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A Case Study in Low-Complexity ECG Signal

Encoding: How Compressing is Compressed

Sensing?
Valerio Cambareri, Student Member, IEEE, Mauro Mangia, Member, IEEE, Fabio Pareschi, Member,

IEEE, Riccardo Rovatti, Fellow, IEEE, Gianluca Setti, Fellow, IEEE

Abstract

When transmission or storage costs are an issue, lossy data compression enters the processing chain of resource-

constrained sensor nodes. However, their limited computational power imposes the use of encoding strategies based on

a small number of digital computations. In this case study, we propose the use of an embodiment of compressed sensing

as a lossy digital signal compression, whose encoding stage only requires a number of �xed-point accumulations that

is linear in the dimension of the encoded signal. We support this design with some evidence that for the task

of compressing ECG signals, the simplicity of this scheme is well-balanced by its achieved code rates when its

performances are compared against those of conventional signal compression techniques.

Index Terms

Compressed Sensing, Lossy Compression, Low Complexity, Wireless Sensor Nodes

I. INTRODUCTION

Wireless sensor nodes operate on a tight resource budget, the most limiting constraint being low power consump-

tion in data acquisition, encoding and transmission [1]. Since the power budget of a node is dominated by data

transmission, minimising its bit-rate by suitable encoding stages is critical in saving the node’s resources. In this

context, we assume that data acquisition and compression are performed by low-power sensor nodes that transmit

their encoded bitstreams to a central node, which is able to sustain a very large computational burden; such an

extreme resource asymmetry limits the use of multimedia Digital Signal Compression (DSC) schemes designed on

the opposite assumption that the encoding is performed only once (hence as computationally demanding as required),
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whereas decoding is performed multiple times as users access the information content (hence as lightweight as

possible).

Compressed Sensing (CS) [2] is a set of mathematical methods that enables the recovery of a Nyquist-rate signal

representation from a set of undersampled measurements, as obtained by linear projection of the latter signal. This

is made possible by leveraging a sparse signal model [3] that well matches the structure of many signals of interest.

In this paper we study a lossy DSC scheme based on CS and targeted at ECG signal compression; its encoding stage

projects the signal onto a Bernoulli random matrix stored at the sensor node, whereas the decoding stage entails

sparsity-promoting optimisation algorithms that recover an approximation of the encoded signal, a task well-suited

to central processing nodes.

Related investigations [4], [5] show that its rate-distortion performances are asymptotically sub-optimal w.r.t.

traditional transform coding [6]. Although correct, these analyses do not account for the digital hardware complexity

of transform coding, which generally requires �oating-point multiplications for an exact transform implementation.

Conversely, the encoder of the proposed CS-based DSC scheme is implemented by a lightweight, multiplierless

�xed-point architecture. We here illustrate that, for the speci�c task of compressing ECG signals, the encoder-side

complexity of CS is well-matched by its attained code rate. In particular, we show that when (i) a scalar quantiser

is used to reduce the measurements’ bit-rate, (ii) Huffman Coding (HC) is applied on the encoded bitstream, (iii)

the random encoding matrix is adapted to the signal ensemble as in [7], [8], the attained code rates and recovery

Signal-to-Noise Ratio (SNR) performances of a CS-based DSC are optimised. Finally, we compare this approach

to some conventional DSC schemes as applied to single-lead ECG signals. The results highlight how the proposed

DSC scheme is capable of attaining low code rates with a minimum amount of digital hardware.

II. COMPRESSION SCHEMES FOR ECG SIGNALS

We consider the reference case of ECG signals that typically comply with a sparse signal model [9], [10]; a

segment of the analog ECG signal is acquired by Analog-to-Digital (A/D) conversion, mapping it to n Nyquist-rate

samples x �
�
x0 � � � xn�1

�J
P Rn and �nalised1 by uniform scalar quantisation of each sample as ~x � Qb~xpxq,

i.e., with b~x bit per sample and scaled to quantise the full signal range. This produces a Pulse-Code Modulated

(PCM) bitstream of B~x � nb~x bit. The task of encoding ~x prior to transmission can be divided in (i) a lossy

stage that produces a reduced-rate bitstream ~y with some information loss w.r.t. ~x, and (ii) a lossless stage that

eliminates its remaining redundancy and outputs the encoded bitstream v, such as an entropy coding scheme [11].

The two stages jointly achieve a code rate of r � Bv{nbps (bits per sample). In particular, we here evaluate three

DSC schemes as reported in Figure 1.

