires a
plaintext x by CS using A and sends to Bob the ciphertext y;
Bob is able to successfully recover x from y if he is provided
with A or equivalently the private key required to generate it.

1This notation is used both for the random matrix and its realisations,
disambiguating with the term instance where needed.
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Since many CS-based acquisition systems [8], [9] entail the
use of i.i.d. Bernoulli random matrices generated by a pseudo-
random number generator (PRNG) we define encryption key
(or shared secret) the initial seed which is expanded by the
PRNG to generate a sequence of encoding matrices. In the
following we will assume that the period of this sequence is
sufficiently long to guarantee that in a reasonable observation
time no two encoding matrices will be the same, i.e. that each
plaintext will be encoded with a different matrix. With this
hypothesis, we let each instance of A be a generic, unique
element of the aforementioned sequence.

C. Signal Models and Assumptions

This paper will analyse the security properties of CS starting
from some statistical properties of the signal being encoded as
in (1). Rather than relying on its a priori distribution, our anal-
ysis uses general moment assumptions that may correspond to
many probability distributions on the signal domain. We will
therefore adopt the following signal models:
(m1) for finite n, we let X = {Xj}n−1

j=0 be a real random
vector (RV). Its realisations (finite-length plaintexts)
x =

(
x0, · · · , xn−1

)
∈ Rn are assumed to have finite

energy ex = ‖x‖22. We will let each x = Ds with D
an ONB and s being k-sparse to comply with sparse
signal recovery guarantees [21]. X is mapped to the
measurements’ RV Y = {Yj}m−1

j=0 (whose realisations
are the ciphertexts y) as Y = AX , i.e. each realisation
of (Y,A,X) is an instance of (1).

(m2) for n → ∞, we let X = {Xj}+∞j=0 be a real
random process (RP). Its realisations (infinite-length
plaintexts) x are assumed to have finite power Wx =
limn→∞

1
n

∑n−1
j=0 x

2
j . We denote them as sequences

x = {x(n)}+∞n=0 of finite-length plaintexts x(n) =(
x0, · · · , xn−1

)
. X is mapped to either a RV Y of

realisations (ciphertexts) y for finite m, or a RP Y =
{Yj}+∞j=0 of ciphertexts y for m,n → ∞, mn → q.
Both cases are comprised of random variables Yj =

1√
n

∑n−1
l=0 Aj,lXl. The 1√

n
scaling is not only theo-

retically needed for normalisation purposes, but also
practically required in the design of finite quantiser
ranges for CS-based acquisition front-ends.

When none of the above models is specified, a single reali-
sation of (1) is considered as in the standard CS framework
(Section II-A).

D. Multiclass Encryption by Compressed Sensing

Let us consider a scenario where multiple users receive the
same measurements y, know the sparsity basis D, but are
made different by the fact that some of them know the true
A, whereas the others only know an approximate version of
it. The resulting mismatch between A and its approximation
used in the decoding process by the latter set of receivers will
limit the quality of signal recovery as detailed below.

1) Two-Class Scheme: With this principle in mind a
straightforward method to introduce perturbations is flipping
the sign of a subset of the entries of the encoding matrix in

a random pattern. More formally, let A(0) denote the initial
encoding matrix and C(0) a subset of c < m · n index
pairs chosen at random for each A(0). We construct the true
encoding matrix A(1) by

A
(1)
j,l =

{
A

(0)
j,l , (j, l) /∈ C(0)

−A(0)
j,l , (j, l) ∈ C(0)

and use it to encode x as in (1). Although this alteration simply
involves inverting c randomly chosen sign bits in a buffer of
m · n pseudorandom symbols, we will use its linear model

A(1) = A(0) + ∆A (2)

where ∆A is a c-sparse random perturbation matrix of entries

∆Aj,l =

{
0, (j, l) /∈ C(0)

−2A
(0)
j,l , (j, l) ∈ C(0)

(3)

or equivalently

∆Aj,l =

{
0, (j, l) /∈ C(0)

2A
(1)
j,l , (j, l) ∈ C(0)

(4)

with density η = c
mn , i.e. the ratio of non-zero entries w.r.t. the

product of the dimensions of ∆A. By doing so, any receiver
is still provided an encoding matrix differing from the true
one by an instance of ∆A. This perturbation is undetectable,
i.e. A(1) and A(0) are statistically indistinguishable since they
are equal-probability realisations of the same i.i.d. Bernoulli
random matrix ensemble [11] with all points in {−1, 1}m×n
having the same probability.

A first-class user receiving y = A(1)x = (A(0) +∆A)x and
knowing A(1) is able to recover, in absence of other noise
sources and with m sufficiently larger than k, the exact sparse
solution ŝ = s by solving (P1) [20], [21]. A second-class user
only knowing y and A(0) is instead subject to an equivalent
signal- and perturbation-dependent noise term ε due to missing
pieces of information on A(1), i.e.

y = A(1)x = A(0)x+ ε (5)

where ε = ∆Ax is a pure disturbance since both ∆A and x
are unknown to the second-class decoder.

In general, performing signal recovery in the erroneous
assumption that y = A(0)x, i.e. with a corrupted encoding
matrix will lead to a noisy recovery of x. Nevertheless,
upper bounds on the recovery error norm ‖x̂ − x‖2 (with
x̂ = Dŝ, ŝ an approximation of s) are well known for
measurements affected by generic additive noise [21, Theorem
1.1, 1.2]. These bounds have been extended in [13] to a general
perturbed encoding matrix model that encompasses (5). We
adapt these results in Section II-E2 to obtain a worst-case
analysis of the second class recovery error norm.

Moreover, to prove the difference between first- and second-
class recovery performances, in Section II-E1 we develop
a lower bound, i.e. a best-case analysis of the second-class
recovery error norm. Both performance bounds show a clear
dependence on the perturbation density η, which is suitably
chosen to fix the desired quality range for each class.
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Fig. 1. A multiclass CS network: the encoder acquires an analog signal x(t)
at sub-Nyquist rate and transmits the measurement vector y. Low-quality
decoders reconstruct a signal approximation with partial knowledge of the
encoding, resulting in additive perturbation noise ε(u) and leading to an
approximate solution ŝ(u) for the u-th user class.

