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On Statistical Tests for Randomness included in the
NIST SP800-22 test suite and based on the

Binomial Distribution
Fabio Pareschi*, Member, IEEE, Riccardo Rovatti, Fellow, IEEE, and Gianluca Setti, Fellow, IEEE

Abstract—In this paper we review some statistical tests in-
cluded in the NIST SP 800-22 suite, which is a collection of
tests for the evaluation of both true-random (physical) and pseu-
dorandom (algorithmic) number generators for cryptographic
applications. The output of these tests is the so-called p-value
which is a random variable whose distribution converges to
the uniform distribution in the interval [0, 1] when testing an
increasing number of samples from an ideal generator. Here,
we compute the exact non-asymptotic distribution of p-values
produced by few of the tests in the suite, and propose some
computation-friendly approximations. This allows us to explain
why intensive testing produces false-positives with a probability
much higher than the expected one when considering asymptotic
distribution instead of the true one. We also propose a new
approximation for the Spectral Test reference distribution, which
is more coherent with experimental results.

Index Terms—CRY-OTHE

I. INTRODUCTION

Statistical hypothesis testing is a classical approach used to
evaluate whether an experimental set of data fits with a given
hypothesis (the Null Hypothesis, usually indicated with H0).

In information technology, statistical tests are largely
adopted in random number generators (RNGs) testing [1], [2],
[3], where the tested experimental data is a long sequence
of generated numbers, and H0 is the hypothesis that the
generator under test is ideal, i.e., the generated symbols are
independent and identically distributed (iid), which means that
they are independent of each other, and distributed according
to the same desired probability distribution (usually uniform
or normal).

One of the advantages of this approach is that it does not
require any assumption on the generator under test, since it
only looks for evidence of particular statistical recurrences in
a generated (and allegedly random) stream. If present, these
features may distinguish the generator under test from an ideal
one. Note that this is coherent with the requirements of many
security-related applications, especially cryptography, where a
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system is considered secure if discerning between a random
stream and the encrypted signal is a computationally hard
problem [4], [5], [6]. This also makes these tests suitable
for both true-random generators (based on some physical
phenomenon that is intrinsically random) and pseudorandom
generators (based on a recursive algorithm on a finite state ma-
chine). Different approaches proposed in RNG testing require
additional hypotheses, such as the knowledge of the physical
or algorithmic nature of the generator [7], [8], [9].

In this paper we consider the statistical test suite SP 800-
22 [2] first published in 2001 by the US National Institute
of Standard and Technology (NIST) and recently revised (last
known update is Apr. 2010). It consists of 15 p-value based
tests1 which take a nbit sequence as input and whose output
p is a real number in [0, 1]. Under the assumption H0, p
is modeled as a random variable uniformly distributed in its
definition set.

In particular we take into account three tests of the suite:
• the Frequency Test
• the Runs Test
• the Spectral Test (also known as the Discrete Fourier

Transform Test)
For these three tests2, which are based on the binomial

distribution, we provide a feasible approximation of the exact
distribution of p assuming H0. In this way we can estimate
when a statistical test is reliable, i.e., when there is a low
probability of erroneously identify an ideal generator as not
random. This is particularly important when considering the
two-level approach, i.e., when testing N different generated
sequences to check if the N obtained p-values are aligned with
the expected distribution, since this test is known to always
fail when considering very large values of N [12], [13].

Furthermore, for the Spectral Test, we propose a refinement
of the semi-empirically found reference distribution [14], [15],
which seems more compatible with simulated results.

The paper is organized as follows. In Section II we will
introduce both standard and two-level testing approaches,
providing also an example to understand why the two-level
approach may be preferred, and why an error in the expected p-

1In the original document released in 2001 under the name of “A statistical
test suite for random and pseudorandom number generator for cryptographic
applications”, 16 tests were present; however, the Lempel-Ziv Compression
Test was removed afterward due to errors in the test reference distribution.

2Note that in the literature, different tests are known with the above names
(see, for example, [1], [10], [11]); in this paper, with Frequency, Runs and
Spectral Tests we always refer to the NIST version.
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value distribution may lead to an erroneous test interpretation.
In Section III we provide some mathematical details on
statistical tests that are used in Section IV to suggest, for
the three tests above, an approximated expression F ′

p of the
actual Cumulative Distribution Function (CDF) Fp of the p-
value. With this expression, in Section V we are able to
mathematically express a reliability condition for the two-level
approach. Finally, we draw some conclusions. To improve the
readability of the paper, almost all of the mathematical details
of the computation of the F ′

p are reported in the Appendices.

II. STANDARD/TWO-LEVEL STATISTICAL TESTING
APPROACH

In the following we present a brief introduction to the
standard and level-two approaches for statistical tests for ran-
domness in order to define two main properties: significance
and power. As already outlined in the Introduction, H0 is
that the sequence under test is composed by iid events (and
distributed according to the desired distribution); the output p
of the test is a random variable in [0, 1] such that its CDF is
F

(iid)
p (x) = x when H0 is true, and F (��iid)

p (x) ̸= x when H0

is false [2], [16], [17].

A. Standard (One-level) Testing Approach
Let us generate and test a sequence of n events. Then, let

us compare the p-value p of this sequence with a significance
level, usually indicated with α.

• If p ≤ α, then H0 is rejected and the generator under test
is considered a non-ideal RNG.

• If p > α there is no evidence to reject H0, so the
generator under test is accepted as ideal.

When H0 is true and p ≤ α we have a false positive
in the test interpretation. This is called Type I Error and its
probability is

Pr (p ≤ α |H0) = F (iid)
p (α) = α

This is defined as the statistical significance of the test and
should be set to a very small value (NIST suggests α = 0.01).

A false negative (accepting the sequence as random when
H0 is false) is called Type II Error, and its probability is

Pr
(
p > α |��H0

)
= 1− F (��iid)

p (α) = β (1)

As long as both α and β are small, the approach is effective.
Note in Equation (1) that the lower α, the higher β and vice-
versa. The choice of α is a trade-off between the two possible
errors. This approach is known as one-side testing3 and is
followed by NIST in [2].

The value 1− β is also called statistical power of the test
and is its main figure of merit. However, its exact computation
is not possible and also not sensible, since it depends on the
specific (non-ideal) generator under test. This is the main
drawback of this approach (more generally, of the entire
statistical testing approach) and the reason why many authors
prefer different approaches in RNG testing, which however
require many hypotheses on the generator under test [7], [8].

3Other authors prefer two-side tests [1], [3], i.e., they reject H0 when
p ≤ α/2 or 1 − α/2 ≤ p. The formal treatment is the same with anly a
difference in the mathematical formulation of β in (1).

B. Two-level Testing Approach

In the two-level (also known as second-level) testing ap-
proach, a long sequence of events is partitioned into N
sequences, each with n bits. A standard test is repeated for
each sequence, and the distribution of the N obtained p-
values is compared with F (iid)

p . Note that, assuming H0, the
N sequences (and so the N p-values) are independent of one
another.

This approach has been known for a long time [1] and it
may increase the testing power with respect to a standard
approach [12]. This effect can be seen in the example of
Table I, where we present testing results for two high-quality
true-random number generators. The first one is a RNG
designed by ourselves, which exploits chaotic dynamics [18].
The second one is based on a quantum effect (the reflection
of a single photon on a semi-transparent mirror [19]). The
example involves the two ways suggested by NIST [2, chap.
4] to perform a two-level test:

(a) given N sequences, let ζ be the fraction of them passing
a basic test, i.e., with p > α. If N is large enough, ζ
can be approximated with a normal random variable,
with mean µ = 1 − α (for the suggested parameters,
µ = 0.99, so let us refer to this case as 99% test) and
standard deviation σ =

√
α(1− α)/N . H0 is rejected

if ζ lies outside the significance interval 1− α± 3σ.
(b) given N sequences, test the distribution of the N p-

values against the uniform distribution with a chi-square
goodness-of-fit test in k bins. This is again a statistical
test, which yields a level-two p-value pT . Given a
significance αT , H0 is rejected if pT ≤ αT . The NIST
suggests to use k = 10bins and αT = 0.0001.

