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ABSTRACT 

The Peak Stress Method (PSM) is an engineering, FE-oriented method to rapidly estimate the Notch 

Stress Intensity Factors (NSIFs) by using the singular linear elastic peak stresses calculated from 

coarse FE analyses. The average element size adopted to generate the mesh pattern can be chosen 

arbitrarily within a given range. The advantages of the PSM can be summarized as follows: (i) 

coarse meshes can be adopted, the required FE size being some orders of magnitude larger than that 

necessary to evaluate the NSIFs from the local stress distributions; (ii) only a single stress value is 

sufficient to estimate the NSIFs instead of a number of stress-distance numerical results. 

Originally, the PSM has been calibrated under pure mode I and pure mode II loadings by means of 

Ansys FE software. In the present contribution, a Round Robin between ten Italian Universities has 

been carried out in order to calibrate the PSM with seven different commercial FE codes. To this 

aim, several 2D mode I and mode II problems have been analysed independently by the 

participants. The obtained results have been used to calibrate the PSM for given stress analysis 

conditions in terms of: (i) FE software, (ii) element type and element formulation, (iii) mesh pattern 

and (iv) criteria for stress extrapolation and principal stress analysis at FE nodes. 

 

Keywords: Notch Stress Intensity Factor (NSIF), Peak Stress Method (PSM), Finite Element (FE) 

Analysis, Coarse Mesh.  

 
NOMENCLATURE 
a   characteristic size of the analysed sharp V-notch 
d   average  size of a finite element mesh  
e1, e2   parameters for the evaluation of the averaged strain energy density (SED) 
E   elastic modulus 
fw1, fw2   weight parameters of the peak stresses  
K1, K2    mode I and II notch stress intensity factors (NSIFs) 

*
FEK , **

FEK  non-dimensional K1 and K2 relevant to the peak stress method (PSM) 
R0 radius of the control volume for the averaged SED evaluation  
r,    polar coordinates 
ux, uy   displacement components in the Cartesian frame of reference 
W    strain energy density averaged over the control volume 
x, y Cartesian coordinates 
 
Symbols 
2   opening angle 
   range of the considered quantity
1, 2   mode I and mode II eigenvalues in Williams’ equation 
              Poisson's ratio 



I,peak singular, linear elastic maximum principal stress evaluated at a V-notch tip by 
FEM using the mesh according to the PSM 

eq,peak linear elastic equivalent peak stress evaluated at a V-notch tip 
σij,c

(A) centroidal stress component in element A 
σij,k

(A) stress component, referred to node k of element A 
σij,k stress component, referred to node k  
nom   applied nominal stress 
r   normal and shear stress components in the polar frame of reference 
yy,peak singular, linear elastic, opening peak stress evaluated at a V-notch tip by FEM 

according to the PSM 
II,peak,xy,peak singular, linear elastic, sliding peak stress evaluated at the crack tip by FEM 

according to the PSM 
[σ]k

(A) stress tensor, referred to node k of element A 
[σ]k

 stress tensor, referred to node k  
 
Abbreviations 
FE   Finite element 
FEM   Finite element method 
NSIF   Notch stress intensity factor 
PSM   Peak stress method 
SED   Strain energy density 
SIF   Stress intensity factor 
 

1. INTRODUCTION 

In plane problems, the local linear elastic stress fields close to the tip of sharp V-notches, like those 

shown in the welded joint of Fig. 1, can be expressed as functions of the relevant NSIFs, which 

quantify the magnitude of the asymptotic singular stress distributions, according to the original 

analysis performed by Williams1 under mode I (opening) and mode II (sliding) stresses. The mode I 

and mode II NSIFs can be defined according to Gross and Mendelson2 by means of Eqs. (1) and (2), 

respectively (see Fig. 1b).  
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In previous expressions, 1 and 2 are the stress singularity exponents1, which depend on the notch 

opening angle 2while the stress components  and r are calculated along the notch bisector 



line, identified by the angular coordinate =0 (see Fig. 1). Values of 1 and2 for the notch 

opening angles considered in the present contribution are reported in Table 1. 

Notch stress intensity factors (NSIFs) have proved to efficiently correlate the static strength of 

components made of brittle or quasi-brittle materials and weakened by sharp V-notches3–9, as well 

as the medium and high-cycle fatigue strength of notched components made of structural 

materials10,11. Concerning welded joints, NSIFs have been used to analyse the fatigue strength both 

under uniaxial12–17 and multiaxial cyclic loadings18. However, calculating the NSIFs by means of 

finite element (FE) analyses presents a major drawback in engineering problems, because 

definitions (1) and (2) need very refined FE meshes in order to evaluate the NSIFs. Finite elements 

as small as 10-5 mm have been adopted in a previous study13; in case of three-dimensional 

components, numerical analyses could be even more time-consuming.  

Recently, a simplified and rapid technique, the so-called Peak Stress Method (PSM), has been 

proposed in order to speed up the numerical evaluation of the NSIFs thanks to FE models with 

coarse meshes, i.e. some orders of magnitude larger than that required to apply definitions (1) and 

(2). The PSM is based on the numerical procedure proposed by Nisitani and Teranishi19,20 to rapidly 

estimate the mode I SIF of a crack emanating from an ellipsoidal cavity. The method has been 

theoretically justified and extended to estimate also the mode I NSIF of sharp and open V-

notches21,22, the mode II SIF of cracks23 and also the mode III NSIF of open V-notches24.  

Essentially, the PSM rapidly estimates the NSIFs K1 and K2 (Eqs. (1) and (2)) from the singular, 

linear elastic, opening (mode I) and sliding (mode II) FE peak stresses σIpeak and τpeak, 

respectively, which are calculated at the node located at the V-notch tip (see the example of Fig. 1). 

When performing the FE analysis according to the PSM using a given software package, the 

following parameters must have been previously calibrated: 

 the element type and formulation; 

 the FE mesh pattern; 



 the criteria for stress extrapolation and principal stress analysis at FE nodes 

In more detail, the expressions of the PSM are the following21,23: 
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In previous expressions, d is the so-called ‘global element size’ parameter, i.e. the average size of 

the finite elements adopted by the free mesh generation algorithm available in the numerical code, 

while K*
FE and K**

FE take into account all calibration parameters mentioned previously. Besides the 

much more coarse mesh, the PSM has an additional advantage, which is illustrated by Eqs (3) and 

(4) as compared to previous expressions (1) and (2): only the singular, linear elastic peak stresses 

evaluated at the V-notch tip is sufficient, instead of a number of stress-distance numerical results.  