2) Multiclass Scheme: The two-class scheme may be iter-
ated to devise an arbitrary number w of user classes: sign-
flipping is now applied on disjoint subsets of index pairs
C(u), u = 0, . . . , w − 2 of A(0) so that

A
(u+1)
j,l =

{
A

(u)
j,l , (j, l) /∈ C(u)

−A(u)
j,l , (j, l) ∈ C(u)

If the plaintext x is encoded with A(w−1) then we may
distinguish high-class users knowing the complete encoding
A(w−1), low-class users knowing only A(0) and mid-class
users knowing A(u+1) with u = 0, . . . , w − 3. This simple
technique can be applied to provide multiple classes of access
to the information in x by having different signal recovery
performances at the decoder.

3) A System Perspective: The strategy described in this
section provides a multiclass encryption architecture where
the shared secret between the CS encoder and each receiver is
distributed depending on the quality level granted to the latter.

In particular, the full encryption key of a w-class
CS system is composed of w seeds, i.e. low-class
users are provided the secret Key(A(0)), class-1 users
are provided Key(A(1)) =

(
Key(C(0)),Key(A(0))

)
up to high-class users with Key(A(w−1)) =(
Key(C(w−2)), · · · ,Key(C(0)),Key(A(0))

)
. A sample

network scenario is depicted in Fig. 1.
From the resources point of view, multiclass CS can be en-

abled with very small computational overhead. The encoding
matrix generator is the same at both the encoder and high-class
decoder side, whereas lower-class decoders may use the same
generation scheme but are unable to rebuild the true encoding
due to the missing private keys Key(C(u)).

The initial matrix A(0) is updated from a pseudorandom
binary stream generated by expanding Key(A(0)) with a
PRNG. The introduction of sign-flipping is a simple post-
processing step carried out on the stream buffer by reusing
the same PRNG architecture and expanding the corresponding
Key(C(u)), thus having minimal computational cost.

Since the values generated by this PRNG are never exposed,
cryptographically secure generators may be avoided, provided
that the period with which the matrices are reused is kept

sufficiently large – this requirement is crucial to avoid attacks
that could exploit multiple plaintext-ciphertext pairs to fully
or partially recover the encoding matrix.

E. Lower-Class Recovery Performance Bounds

In order to quantify the recovery quality performance gap
between low- and high-class users receiving the same CS
measurements from the network of Fig. 1, we now provide
performance bounds on the recovery error in the simple two-
class case, starting from the basic intuition that if the sparsity
basis of x is not the canonical basis, then most plaintexts
x /∈ Ker (∆A), so the perturbation noise ε = ∆Ax 6= 0.

1) Second-Class Recovery Error – Lower Bound: The fol-
lowing results aim at predicting the best-case recovery quality
of any second-class decoder that assumes y was encoded by
A(0), whereas y = A(1)x in absence of other noise sources
and regardless of the sparsity of x.

Theorem 1 (Second-class recovery error lower bound). Let:
1) A(0), A(1) be m×n i.i.d. Bernoulli random matrices as

in (2) and ∆A the sparse random perturbation matrix
in (3) of density η ≤ 1

2 ;
2) X be as in (m1) with finite Ex = E[

∑n−1
j=0 X

2
j ], Fx =

E[(
∑n−1
j=0 X

2
j )2] and Y = A(1)X be the corresponding

measurements’ RV;
For all θ ∈ (0, 1) and any instance y = A(1)x, any x̂ that
satisfies y = A(0)x̂ is such that the recovery error norm

‖x̂− x‖22 ≥
4ηmEx

σmax(A(0))2
θ (6)

with probability

ζ = 1

1+(1−θ)−2

{
[1+ 1

m ( 3
2η−1)]Fx

E2
x
−1

} (7)

where σmax(·) denotes the maximum singular value of its
argument.

Corollary 1 (Asymptotic case of Theorem 1). Let:
1) A(0), A(1),∆A, η be as in Theorem 1 as m,n →
∞, mn → q;

2) X be as in (m2) , α-mixing [23, (27.25)], with finite
Wx = limn→∞

1
nE[
∑n−1
j=0 X

2
j ] and uniformly bounded

E[X4
j ] ≤ mx for some mx > 0. Denote with Y the

corresponding measurements’ RP of instances y;
For all θ ∈ (0, 1) and y = 1√

n
A(1)x, any x̂ that satisfies

y = 1√
n
A(0)x̂ is such that the recovery error power

Wx̂−x = lim
n→∞

1

n

n−1∑
j=0

(x̂j − xj)2 ≥ 4ηqWx

(1 +
√
q)2

θ (8)

with probability 1.

The proof of these statements is given in Appendix A.
Simply put, Theorem 1 and Corollary 1 state that a second-
class decoder recovering x̂ such that y = A(0)x̂ is subject to
a recovery error whose norm, with high probability, exceeds
a quantity depending on the density η of the perturbation
∆A, the undersampling rate m

n and the average energy Ex or
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power Wx respectively. In particular, the non-asymptotic case
in (6) is a probabilistic lower bound: as a quantitative example,
by assuming it holds with probability ζ = 0.98 and that
Fx
E2
x

= 1.0001, n = 1024,m = 512, σmax(A(0)) ≈
√
m +

√
n

(see [24]) one could take an arbitrary θ = 0.1⇒ η = 0.1594
to obtain ‖x̂−x‖22 ≥ 0.0109 w.r.t. RVs having average energy
Ex = 1. In other words, with probability 0.98 a perturbation
of density η = 0.1594 will cause a minimum recovery error
norm of 19.61 dB.

A stronger asymptotic result holding with probability 1 on
Wx̂−x is then reported in Corollary 1 under mild assumptions
on the RP X, where θ can be arbitrarily close to 1 and only
affecting the convergence rate to this lower bound. The bounds
in (6) and (8) are adopted as reference best-cases in absence
of other noise sources for the second-class decoder, which
exhibits higher recovery error for most problem instances and
reconstruction algorithms as detailed in Section IV.

2) Second-Class Recovery Error – Upper Bound: We now
derive a second-class recovery error upper bound by applying
the theory in [13] which extends the well-known recovery
guarantees in [21] to a perturbed encoding matrix model
identical to (2). While adaptations exist [25] none tackle the
unstructured, i.i.d. sparse random perturbation of (3) which we
will now model.

The framework of [13] analyses the recovery error upper
bound when using A(0) = A(1) −∆A as the encoding matrix
in the reference basis pursuit with denoising (BPDN) problem

ŝ = arg min
ξ∈Rn

‖ξ‖1 s. t. ‖y −A(0)Dξ‖2 ≤ γ (P2)

for a given noise parameter γ ≥ ‖ε‖2. Let σ(k)
min /max(·) denote

the extreme singular values among all k-column submatrices
of a matrix, and define the perturbation-related constants

ε
(k)

A(1) ≥
σ(k)
max(−∆AD)

σ
(k)
max(A(1)D)

; εA(1) ≥ σmax(−∆AD)
σmax(A(1)D)

≥ ε(k)

A(1) (9)

and the well-known restricted isometry constant (RIC, [22])
δ(k) = max {σ(k)

max(A(1)D)2 − 1, 1− σ(k)
min(A(1)D)2}. We es-

timate and plug these quantities in the upper bound of [13,
Theorem 2]. For the sake of simplicity, we report it below in
the case of plaintexts x having exactly k-sparse representations
in absence of other noise sources.