In order to have the same significance in all tests, we have set
α = αT = 0.01 and restricted the significance interval in the
99% test to 1−α±2.575σ. The higher power achieved by the
two-level approaches in this particular example is clear.

C. Reliability of a Two-level Test

The choice of N in a two-level approach is usually a trade-
off [20], [21]. For example, given n ·N basic events, n may
be limited by the memory size or by the computational power
available. In other cases, one may prefer to intentionally limit
n to test the short-term behavior.

It is also known [12], [13] that for extremely large values
of N , the level-two approach always fails, i.e., it ends with
pT ≃ 0. In this case we can say that the test is not reliable,
since its significance is sensibly different from the expected
one. From this point of view, N is also a trade-off between
power and reliability of a level-two test.

As a further example, we have repeated the chi-square based
two-level test on sequences obtained with the Blum-Blum-
Shub (BBS) algorithm [5], which is known to asymptotically
generate, at the cost of a very complex design, sequences
almost indistinguishable from random ones [10], [6]. Using
a pseudorandom generator is necessary to allow us to increase
N at will. Results are shown in Table II, and confirm that for
N = 106, almost no test is passed.
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single test 99% test, 1000 seq. χ2 test, 1000 seq.
Chaos-based Quantis Chaos-based Quantis Chaos-based Quantis

Frequency 0.399902 0.514179 0.948 0.989 0.000000 0.402962
Block Frequency 0.437357 0.697836 0.989 0.991 0.342451 0.875539
Cumulative Sums 0.390490 0.411002 0.940 0.988 0.000000 0.612148
Runs 0.266725 0.585521 0.991 0.981 0.943242 0.000001
Longest Run of 1s 0.546938 0.536850 0.985 0.992 0.433590 0.203351
Matrix Rank 0.032352 0.715837 0.987 0.992 0.192724 0.083018
Spectral (DFT) 0.657982 0.797719 0.993 0.986 0.281232 0.048404
NOT Matching 0.656424 0.558425 0.983 0.990 0.212184 0.066882
OT Matching 0.856691 0.734679 0.978 0.987 0.000006 0.100109
Universal 0.855019 0.941268 0.985 0.992 0.340858 0.699313
Approx. Entropy 0.197721 0.373298 0.990 0.988 0.408275 0.440975
Random Excursion 0.346350 0.406225 0.989 0.983 0.374107 0.114584
Random Exc. Var. 0.526539 0.140243 0.987 0.995 0.055996 0.922084
Serial 0.722900 0.466486 0.988 0.993 0.230755 0.076658
Linear Complexity 0.236681 0.025910 0.993 0.989 0.073417 0.958485

TABLE I
RESULTS OF SP800-22 RANDOMNESS TEST FOR THE CHAOS-BASED RANDOM GENERATOR [18] AND THE QUANTIS GENERATOR [19], CONSIDERING

BOTH THE STANDARD AND THE TWO-LEVEL NIST APPROACHES. TESTS WITH p ≤ 0.01 (SINGLE TEST), WITH ζ OUTSIDE THE SIGNIFICANCE INTERVAL
1− α± 2.575σ = 0.99± 0.0081 (99% TEST) OR WITH pT ≤ 0.01 (CHI-SQUARE TEST) ARE IN BOLD.

χ2 test, N sequences
N = 103 N = 104 N = 105 N = 106

Frequency 0.471146 0.106057 0.340080 0.000000
Block Frequency 0.848027 0.904981 0.295910 0.051232
Cumulative Sums 0.055010 0.612563 0.082745 0.026463
Runs 0.872425 0.857181 0.762307 0.024573
Longest Run of 1s 0.442831 0.197132 0.000510 0.000000
Matrix Rank 0.518106 0.134558 0.000001 0.000000
Spectral (DFT) 0.383827 0.305894 0.000000 0.000000
NOT Matching 0.112047 0.193871 0.606767 0.389343
OT Matching 0.131122 0.000475 0.000000 0.000000
Universal 0.239266 0.114846 0.000000 0.000000
Approx. Entropy 0.046870 0.018349 0.297963 0.000000
Random Excursion 0.730758 0.724267 0.205800 0.000000
Random Exc. Var. 0.294817 0.629095 0.000020 0.000000
Serial 0.467322 0.248395 0.935605 0.489325
Linear Complexity 0.948298 0.945195 0.368604 0.125629

TABLE II
RESULTS OF THE CHI-SQUARE BASED TWO-LEVEL RANDOMNESS TEST

FOR THE BBS GENERATOR, WITH N RANGING FROM N = 1, 000 TO
N = 1, 000, 000. TESTS WHERE pT ≤ 0.01 ARE IN BOLD.

According to [12], this problem is due to approximation
errors in the computation of the p-value of basic tests, which
result in a deviation of the distribution of p from the expected
uniform one. Thanks to Berry and Esséen inequality [22], in
[12] we were able to compute an upper bound in the Frequency
Test for the error between the approximated p-value p and the
actual one p0:

max
0≤p0≤1

|p− p0| ≤ εp = 2
C E

[
|X(i)|3

]
σ3

√
n

where n is the number of events X(i) in the basic test; σ
and E

[
|X(i)|3

]
respectively the standard deviation and third

order absolute moment of X(i); and C ≃ 0.8. Since X(i) ∈
{−1,+1}, it is both σ = 1 and is E

[
|X(i)|3

]
= 1; if n = 106,

then εp ≃ 1.6 · 10−3.
From this, and assuming a chi-square test in k bins, the

maximum error in the number of p-values in a bin is ∆p =
2Nεp independently of k. A very simple reliability condition
is requiring that ∆p is smaller than the variance of the
distribution of N p-values in k bins, i.e., ∆p <

√
N(k − 1)/k.

In the standard case with k = 10 and n = 106, we get
N < 5722.

In the following we make two steps further. First, we pro-
pose a feasible approximation of the exact CDF of the p-values
in the three above mentioned tests. Then, this approximation
is used to estimate the error in the computation of pT . This
approach is extremely useful when analyzing the reliability of
the two-level testing approach.