Previously, the PSM has been calibrated by using the Ansys code and the following non-

dimensional NSIFs have been obtained: K*
FE  1.38 and K**

FE  3.38. Such values are valid under 

the following conditions21,23: 

 element types available in Ansys element library:  

o two-dimensional, 4-node quadrilateral finite elements with linear shape functions 

(PLANE 42 or alternatively PLANE 182 with K-option 1 set to 3, i.e. ‘simple 

enhanced strain’ formulation activated); 

o three-dimensional, eight-node brick elements (SOLID 45 or equivalently SOLID 185 

with K-option 2 set to 3, i.e. ‘simple enhanced strain’ option activated); 

o two-dimensional, harmonic, 4-node linear quadrilateral elements, to analyse axis-

symmetric components subjected to external loads that can be expressed according to 

a Fourier series expansion (PLANE 25). 

 the FE mesh pattern close to the notch or crack tip must be that reported in Fig. 2 (see 

also21,23); in more detail, four elements share the node located at the notch tip if the notch 



opening angle 2 is equal to or lower than 90°, while two elements share the node at notch 

tip when the notch opening angle is 2 90°. Figure 2 shows examples of such mesh 

patterns in case of symmetric FE models. It should be noted that the mesh patterns 

according to the PSM are automatically generated by the free-mesh generation algorithm of 

Ansys code, after having input the average FE size d by means of the ‘global element size’ 

command available in the software. There are not additional parameters or special settings 

to input in order to generate the mesh; 

 Eq. (3) can be applied to sharp V-notches with an opening angle 2 between 0° and 135°; 

while calibration for mode II loading, Eq. (4), is restricted to the crack case (2α = 0); 

 the average element size d can be chosen arbitrarily, but within a range of applicability 

defined in the relevant literature21,23: for mode I loading (Eq. (3)), the mesh density ratio a/d 

must exceed 3 to obtain K∗ 1.38 3%; in case of mode II loading (Eq. (4)), more 

refined meshes are needed, the mesh density ratio a/d having to be greater than 14 to obtain 

K∗∗ 3.38 3%. In previous expressions a is the characteristic size of the analysed sharp 

V-notch, for example it is the notch depth in Fig. 2. More precisely, a is the minimum 

between the notch depth and the ligament size25, indicated as h  in the example of next Fig. 

7, which will be commented later. In all geometries analysed in the present study, the 

characteristic size a resulted equal to the notch depth because a < h. There is only one 

exception in Table 3 (Fig. 7(c) with a = 15 mm and h = 10 mm) where h > a; however, to 

simplify the presentation of results, a was kept equal to the notch depth also in this case. 

Any structural strength assessment criterion, which is based on NSIF parameters, can in principle  

be reformulated by using the PSM thanks to Eqs. (3) and (4). In the recent literature, the PSM has 

been coupled to the averaged strain energy density (SED) fatigue criterion to assess the fatigue 

strength of welded joints subjected to axial23,25–27, torsion24,28 and multiaxial29,30 loading conditions. 

An example of such application will be given in the next paragraph.  



To extend the use of the PSM in practical engineering problems, it is of paramount importance to 

calibrate the parameters K*
FE (Eq. (3)) and K**

FE (Eq. (4)) to commercial FE codes different from 

Ansys. Therefore, a Round Robin between some Italian Universities has been carried out in order to 

fill this gap, i.e. to check whether or not the parameters K*
FE  1.38 and K**

FE  3.38, previously 

calibrated by using Ansys, can be used also with other software packages. Possibly, they must be 

updated.  

Accordingly, the PSM has been applied to sharp V-notches with different opening angles under 

pure mode I and cracks under pure mode II loadings by adopting different FE codes. After having 

calculated the peak stresses, the non-dimensional ratios K*
FE and K**

FE have been evaluated 

according to Eqs. (3) and (4), but now expressed in the following fashion: 
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Different commercial FE software packages have been used and for each of them calibration has 

been performed for fixed stress analysis conditions in terms of: (i) element type and element 

formulation, (ii) mesh pattern and (iii) criteria for stress extrapolation and principal stress analysis 

at FE nodes. 

 

 

2. A PRACTICAL EXAMPLE: THE PSM APPLIED TO FATIGUE ASSESSMENT OF 

A WELDED JOINT 

To illustrate the PSM in practical design situations, the fatigue strength assessment of conventional 

arc-welded joints made of structural steel is reported below. Load-carrying cruciform welded steel 

joints are considered (see the geometry in Fig. 3), which were fatigue tested by Ouchida e 



Nishioka31 under axial loading. The detailed analysis according to the PSM is reported in26, to 

which the reader is referred. Only the main steps of the analysis are reported here. 

The strain energy density (SED) averaged over a structural volume of radius R0 surrounding the 

weld root or the weld toe (see Fig. 3), as proposed by Lazzarin and co-workers7,17, is adopted as 

fatigue damage parameter. The averaged SED under mode I+II loading can be expressed in closed-

form as a function of the relevant NSIFs according to Eq. (7). 
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where R0 represents the control radius, K1 and K2 are the ranges of the NSIFs relevant to mode I 

and mode II, respectively, E is the Young's modulus, while e1 and e2 are known parameters 

depending on the notch opening angle 2and the Poisson’s ratio 7,17. The size of the structural 

volume was calibrated on experimental fatigue test data and resulted R0 = 0.28 mm for welded 

joints made of structural steel17. 

Taking advantage of the equality   E2/1W 2
peak,eq

2   valid under plane strain conditions, an 

equivalent peak stress, eq,peak, can be derived as follow26: 
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where e1 and e2 are known coefficients which depend on the notch opening angle 2 and the 

Poisson ratio; values relevant to the present paper are listed in Table 1. If K1 and K2 are 

evaluated directly at the weld toe and at the weld root by means of definitions, Eqs. (1) and (2), the 

mesh density must be very refined, as reported in Fig. 4. After applying definition (1), the mode I 

NSIFs were determinedat the toe and root resulting in K1,toe = 3.40 MPa mm0.326  and K1,root = 

2.95 MPa mm0.5, respectively, while mode II is not singular at weld toe and it is negligible at weld 



root in this caseK2,root ≈ 0). It is worth noting that Fig. 4 reports the nodal stresses, therefore the 

minimum element size of 10-5 adopted in the FE simulation can be appreciated. 

By using the PSM-based relationships (Eqs. (3) and (4)), Eq. (8) can be rewritten as a function of 

the singular, linear elastic FE peak stresses σpeak and τpeak
23: 

2
peak,II

2
2w

22
1wpeak,eq ff

peak,I
            (9) 

All parameter appearing in Eqs. (3), (4) and (8) are included in coefficients fw1 and fw2, whose 

expression has been reported in the literature23. 

The peak stresses were calculated by using the FE mesh reported in Figure 5, according to the 

following steps: 

 A 2D FE analysis was performed under plane strain conditions by adopting 4 node 

quadrilateral elements (PLANE 182 of Ansys element library, with K-option 1 set to 3, i.e. 