Proposition 1 (Second-class recovery error upper bound,
adapted from [13]). Let

1) A(0), A(1),∆A, η be as in Theorem 1;
2) X be as in (m1), with x = Ds, D an ONB and s being

k-sparse;
3) ε

(2k)

A(1) < 2
1
4−1 and δ(2k) < δ

(2k)
max =

√
2(1+ε

(2k)

A(1))
−2−1;

For any instance y = A(1)x, a vector x̂ = Dŝ with ŝ the

solution of (P2) with noise parameter γ = ε
(k)

A(1)

√
1+δ(k)

1−δ(k) ‖y‖2
obeys [13]

‖x̂− x‖2 ≤ Cγ,C =
4
√

1+δ(2k)(1+ε
(2k)

A(1)
)

1−(
√

2+1)
[
(1+δ(2k))(1+ε

(2k)

A(1)
)2−1

] (10)

Such a guarantee depends on ε(k)

A(1) , ε
(2k)

A(1) : theoretical results
exist for estimating their value by bounding the maximum
singular values in (9) since the entries of A(1) and ∆A are

(a) Empirical values of ε(k)
A(1)

(b) Maximum allowed values of
δ(2k)

Fig. 2. Empirical evaluation of the constants in Proposition 1 based on a
large number of A(1),∆A with m = 512, η ∈ [5 · 10−4, 10−2] and D a
random ONB.

i.i.d. (in particular, [24] applies to A(1), [26] to ∆A). Yet, they
would hold only when D is the identity and involve universal
constants whose values would require numerical evaluation.
For these reasons we choose to estimate the required quantities
directly by Monte Carlo simulation. As an example, we
calculate (9) for 104 instances of submatrices of A(1) and ∆A
with m = 512, k = 2, 4, . . . , 64 and η ∈ [5 · 10−4, 10−2]. This
allows us to find typical values of ε(k)

A(1) as reported in Fig. 2a.
In the same setting ε(k)

A(1) < 2
1
4 − 1 only when η ≤ 8 · 10−3.

In Fig. 2b we report the corresponding range of allowed RIC
δ(2k) ≤ δ

(2k)
max that comply with Proposition 1, i.e. the RIC

constraints the encoding matrices must meet so that (10) holds.
Such RIP-based analyses provide very strong sufficient

conditions for signal recovery (see [27, Section X]) which
in our case result in establishing a formal upper bound for a
small range of η and when solving (P2). As observed by the
very authors of [13], typical recovery errors are substantially
smaller than this upper bound. We will therefore rely on
another less rigorous, yet practically effective least-squares
approach using the same hypotheses of Theorem 1 to bound
the average recovery quality performances in Section IV.

III. A CRYPTANALYSIS OF COMPRESSED SENSING

Consider a generic CS scheme as in Section II-A with
y = Ax linearly encoding a plaintext x into a ciphertext y.
We now investigate the security properties and limits of such
random linear measurements by letting x, y be realisations of
either RVs (m1) or RPs (m2) with their respective a priori
distributions as in the classic Shannon framework [28].

A. Security Limits

The encoding performed by CS is a linear mapping, and
as such it cannot completely hide the information contained
in a plaintext x. This has two main consequences: firstly,
linearity propagates scaling. Hence, it is simple to distinguish
a plaintext x′ from another x′′ if one knows that x′′ = αx′ for
some scalar α. For the particular choice α = 0 this leads to
a known argument [12, Lemma 1] against the fundamental
requirement for perfect secrecy that the conditional PDF
fY |X(y|x) = fY (y) (e.g. in model (m1)). In the following,
we will prove that a scaling factor is actually all that can be
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inferred from the statistical analysis of CS-encoded cipher-
texts.

Secondly, linearity implies continuity. Hence, whenever x′

and x′′ are close to each other for a fixed A, the corresponding
y′ and y′′ will also be close to each other. This fact goes
against the analog version of the diffusion (or avalanche effect)
requirement for digital-to-digital ciphers [29]. If the encoding
process did not entail a dimensionality reduction, this fact
could be exploited every time a plaintext-ciphertext pair x′, y′

is known. If a new ciphertext y′′ is available that is close to y′,
then it is immediately known that the corresponding plaintext
x′′ must be close to x′ thus yielding a good starting point for
e.g. a brute-force attack.

The fact that m < n slightly complicates this setting since
the counterimages of y′′ through A belong to a whole subspace
in which points arbitrarily far from x′ exist in principle.
Yet, encoding matrices A are chosen by design so that the
probability of their null space aligning with x′ and x′′ (that
are k-sparse w.r.t. a certain D) is overwhelmingly small [22].
Hence, even if with some relaxation from the quantitative point
of view, neighbouring ciphertexts strongly hint at neighbouring
plaintexts. As an objection to this seemingly unavoidable issue
note that the previous argument only holds when the encoding
matrix remains the same for both plaintexts, while by our
assumption (Section II-B) on the very large period of the
generated sequence of encoding matrices two neighbouring
plaintexts x′, x′′ will most likely be mapped by different
encoding matrices to non-neighbouring ciphertexts y′, y′′.

B. Achievable Security Properties

1) Asymptotic Security: While perfect secrecy is unachiev-
able, we may introduce the notion of asymptotic spherical
secrecy and show that CS with universal random encoding
matrices has this property, i.e. no information can be inferred
on a plaintext x in model (m2) from the statistical properties
of all its possible ciphertexts but its power. The implication
of this property is the basic guarantee that a malicious eaves-
dropper intercepting the measurement vector will not be able
to extract any information on the plaintext except for its power.

Definition 1 (Asymptotic spherical secrecy). Let X be a RP
whose plaintexts have finite power 0 < Wx <∞, Y be a RP
modelling the corresponding ciphertexts. A cryptosystem has
asymptotic spherical secrecy if for any of its plaintexts x and
ciphertexts y we have

fY|X (y|x)−→
D
fY|Wx

(y) (11)

where →
D

denotes convergence in distribution as m,n → ∞,
fY|Wx

denotes conditioning over plaintexts x with the same
power Wx.