III. MATHEMATICAL BACKGROUND ON STATISTICAL
TESTS

Given n random events X(0), X(1), . . . , X(n−1) with a
continuous distribution and with X(i) ∈ X, let H0 be that
the X(i)s are iid. A one-side statistical test is given by the
function

T = T
(
X(0), X(1), . . . , X(n−1)

)
, T : Xn 7→ Θ.

where T has to be defined over a normed space in order to
define its expected value given H0, i.e., T0 = E[T |H0] and
the random variable ξ = ∥T − T0∥ ∈ R. The CDF of ξ is
given by F∥·∥ (x) = Pr (ξ ≤ x |H0); to get a random variable
uniformly distributed in [0, 1] we can consider

p = 1− F∥·∥ (ξ) = 1− F∥·∥ (∥Tobs − T0∥) .

which is the definition of p-value.
Note however that if the X(i)s are discrete variables, also T

and ξ are discrete (assuming n limited). In this case, the cardi-
nality of the set of possible p-values P =

(
1− F∥·∥

)
◦T (Xn)

is |P| < ∞. Assuming p̄ ∈ P , with p̄ = 1 − F∥·∥
(
ξ̄
)
,

we can write Pr (p < p̄ |H0) = Pr
(
∥T − T0∥ > ξ̄ |H0

)
=

1 − Pr
(
∥T − T0∥ ≤ ξ̄ |H0

)
= p̄ (note that 1 − F∥·∥ is

monotonically not increasing). This means that the CDF of
p assuming H0 is:

F (iid)
p (x) = Pr (p ≤ x |H0) = inf

p∈P,p>x
p

which means F (iid)
p (x) ̸= x. Indeed, limn→∞ F

(iid)
p (x) = x

pointwise, i.e., p asymptotically converges [22] to a continuous
random variable uniformly distributed in [0, 1].
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Furthermore, since F∥·∥ depends on n, it is common to
compute p using F∞

∥·∥ = limn→∞ F∥·∥ which is usually a
continuous function easier to implement with respect to the
F∥·∥. This however generates an additional source of error in
the CDF of p, which can now be written as

Fp(x) = x+

(
inf

p∈P,p>x
p− x

)
+
(
F∞
∥·∥ (ξ)− F∥·∥ (ξ)

)
(2)

where ξ is implicitly defined as any value for which 1 −
F∞
∥·∥ (ξ) = infp∈P,p>x p, and where the two contributions

discussed above are clearly identifiable.
In the general case, the most important cause of error is

given by |P| < ∞, i.e., by the discrete distribution of p.
Intuitively, the higher |P|, the smaller the distance between
Fp and the continuous uniform CDF. This issue is already
known in the literature. For example to minimize its effect
in a two-side test, L’Ecuyer suggests in [1] to compute two
different p-values, a right p-value pR and a left p-value pL.4

The main contribution of this paper is that, limiting our-
selves to binomial-based statistical tests, i.e., tests where F∥·∥
is the combination of binomial coefficients, and where F∞

∥·∥ is
the CDF of a normal random variable, we are able to find a
closed-form approximated expression F ′

p for the CDF Fp in
(2).

With this aim in mind, let us consider the following
Definition 1: A generic binomial test is a test where the

basic event is the binomial variable:

X(i) =

{
1 with probability u
0 with probability 1− u

and the test function is the sum of n basic events

T =
n−1∑
i=0

X(i)

In this test, X = {0, 1} and Θ = {i ∈ N | 0 ≤ i ≤ n}.
However, according to the above considerations, we have to
expand Θ to the set of reals R equipped with the usual absolute
value function to have the normed space (R, | · |). According
to the central limit theorem, T has a normal limit distribution,
with mean value µ = nu and variance σ2 which depends on
the X(i)s correlation function.5

Proposition 1: In a generic binomial test, where the limit
distribution of T is normal with mean value µ and variance
σ2

(a) the limit CDF F∞
∥·∥ is given by

F∞
∥·∥ (ξ) = 2Φ

(
ξ√
σ2

)
−1 = 1− erfc

(
ξ√
2σ2

)
(3)

where Φ is the standard normal CDF and erfc the
complementary error function.

(b) the cardinality of P grows as n; more specifically

n+ 1

2
≤ |P| ≤ n+ 1

4The density of the p-values is not uniform and may present a large
difference between the left and the right endpoint of [0, 1]. In this way, one
of the two p-values is always computed where the density is high enough.

5Under the assumption that the X(i)s are independent, σ2 = nu(1− u)

(c) Indicating with ψ the fractional part of µ, i.e., ψ =
µ(mod 1), the CDF Fp(x) can be approximated by

F ′
p(x) = x+ 2 d (x) z

(√
2σ2 erfc−1(x)

)
(4)

with

d(x) =
1√
2πσ2

e−(erfc−1(x))2 ,

z(ξ)=



ξ(mod 1) ξ(mod 1)<min(ψ, 1−ψ)

ξ(mod 1)−
1

2
min(ψ, 1−ψ)<ξ(mod 1)<max(ψ, 1−ψ)

ξ(mod 1)−1 ξ(mod 1)>max(ψ, 1−ψ)

lim
x→ξ−

z(x) otherwise

(5)
Where the last case in the definition of z ensures that z is
left-continuous in its discontinuity points.

The proof can be found in Appendix A.

IV. REVIEW OF BINOMIAL-BASED NIST STATISTICAL
TESTS

On the basis of the results of Proposition 1, we review
here the Frequency Test, the Runs Test and the Spectral Test
included in the NIST suite. The mathematical notation is kept
as close as possible to the one used in the NIST publica-
tion. These tests are applied to a sequence of random bits
Xi ∈ {−1,+1}, and H0 is that the Xis are iid uniform, i.e.,
the desired distribution is Pr(Xi=−1)=Pr(Xi=+1) = 1/2.

A. Frequency Test

Given the input sequence Xi = {+1,−1}, i = 0 . . . n− 1,
the balance between symbols “+1” and “−1” is

Sn =

n−1∑
i=0

Xi

Assuming the two symbols have the same probability, Sn is
a zero average random variable which can be approximated,
for large values of n, with a normal distribution with variance
σ2 = n. The p-value is given by

p = 2

(
1−Φ

(
|Sn|√
σ2

))
= erfc

(
|Sn|√
2n

)
(6)

Accordingly to the notation used in Definition 1, this is a
standard binomial based test with u = 1/2 and where T =
Sn/2 + n/2 is binomial distributed. The limit distribution of
T is normal with µ = n/2 and σ2 = n/4 due to symbols
independence. Note that if n is an even number (which is the
most common case), the number |P| of different p-values is
minimum, i.e., the error between the CDF Fp of the p-values
distribution and the uniform CDF is maximum.

The approximated expression F ′
p obtained using (4) has

been compared with the experimental CDF we found testing
different true-random and pseudorandom generators. In all
considered cases, the matching between the observed distri-
bution and the one given by F ′

p was better with respect to the
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Fig. 1. Comparison between the uniform density, the theoretically expected
one and the observed experimental one, discretized in k = 16bins, for the
p-values in the Frequency Test, with n = 220.

matching between the observed distribution and the uniform
one. As an example, Figure 1 shows this comparison for the
experimental distributions we get using the BBS algorithm [5]
and the Mersenne-Twister algorithm [23] as pseudorandom
sources, considering in both cases N = 106 sequences.
The figure has been obtained dividing the interval [0, 1] in
k = 16bins and computing the fraction of sequences giving a
p-value in the considered bin. Results show that the theoretical
expected density matches perfectly the experimental one.6

With the expression of F ′
p, we can also compute the actual

significance of this test. With the values suggested by NIST,
i.e., n = 106 and α = 0.01 the significance of this test under
a standard approach is F ′

p(α) = 1.0024 · 10−2. If instead we
use n = 220 and α = 0.01 we get F ′

p(α) = 1.00183 · 10−2.
Note that in both cases the error is small enough to consider
the standard approach completely reliable.

B. Runs Test

Given the input sequence Xi = {+1,−1}, i = 0 . . . n− 1,
let vn be the total number of runs in the sequence. A run is
an uninterrupted sequence of identical symbols, bound at both
endpoints by the opposite symbol. Mathematically

vn = 1 +
n−2∑
k=0

rk, where rk =

{
0 if Xk = Xk+1

1 otherwise

Indicating with λ the fraction of symbols “+1” in the input
sequence,7 for n large, vn is approximated with a normal

6Note that, due to the limited number N of sequences considered, the
experimental distribution is affected by a random variation, which can be
estimated assuming a Gaussian approximation (the ratio of p-values in a bin
can be considered a normal random variable with mean value approximately
µ ≃ 1/k and variance approximately σ2 ≃ (k − 1)/(Nk2)). In both
considered cases N = 106, so σ = 2.4 · 10−4. Since the deviation from the
uniform distribution in the experimental one is much higher than this value
(the average distance is approximately eavg ≃ 4 · 10−4) we can conclude
that it is not due to random fluctuations.