‘simple enhanced strain’ formulation activated) 

 The mesh density ratio a/d was established as follows: a is the pre-crack length at the root 

side, so that the maximum FE size d is equal to a/3 = 3.5/3 → ≈ 1 mm is appropriate to 

apply Eq. (9); at the toe side, a is half the main plate thickness, i.e. a = 8 mm, therefore the 

maximum FE size is 8/3 = 2.66. In conclusion d = 1 mm is appropriate both at the root and 

at the toe side; 

 The free-mesh pattern, see Fig. 5a was generated by setting a ‘global element size’ 

parameter d = 1 mm in the free mesh generation algorithm; 

 The maximum principal stress ΔI,peak was evaluated at the FE nodes located at the weld 

toe and root; 

 Figure 5b shows the results according to PSM:  

o weld toe side: Δσeq,peak  fw1 ꞏ ΔI,peak = 1.064 ꞏ 2.389 = 2.54 MPa  

o weld root side: Δσeq,peak  fw1 ꞏ ΔI,peak = 1.410 ꞏ 2.178 = 3.07 MPa  



As a conclusion, according to the PSM, the weld root is more critical than the weld toe, since 

Δσeq,peak is higher at the root (3.07 MPa) than at the toe (2.54 MPa). This is in agreement with the 

fatigue crack initiation point experimentally observed by Ouchida e Nishioka31. Subsequently, the 

original experimental data have been reconverted in terms of equivalent peak stress evaluated at the 

weld root by means of Eq. (9). Finally, Figure 6 shows the comparison between the experimental 

results and the fatigue design scatter band previously calibrated in26. A good agreement between 

theoretical estimations and experimental results can be observed. 

 

 

3. PARTICIPANTS AND FE CODES INVOLVED IN THE ROUND ROBIN 

The participants and the FE codes involved in the Round Robin are listed in Table 2. Ten 

Universities took part to the project and seven commercial FE codes were calibrated. 

Table 2 shows that Optistruct and Ls-Dyna were used to solve the numerical models, while 

Hypermesh and Hyperview were used as pre-processor and post-processor codes, respectively. 

 

 

4. GEOMETRIES, MATERIAL AND FE MESH PATTERNS 

A number of two dimensional geometries subjected to mode I or mode II loading conditions have 

been analysed by using the different FE codes. Geometries involved cracks as well as pointed V-

notches and not necessarily reproduce welded joint geometries, because of the general validity of 

expressions (5) and (6) to be calibrated. Geometries, material properties, boundary conditions and 

FE type were obviously the same in all FE codes involved in the Round Robin. Conversely, as far 

as possible, specific options concerning element formulation, free mesh generation algorithms, 

stiffness matrix inversion algorithms, stress extrapolation and stress averaging rules at FE nodes 

have been set to default options in each software. Sometimes, with the sole aim to investigate the 



reasons for different results obtained, the FE mesh pattern generated with a given software has been 

imported into another software, so that the results could be compared for precisely the same adopted 

mesh. All details concerning the analyses performed and the obtained results are given in the 

following.  

 

4.1 2D problems (plane strain), mode I loading, 0°  2 135° 

Different geometries subjected to pure mode I as reported in Fig. 7 have been considered. All these 

case studies are the same adopted in the original calibration of the PSM under mode I loading which 

was performed by using Ansys FE code21. In particular, they consist of the following geometries: a 

crack located at the U-notch tip (Fig. 7(a)); a crack at the free surface of a finite-width plate (Fig. 

7(b)); a plate with lateral open V-notches (Fig. 7(c)) and, finally, a typical full-penetration 

cruciform welded joint with a weld toe angle equal to 135° (Fig. 7(d)). The material is a structural 

steel with Young’s modulus E = 206000 MPa and Poisson’s ratio ν = 0.3.  

To calculate the peak stress values, linear elastic static analyses under plain strain conditions have 

been carried out and a FE pattern of four-node linear quadrilateral elements has been used as shown 

in the examples of Fig. 8, which refers to Ansys software. Only a quarter of each model has been 

analysed by taking advantage of the double symmetry condition. The free mesh generation 

algorithm was run in each software after setting the average element size d to adopt. The mesh 

density ratio a/d was varied in a wide range by considering either a variation of the notch/crack size 

a or a variation of the FE size d, as reported in Table 3.  

All generated meshes were checked to assure that the FE pattern at the notch or crack tip was of the 

type shown in Fig. 2. If the mesh pattern generated by the free mesh generator was not the standard 

one reported in Fig. 2 (in a symmetric model one element was sometimes obtained at the notch tip 

when 2 instead of two,or two elements were sometimes obtained when 2°, instead 

of one), then mesh generation was repeated by changing slightly the average element size d up to 



10% of the nominal values reported in Table 3 until the standard mesh was obtained. In these cases, 

the actual d value has been adopted to calculate the ratio a/d and K*
FE (Eq. 5). Fig. 8 highlights that 

there has not been any division of the area of the model into sub-areas. The external load has been 

applied as a nominal gross-section stress equal to 1 MPa.  

After solving the FE model, the peak value of the maximum principal stress I,peak was taken at the 

FE node located at the V-notch tip (see Fig. 8). Stress averaging at FE nodes was activated in each 

FE code, so that only a single stress value for I,peak has been obtained per node by averaging the 

nodal stresses from all elements that share the node. To this end, the default options of each FE 

code have been used, whenever possible, as it will be explained in detail in the following. 

The exact mode I NSIFs K1, to input in Eq. (5), were derived by using Ansys software and by 

applying definition (1) to the stress-distance numerical results obtained from very refined FE mesh 

patterns (the size of the smallest element close to the V-notch tip was of the order of 10-5 mm).  

 

4.2 2D problems (plane strain), mode II loading, 2= 0° 

A crack (2 = 0°) centred in a plate having the geometry reported in Fig. 9 and subjected to pure 

mode II loading was considered. The case study has been taken from the original calibration of the 

PSM under mode II loading conditions for Ansys FE code23. The considered material is a structural 

steel with Young’s modulus E = 206000 MPa and Poisson’s ratio ν = 0.3.  

The peak stresses were calculated by means of linear elastic static analyses under plain strain 

conditions and a pattern of four-node linear quadrilateral elements as shown in the example of Fig. 

10. The mesh density ratio a/d was varied in a wide range from 1 to 200 as reported in Table 4. 

Only a quarter of the cracked plate has been analysed by taking advantage of the double anti-

symmetry boundary conditions (see Fig. 10).  