From an eavesdropper’s point of view, asymptotic spherical
secrecy means that given any ciphertext y we have

fX|Y (x|y) '
fY|Wx

(y)

fY(y)
fX(x)

implying that any two different plaintexts with an identical,
prior and equal power Wx remain approximately indistin-

(a) ex′ = ex′′ = 1; uniformity test
p-value = 0.4775 implies unifor-
mity at 5% significance.

(b) ex′ = 1, ex′′ = 1.01; unifor-
mity test p-value ' 0 implies non-
uniformity.

Fig. 3. Outcome of second-level statistical tests to distinguish between two
orthogonal plaintexts x′, x′′. In (a) x′, x′′ have ex′ = ex′′ , spherical secrecy
applies and the uniform distribution of p-values shows that the corresponding
ciphertexts are statistically indistinguishable. In (b) x′, x′′ have ex′ 6= ex′′ ,
spherical secrecy does not apply and the distribution of p-values shows that
the corresponding ciphertexts are distinguishable.

guishable from their ciphertexts. In the asymptotic setting, the
following proposition holds.

Proposition 2 (Asymptotic spherical secrecy of random mea-
surements). Let X be a RP with bounded-value plaintexts of
finite power Wx, Yj any variable of the RP Y as in (m2).
For n→∞ we have

fYj |X(yj)−→
D
N (0,Wx) (12)

Thus, universal encoding matrices provide independent,
asymptotically spherical-secret measurements as in (11).

The proof of this statement is given in Appendix B. Since
the rows of A are independent, the measurements conditioned
only on Wx are also independent and Proposition 2 asserts
that, although not secure in the Shannon sense, CS with
suitable encoding matrices is able to conceal the plaintext up
to the point of guaranteeing its security for n→∞.

As a more empirical illustration of spherical secrecy for
finite n, we consider an attack aiming at distinguishing two
orthogonal plaintexts x′ and x′′ from their encryption (clearly,
finite energy must be assumed as in (m1)). The attacker has
access to a large number χ of ciphertexts collected in a set
Y ′ obtained by applying different, randomly chosen encoding
matrices to a certain x′ as in (1). Then, the attacker collects
another set Y ′′ of χ ciphertexts, all of them corresponding
either to x′ or to x′′, and must tell which is the true plaintext
between the two. This reduces the attack to an application of
statistical hypothesis testing, the null assumption being that
the distribution underlying the samples in Y ′′ is the same as
that underlying the samples in Y ′. For maximum reliability we
adopt a two-level testing approach: we repeat the above ex-
periment for many instances of random orthogonal plaintexts
x′ and x′′, performing a two-way Kolmogorov-Smirnov (KS)
test to compare the empirical distributions obtained from Y ′
and Y ′′ produced by such orthogonal plaintexts.

Each of the above tests yields a p-value quantifying the
probability that two data sets coming from the same distri-
bution exhibit larger differences w.r.t. those at hand. Given
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their meaning, individual p-values could be compared against a
desired significance level to give a first assessment whether the
null hypothesis (i.e. equality in distribution) can be rejected.
Yet, since it is known that p-values of independent tests on
distributions for which the null assumption is true must be
uniformly distributed in [0, 1] we collect P of them and feed
this second-level set of samples into a one-way KS test to
assess uniformity at the standard significance level 5%.

This testing procedure is done for n = 256 in the cases
ex′ = ex′′ = 1 (same energy plaintexts) and ex′ = 1, ex′′ =
1.01, i.e. with a 1% difference in energy between the two
plaintexts. The resulting p-values for P = 5000 are computed
by matching pairs of sets containing χ = 5 · 105 ciphertexts,
yielding the p-value histograms depicted in Figure 3. We
report the histograms of the p-values in the two cases along
with the p-value of the second-level assessment, i.e. the
probability that samples from a uniform distribution exhibit a
deviation from a flat histogram larger than the observed one.
When the two plaintexts have the same energy, all evidence
concurs to say that the ciphertext distributions are statistically
indistinguishable. In the second case, even a small difference
in energy causes statistically detectable deviations and leads
to a correct inference of the true plaintext between the two.

2) Non-Asymptotic Security: We have observed how
asymptotic spherical secrecy has finite n effects (for additional
evidence by numerical computation of the Kullback-Leibler
divergence see [15]). From a more formal point of view, we
may evaluate the convergence rate of (12) for finite n to ob-
tain some further guarantee that an eavesdropper intercepting
the measurements will observe samples of an approximately
Gaussian RV bearing very little information in addition to the
energy of the plaintext. We hereby consider X a RV as in
(m1), for which a plaintext x of energy ex lies on the sphere
Sn−1
ex of Rn (with radius

√
ex).

The most general convergence rate for sums of i.i.d. random
variables is given by the well-known Berry-Esseen Theorem
[30] as O

(
n−

1
2

)
. In our case we apply a recent, remarkable

result of [17] that improves and extends this convergence rate
to inner products of i.i.d. RVs (i.e. any row of A) and vectors
(i.e. plaintexts x) uniformly distributed on Sn−1

ex .

Proposition 3 (Rate of convergence of random measure-
ments). Let X,Y be RVs as in (m1) with A a random matrix
of i.i.d. zero mean, unit variance, finite fourth moment entries.
For any ρ ∈ (0, 1), there exists a subset F ⊆ Sn−1

ex with
probability measure σn−1(F) ≥ 1−ρ such that if x ∈ F then
all Yj in Y verify

sup
α<β

∣∣∣∣∣
∫ β

α

fYj |X(ν|x)dν − 1√
2π

∫ β

α

e−
t2

2ex dt

∣∣∣∣∣ ≤ C(ρ)

n
(13)

for C(ρ) a non-increasing function of ρ.

Proposition 3 with ρ sufficiently small means that it is most
likely (actually, with probability exceeding 1 − ρ) to observe
an O(n−1) convergence between fYj |X and the limiting dis-
tribution N (0, ex). The function C(ρ) is loosely bounded in
[17], so to complete this analysis we performed a thorough
Monte Carlo evaluation of its possible values. In particular,

(a) ρ ∈ (0, 1) (b) ρ ∈ (0, 0.01)

Fig. 4. Empirical evaluation of C(ρ) in the convergence rate (13) based on a
large number of plaintexts x on the sphere Sn−1

1 and n = 24, 25, . . . , 210.

we have taken 104 instances of a RV X uniformly distributed
on Sn−1

1 for each n = 24, 25, . . . , 210. The PDF fYj |X(yj |x)
is estimated with the following procedure: we generate 5 ·107

rows of an i.i.d. Bernoulli random matrix and perform the
linear combination in (1), thus yielding the same number of
instances of Yj for each x and n. On this large sample set
we are able to accurately estimate the previous PDF on 4096
equiprobable intervals, and compare it to the same binning
of the normal distribution as in the LHS of (13) for each
(x, n). This method yields sample values for (13), allowing
an empirical evaluation of the quantity C(ρ). In this example,
when ρ ≥ 10−3 Proposition 3 holds with C(ρ) = 1.34 · 10−2.