7Note that in the NIST document the symbol π is used instead of λ;
accordingly to [24] we prefer the latter symbol to avoid any misunderstanding
with the classical constant π ≃ 3.14. Note also that, according to NIST, this
test should be computed only if λ is close enough to 1/2. We neglect this
requirement for the sake of simplicity.
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one and the observed experimental one, discretized in k = 16bins, for the
p-values in the Runs Test, with n = 100 · 210.

distributed variable, with mean µ = 2nλ (1− λ) and variance
σ2 = 4nλ2 (1− λ)

2. The p-value is so given by

p = 2

(
1−Φ

(
|vn−µ|√

σ2

))
= erfc

(
|vn − 2nλ (1− λ)|
2
√
2nλ (1− λ)

)
(7)

The Runs Test is slightly different from the above basic
binomial test, since the H0 is that nλ symbols “+1” and n(1−
λ) symbols “−1” are randomly distributed in a sequence of
n symbols. This makes the Runs Test result independent of
the probability u of the basic event (and so of the Frequency
Test result) and is due to the fact that the NIST purpose was
to collect a number of tests each one looking to a different
statistical feature. However, the actual p-values distribution Fp

depends on u.
We can prove that
Proposition 2: in the Runs Test:

(a) the cardinality of P increases as n2; more specifically

|P| ≃ n2

2
(b) the actual CDF of the p-values Fp can be approximated

with a sum of continuous functions

F ′
p(x) =

n∑
v=0

F ′(v)
p (x; v) (8)

The proof and the expression of F ′(v)
p (x; v) in the case u =

1/2 can be found in Appendix B.
Note that the higher cardinality of P with respect to the

Frequency Test case ensures a higher reliability. This could
also be observed in the example of Table II.

The distribution given by (8) has been compared in Figure 2
with the experimental ones found using the BBS and the
Mersenne-Twister algorithms. As in the previous case, the
matching is very good.8

The actual significance of the test with n = 106, and α =
0.01 is F ′

p(α) = 1.00059 · 10−2, and considering n = 220 is
F ′
p(α) = 1.00057 · 10−2.

8Due to the smaller distance from the uniform distribution with respect to
the Frequency Test case, ensuring a σ smaller than eavg for n = 220 would
require a N extremely high. For this reason, we set n = 100 ·210; with these
values and with N = 106, we have eavg = 3.7 · 10−4 and σ = 2.4 · 10−4.
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Fig. 3. (a) Comparison between the theoretical probability density function (PDF) of N1 according to [2], [14], [15] and the experimental one observed
in N = 106 sequences generated with the BBS algorithm and with n = 220 bits. (b) Normalized L2 distances between the observed PDF of N1 in the
Spectral Test and a normal PDF with σ2 = 0.95 ·0.05 ·n/c, with c ranging from 3.5 to 4, and with n = 220 bits, n = 100 ·210 bits and n = 10 ·210 bits.
In all cases, the minimum distance is achieved for c ≃ 3.8.

C. Spectral Test

Given the input sequence Xi = {+1,−1}, i = 0 . . . n− 1,
compute its Discrete Fourier Transform (DFT). Under the
assumption that the sequence comes from an ideal generator,
95% of the bins in the unilateral frequency spectrum should
have an amplitude smaller than a threshold value Th =√
− ln (0.05) · n. The effective number of bins N1 having an

amplitude smaller than Th converges to a normally distributed
random variable, with mean value µ = 0.95 · n/2 = N0, and
variance σ2 = 0.95 · 0.05 ·n/3.8. So, the p-value is computed
as

p = 2

(
1−Φ

(
|N1−N0|√

σ2

))
= erfc

(
|N1 −N0|√

2σ2

)
(9)

The reference distribution for N1 indicated by NIST in [2] is
a normal distribution with µ = N0 = 0.95·n/2 and σ2 = 0.95·
0.05 ·n/4. This has been experimentally found independently
by many authors [14], [15].

We have found that:
(a) the distribution of N1 is better approximated by a normal

distribution with σ2 = 0.95 · 0.05 · n/3.8. We suggest
to refine the experimental value for the variance of the
reference distribution to this value;

(b) the p-values in the Spectral Test are distributed as in
standard binomial test, with a number of symbols n′ =
n/2 and a limit normal distribution with mean value and
variance as above.

As far as (a) is concerned, in Figure 3-a we have plotted the
observed distribution of N1 coming from our simulations using
the BBS algorithm and the theoretical distribution expected
according to the NIST document. The variance of the experi-
mental curve seems a bit larger than expected. The best fitting
between the observed distribution and a normal distribution
with variance σ2 = 0.95·0.05·n/c (see Figure 3-b) is achieved
for c ≃ 3.8 for many different values of n.

As far as (b) is concerned, Figure 4 shows the p-values
CDFs experimentally found using the BBS and the Mersenne-
Twister algorithms compared with the expected and the uni-
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Fig. 4. Comparison between the uniform density, the theoretically expected
one and the observed experimental ones achieved with the BBS and the
Mersenne-Twister algorithms, all discretized in k = 16 bins, for the p-values
in the Spectral Test, with n = 220, for the cases (a) the variance is computed
as σ2 = 0.95 · 0.05 · n/4.0 as indicated by the NIST document [2]; (b) the
variance is computed as σ2 = 0.95 ·0.05 ·n/3.8. Note that the experimental
densities in (a) and (b) are different since the p-values are computed with two
different functions. The matching in the case (b) is almost perfect.

form one, all discretized in 16 bins in the case n = 220.
When considering σ2 = 0.95 · 0.05 · n/4 (the case (a)) the
two distributions does not match; furthermore, the observed
experimental density does not seem to converge to the uniform
one. On the contrary, using σ2 = 0.95 · 0.05 ·n/3.8 (case (b))
the matching is very good.

Using the refined proposed value for the variance in the
distribution of N1, the actual significance of the test under
the standard approach is, considering n = 106 and α = 0.01,
F ′
p(α) = 1.01258 ·10−2, while when considering n = 220, the

significance is F ′
p(α) = 0.99742 · 10−2.

V. RELIABILITY OF A TWO-LEVEL TEST

Assuming to know the exact p-value CDF Fp, when per-
forming a two-level test, there are two possible options:

• compare the obtained distribution of the p-values with the
theoretical one to get the correct level two p-value pT0;
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• use the continuous uniform distribution as the reference
one, accepting to compute an erroneous level-two p-value
pT .

The first solution is of course the optimal one. However, in
many cases (for example, for the sake of simplicity) the second
approach may be preferred. In the following we consider this
second case, estimating the error between pT and pT0. In this
way we are able to formulate a mathematical condition for the
reliability of a two-level test, which is expressed by requiring
that |pT − pT0| is smaller than a given value.

In addition to the 99% and the chi-square based two-level
tests proposed by NIST, we consider also a Kolmogorov-
Smirnov based approach. For the last two tests we provide
a basic introduction in order to understand the proposed
condition. We also provide a few examples of designing a
reliable level-two test based on the Frequency Test.

A. 99% based Two-level Test

The fraction ζ of sequences passing a basic test is expected
to be in the range 1− Fp(α)± 3σ, and not in the range 1−
α± 3σ.