The external load has been applied to the FE model by means of displacements ux=uy=1.262ꞏ10-3 

mm at the plate free edges. Such displacements translate into a nominal gross shear stress equal to 1 



MPa in absence of the crack. After solving the FE model, the peak value of the (mode II) shear 

stress τxy,peak = τII,peak has been taken at the node located at the crack tip (see Fig. 10). Stress 

averaging at FE nodes has been activated as explained for mode I analyses. Again, the exact mode 

II SIFs K2 to input in Eq. (6), were calculated by using Ansys and by applying definition (2) to the 

stress-distance numerical results obtained from very refined FE mesh patterns (the size of the 

smallest element close to the crack tip was of the order of 10-5 mm).  

 

5. DETAILS OF MESH GENERATION SETTINGS 

It has been mentioned that two-dimensional, four-node, linear quadrilateral elements under plane 

strain hypothesis were adopted in the FE analyses. The element was integrated by using 2x2 Gauss 

points. After selecting the proper element type, the average element size d, which was input by the 

FE analyst, has been the sole parameter used in order to drive the automatic free mesh generation 

algorithm. In the following, details concerning element type/options along with the adopted mesh 

generation settings are reported for each FE code: 

 Ansys 

Element type: Solid → Quad 4-node (PLANE 42 or PLANE 182) 

Element options: Plane strain, Simple enhanced strain (only for PLANE 182) 

Element size: Size Cntrls → Manual Size → Global → Size = d 

Mesh generation: Mesh → Areas → Free 

 Abaqus 

Element type: Standard → linear → Quad  

Element options: Plane strain, Incompatible modes (CPE4I) 

Element size: Global Seeds → Sizing Cntrls → Approximate global size = d 

Mesh generation: Mesh Cntrls → Free → Advancing front → “Use mapped meshing where 

appropriate” MUST BE INACTIVE; Mesh Part Instance → Ok 



 Straus 7 

Element type: linear 4-node quadrilateral plate (QUAD4) 

Element options: Plane strain 

Element size: Automeshing → Surface mesh → Sizes → Maximum edge length = d 

Mesh generation: Automeshing → Surface mesh → Mesh 

 MSC Patran/Nastran 

Element type: 2D Solid (CQUAD4) 

Element options: Plane strain, Standard formulation 

Element size: Mesh → Surface → Global Edge Length → Value = d  

Mesh generation: Mesh → Surface → Elem Shape → Quad; Mesher → Paver; Topology → 

Quad4 

 Lusas 

Element type: 2D continuum element with enhanced strains (QPN4M) 

Element options: Plane strain, Quadrilateral, Linear interpolation 

Element size: Mesh → Surface Mesh → Irregular mesh → Element size = d  

Mesh generation: Mesh → Surface Mesh  

 Hypermesh/Optistruct/Hyperview 

Element type: Shell 4-node (Hypermesh), CQUAD4 (Optistruct) 

Element options: MID2 = -1 (plane strain), MID3 = blank (Optistruct) 

Element size: Mesh → Surfs → Size and bias → Element size = d (Hypermesh) 

Mesh generation: Mesh → Surfs → Mesh type → quads; mesh (Hypermesh) 

 Hypermesh/Ls-Dyna/Hyperview 

Element type: Shell 4-node (Hypermesh) 

Element options: Element formulation 13 (Plane strain x-y plane) (LS-Dyna) 

Element size: Mesh → Surfs → Size and bias → Element size = d (Hypermesh) 



Mesh generation: Mesh → Surfs → Mesh type → quads; mesh (Hypermesh) 

 

 

6. RESULTS OF FE ANALYSES 

The results obtained from the participants to the Round Robin are reported in Figs. 11a-g and 12 for 

mode I and mode II problems, respectively. The figures show the non-dimensional ratios K*
FE and 

K**
FE, defined in Eqs. (5) and (6), respectively, as a function of the mesh density ratio a/d. Results 

shown in Figs. 11a-g and 12 have been obtained with the default options of the post-processing 

environment, which are listed in the following for the sake of clarity: 

 Ansys 

Options for outputs: Principal stress calcs → from components (or equivalently AVPRIN = 0) 

 Abaqus 

Result options: Averaging → Compute order → Compute scalars before averaging → 

Averaging threshold = 100 % 

 Straus 7 

Node average: Always 

 MSC Patran/Nastran 

Averaging definition: Method → Derive/Average 

 Lusas 

Properties: Value results → Location → Averaged nodal 

 Hypermesh/Optistruct/Hyperview 

Averaging method: Simple 

 Hypermesh/Ls-Dyna/Hyperview 

Averaging method: Simple 

 



Dealing with mode I loading, it can be observed from Figs. 11b-e that the majority of the 

considered FE codes, i.e. Abaqus, Straus 7, MSC Patran/Nastran and Lusas, present the same 

parameter K*
FE  1.38 that had been previously calibrated in Ansys21 and it is reported in Fig. 11a. It 

should be noted that for all FE codes convergence is achieved for a mesh density ratio a/d  3, such 

value being consistent once more with the original calibration21. A slightly greater scatter band of 

±5%  should instead be accepted, as compared to ref.21 where ±3% was found.  

On the other hand, Figures 11f,g show that the FE packages Hypermesh/Optistruct/Hyperview and 

Hypermesh/Ls-Dyna/Hyperview present a different calibration constant, i.e. K*
FE  1.84. This 

peculiar behaviour depends on stress extrapolation rules at FE nodes and will be analysed later on. 

Moreover, the scatter ±8% (see Figs. 11f,g) is higher as compared to ±5% obtained with the other 

FE codes (see Figs. 11a,e).  

Dealing with mode II loading, Fig. 12 reports the results and shows that all considered FE codes 

converge to K**
FE  3.38 ± 3%, i.e. the values calibrated previously for Ansys software23. 

Convergence is achieved for a mesh density ratio a/d  14, which is consistent with the original 

calibration23. 

All results reported in Figs 11 and 12 are summarized in Table 5, which reports the non-

dimensional ratios K*
FE and K**

FE to use in Eqs. (3), (4) and (9) and the minimum mesh density 

ratio a/d for all considered FE codes. 

 

7. DISCUSSION  

In the previous paragraph, it has been observed that under mode I loading there are some 

discrepancies among the results delivered by the different FE codes. As a major discrepancy, Fig. 

11 and Table 5 show that Hypermesh/Optistruct/Hyperview and Hypermesh/Ls-Dyna/Hyperview 

converge to K*
FE = 1.84, while all other FE codes converge to K*

FE = 1.38. Minor differences in 

results delivered by the different FE codes also exist but they are taken up by the scatter bands. 



Such discrepancies have been explained by examining the different procedures for stress 

extrapolation and principal stress analysis at FE nodes, mesh patterns adopted by the different FE 

codes and numerical integration schemes. Detailed explanations are given in the following. 