Hence, straightforward statistical attacks on a CS-encoded
ciphertext may only extract very limited information from the
plaintext. Yet, other attacks may rely on a larger amount of
information, the next level of threat being known-plaintext
attacks [29]. These attacks are based on the availability of
some plaintext-ciphertext pairs and aim at the extraction of
information on the encoding process that can be reused to
decode future ciphertexts. Due to its criticality and theoretical
depth, the robustness of multiclass CS w.r.t. this class of
attacks will be tackled in a separate contribution.

IV. APPLICATION EXAMPLES

A. Experimental Framework

In this section we detail some example applications for the
multiclass CS scheme we propose. For each example we study
the recovery quality attained by first-class receivers against
second-class ones in the two-class scheme (Section II-D1).
These results encompass the multiclass setting since high-class
receivers correspond to first-class recovery performances (i.e.
η = 0), while lower-class users attain the performances of a
second-class receiver at a fixed η > 0.

For each plaintext x = Ds being reconstructed the recovery
signal-to-noise ratio RSNR =

‖x‖22
‖x−x̂‖22

with x̂ = Dŝ denoting
the recovered approximation is a common recovery quality
index; its average2, ARSNR [dB] = 10 log10 Ê

(
‖x‖22
‖x−x̂‖22

)
is

then used as an average performance index, and compared
against some best- and worst-case curves with the purpose of
choosing a suitable perturbation density η so that lower-class
recovery performances are set to the desired quality level.

2Ê(·) denotes the sample average over a set of realisations of the argument.
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We complement the previous evidence with an automated
assessment of the information content intelligible from x̂ by
means of feature extraction algorithms. These are equivalent
to partially informed attacks attempting to expose the sensitive
content inferred from the recovered signal. More specifically,
we will try to recover an English sentence from a speech
segment, the location of the PQRST peaks in an electrocar-
diographic (ECG) signal, and printed text in an image. The
simulation framework reproducing these tests is available at
http://securecs.googlecode.com.

1) Recovery Algorithms: While fundamental sparse signal
recovery guarantees are well-known from [21] when solving
BP and BPDN, these convex problems are often replaced in
practice by a variety of high-performance algorithms (see e.g.
[31]). As reference cases for most common algorithmic classes
we tested the solution of BPDN as implemented in SPGL1

[32], [33] against the greedy algorithm CoSaMP [34] and the
generalised approximate message-passing algorithm (GAMP,
[35]). To optimise these algorithms’ performances the tests
were optimally tuned in a “genie-aided” fashion: BPDN was
solved as in (P2) with the noise parameter γ = ‖∆Ax‖2 as
if (∆A, x) were known beforehand; CoSaMP was initialised
with the exact sparsity level k for each case; GAMP was
run with the sparsity-enforcing, i.i.d. Bernoulli-Gaussian prior
(see e.g. [36]) broadly applicable in the well-known message
passing framework [37] and initialised with the exact sparsity
ratio k

n of each instance, and the exact mean and variance
of each considered test set. Moreover, signal-independent
parameters were hand-tuned in each case to yield optimal
recovery performances.

For the sake of brevity, in each example we select and report
the algorithm that yields the most accurate recovery quality at
a lower-class decoder as the amount of perturbation varies.
We found that GAMP achieves the highest ARSNR in all
the settings explored in the examples, consistently with the
observations in [36] that assess the robust recovery capabilities
of this algorithm under a broadly applicable sparsity-enforcing
prior. Moreover, as ∆A verifies [38, Proposition 2.1] the
perturbation noise ε = ∆Ax is approximately Gaussian for
large (m,n) and thus GAMP tuned as above yields opti-
mal performances as expected. Note that recovery algorithms
which attempt to jointly identify x and ∆A [38], [39] can
be seen as explicit attacks to multiclass encryption and are
thus evaluated in a separate contribution, anticipating that their
performances are compatible with those of GAMP.

2) Average Signal-to-Noise Ratio Bounds: The perturbation
density η is the main design parameter for the multiclass
encryption scheme, and therefore has to be chosen against a
reference lower-class recovery algorithm. To provide criteria
for the choice of η we adopt two ARSNR bounds derived as
follows.

Although rigorous, the lower-class recovery error upper
bound of Proposition 1 is only applicable for small values
of (k, η). To bound typical recovery performances in a larger
range we analyse the behaviour of a lower-class decoder that
naively (i.e. without attempting any attack) recovers x̂ such
that y = A(0)x̂ = (A(0)+∆A)x, and thus A(0)(x̂−x) = ∆Ax.
In most cases, such a recovery produces x̂ lying close to x;

(a)

(b)

Fig. 5. Multiclass CS of speech signals: (a) Average recovery SNR as a
function of the perturbation density η ∈ [0, 0.1] (solid) and second-class
RSNR upper bound (dashed); (b) Fraction of words exactly recognised by
ASR in η ∈ [0, 0.1] (bottom) and typical decoded signals for η = 0, 0.03
(top).

we model this by assuming ‖x̂−x‖2 is close to be minimum.
With this, we may approximate x̂ − x = (A(0))+∆Ax,
where ·+ denotes the Moore-Penrose pseudoinverse, that
yields ‖x̂−x‖

2
2

‖x‖22
≤ σmax((A(0))+∆A)2. By taking a sample

average on both sides, in signal-to-noise ratio our criterion
is ARSNR > LB(m,n, η) where

LB(m,n, η) = −10 log10 Ê
(
σmax((A(0))+∆A)2

)
dB (14)

LB(m,n, η) is calculated in each of the following examples
by a thorough Monte Carlo simulation of σmax((A(0))+∆A)
over 5 · 103 cases.

The opposite criterion is found by assuming ARSNR <
UB(m,n, η) where

UB(m,n, η) = −10 log10

4ηm

(
√
m+

√
n)2

dB (15)

obtained from a simple rearrangement of (8) with θ ' 1. We
will see how (14) and (15) fit the ARSNR performances of
the examples and provide simple criteria to estimate the range
of performances of lower-class receivers from (m,n, η).