In a two-level test, a first simple reliability condition is
requiring that the above two intervals are almost superimpos-
ing. Since Fp(α) ≃ α, we can approximate σ2 = Fp(α)(1 −
Fp(α))/N ≃ α(1− α)/N . The reliability condition is

|Fp(α)− α| ≪
√
α(1− α)

N

i.e.,
√
N ≪

√
α(1− α)/ |Fp(α)− α|.

Example - Let us consider the Frequency Test, with n =
220, and α = 0.01. For these parameters (see Section IV-A)∣∣F ′

p(α)− α
∣∣ ≃ 1.8 · 10−5. The reliability condition is

√
N ≪

5500.
If a more precise condition is required, a p-value approach

for this two-level test has to be considered. Counting the
number of sequences Nζ which pass a basic test is in fact
a standard binomial test (see Definition 1) with µ = N(1 −
Fp(α)) and σ2 ≃ Nα(1− α), where the p-value is given by

pT0 = 1− F99%(θ0) = erfc

(
|Nζ −N (1− Fp(α))|√

2Nα (1− α)

)
with θ0 =

√
N |ζ − (1− Fp(α))| and where the function

F99%(x) is implicitly defined.
When assuming µ = N(1−α), the p-value is computed as

pT = 1− F99% (θ) with

θ =
√
N |ζ − (1− α)| =

=
√
N |ζ−(1−Fp(α))−(Fp(α)−α)| ≤ θ0+

√
N |Fp(α)−α|

Let us consider the worst case scenario (i.e., that θ̂ =
θ0 +

√
N |Fp(α)− α|) where the error between pT0 and

p̂T = 1 − F99%(θ̂) is maximized. Indicating with f99%(x) =
dF99%(x)/dx, and considering the two-term series expansion
of F99%(θ) around θ0, we get

p̂T = 1− F99%

(
θ0 +

√
N |Fp(α)− α|

)
≃

≃ 1− F99% (θ0)− f99% (θ0)
√
N |Fp(α)− α|

which directly yields to

p̂T − pT0 ≃ −
√
Nf99%

(
F−1
99%(1− pT0)

)
|Fp(α)− α| (10)

where F−1
99% is the inverse function of F99%.

The error |p̂T − pT0|:
(a) increases as

√
N ;

(b) linearly depends on the function f99%
(
F−1
99%(1− pT0)

)
which does not depend on N .

(c) linearly depends on |Fp(α)− α|, i.e., on the error in the
significance of the basic test approach.

Equation (10) ensures the reliability of a two-level test.
Example 1 - Let us consider a Frequency Test with n = 220

and α = 0.01, and require a maximum error on the two-level
p-value |p̂T − pT0| < 0.01 on the whole range 0 ≤ pT0 ≤ 1.
In this case

∣∣F ′
p(α)− α

∣∣ ≃ 1.8 · 10−5. Furthermore

sup
0≤pT0≤1

f99%
(
F−1
99% (1− pT0)

)
= 8.02

which means N < 4798.
Example 2 - Under the same assumptions as before, we are

interested in a two-level test with αT = 0.01. In this case we
need accuracy only for the p-values which lay around the value
pT0 = 0.01, for example requiring that |pT − pT0| < 0.001.
In this case

f99%
(
F−1
99% (1− αT )

)
= 0.291

which results in N < 36448.

B. Chi-square Based Two-level Test

Let us distribute N samples X(i) in k subgroups, namely
bins. If the X(i)s are continuous random variables, the bins
are obtained as a partition of the definition set of the X(i)s;
let also πj be the probability that a sample X(i) is in the j-th
bin, with j = 1, . . . , k. The observed number Oj of samples
belonging to the j-th bin is compared with the expected
number Ej = Nπj; the distance between Oj and Ej is given
by:

χ2 =

k∑
j=1

(Ej −Oj)
2

Ej
(11)

For a random input sequence, this is a random variable
distributed according to a chi-square distribution with k − 1
degree of freedom, so [25]

pT = 1− Fχ2

(
χ2
)
= 1−

γ
(
(k − 1) /2;χ2/2

)
Γ ((k − 1) /2)

(12)

where γ (k;x) and Γ (k) are respectively the incomplete and
the complete gamma functions.

In a chi-square based two-level test involving N p-values,
when dividing the interval [0, 1] uniformly in k bins

[
j−1
k , jk

]
,

with j = 1, 2, . . . , k, the expected number of p-values in the
j-th bin is

Ej = N

(
Fp

(
j

k

)
− Fp

(
j − 1

k

))
(13)
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The random variable

χ2
0 =

k∑
j=1

(
N
(
Fp

(
j
k

)
− Fp

(
j−1
k

))
−Oj

)2
N
(
Fp

(
j
k

)
− Fp

(
j−1
k

))
has a chi-square distribution, and the two-level p-value is
computed as pT0 = 1 − Fχ2

(
χ2
0

)
, where the CDF Fχ2 is

implicitly defined in (12).
When assuming the continuous uniform distribution as the

reference one, the expected number of p-values in each bin is
Ẽj = N/k, and the variable

χ2=
k∑

j=1

(
Ẽj −Oj

)2
Ẽj

=

=
k∑

j=1

(
Ej −Oj −N

(
Fp

(
j
k

)
−Fp

(
j−1
k

)
− 1

k

))2
Ẽj

=

=
k∑

j=1

(Ej−Oj)
2

Ẽj

+Nk
k∑

j=1

(
Fp

(
j

k

)
−Fp

(
j−1

k

)
− 1

k

)2
+

−2k
k∑

j=1

(Ej−Oj)

(
Fp

(
j

k

)
−Fp

(
j−1

k

)
− 1

k

)
(14)

does not have a chi-square distribution.
Note however that the first term of (14) can be approximated

with χ2
0; the second term is a constant; and the third one is a

random variable which depends on the Oj .
Let us consider the expected value χ̄2 of χ2 given χ2

0, i.e.,
let us consider all Oj sequences giving χ2

0 in (13). The Oj

are not independent, since there are two constraints, the first
given by χ2

0 and the second by
∑

j Oj = N . However, since
every Oj has Ej as expected value, the average contribution
of the third term in (14) vanishes:

χ̄2≃ χ2
0 +Nk

k∑
j=1

(
Fp

(
j

k

)
−Fp

(
j−1

k

)
− 1

k

)2

= χ2
0 +NCχ2

(15)
where Cχ2 is implicitly defined and depends only on n and
k.

Figure 5 shows a comparison between the expected value
of the normalized9 value χ̄2/ (k−1) computed through (15)
and the average value of χ2/ (k−1) from experimental results
for different values of n and N . The matching between the
curves confirms the validity of the above approximations.

From the knowledge of χ̄2 it is possible to compute the
error between pT0 and p̄T = 1 − Fχ2

(
χ̄2
)
. By proceeding

with a two-term series expansion

p̄T = 1−Fχ2

(
χ2
0 +NCχ2

)
≃ 1−Fχ2

(
χ2
0

)
−fχ2

(
χ2
0

)
NCχ2

i.e.,
p̄T − pT0 ≃ −fχ2

(
F−1
χ2 (1− pT0)

)
NCχ2 (16)

where fχ2 (x) is the PDF of a chi-square distribution with k−1
degrees of freedom. The error p̄T − pT0 is always negative
(fχ2 (x) is a PDF), and linearly depends on N .

Equation (16) can be used to verify or ensure the reliability
of a chi-square based two-level test.