 

7.1 Stress extrapolation at FE nodes 

FE codes compute results at the integration (or Gauss) points. Afterwards, results can be computed 

at nodal or centroidal locations, based on the element shape functions. Once the nodal or centroidal 

stress in the element is obtained, it is possible to calculate the stress at a node shared by more than 

one element according to two different procedures, which are sketched in Fig. 13: 

(a) The nodal stresses in the element (σij,k
(A) and σij,k

(B) in Fig. 13a) are extrapolated from the 

stresses at the integration points. Afterwards, the stress at the shared node (σij,k in Fig. 13a) 

is calculated by averaging the nodal stresses per element according to expression: 

σ ,
σ , σ ,

2
																																																																																																																		 10  

(b) The centroidal stresses in the element (σij,c
(A) and σij,c

(B) in Fig. 13b) are interpolated from the 

stresses at the integration points and are attributed to the shared node (σij,k in Fig. 13b). 

Then, the stress at the shared node is calculated according to the expression: 

σ ,
σ , σ ,

2
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It should be noted that stress extrapolation at nodes according to Fig. 13a and Eq. (10) is carried out 

by most of the considered FE codes, i.e. Ansys, Abaqus, Straus 7, MSC Patran/Nastran and Lusas. 

On the other hand, the postprocessor Hyperview allows to adopt either Eq. (10) or Eq. (11); 

however both Optistruct and Ls-Dyna do not calculate the nodal stresses in the element, so that 

Hyperview can extrapolate stress at nodes only according to Fig. 13b and Eq. (11). This is the 



reason why K*
FE obtained with Optistruct and Ls-Dyna (Figs 11f-g) is different from that obtained 

with the other FE codes (Figs 11a-e). 

To support this conclusion, calibration under mode I has been repeated by adopting Ansys FE 

software, but now forcing the use of Eq. (11) (see Fig. 13b) to calculate the nodal stresses. The 

obtained results are reported in Fig. 14, where it is seen that under these conditions Ansys 

converges to the same value K*
FE  1.84 reported in Figs. 11f,g for 

Hypermesh/Optistruct/Hyperview and Hypermesh/Ls-Dyna/Hyperview. To mimic these software 

packages with Ansys as accurately as possible, the averaging option (b) reported in next Table 6, 

and the full integration option, as reported in next Table 9, were adopted. This point will be clarified 

when commenting on the relevant Tables.  

 

7.2 Principal stress averaging 

Whatever the nodal stress evaluation technique (either Eq. (10) or Eq. (11)), the principal stresses at 

a node shared by more than one element can be calculated by adopting one of the following 

averaging procedures (see also Fig. 15):  

(a) The nodal stress tensors per element ([σ]k
(A) and [σ]k(B) in Fig. 15a) are averaged at the 

shared node ([σ]k in Fig. 15a) and then nodal principal stresses are calculated (σ11,k
 is the 

maximum principal stress in Fig. 15a).  

(b) The nodal principal stresses per element (σ11,k
(A) and σ11,k

(B) in Fig. 15b) are calculated 

from the relevant nodal stress tensor per element ([σ]k(A) and [σ]k(B) in Fig. 15b) and then 

nodal principal stresses per element are averaged at the shared node (σ11,k in Fig. 15b). 

Table 6 reports the nomenclature adopted by each FE code to define options (a) and (b) for 

principal stress averaging. The default option is also indicated in the table and it has been adopted to 

calibrate the PSM. It should be noted that option (a) is the default for Ansys and Lusas, while 



option (b) is the default for all other FE codes. This is the reason why averaging option (b) was 

adopted in Ansys to prepare Fig. 14. The different principal stress averaging techniques are one of 

the reasons for small discrepancies among the results provided by the FE codes: however, such 

differences are taken up by the scatter band reported in previous Fig. 11. 

 

7.3 FE mesh pattern 

Different mesh patterns were generated by the different FE codes for the same analysed geometry 

and adopted global element size d. However, it is worth noting that such differences did not involve 

the number of elements sharing the node at the V-notch tip, because in all cases the standard pattern 

prescribed in Fig. 2 were obtained, as pointed out previously. 

The influence of different mesh patterns has been investigated by considering a case study 

consisting of the mode I problem of Fig. 7c with notch depth a = 15 mm, notch opening angle 

2 and global element size d = 1 mm. The FE meshes generated by a selection of FE codes, 

namely Ansys, Abaqus and MSC Patran/Nastran, are reported in Table 7 along with the results in 

terms of peak stresses evaluated at the notch tip. Again, stress values obtained by adopting the 

default options (which have been employed here to calibrate the PSM) are highlighted. 

Table 7 allows to quantify the effect of different mesh patterns (in terms of shape and arrangement 

of the elements) on the peak stress values for the same principal stress averaging option. However, 

in the context of the present Round Robin, comparison among the three FE codes should not be 

made for the same averaging option, but rather for the default option of each FE code. It is seen that 

the differences among the calculated stresses (6.309, 6.093 and 6.386 in Ansys, Abaqus and MSC 

Patran/Nastran, respectively) is reduced and it is included in the scatter bands reported in Fig. 11. 

 

 

 



7.4 Numerical integration scheme  

Each FE software provides different integration scheme options for the same element type, which 

typically cover full and reduced integrations, but, optionally, include also some enhanced 

formulations that allow to avoid numerical errors, associated to shear locking, hourglass effect and 

volumetric locking.  

In order to investigate the effect of different integration schemes, the 2D mode I problem of Fig. 7c 

with notch depth a = 15 mm, notch opening angle 2 and global element size d = 1 mm was 

considered again as a case study. To exclude the effect of the mesh pattern, a FE mesh has been 

generated in Ansys by using the free mesh generation algorithm (see Fig. 16) and afterwards it has 

been imported into all FE codes involved in the present Round Robin. By doing so, identical mesh 

patterns have been used with different FE codes. All available options associated to a 2x2 Gauss 

point integration scheme have been adopted in each FE code.  

The results in terms of peak stresses evaluated at the notch tip are reported in Tables 8 and 9, where 

default options are highlighted. Table 8 lists the results calculated with FE codes which employ Eq. 

(10) to evaluate nodal stresses, while Table 9 reports the stress values calculated by FE codes which 

adopt Eq. (11). In Table 9 results from Ansys and Straus 7 have been included for comparison 

purposes: however, all calculations were made by hand, because Ansys and Straus 7 do not 

implement stress averaging at FE nodes when stresses at element centroids are used. Table 8 shows 

the perfect match of the fully integrated elements between Ansys and Abaqus. Moreover, the simple 

enhanced strain formulation in Ansys, adopted to perform the original calibration of the PSM21, 

fully agrees with the standard formulation of MSC Patran/Nastran. Table 9 shows the excellent 

agreement of Hypermesh/Optistruct/Hyperview and Hypermesh/Ls-Dyna/Hyperview software 

packages with the fully integrated plane elements of Ansys. This is the reason why full integration 

was adopted in Ansys to compile previous Fig. 14.  