A. Huffman Coding

The lowest-complexity DSC scheme we consider is obtained by processing the PCM samples in ~x with standard,

lossless HC [11] whose optimal codebook X is here assumed to be known a priori and practically trained on

1The integration of non-uniform, minimum-distortion quantisers at the A/D converter or early digital processing stages is a technologically

complex task; for this reason, we limit this study to uniform scalar quantisers.
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(a) Huffman coding: encoding and decoding stages

(b) Set partition coding: encoding and decoding stages

(c) CS-based DSC: encoding stage

(d) CS-based DSC: decoding stage

Fig. 1. Block diagram of the analysed DSC schemes; B � denotes the lengths of the encoded bitstreams, b � their word length per sample.

Channel coding is regarded as part of the transmitter/receiver.

the empirical Probability Mass Function (PMF) of a very large set of b~x bit words. Since this training set might

not contain all possible words, an escape codeword is added to X followed by rlog2 qs bit to represent any of

the q symbols not appearing in the above set. This DSC is lossless w.r.t. ~x and consumes a minimum amount of

computational resources: after the signal is quantised, ~x is encoded by a lookup table that maps its �xed-length words

to variable-length codewords in the encoded bitstream v. Thus, once X is stored at the sensor node, HC achieves

a code rate rHC with no �xed-point arithmetic operations involved, i.e., requiring the computational complexity of

Opnq table lookups.

B. Set Partition Coding of Wavelet Coef�cients

The highest-complexity, lossy DSC scheme evaluated here is Set Partitioning In Hierarchical Trees (SPIHT) [12].

The SPIHT encoder operates on the Discrete Wavelet Transform (DWT) coef�cients of ~x (in particular the use of a

9/7 biorthogonal DWT [3], [13] is suggested in [12]) by constructing a map of their signi�cance w.r.t. their magnitude

and parent-offspring relationships. The critical arithmetic complexity of this encoding stage is in implementing the

chosen DWT [14]; its cost is estimated as Opn log2 nq �oating-point sums and multiplications (see, e.g., [15]) for

a high-precision DWT. While hardware-ef�cient DWT implementations exist [16], [17], their computation requires

�xed-point multiplications with quantised �lter coef�cients, which cause some precision issues. Thus, we consider
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Fig. 2. A digital, multiplierless hardware implementation of the CS encoding stage with Bernoulli random matrices, using a single accumulator

and �xed-point arithmetic. The buffers are local registers of size denoted by p�qbit; the input buffer retains ~x for mn clock cycles; the dashed

lines denote synchronisation signals.

SPIHT to have relatively high-complexity for its integration into a resource-constrained sensor node. As a reference,

we will report in Section III the attained, very low code rates rSP of its �oating-point implementation followed by

an entropy coding stage [12].

C. Lossy Compression by Compressed Sensing

1) Encoding Stage: the CS encoding is carried out as y � Ax, with y �
�
y0 � � � ym�1

�J
P Rm the

measurements and A a random encoding matrix [18] that we assume A P t�1;�1um�n;m   n to minimise

its implementation complexity. By applying this encoding on ~x, we actually collect y � A~x represented by m

words of2 by � b~x � rlog2 ns bit. Thus, each yj is obtained by accumulation of the PCM samples in ~x modulated

by a sequence of sign changes; the cost of this operation is Opmnq �xed-point sums. Thus, the CS encoder is

conveniently mapped on mn clock cycles of a single accumulator, as in the straightforward digital architecture of

Figure 2. To reduce the rate of the encoded bitstream, we further process y by a second uniform scalar quantiser

as ~y � Qb~ypA~xq yielding m words of b~y bit, as obtained by keeping only b~y most signi�cant bits (MSBs) from

each yj . After this, we apply lossless HC with an optimal codebook Y constructed on the empirical PMF of each

element of ~y. Thus, the encoded bitstream v attains a code rate rCS that depends on pm; b~x; b~yq, the presence or

absence of HC, and a suitable choice of the encoding matrix. These degrees of freedom are numerically compared

in Section III.

2) Encoding Matrix Design: although assuming A P t�1;�1um�n as a Bernoulli random encoding matrix with

independent and identically distributed (i.i.d.) entries and equal-probability symbols is a universal choice for any

signal ensemble [18], it may be sub-optimal when additional priors on x are veri�ed besides sparsity. In particular,

by letting x P Rn be a Random Vector (RV) that models a signal ensemble, we say that it is localised if its

correlation matrix Cx is non-white [8]. With this hypothesis, recent contributions [7], [8], [19] have shown how

2This choice perfectly quantises the full range of the j-th measurement yj P r�Y; Y s, where Y � 2b~x�1n � max~x
°n�1

l�0 ~xl with

}~x}8 ⁄ 2b~x�1.
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(a) Measurements ~y quantised with b~y � b~x bit (values of b~y

reported on curves)

(b) Measurements ~y quantised with b~y � b~x � 1
2 rlog2 nsbit

(values of b~y reported on curves)

Fig. 3. Average Decoded SNR for i.i.d. (dashed) and rakeness-based (solid) CS with different Qb~y , b~x � t6; : : : ; 16u, as m varies w.r.t.

n � 256. For b~x � 10, the points corresponding to bit budgets that allow an ADSNR � 30 dB are highlighted with � (i.i.d. CS) and �

(rakeness-based CS).