B. Speech Signals

We consider a subset of spoken English sentences from the
PTDB-TUG database [40] with original sampling frequency
fs = 48 kHz, variable duration and sentence length. Each
speech signal is divided in segments of n = 512 samples
and encoded by two-class CS with m = n

2 measurements. We
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(a) (b)

Fig. 6. Multiclass CS of ECG signals: (a) Average recovery SNR as a function of the perturbation density η ∈ [0, 0.05] (solid) and second-class RSNR
upper bound (dashed); (b) Time displacement (left) of the R (solid) and P,Q,S,T (dashed) peaks as evaluated by APD for η ∈ [0, 0.05] with typical decoded
signals (right) for first-class (top) and second-class (bottom) users.

obtain the sparsity basis D by applying principal component
analysis [41] to 500 n-dimensional segments yielding an
ONB. The encoding matrix A(1) is generated from an i.i.d.
Bernoulli random matrix A(0) by adding to it a sparse random
perturbation ∆A chosen as in (3) with density η. The encoding
in (5) is simulated in a realistic setting, where each window x
of n samples is acquired with a different instance of A(1)

yielding m measurements per speech segment. As for the
decoding stage, we apply GAMP as specified above to recover
x̂ given A(1) (first-class) and A(0) (second-class).

For a given encoding matrix a first-class receiver is capable
of decoding a clean speech signal with ARSNR = 38.76 dB,
whereas a second-class receiver is subject to significant
ARSNR degradation when η increases, as shown in Fig. 5a.
Note that while the RSNR for η = 0 has a relative deviation
of 2.14 dB around its mean (the ARSNR), as η increases the
observed RSNR deviation is less than 0.72 dB. Note how the
ARSNR values lie in the highlighted range between (14), (15).

To further quantify the limited quality of attained recoveries,
we process the recovered signal with the Google Web Speech
API [42], [43] which provides basic Automatic Speech Recog-
nition (ASR). The ratio of words correctly inferred by ASR
for different values of η is reported in Fig. 5b. This figure
also reports a typical decoding case: a first-class user (i.e.
η = 0) recovers the signal with RSNR = 36.58 dB, whereas a
second-class decoder only achieves a RSNR = 8.42 dB when
η = 0.03. The corresponding ratio of recognised words is 14

14
against 8

14 . In both cases the sentence is intelligible to a human
listener, but the second-class decoder recovers a signal that is
sufficiently corrupted to avoid straightforward ASR.

C. Electrocardiographic Signals
We extend the example in [15] by processing a large

subset of ECG signals from the MIT PhysioNet database [44]
sampled at fs = 256 Hz. In particular, we report the case of a
typical 25 minutes ECG track (sequence e0108) and encode
windows of n = 256 samples by two-class CS with m = 90
measurements, amounting to a dataset of 1500 ECG instances.
The encoding and decoding stages are identical to those in
Section IV-B and we assume the Symmlet-6 ONB [45] as the
sparsity basis D.

In this setting, the first-class decoder is able to reconstruct
the original signal with ARSNR = 25.36 dB, whereas a
second-class decoder subject to a perturbation of density
η = 0.03 achieves an ARSNR = 11.08 dB; the recovery
degradation depends on η as reported in Fig. 6a.

As an additional quantification of the encryption at second-
class decoders we apply PUWave [46], an Automatic Peak
Detection algorithm (APD), to first- and second-class signal
reconstructions. In more detail, PUWave is used to detect the
position of the P,Q,R,S and T peaks, i.e. the sequence of pulses
whose positions and amplitudes summarise the diagnostic
properties of an ECG. The application of this APD yields
the estimated peak instants t̂P,Q,R,S,T for each of J = 1500
reconstructed windows and each decoder class, which are
afterwards compared to the corresponding peak instants as de-
tected on the original signal prior to encoding. Thus, we define

the average time displacement σt =
√

1
J

∑J−1
i=0 (t̂(i) − t(i))2

and evaluate it for tR and tPQST. A first-class receiver is
subject to a displacement σtR = 0.6 msrms of the R-peak
and σtPQST = 9.8 msrms of the remaining peaks w.r.t. the
original signal. On the other hand, a second-class user is able
to determine the R-peak with σtR = 4.4 msrms while the
displacement of the other peaks is σtPQST

= 55.3 msrms. As
η varies in [0, 0.05] this displacement increases as depicted in
Fig. 6b, thus confirming that a second-class user will not be
able to accurately determine the position and amplitude of the
peaks with the exception of the R-peak.

D. Sensitive Text in Images

In this final example we consider an image dataset of people
holding printed identification text and apply multiclass CS to
selectively hide this sensitive content to lower-class users. The
640 × 512 pixel images are encoded by CS in 10 × 8 blocks
each of 64 × 64 pixel while the two-class strategy is only
applied to a relevant image area of 3 × 4 blocks. We adopt
as sparsity basis the 2D Daubechies-4 wavelet basis [45] and
encode each block of n = 4096 pixels with m = 2048
measurements; the encoding is generated with perturbation
density η ∈ [0, 0.4].
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(a)

(b)

Fig. 7. Multiclass CS of images: (a) Average recovery SNR as a function of
the perturbation density η ∈ [0, 0.4] (solid) and second-class RSNR upper
bound (dashed); (b) Average consecutive recognised characters by OCR for
η ∈ [0, 0.4] (bottom) and typical instances for η = 0, 0.03, 0.2 (top).

The ARSNR performances of this example are reported in
Fig. 7a as averaged on 20 instances per case, showing a rapid
degradation of the ARSNR as η is increased. This degradation
is highlighted in the typical case of Fig. 7b for η = 0.03, 0.2.

In order to assess the effect of our encryption method
with an automatic information extraction algorithm, we have
applied Tesseract [47], an optical character recognition (OCR)
algorithm, to the images reconstructed by a second-class user.
The text portion in the recovered image data is preprocessed
to enhance their quality prior to OCR: the images are first
rotated, then we apply standard median filtering to reduce the
highpass noise components. Finally, contrast adjustment and
thresholding yield the two-level image which is processed by
Tesseract. To assess the attained OCR quality we have mea-
sured the average number of consecutive recognised characters
(CRC) from the decoded text image. In Fig. 7b the average
CRC is reported as a function of η: as the perturbation density
increases the OCR fails to recognise an increasing number of
ordered characters, i.e. a second-class user progressively fails
to extract text content from the decoded image.