The different integration scheme options adopted by the different FE packages is a further source of 

scatter of results; however, all of them are taken up by the proposed scatter bands. 

It is interesting to note that some commercial FE codes, other than those considered here, provide 

the full integration scheme as the default setting or even as the sole option; therefore calibrating the 

PSM by adopting this formulation might be useful. To this aim, mode I analyses have been repeated 

by adopting Ansys and Abaqus FE codes, by adopting the full integration scheme and by 

calculating results according to the averaging option (b) (see Fig. 15b). The results are reported in 

Fig. 17 and it is seen that both FE codes converge to the value K*
FE  1.55. However, a slightly 

greater scatter band of ±8% should be accepted for Abaqus (Fig. 17b) as compared to ±5% valid for 

Ansys (Fig. 17a). This difference can be explained on the basis of the different local mesh patterns 

generated by Ansys and Abaqus FE codes: two examples are highlighted inside Figs. 17a,b, which 

show that the free mesh generation algorithm of Ansys provides very similar mesh patterns for the 

two cases; differently, Abaqus provides quite different mesh patterns for the same cases, giving rise 

to a slightly increased scattering of results. Finally, it should be noted that for both Ansys and 

Abaqus FE codes, the convergence is guaranteed for a mesh density ratio a/d > 3, such value being 

consistent with previous calibrations reported in Fig. 11. 

 

 

8. CONCLUSIONS  

A Round Robin has been carried out in order to calibrate the Peak Stress Method (PSM) to rapidly 

estimate the linear elastic Notch Stress Intensity Factor (NSIF) parameters relevant to mode I and 

mode II loadings with different commercial FE codes and a range of coarse mesh patterns. 

Essentially, the PSM is a simplified, FE-oriented numerical technique originally calibrated using 

Ansys software, which takes the singular, linear elastic peak stresses calculated at the point of 

singularity with coarse FE meshes to estimate the mode I NSIF and the mode II SIF. Two 



calibration constants are needed, namely K*
FE (Eq. (3)) and K**

FE (Eq. (4)), respectively, which 

have been calibrated in this paper for some FE software packages, other than Ansys. The following 

conclusions can be drawn from the present study: 

 Dealing with mode I loading, FE codes that extrapolate nodal stresses on the basis of nodal 

stresses per element, namely Ansys, Abaqus, Straus 7, MSC Patran/Nastran and Lusas, 

present the same calibration constant, i.e. K*
FE  1.38, as originally found  for Ansys 

software. FE results fall within a scatter band of ±5% when the mesh density ratio a/d is 

equal to or greater than 3. On the other hand, FE codes that extrapolate nodal stresses on 

the basis of centroidal stresses, namely Hypermesh/Optistruct/Hyperview and 

Hypermesh/Ls-Dyna/Hyperview, present a different value, i.e. K*
FE  1.84. In this case, FE 

results were seen to fall in a slightly wider scatter band of ±8%, when the mesh density 

ratio is again a/d  3. 

 Dealing with mode II loading, all FE codes involved in the Round Robin present the same 

calibration constant independently of the nodal stress extrapolation procedure, i.e. K**
FE  

3.38 with a scatter band of ±3% for a mesh density ratio a/d  14. All these results are 

consistent with the original calibration of Ansys software.  

 The effects of principal stress averaging options, mesh patterns and element formulation 

settings have been investigated. In summary, when adopting the default options of each 

software, the influence of all previous analysis features are taken up by the scatter bands of 

±5% or ±8% defined for the calibration constant K*
FE and ±3% valid for K**

FE. 

 As a side result, Ansys and Abaqus were run also by setting fully integrated, four-node 

elements and principal stress averaging from principals. These settings are the default ones 

for existing FE packages other than those analysed in the present work. The result obtained 



was K*
FE  1.55 with a scatter band of ±5% for Ansys and of ±8% for Abaqus, provided 

that the mesh density ratio a/d is equal to or greater than 3.  
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CAPTIONS TO FIGURES AND TABLES 
 
Figure 1:  Sharp V-shaped notches in a welded joint (a) at the root (2= 0°) (b) and at the toe (2 

typically equal to 135°) (c) sides. Definition of peak stresses σIpeak and τpeak evaluated 
at the weld toe and the weld root by means of a linear elastic finite element analysis.  

 
Figure 2:  Mesh patterns according to the PSM21,23. Symmetry boundary conditions have been 

applied to the FE model. 
 
Figure 3:  Geometry of the load-carrying steel weld joint tested in31. Control volumes for the 

averaged SED evaluation at the weld toe and the weld root sides. 
 
Figure 4:  Singular, linear elastic stress fields at the weld toe and the weld root, obtained from very 

refined FE mesh patterns (minimum FE size dmin ≈ 10-5 mm) and comparison with the 
asymptotic solutions based on the relevant NSIF. The nominal applied stress Δσnom is 
equal to 1 MPa. 

 
Figure 5:  Application of the PSM to the fatigue strength assessment of a load-carrying arc-welded 

joint made of structural steel and tested in31. 
 
Figure 6:  Fatigue assessment of load-carrying steel welded joints according to the PSM. 

Comparison between the fatigue design scatter band of the PSM26 and experimental 
fatigue results from31. 

 
Figure 7:  Geometries of 2D problems (plane strain) under mode I loading. Dimensions in [mm]. 
 
Figure 8:  FE mesh patterns and boundary conditions applied into the FE analyses of 2D problems 

(plane strain) under mode I loading. Geometries are reported in Fig. 7. FE patterns 
shown in the figure have been generated by using Ansys. 

 
Figure 9:  Geometry of 2D problems (plane strain) under mode II loading. Dimensions in [mm]. 
 
Figure 10:  FE mesh pattern and boundary conditions applied into the FE analyses of 2D problems 

(plane strain) under mode II loading. Geometry is reported in Fig. 9. The FE pattern 
shown in the figure has been generated by using Ansys. 

 
Figure 11:  Results of Round Robin for mode I loading: non-dimensional ratio K*

FE for each FE 
code. 

 
Figure 12:  Results of Round Robin for mode II loading: non-dimensional ratio K**

FE for all 
considered FE codes. 

 
Figure 13:  Stress extrapolation at the nodes based on (a) nodal stresses or (b) centroidal stresses.  
 
Figure 14:  Non-dimensional ratio K*

FE for Ansys FE code. Results for mode I loading based on 
centroidal stresses (according to Fig. 13b).  

 
Figure 15:  Principal stress averaging options. (a) Principal stresses from average stress tensor. (b) 

Principal stresses from element principal stresses. 



 
Figure 16:  FE mesh pattern relevant to case 7c with a = 15 mm, 2 = 90° and d = 1 mm, as 

obtained by means of Ansys free mesh generation algorithm. 
 