A can be adapted to the RV x, yielding substantial performance gains; to summarise this so-called rakeness-based

approach, we let the rows of A be m independent copies of a RV a de�ned on t�1;�1un whose correlation matrix

Ca � � n
trpCxqCx � p1� �qIn; � P p0; 1q (1)

where In is the n-dimensional identity and � only needs to be chosen so that Ca is positive-de�nite (e.g., � � 1{2).

Moreover, since a de�ned on t�1;�1un imposes3 diag pCaq � In we scale the correlation matrix as ~Ca � �Ca�

where � � diag pCaq
� 1

2 . Then, we synthesise the m rows of A as in [20, (13)] by taking A � sign pTq, where

T P Rm�n collects m instances of a RV t � N p0n;Ctq with Ct � sinp�2 ~Caq. If Ct is positive-de�nite (as in

most cases with � � 1{2) then a with the desired ~Ca can be generated [20] and m of its instances can be stored

in the symbol buffer of Figure 2. This encoding matrix design was shown to lower the requirements on m when

the correlation matrix Cx is a stationary property of the RV x. Thus, we use it as an asset to further reduce rCS.

3) Decoding Stage: since A is a dimensionality reduction, the recovery of x P Rn from its m-dimensional

measurements ~y hinges on a sparse signal model by which x has a k-sparse representation s P Rp w.r.t. a synthesis

transform D P Rn�p, p ¥ n, i.e., x � D s; k � |supppsq|. In fact, recovery error bounds exist [21, Theorem 1.4]

when p ¡ n, relating k and the minimum number of measurements m � Opk log p{kq that ensures the approximate

recovery of x from ~y in the presence of noise. Motivated by established results [21], [22] we here choose as a

3This can be easily veri�ed to hold for any joint PMF in t�1;�1un. Note that diag p�q here extracts a diagonal matrix from a full matrix.
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(a) Measurements ~y quantised with b~y � b~x (b) Measurements ~y quantised with b~y � b~x � 1
2 rlog2 ns

Fig. 4. Achieved code rates of the evaluated DSC schemes and their variants for the chosen ADSNR target speci�cations; �+H.� denotes the

use of HC as in Figure 1. For CS-based DSC, the value of b~y that allows a given rate is reported to the right of each marker.

decoding stage the analysis form of Basis Pursuit with De-Noising (BPDN), i.e.,

x̂ � arg min
�PRn

}D��}1 s.t. }~y �A�}2 ⁄ " (a-BPDN)

where D� is an analysis transform mapping � to its transform-domain representation and " ¥ 0 controls the data

�delity with which the measurements are matched in the presence of noise sources, in our case limited to Qb~y

(i.e., " will depend on b~y). While this choice of decoding by (a-BPDN) is not as computationally ef�cient as using

greedy algorithms (e.g., [23], [24]), we here adopt it as a reference to provide high-accuracy signal recovery in the

presence of quantisation noise and with minimum a priori information. We here assume pD;D�q of a redundant

DWT (R-DWT, [3], [25]) that constitutes a tight frame. Since promoting the sparsity of D�� while verifying the

constraint of (a-BPDN) allows for improved recovery performances in the presence of noise [22] we leverage

this property to mitigate the impact of quantisation on the quality of x̂. Speci�cally, the evaluated decoding stage

assumes pD;D�q of a Symmlet-6 R-DWT with J � 4 sub-bands (i.e., p � pJ � 1qn) [3, Chapter 5.2], while the

solution of (a-BPDN) is provided by Douglas-Rachford splitting [26] (as implemented in UNLocBox [27]). Finally,

we assume a noise norm " � }~y � Ax}2 and ensure that the solver converges up to a variation of 10�7 in the

objective function.

III. PERFORMANCE EVALUATION ON ECG SIGNALS

In this Section we compare the performances after decoding of the DSC schemes in Figure 1, with an emphasis

on evaluating the proposed CS-based DSC and its con�gurations. In the following we will be concerned with

evaluating the average SNR of the decoded signal, ADSNR � 10 log10 E
�
}x}2

2
}x̂�x}2

2

�
dB as a performance index,

where x̂ is the decoded output of the considered techniques.
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A. Signal Generation and PCM Quantisation

We use a synthetic ECG generator [28] to produce 104 training instances of x with n � 256 (sampled at

256 Hz). The parameters of the generator are drawn in the same ranges of [7] to obtain a training set oscillating

at natural heart rates. Each instance is then quantised to ~x by Qb~x . Since the ECG PCM samples’ empirical

PMF is not uniformly distributed, the intrinsic SNR w.r.t. uniform white quantisation noise can be estimated as

SNR~x;x � 10 log10 E
�
}x}2

2
}~x�x}2

2

�
� 6:02b~x � 20 log10

CFx?
3
� 6:02 b~x � 11 dB (as will be reported in Figure 4),

obtained by computing the ECG signals’ crest factor CFx � }x}8?
n}x}2

on the training set.