Example 1 - Let us consider the Frequency Test with n =
220 and suppose that we require an average error on the level-
two p-value |p̄T − pT0| < 0.01 over the whole range 0 ≤
pT0 ≤ 1 using k = 10 bins. In this case

Cχ2 sup
0≤pT0≤1

fχ2

(
F−1
χ2 (1− pT0)

)
= 1.67361 · 10−6

which means N < 5975. Note that this value is coherent with
the value found in Section II-C and coming from [12].

Example 2 - Under the same assumptions as before and with
αT = 0.01, we are interested in checking if pT ≤ αT . In this
case we require that |p̄T − pT0| < 0.001 for pT ≃ αT . Since

Cχ2fχ2

(
F−1
χ2 (1− αT )

)
= 5.70634 · 10−8

we get N < 17524.
Example 3 - Let us consider the Frequency Test with n =

220 and N = 104. We want to know for which values of k
the average error |p̄T − pT0| < 0.01, i.e., for which k we get

Cχ2 sup
0≤pT0≤1

fχ2

(
F−1
χ2 (1− pT0)

)
< 10−6

Note that, despite the general trend, the sequence
Cχ2 sup0≤pT0≤1 fχ2

(
F−1
χ2 (1− pT0)

)
may not be strictly

monotonically increasing in k. For this reason we can expect
a set of solutions that is not a range of integers between
two bounds. In fact, in the case of the example we have
k = {3, 4, 5, 6, 9}.

C. Kolmogorov-Smirnov Based Two-level Test

Let us consider N samples X(i) with assumed continuous
CDF F (x). Let us also define the empirical CDF FN (x) as

FN (x) =
1

N

N−1∑
j=0

H
(
x−X(j)

)
9The expected value for a chi-square distributed random variable with k−1

degree of freedom is k−1.
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where H(x) is the unity-step function, defined as H(x) = 1
if x ≥ 0 and 0 elsewhere. The Kolmogorov-Smirnov statistic
for a given CDF F (x) is

DN = sup
x

|FN (x)− F (x)|

Indicating with Q the CDF of DN , the p-value is given by
p = 1−Q (DN ).

The distribution of DN have been intensively studied. It is
known that

√
NDN converges, for large N , to a Kolmogorov

distribution [26], which does not, however, fit well for small
N . A comprehensive review of all the proposed approxima-
tions and their validity regions can be found in [27], from
where the code used to compute Q in this paper is taken.

Being an extremely complex test from a mathematical
point of view, we have to introduce strong hypotheses and
approximations to build a theoretical framework as in the two
previous cases. The first assumption we make is that

DN0 = sup
x

|FN (x)−Fp(x)|

is distributed according to Q despite the fact that Fp is the
CDF of a discrete random variable. Under this assumption,
the correct p-value for this test is given by pT0 = Q (DN0).
Note that both FN and Fp are piece-wise constant functions,
and so FN − Fp, where all discontinuities are in x ∈ P; the
maximum is achieved in an interval (pi, pj). Let us indicate
with x̂ a point of this interval.

When using the continuous uniform CDF as reference one,
the computed p-value is pT = Q (DN ), with

DN =sup
x

|FN(x)−x|=sup
x

|FN(x)−Fp(x)+Fp(x)−x| (17)

A relation between DN0 and DN can be found by analyzing
separately the two contributions FN (x)−Fp(x) and Fp(x)−x
of (17). As observed above, FN−Fp is step-wise; Fp(x)−x is
a piece-wise linear, usually zero average, oscillating function
(see, for example, Proposition 1). Let us indicate with ε̃(x) the
envelope of |Fp(x)− x|, i.e., a function which approximates
the maximum value of |Fp(x)− x| in any interval in which
Fp is constant.

With the additional hypothesis that ε̃ is “smooth”, i.e., that
the steps of Fn − Fp are higher than ε̃,10 we can assume that
the maximum for DN is reached in the same interval in which
DN0 has its maximum. In this case

DN ≃ DN0 + ε̃ (x̂)

Note that, given DN0, the value of x̂ (and so DN ) is not
uniquely determined, i.e., x̂ is still a random variable. Let
us introduce D̄N as the average value of DN given DN0,
whose exact computation would require the knowledge of the
statistic of x̂. Yet, FN (x)− Fp(x) is a Brownian bridge, i.e.,
a Brownian motion pinned at both ends x = 0 and x = 1
(FN (x) and Fp(x) are both CDF), so it is unlikely that x̂
would lie in the area around 0 or 1.

10In a standard binomial test, it is ε̃(x) = e−(erfc−1(x))/
√
2πσ2 ∝

1/
√
n, while the steps of FN − Fp has two contributions, one of which

is equal to 1/N and the other one is proportional to ε̃. According to this, for
values of N much smaller than n, this hypothesis is verified.
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Limiting ourselves to the Frequency Test, we can numeri-
cally compute the expected value of ε̃(x̂) assuming different
distributions for x̂. In all cases we get values very similar to
0.6/

√
n, which can be assumed as the actual expected value,

independently of DN0

D̄N = DN0 + E [ε̃(x̂)|DN0] ≃ DN0 E [ε̃(x̂)] ≃ DN0 +
0.6√
n

To get an experimental verification, we have computed the
average DN and compared with E[DN0] in many simulations
of a two-level Frequency Test for different values of n and N .
The results, which can be seen in Figure 6, show (especially
for n and N large) a good matching between the expected
and the observed curves, proving that the approximations
introduced in this section are acceptable.

Proceeding as in the previous cases, if p̄T = 1−Q
(
D̄N

)
,

the average error on the p-value is given by

p̄T − pT0 ≃ −q
(
Q−1 (1− pT0)

)
E [ε̃(x̂)] (18)

with q the PDF associated to Q. Interestingly enough, the value
of q

(
Q−1 (1− pT0)

)
/
√
N has a very weak dependence on

N , and this makes easy to use Equation (18) to verify the
reliability of a Kolmogorov-Smirnov based two-level statistical
test.

Example 1 - Let us consider a Frequency Test with n = 220

and suppose we require an average error on the two-level p-
value |p̄T − pT0| < 0.01 on the whole range 0 ≤ pT0 ≤ 1.
Assuming E [ε̃(x̂)] ≃ 0.6/

√
n, and since for N in the range

of a few hundreds

sup
0≤pT0≤1

q
(
Q−1 (1− pT0)

)
/
√
N ≃ 1.69

we have N < 102.
Example 2 - Under the same assumptions as before, we

require that |p̄T − pT0| < 0.001 only for p-values neighboring
the significance level αT = 0.01.

q
(
Q−1 (1− αT )

)
/
√
N ≃ 0.065

with N in the range of a few hundreds. The reliability
condition is ensured for N < 685.



TRANSACTION ON INFORMATION FORENSICS AND SECURITY 10

Note that, according to these examples, a Kolmogorov-
Smirnov based two-level test has a lower reliability compared
to a chi-square based one.

VI. CONCLUSION

In this paper we have considered the Frequency Test, the
Runs Test and the Spectral Test included in the NIST SP800-
22 statistical test suite. For these tests we have proposed a
computationally feasible approximation of the actual p-values
distribution when testing an ideal random generator. This is a
discrete distribution which may be considerably different from
the uniform one.

The knowledge of this true distribution allows us to design
a level-two test which is reliable, i.e., a test in which the
probability of a false positive is aligned with the expected
one. We have considered the level-two approaches proposed
by NIST, i.e., counting the sequences passing a basic test and
checking the p-value distribution with a chi-square test, as well
as an additional approach consisting of checking the p-value
distribution with a Kolmogorov-Smirnov test.

Furthermore, for the Spectral Test, we have proposed a
refinement of the reference distribution for the p-value com-
putation. With this refinement, the issues of these tests that
are known and addressed in many other papers [14], [15] are
strongly reduced.