Figure 17:  Non-dimensional ratio K*

FE for (a) Ansys and (b) Abaqus FE codes. Results for mode I 
loading obtained by activating the full integration scheme and by adopting the principal 
stress averaging option of Fig. 15b.  

 
 
 
Table 1:  Values of notch parameters considered in the present work 

Table 2: List of participants (alphabetic order) and FE codes. 
 
Table 3:  FE analyses of 2D problems (plane strain) under mode I loading. 
 
Table 4:  FE analyses of 2D problems (plane strain) under mode II loading. 
 
Table 5:  Results of Round Robin for mode I and mode II loadings. Mean values of non-

dimensional ratios K*
FE and K**

FE and minimum mesh density ratio a/d for all 
considered FE codes. 

 
Table 6:  Options for principal stress averaging available in the considered FE codes. 
 
Table 7:  FE mesh patterns relevant to the case of Fig. 7c with a = 15 mm, 2 = 90° and d = 1 

mm, as obtained with different FE codes. Results in terms of peak stresses evaluated at 
the notch tip. Peak stress values obtained by adopting the default options, which have 
been employed to calibrate PSM, are highlighted. 

 
Table 8:  Peak stresses evaluated at the V-notch tip by using the mesh pattern of Fig. 16. Results 

based on nodal stresses (according to Eq. (10) and Fig. 13a). Peak stress values obtained 
by adopting default options are highlighted. 

 
Table 9:  Peak stresses evaluated at the V-notch tip by using the mesh pattern of Fig. 16. Results 

based on centroidal stresses (according to Eq. (11) and Fig. 13b). Peak stress values 
obtained by adopting default options are highlighted. 
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Figure 1: Sharp V-shaped notches in a welded joint (a) at the root (2= 0°) (b) and at the toe (2 

typically equal to 135°) (c) sides. Definition of peak stresses σIpeak and τpeak evaluated at the weld 

toe and the weld root by means of a linear elastic finite element analysis.  

 
 
 

 

Figure 2: Mesh patterns according to the PSM21,23. Symmetry boundary conditions have been 

applied to the FE model. 
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Figure 3: Geometry of the load-carrying steel weld joint tested in31. Control volumes for the 

averaged SED evaluation at the weld toe and the weld root sides. 

 

 

Figure 4: Singular, linear elastic stress fields at the weld toe and the weld root, obtained from very 

refined FE mesh patterns (minimum FE size dmin ≈ 10-5 mm) and comparison with the asymptotic 

solutions based on the relevant NSIF. The nominal applied stress Δσnom is equal to 1 MPa. 
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Figure 5: Application of the PSM to the fatigue strength assessment of a load-carrying arc-welded 

joint made of structural steel and tested in31. 

 
 

 
 
 
Figure 6: Fatigue assessment of load-carrying steel welded joints according to the PSM. 

Comparison between the fatigue design scatter band of the PSM26 and experimental fatigue results 

from31. 
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Figure 7: Geometries of 2D problems (plane strain) under mode I loading. Dimensions in [mm]. 
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Figure 8: FE mesh patterns and boundary conditions applied into the FE analyses of 2D problems 

(plane strain) under mode I loading. Geometries are reported in Fig. 7. FE patterns shown in the 

figure have been generated by using Ansys. 
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Figure 9: Geometry of 2D problems (plane strain) under mode II loading. Dimensions in [mm]. 

 
 
 

 
 
 

Figure 10: FE mesh pattern and boundary conditions applied into the FE analyses of 2D problems 

(plane strain) under mode II loading. Geometry is reported in Fig. 9. The FE pattern shown in the 

figure has been generated by using Ansys. 
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Figure 11: Results of Round Robin for mode I loading: non-dimensional ratio K*

FE for each FE 

code. 

 
Figure 12: Results of Round Robin for mode II loading: non-dimensional ratio K**

FE for all 

considered FE codes. 
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Figure 13: Stress extrapolation at the nodes based on (a) nodal stresses or (b) centroidal stresses.  

 

 
 

Figure 14: Non-dimensional ratio K*
FE for Ansys FE code. Results for mode I loading based on 

centroidal stresses (according to Fig. 13b).  
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Figure 15: Principal stress averaging options. (a) Principal stresses from average stress tensor. (b) 

Principal stresses from element principal stresses. 

 

 

 
Figure 16: FE mesh pattern relevant to case 7c with a = 15 mm, 2 = 90° and d = 1 mm, as 

obtained by means of Ansys free mesh generation algorithm. 
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Figure 17: Non-dimensional ratio K*
FE for (a) Ansys and (b) Abaqus FE codes. Results for mode I 

loading obtained by activating the full integration scheme and by adopting the principal stress 

averaging option of Fig. 15b.  
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TABLES 
 
 

Table 1: Values of notch parameters considered in the present work 

2(deg) 1 e 2 e

0 0.500 0.133 0.500 0.340 
90 0.544 0.145   
135 0.674 0.118   

 *: values from7 
 

 
 
 

Table 2: List of participants (alphabetic order) and FE codes. 

Universities (alphabetic order) FE codes (alphabetic order) 
Bologna (UNIBO) 
Genova (UNIGE) 
Messina (UNIME) 
Modena and Reggio Emilia (UNIMORE)
Padova (UNIPD) 
Palermo (UNIPA) 
Parma (UNIPR) 
Pisa (UNIPI) 
Torino (POLITO) 
Trento (UNITN) 

Ansys 16 and 17 
Abaqus 6.13 and 6.14 
Hypermesh 14*/Optistruct 14 implicit/Hyperview 14** 
Hypermesh 13*/Ls-Dyna R7.1.3 implicit/Hyperview 13** 
Lusas 14.6-2 
MSC Patran/Nastran 2014 and 2016 
Straus 7 R.2.4.6 

 

*: pre-processor;  **: post-processor 
 

 

Table 3: FE analyses of 2D problems (plane strain) under mode I loading. 

Analysed geometries 
Figure a 

[mm] 
d 

[mm] 
2
[°] 

b 
[mm] 

t 
[mm] 

Number of 
analyses** 

7(a) 1, 2,…,9, 10 1 0 - - 10 
7(b)  1, 2,…,19, 20 1 0 - - 20 
7(b) 10 1, 2, 5, 10 0 - - 4 
7(c) 10 1, 2.5, 5, 10 135 - - 4 
7(c) 5 0.5, 1, 2, 2.5, 5 90 - - 5 
7(c) 10 0.6, 1, 2.5, 3, 5, 7.5 90 - - 6 
7(c) 15 0.6, 1, 2, 5 90 - - 4 
7(d) 6.5 1, 1.64, 6.5 135 10 8 3 
7(d) 50 1, 2, 5, 10, 25 135 50 16 5 

**: total number of analyses: 61 
 
 

 
 
 



Table 4: FE analyses of 2D problems (plane strain) under mode II loading. 