V. CONCLUSION

Although not perfectly secure, the extremely simple encod-
ing process entailed by CS yields some encryption capabilities
with no additional computational complexity, thus providing
a limited but zero-cost form of encryption which might be of
interest in the design of secure yet resource-limited sensing

interfaces. In particular, we have shown that when i.i.d.
Bernoulli random matrices are used in this linear encoding
scheme the plaintext features that leak into the ciphertext
(and therefore retrievable by statistical analysis of the latter)
are limited to the power of the plaintext as n → ∞, and
thus how an asymptotic definition of secrecy holds for this
scheme. In addition, we have given evidence of the O( 1

n )
convergence rate to this limit behaviour. We have also detailed
how two plaintexts having the same energy and encoded
with an i.i.d. Bernoulli random matrix generate statistically
indistinguishable ciphertexts, while even small differences in
energy are detected by hypothesis testing on the ciphertext for
finite n. The above linear random encoding was modified to
envision a multiclass encryption scheme in which all receivers
are given the same set of measurements, but are only enabled
to reconstruct the original signal with a decoding quality that
depends on their class, i.e. on the private key they possess.
This additional design option amounts to the ability of flipping
pseudo-randomly chosen elements of the encoding matrix, and
thus represents an appealing alternative to balance the trade-off
between the security of the encoded signal and the resources
required to provide it.

Finally, the capabilities of multiclass CS were exemplified
by simulating the acquisition of sources such as speech
segments, electrocardiographic signals and images with the
additional security provided by the devised encryption method.

APPENDIX A
PROOFS REGARDING THE SECOND-CLASS

RECOVERY ERROR LOWER BOUND

We first introduce a Lemma that gives a self-contained
probabilistic result on the Euclidean norm of ε = ∆Ax in
(5); this is used in the proofs of Theorem 1 and Corollary 1.

Lemma 1. Let:
1) ξ be a RV with Eξ = E[

∑n−1
j=0 ξ

2
j ], Fξ = E[(

∑n−1
j=0 ξ

2
j )2];

2) ∆A be the sparse random matrix in (3) with i.i.d. entries
and density η = c

mn ≤
1
2 .

If ξ and ∆A are independent, then for any θ ∈ (0, 1)

P
(
‖∆Aξ‖22 ≥ 4mη Eξθ

)
≥ ζ (16)

with

ζ =
{

1 + (1− θ)−2
[(

1 + 1
m ( 3

2η − 1)
)

Fξ
E2
ξ
− 1
]}−1

(17)

Proof of Lemma 1. Consider

‖∆Aξ‖22 =

m−1∑
j=0

n−1∑
l=0

n−1∑
i=0

∆Aj,l∆Aj,iξlξi

We now derive the first and second moments of this posi-
tive RV. ∆A is a random matrix of i.i.d. RVs with mean
µ∆Aj,l = 0, variance σ2

∆Aj,l
= 4η and E[∆A4

j,l] = 16η. Using
the independence between ξ and ∆A, and the fact that ∆A is
i.i.d. we have

E
[
‖∆Aξ‖22

]
=

m−1∑
j=0

n−1∑
l=0

n−1∑
i=0

E[∆Aj,l∆Aj,i]E[ξlξi] =

m−1∑
j=0

n−1∑
l=0

n−1∑
i=0

σ2
∆Aδl,iE[ξlξi] =

m−1∑
j=0

σ2
∆Aj,l

n−1∑
l=0

E[ξ2
l ] = 4mη Eξ
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For the aforementioned properties of ∆A we also have

E[∆Aj,l∆Aj,i∆Av,h∆Av,o] =

=


σ4

∆A,


j 6= v, l = i, h = o

j = v, l = i, h = o, l 6= h

j = v, l = h, i = o, l 6= i

j = v, l = o, i = h, l 6= i

E[∆A4
j,l], j = v, l = i = h = o

0, otherwise

that can be used in some cumbersome but straightforward
calculations yielding

E
[
(‖∆Aξ‖22)2

]
= 16mη(η(m− 1)Fξ + 3η(Fξ − Gξ) + Gξ)

where Gξ = E
[∑n−1

j=0 ξ
4
j

]
. We are now in the position of using

a one-sided version of Chebyshev’s inequality for positive
RVs3 to say that, for any θ ∈ (0, 1),

P
(
‖∆Aξ‖22 ≥ θE[‖∆Aξ‖22]

)
≥

≥
{

1 + (1− θ)−2
[
E[(‖∆Aξ‖22)2]

E[‖∆Aξ‖22]2
− 1
]}−1

=

=
{

1 + (1− θ)−2
[(

1− 1
m

) Fξ
E2
ξ

+
3η(Fξ−Gξ)+Gξ

ηmE2
ξ

− 1
]}−1

which yields (17) by considering that when η ≤ 1
2 , 3η(Fξ −

Gξ) + Gξ ≤ 3
2Fξ.

Proof of Theorem 1. Since all decoders receive in absence
of other noise sources the same measurements y = A(1)x, a
second-class decoder would naively assume y = A(0)x̂, with
x̂ an approximation of x obtained by a recovery algorithm
that satisfies this equality. Since A(1) = A(0) + ∆A, if we
define ∆x = x̂ − x we may write A(0)x + ∆Ax = A(0)x̂
and thus A(0)∆x = ∆Ax. ‖∆x‖22 can then be bounded
straightforwardly as σmax(A(0))2‖∆x‖22 ≥ ‖∆Ax‖22 yielding

‖x̂− x‖22 ≥
‖∆Ax‖22

σmax(A(0))2
(18)

By applying the probabilistic lower bound of Lemma 1 on
‖∆Ax‖22 in (18), we have that ‖∆Ax‖22 ≥ 4mη Exθ for
θ ∈ (0, 1) and a given probability value exceeding ζ in (17).
Plugging the RHS of this inequality in (18) yields (6).

The following Lemma applies to finding the asymptotic
result (8) of Corollary 1.

Lemma 2. Let X be an α-mixing RP with uniformly bounded
fourth moments E[X4

j ] ≤ mx for some mx > 0. Define ms

Ex = E
[∑n−1

j=0 X
2
j

]
, Fx = E

[(∑n−1
j=0 X

2
j

)2
]

.

If Wx = limn→∞
1
nEx > 0 then limn→∞

Fx

E2
x

= 1.