B. Measurements’ Quantisation and Signal-to-Noise Ratio

The main noise sources in Figure 1 are the quantisers Qb~x ;Qb~y . While Qb~x is common to all evaluated DSC

schemes, the latter is only used in the CS-based DSC to reduce each element of y to b~y   by bit. Since these

elements are approximately Gaussian-distributed, letting by � b~x � rlog2 ns might exceed the precision actually

needed to represent y with negligible distortion. Thus, to explore the effect of Qb~y we encode the ECG training set

by letting A P t�1;�1um�n be a Bernoulli random matrix and evaluate two quantisation policies, i.e., b~y � b~x

or b~y � b~x � 1
2 rlog2 ns (this second option serving as a mid-range choice for b~y P rb~x; b~x � rlog2 nss), where the

range of Qb~y is rescaled to the extreme values of y. Then we apply the same encoding on 64 test instances, solve

(a-BPDN) and compute the ADSNR while varying m up to n{2, b~x � t6; : : : ; 16u.

The same procedure is repeated when A follows a rakeness-based design, with Ca obtained by plugging the

sample correlation matrix Ĉx of the training set in (1); the range of Qb~y is rescaled according to the extreme values

of y, whose variance is increased due to this design of A.

The results reported in Figure 3 allow us to observe that (i) rakeness-based CS outperforms standard, i.i.d. CS in

all the examined cases; (ii) the quality gain obtained by using more bits for both (b~x; b~y) progressively saturates at

an ADSNR limit imposed by the sparsity of ECG signals w.r.t. the chosen R-DWT; (iii) for a �xed value of b~x, the

total bit budget B~y � mb~y required to reach an ADSNR target indicates the ef�ciency of the chosen quantisation

policy. This quantity is highlighted in both Figures 3a and 3b, and shows how b~y � b~x allows for lower code rates;

thus, choosing a more accurate quantiser Qb~y for ~y must be matched with a smaller m, whose impact is more

critical in achieving high ADSNR levels.

C. Rate Performances for ECG Signal Compression

Given the observed quantisation effects, we now compare the rate performances of two conventional DSC schemes

of Figure 1 with different embodiments of CS in search for the lowest attained rate rCS at some �xed target decoding

performances, i.e., for ADSNR � t25; 30; 35; 40; 45; 50u dB.

For a fair comparison, SPIHT [12] is run from the authors’ code by �tting four test instances of ~x into frames of

1024 PCM samples quantised at different b~x. The SPIHT encoder takes rSP as an input, which we vary in r0:05; 2s;

the minimum rSP that guarantees the target ADSNR after decoding is then reported in Figure 4. As a further

reference, we report the rates attained by the scheme of Figure 1a, i.e., by uniform PCM quantisation, achieving a

rate rHC with optimal HC; since it is lossless, the achievement of an ADSNR target w.r.t. x actually depends on

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/LSP.2015.2428431

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



8 IEEE SIGNAL PROCESSING LETTERS

b~x. While rHC could be estimated by the entropy of PCM samples, to account for the presence of escape symbols

we run HC on the test set to �nd the true rHC.

These two reference methods are compared with various CS con�gurations in Figure 4, which reports the cases in

Figure 3 that match the desired ADSNR with minimum rCS. There, we observe that the rates attained in Figure 4a

are generally lower than those in Figure 4b, thus con�rming the advantage of assuming b~y � b~x. In addition, (i) the

use of HC on the measurements signi�cantly reduces the code rate of CS; (ii) by considering rCS of rakeness-based

CS with HC, Figure 4a shows that an ADSNR � 25 dB is achieved at b~y � b~x � 10 bit by rCS � 1:41 bps, while

rHC � 3:27 bps. Moreover, while outperformed by �oating-point SPIHT, under low ADSNR requirements the CS

encoder in Figure 2 is a viable alternative to provide DSC with a critical digital hardware simpli�cation that should

be matched with sensor node constraints.

IV. CONCLUSION

As a lossy DSC, CS was shown to be capable of achieving low code rates with extremely low computational

complexity at the encoder; these rates were optimised by some additional considerations on the CS encoder. Given

these low digital hardware requirements, CS lends itself as an agile scheme for DSC tasks under tight resource

constraints.
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