APPENDIX A
PROOF OF PROPOSITION 1

Proof of (a) - Assuming H0, the PDF of T is a discrete
function with binomial coefficients which can be approximated
with the Central Limit Theorem:

fr = Pr (T = r) ≃ fT (r) =
1√
2πσ2

e
(r−µ)2

2σ2 (A.1)

where the fr are defined for r ∈ {0, 1, . . . , n}, and the
function fT is the extension of the fr in R. The CDF is

FT (θ) = Pr (T ≤ θ) =
∑
r≤θ

fr (A.2)

which can be approximated with the integral of (A.1)

F
(lim)
T (θ)=

∫ θ

−∞
fT (r) dr = 1−1

2
erfc

(
θ−nu√

2nu (1−u)

)
(A.3)

Now, consider the distance between T and its mean value µ

F∞
∥·∥(ξ)=Pr (|T−µ| ≤ ξ)=Pr (T ≤ µ+ξ)−Pr (T ≤ µ−ξ)

= F
(lim)
T (µ+ ξ)− F

(lim)
T (µ− ξ)

(A.4)

which leads directly to (3).
Note that, despite the fact that F (lim)

T is globally a good
approximation of FT , the error in all points θ ∈ {0, 1, . . . , n},
i.e., in all the possible values of T , is quite large. To cope
with this, we adopt in the following the continuity correction

FT (θ) ≃ F
(lim)
T

(
θ +

1

2

)
, ∀ θ ∈ {0, 1, . . . , n} (A.5)

Proof of (b) - Let us enumerate and order all different
p-values. Since p = 1−F∞

∥·∥(|r−µ|) with r = 0, 1, . . . , n, and
F∞
∥·∥ is strictly increasing, the number of different p-values is

|P| = n+1 except if couples (r1, r2) exist, for which

|r1 − µ| = |r2 − µ| , r1 ̸= r2 (A.6)

It is easy to see that, indicating with ψ = µ(mod 1), this is
possible only for ψ = 0 or ψ = 1/2.

As an example, let us assume that ψ = 0 (i.e., µ is
integer), and indicate with ξ = |r−µ|; |P| is also given by
the number of different values of ξ. Let us also enumerate
ξi, i = 0, 1, 2, . . . all different values that ξ can assume, with
ξi < ξi+1. In this case ξi = i, with i ranging from 0 to n/2
(in the case µ = n/2) or to n+1 in the degenerate cases when
µ→ 0 or µ→ n.

It is interesting in this case also the computation of f̃i =
Pr (p = pi) = Pr (ξ = ξi).

f̃i =

{
fµ if i = 0

fµ−i + fµ+i otherwise
(A.7)

since ξ0 = 0 corresponds only to r = µ, while all other values
of ξ correspond to two values of r.

In a very similar way, it is possible to prove that in the
case ψ = 1/2, |P| ranges from (n+ 1)/2 when µ = n/2, to
n+ 1 in the two degenerate cases. For all other values of ψ,
we have |P| = n+1.

Proof of (c): According to the notation introduced above,
the exact PDF fp and CDF Fp can be respectively written as

fp(x) =
∑
i

f̃iδ (x− pi) (A.8)

Fp(x) =
∑
i

f̃iH (x− pi) (A.9)

where δ(·) is the Dirac distribution and H(·) is the unity-step
function. An example of them for n = 250, µ = n/2 and
σ2 = n/4 is depicted in Figure 7. This case corresponds to
ψ = 0, and the probability f̃0 is halved with respect to the
general trend. Note that when n → ∞, fp converges in the
weak sense [22] to the continuous uniform PDF, while Fp

converges puctually to F (x) = x.
This CDF is a piece-wise constant right-continuous func-

tion, with a discontinuity in all pi; in these points (A.9) can
be simplified in

Fp(pi) =
∑
j≥i

f̃j = 1−
i−1∑
j=0

f̃j (A.10)

with

lim
x→p+

i

Fp(x) = Fp(pi), lim
x→p−

i

Fp(x) = Fp(pi+1) (A.11)

We propose the function F ′
p in 4 as a low computational

complexity approximation for the CDF Fp for a twofold
reason. First, we can show that the two limits of (A.11) hold
also for the F ′

p under the assumption of (A.1) and (A.5).
Second, despite the fact that F ′

p is not piecewise constant (and
furthermore not montonically not decreasing), its oscillations
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Fig. 7. Example of p-values PDF (a) and CDF (b) in a generic binomial test, with n = 250, µ = n/2 and σ2 = n/4 (ψ = 0).

between two discontinuity points (i.e., where Fp is constant)
are very small compared to the steps into the discontinuities,
i.e., the relative error we commit in considering F ′

p stepwise
is extremely small.

In the following, for the sake of simplicity, we show that the
first limit in (A.11) holds also for the F ′

p in the case ψ = 0;
the other cases are very similar to show. To this purpose, let
us consider the identity

b∑
j=a

fj =

b∑
j=0

fj −
a−1∑
j=0

fj = FT (b)− FT (a− 1) ≃

≃ F
(lim)
T

(
b+

1

2

)
− F

(lim)
T

(
a− 1

2

) (A.12)

which allow us to recast, in the case ψ = 0

Fp(pi) = 1−
i−1∑
j=0

f̃j = 1−
µ+i−1∑

j=µ−i+1

fj ≃

≃ 1− F
(lim)
T

(
µ+i− 1

2

)
+ F

(lim)
T

(
µ−i+1

2

) (A.13)

Note that when ψ = 0, then ξi = i =
√
2σ2 erfc−1(pi); by

using the series expansion of F (lim)
T around µ± ξi, we get

lim
x→p+

i

Fp(x) ≃ 1−F (lim)
T (µ+ ξi)+

1

2
fT (µ+ ξi)+

+F
(lim)
T (µ− ξi) +

1

2
fT (µ− ξi) =

= pi+
1

2

(
fT (µ+ ξi)+fT (µ− ξi)

)
= pi+d(pi)

(A.14)

where (A.1) and (A.4) have been used.
When considering F ′

p, we have

lim
x→p+

i

F ′
p(x) = pi + 2 d(pi) lim

ξ→i−
z(ξ) = pi + d(pi) (A.15)

To assert the quality of the proposed approximation, we
show in Figure 8 the comparison between the actual CDF Fp

and its approximation F ′
p. Actually, to make the Figure more

readable we prefer to show the comparison between Fp(p)−p
and F ′

p(p) − p; in this way any difference among the two
functions is more evident. We also considered different values
of ψ; in all cases the matching is almost perfect, as the two
curves can be hardly distinguished.

APPENDIX B
PROOF OF PROPOSITION 2

Proof of (a) - Let us consider a generator of independent
basic events Xi, with Pr(Xi = +1) = u. Given λ the fraction
of events +1 in a n events sequence, we get E[λ] = u;
however, the actual value of λ could range from 0 to 1.

Let us enumerate with λj all possible values of λ, i.e., λj =
j/n, j = 0, 1, . . . , n, and let us indicate with pv,j the p-value

pv,j = erfc

(
|v − 2nλj(1− λj)|
2
√
2nλj(1− λj)

)
(B.1)

Given λj , there are nλj events +1 and n(1− λj) events −1.
In this case the number of runs vn lies in the range 2 ≤ vn ≤
min(2nλj+1, 2n(1−λj)+1, n) except in the two degenerate
cases λ0 = 0 and λn = 1, where vn = 1. Similarly to the case
of the generic binomial test, different values of vn can give
rise to the same p-value only if ψ = (2nλj(1−λj))(mod 1) =
(−2j2/n)(mod 1) has particular values. Since for almost all
values of j it is ψ ̸= 0 and ψ ̸= 1/2, we can approximate
the number of different p-values given λj with the number of
different values of vn. With this approximation the cardinality
of P in a Runs Test is the different number of couples (j, v)

|P| ≃ 2 +

n−1∑
j=1

min (nλj , n(1−λj), n) =


n2

2
+1 n even

n2

2
+
3

2
n odd

(B.2)
i.e., |P| ≃ n2/2.