Proof of Lemma 2. Note first that from Jensen’s ine-
quality Fx ≥ E2

x, so limn→∞
1
nEx > 0 also implies

that limn→∞
1
n2E

2
x > 0 and limn→∞

1
n2Fx > 0. Since

limn→∞
1
n2E

2
x = W2

x > 0 we may write

lim
n→∞

Fx

E2
x

= 1 +
limn→∞

1
n2 Fx− 1

n2 E2
x

W2
x

(19)

3If a r.v. Z ≥ 0 then ∀θ ∈ (0, 1), P (Z ≥ θE[Z]) ≥ (1−θ)2E[Z]2

(1−θ)2E[Z]2+σ2
Z

.

and observe that
∣∣ 1
n2Fx − 1

n2E
2
x

∣∣ ≤ 1
n2

∑n−1
j=0

∑n−1
l=0 |Xj,l|

where Xj,l = E[X2
jX

2
l ] − E[X2

j ]E[X2
l ] = E[(X2

j −
E[X2

j ])(X2
l − E[X2

l ])]. From the α-mixing assumption we
know that |Xj,l| ≤ α(|j − l|) ≤ mx and a sequence α(h)
vanishing as h→∞. Hence,∣∣∣∣ 1

n2
Fx −

1

n2
E2
x

∣∣∣∣ ≤ 1

n2

n−1∑
j=0

|Xj,j |+
2

n2

n−1∑
h=1

n−h−1∑
j=0

|Xj,j+h| ≤

≤ nmx

n2
+

2

n2

n−1∑
h=1

(n− h)α(h) ≤ mx

n
+

2

n

n−1∑
h=1

α(h)(20)

The thesis follows from the fact that the upper bound in (20)
vanishes as n→∞. This is obvious when

∑+∞
h=0 α(h) is con-

vergent. Otherwise, if
∑+∞
h=0 α(h) is divergent we may resort

to the Stolz-Cesàro theorem to find limn→∞
1
n

∑n−1
h=1 α(h) =

limn→∞ α(n) = 0.

Proof of Corollary 1. The inequality (18) in the proof of
Theorem 1 is now modified for the asymptotic case of a RP
X. Note that A(0) is an i.i.d. random matrix with zero mean,
unit variance entries; thus, when m,n→∞ with m

n → q the
value

√
nσmax(A(0)) is known from [48] since all the singular

values belong to the interval [1 −√q, 1 +
√
q]. We therefore

assume σmax(A(0)) '
√
m +

√
n and take the limit of (18)

normalised by 1
n for m,n→∞, yielding

lim
n→∞

1
n

∑n−1
j=0 (x̂j − xj)2 ≥ lim

m,n→∞

‖∆A x(n)
√
n
‖22

(
√
m+
√
n)

2 (21)

with x(n) the n-th finite-length term in a plaintext x =

{x(n)}+∞n=0 of X. We may now apply Lemma 1 in ξ = x(n)
√
n

for each ‖∆Aξ‖22 at the numerator of the RHS of (21) with
Fξ = 1

n2Fx, Eξ = 1
nEx and Ex,Fx as in Lemma 1. For

m,n→∞ and η ≤ 1
2 , the probability in (17) becomes

lim
m,n→∞

ζ =

{
1 + (1− θ)−2

[
lim
n→∞

1
n2Fx
1
n2E2

x

− 1

]}−1

Since X satisfies by hypothesis the assumptions of Lemma
2, then limn→∞

Fξ
E2
ξ

= 1 and limm,n→∞ ζ = 1. Hence, with
m
n → q and probability 1 the RHS of (21) becomes

lim
m,n→∞

‖∆Aξ‖22
n(1 +

√
m
n )2

= lim
m,n→∞

4mn η
Ex
n

(1 +
√

m
n )2

θ, ∀θ ∈ (0, 1)

and the recovery error power satisfies (8).

APPENDIX B
PROOFS REGARDING THE SPHERICAL SECRECY

OF COMPRESSED SENSING

Proof of Proposition 2. The proof is given by simple verifi-
cation of the Lindeberg-Feller central limit theorem (see [23,
Theorem 27.4]) for Yj in Y conditioned on a plaintext x of
X in (m2). By the hypotheses, the plaintext x = {xl}n−1

l=0 has
power 0 < Wx < ∞ and x2

l ≤ Mx for some finite Mx > 0.
Any Yj |X = limn→∞

∑n−1
l=0 Zj,l, Zj,l = Aj,l

xl√
n

where
Zj,l is a sequence of independent, non-identically distributed
random variables of moments E[Zj,l] = 0,E[Z2

j,l] =
x2
l

n .
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By letting the partial sum S
(n)
j =

∑n−1
l=0 Zj,l, its mean

E[S
(n)
j ] = 0 and E[(S

(n)
j )2] = 1

n

∑n−1
l=0 x

2
l . Thus, we verify

the necessary and sufficient condition [23, (27.19)]

lim
n→∞

max
l=0,...,n−1

E[Z2
j,l]

E[(S
(n)
j )2]

= 0

by straightforwardly observing

lim
n→∞

max
l=0,...,n−1

x2
l

n
1
n

∑n−1
l=0 x

2
l

≤ Mx

Wx
lim
n→∞

1

n
= 0

The verification of this condition guarantees that
Yj |X = limn→∞ S

(n)
j is normally distributed with

variance E[(Yj |X)2] = limn→∞ E[(S
(n)
j )2] = Wx, i.e.

fYj |X→D N (0,Wx).

Proof of Proposition 3. We start by considering Yj in Y
of model (m1) conditioned on a given x with finite energy
ex. Each of such variables is a linear combination (1) of
n i.i.d. RVs Aj,l with zero mean, unit variance and finite
fourth moments. The coefficients of this linear combination
are x =

(
x0, · · · , xn−1

)
which by now we assume to have

ex = 1, i.e. to lie on the unit sphere Sn−1
1 of Rn. Define

δ =
(

1
n

∑n−1
l=0 E[A4

j,l]
) 1

4

< ∞, which for i.i.d. Bernoulli
random matrices is δ = 1, whereas for standard N (0, 1)
random matrices δ = 3

1
4 . This setting verifies [17, Theorem

1.1]: for any ρ ∈ (0, 1) there exists a subset F ⊆ Sn−1
1 with

measure µ(F) such that µ(F)

µ(Sn−1
1 )

≥ 1− ρ and if x ∈ F , then

sup
(α,β)∈R2

α<β

∣∣∣∣∣P
(
α ≤

n−1∑
l=0

Aj,lxl ≤ β

)
−

− 1√
2π

∫ β

α

e−
t2

2 dt

∣∣∣∣∣ ≤ C(ρ)δ4

n
(22)

with C(ρ) a positive, non-increasing function. An application
of this result to x with energy ex, i.e. on the sphere of
radius

√
ex, δ = 1 (A i.i.d. Bernoulli) can be done by

straightforwardly scaling the standard normal PDF in (22) to
N (0, ex), thus yielding the statement of Proposition 3.
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