Proof of (b) - Let us consider a generator of independent
basic events Xi, with Pr(Xi = +1) = u, with λ the fraction
of events +1 in a n events sequence.

• the probability to generate a sequence with a given λ is
unλ(1− u)n(1−λ);
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Fig. 8. Comparison between Fp(p)− p (difference between the actual CDF and the continuous uniform one, solid lines) and F ′
p(p)− p (difference between

the approximated CDF and the continuous uniform one, dashed lines) for n = 250, µ = n/2 + ψ, σ2 = n/4, in the cases: (a) ψ = 0; (b) ψ = 1/3; and
(c) ψ = 1/2.

• the number of different sequences with v runs is

N (v, λ) =



2

(
nλ−1
v

2
−1

)(
n−nλ−1
v

2
−1

)
if v is even

(
nλ−1
v−1

2

)(
n−nλ−1
v−3

2

)
+

+

(
nλ−1
v−3

2

)(
n−nλ−1
v−1

2

)
if v is odd

(B.3)
Equation (B.3) can be explained by observing that the

number of different ways in which we can distribute k objects
in n groups with no empty groups is

(
n−1
k−1

)
. When v is even,

we have to consider all sequences with v/2 continuous groups
of symbols “+1” interleaved with n/2 continuous groups of
“−1”, considering both sequences starting with “+1” and
ending with “−1”, and sequences starting with “−1” and
ending with “+1”. When instead we consider r odd, we have
to count all sequences starting and ending with “+1”, with
(r+1)/2 groups of “+1” and (r−1)/2 groups of “−1”, as well
as sequences starting and ending with “−1”, with (r − 1)/2
groups of “+1” and (r + 1)/2 groups of “−1”.

On the basis of the notation introduced, the actual CDF for
the Runs Test can be written as

Fp(x) =
n∑

j=0

n∑
v=0

unλj (1− u)n−nλjN(v, λj)·

·H

(
x−erfc

(
|v−2nλj(1−λj)|
2
√
2nλj(1−λj)

))
=

=
∑
j,v

unλj (1− u)n−nλjN(v, λj),

∀j, v : x ≥ erfc
(

|v−2nλj(1−λj)|
2
√
2nλj(1−λj)

)
(B.4)

where we have considered N(v, λj) = 0 for all values of v
outside the range 2 ≤ v ≤ min(2nλj + 1, 2n(1− λj) + 1, n).
Note that this distribution is dependent on u.

An example of Fp for u = 1/2 and n = 250 is depicted in
Figure 9. Note that the distance from the uniform distribution
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Fig. 9. Example of the p-values CDF for the Runs Test, with n = 250 and
u = 1/2.

is much smaller with respect to the generic binomial test with
the same n, as expected by the higher cardinality of P .

In order to get our result, let us recast (B.4) as

Fp(x) =
n∑

v=0

F (v)
p (x; v) (B.5)

F (v)
p (x; v) =

∑
j

unλj (1− u)n−nλjN(v, λj),

∀j : x ≥ erfc
(

|v−2nλj(1−λj)|
2
√
2nλj(1−λj)

) (B.6)

F
(v)
p is a family of stepwise functions, where the height of

the steps is inversely proportional to their distance, i.e., the
higher the steps, the nearest they are. This suggest that F (v)

p

can be approximated with a continuous function.
The approximation we propose is the following one

F ′(v)
p (x; v) =

∫
Λ

e−C0−C1(λ−u)− 1
2C2(λ−u)2 dλ,

Λ =
{
λ : x ≥ erfc

(
|v−2nλj(1−λj)|
2
√
2nλj(1−λj)

)} (B.7)
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where the explicit definition of Λ can be expressed as

Λ=



[
0, λ(1)

]
∪
[
λ(4),1

]
if x≤erfc

|n−2v|√
2n[

0, λ(1)
]
∪
[
λ(2), λ(3)

]
∪
[
λ(4),1

]
if x>erfc

|n−2v|√
2n

, v<
n

2

[0,1] if x>erfc
|n−2v|√

2n
, v>

n

2
(B.8)

with λ(i) given by the four combinations of the following
expression, with λ(i) < λ(i+1)

λ(i) =
1

2
± 1

2

√
1− 2v

n±
√
2n erfc−1(x)

(B.9)

and where C0, C1 and C2 come from the series expansion
of unλ(1−u)n−nλN(v, λ) where the binomial coefficients in
N(v, λ) can be substituted with a standard Gaussian approx-
imation.

Despite the general case is still difficult to handle with,
limiting ourselves to u = 1/2, we get

C0 =


(n− 2v + 2)2

2(n− 2)
+ log

π(n− 2)

2
n even

(n− 2v + 2)2 + 4

2(n− 2)
+ log

π(n− 2)

2
n odd

C1 = 0

C2 =


4n2(4(v − 2)2 − n+ 2)

(n− 2)3
n even

4n2(4(n− 6)(v − 2)2 − (n− 4)2 + 4)

(n− 2)4
n odd

(B.10)
Thanks to C1 = 0, the integral in (B.7) can be solved into

a closed form. By setting

F
′(v)
1 (x; v)=n

∫ λ(1)

0

e−C0− 1
2C2(λ− 1

2 )
2

dλ+n

∫ 1

λ(4)
e−C0− 1

2C2(λ− 1
2 )

2

dλ=

= n
√
2πe−C0√
C2

(
erfc

(√
C2

2
√
2

√
1− 2v

n+
√
2n erfc−1(x)

)
−erfc

√
C2

2
√
2

)
(B.11)

F
′(v)
2 (x; v)=n

∫ λ(3)

λ(2)
e−C0− 1

2C2(λ− 1
2 )

2

dλ=

= n
√
2πe−C0√
C2

(
1− erfc

(√
C2

2
√
2

√
1− 2v

n−
√
2n erfc−1(x)

))
(B.12)

F
′(v)
3 (v)=n

∫ 1

0

e−C0− 1
2C2(λ− 1

2 )
2

dλ= n
√
2πe−C0√
C2

(
1−erfc

√
C2

2
√
2

)
(B.13)

as well as by selecting the correct expression for C0 and C2

depending if v is even or odd, we come into

F ′(v)
p (x; v)=



F
′(v)
1 (x; v) if p ≤ erfc

|n−2v|√
2n

F
′(v)
1 (x; v)+

+ F
′(v)
2 (x; v)

if p>erfc
|n−2v|√

2n
, v<

n

2

F
′(v)
3 (v) if p>erfc

|n−2v|√
2n

, v>
n

2
(B.14)

A comparison between the actual F (v)
p and its proposed

approximation F
′(v)
p for n = 250 and different values of v

can be seen in figure 10. In all cases the matching is very
good.

Using (B.14), the p-value CDF Fp in the Runs Test can be
approximated with

F ′
p(x) =

n∑
v=0

F ′(v)
p (x; v) (B.15)

Note that (B.15) presents a computational complexity which
can be quantified in O(n), instead of O(n2) as (B.4). With a
small computational effort, F ′

p can be computed even for quite
large values of n.
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