Analysed geometries 
a d 2 Number of  

[mm] [mm] [°] analyses ** 
1 0.5, 1 0 2 
2 0.5, 1, 2 0 3 
3 0.5, 1, 3 0 3 
4 0.5, 1, 2, 4 0 4 
5 0.5, 1, 5 0 3 
6 0.5, 1, 2, 3 0 4 
7 0.5, 1 0 2 
8 0.5, 1, 2, 4 0 4 
9 0.5, 1, 3 0 3 

10 0.5, 1, 2, 5, 10 0 5 
20 0.5, 1, 2, 4, 5, 10 0 6 
30 0.5, 1, 2, 3, 5, 10, 15 0 7 
40 0.5, 1, 2, 4, 5, 10, 20 0 7 
50 0.5, 1, 2, 5, 10 0 5 
60 0.5, 1, 2, 3, 4, 5, 10, 15, 20 0 9 
70 0.5, 1, 2, 5, 10 0 5 
80 0.5, 1, 2, 4, 5, 10, 20 0 7 
90 0.5, 1, 2, 3, 5, 10, 15 0 7 

100 0.5, 1, 2, 4, 5, 10, 20 0 7 
**: total number of analyses: 93 



Table 5: Results of Round Robin for mode I and mode II loadings. Mean values of non-dimensional ratios K*
FE and K**

FE and minimum mesh 

density ratio a/d for all considered FE codes. 

Software Element 
/n° nodes 

Integration/ 
Gauss points 

Element 
shape 

Mesh 
generation 
technique 

K*
FE (Eq. (5)) K**

FE (Eq. (6)) 

value Opening 
angle 

Min 
a/d 

value Opening 
angle 

Min 
a/d 

Ansys  
16 and 17 

PLANE 182/ 
4 node  

Simple 
enhanced 
strain/ 2x2 

Quadrangular  Free-mesh, 
global 
element 
size d 

1.38±5% 0°2135° 3 3.38±3% 0° 14 

Abaqus  
6.13 and 6.14 

CPE4I/ 
4-node 

Incompatible 
modes/ 2x2 

Quadrangular 1.38±5% 0°2135° 3 3.38±3% 0° 14 

Straus 7  
R2.4.6 

QUAD 4/ 
4-node 

Incompatible 
modes/ 2x2 

Quadrangular 1.38±5% 0°2135° 3 3.38±3% 0° 14 

MSC Patran/ 
Nastran  
2014 and 2016 

CQUAD4/ 
4-node 

Standard 
formulation/ 
2x2 

Quadrangular 1.38±5% 0°2135° 3 3.38±3% 0° 14 

Lusas  
14.6-2 

QPN4M/ 
4-node 

Full with Enh. 
Strain/ 2x2 

Quadrangular 1.38±5% 0°2135° 3 3.38±3%# 0° 14 

Hypermesh 14/ 
Optistruct 14 
implicit/ 
Hyperview 14 

Shell 4-node/ 
CQUAD4 

n.a., 2x2 Quadrangular 1.84±8% 0°2135° 3 3.38±3% 0° 14 

Hypermesh 13/  
LSTC Ls-Dyna 
R7.1.3 implicit/ 
Hyperview 13 

Shell 4-node/ 
Element 
formulation 
13 

n.a., 2x2 Quadrangular 1.84±8% 0°2135° 3 3.38±3% 0° 14 

# calibration obtained by adopting mapped-mesh with “global element size” d 
 



Table 6: Options for principal stress averaging available in the considered FE codes. 

FE Software Averaging option (a) Averaging option (b) 

Ansys AVPRIN,0 or  
“from components” (default) 

AVPRIN,1 or  
“from principals” 

Abaqus “compute scalars  
after averaging”  

“compute scalars  
before averaging” (default) 

Straus 7 not available  Node average: “Always” (default) 
MSC Patran/Nastran Average/Derive  Derive/Average (default) 
Lusas Averaged nodal (default) not available 
Hyperview* Averaging method:  “Advanced” Averaging method:  “Simple” (default) 

* Post-processor adopted to calibrate both Optistruct and Ls-Dyna 
 
 
 
 
Table 7: FE mesh patterns relevant to the case of Fig. 7c with a = 15 mm, 2 = 90° and d = 1 mm, 

as obtained with different FE codes. Results in terms of peak stresses evaluated at the notch tip. 

Peak stress values obtained by adopting the default options, which have been employed to calibrate 

PSM, are highlighted. 

   
Ansys Abaqus MSC Patran/Natran 
σyy,peak/σnom = 6.185 σyy,peak/σnom = 5.833 σyy,peak/σnom = 6.092 
σI,peak/σnom = 6.309 (default) 
Averaging option (a)  

σI,peak/σnom = 5.918 
Averaging option (a) 

σI,peak/σnom = 6.183 
Averaging option (a) 

σI,peak/σnom = 6.514 

Averaging option (b) 
σI,peak/σnom = 6.093 (default) 

Averaging option (b) 
σI,peak/σnom = 6.386 (default) 

Averaging option (b) 
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Y 

X

Y 

X 

Y



Table 8: Peak stresses evaluated at the V-notch tip by using the mesh pattern of Fig. 16. Results 

based on nodal stresses (according to Eq. (10) and Fig. 13a). Peak stress values obtained by 

adopting default options are highlighted. 

Software Ansys Abaqus Straus 7 Patran/ 
Nastran 

Lusas 

Element 
type 

Plane 182 CPE4I CPE4H CPE4 QUAD4 CQUAD4 QPN4M 

Integration Simple 
Enh. 
strain 

Enh. 
strain 

Full Incomp. 
modes 

Hybrid Full Incomp. 
modes 

Standard 
formulation 

Full with 
Enh. 
strain 

Gauss 
points 

2x2 2x2 2x2 2x2 2x2 

Stress state Plane strain Plane strain Plane 
strain 

Plane strain Plane 
strain 

σyy,peak/σnom 6.185   6.260 5.361 6.260 5.361 5.361 6.120 6.185 6.227 

σI,peak/σnom 
Averaging 
option (a) 

6.309 
(default) 

6.386 
 

5.445 
 

6.386 5.445 5.445 n.a. 6.309 6.312 
(default) 

σI,peak/σnom 

Averaging 
option (b) 

6.514 6.590 5.683 6.590 
(default) 

5.683 
 

5.683 
 

6.445 
(default) 

6.514 
(default) 

6.492 
 

 

 

Table 9: Peak stresses evaluated at the V-notch tip by using the mesh pattern of Fig. 16. Results 

based on centroidal stresses (according to Eq. (11) and Fig. 13b). Peak stress values obtained by 

adopting default options are highlighted. 

Software Hypermesh/Ls-Dyna/ 
Hyperview 

Hypermesh/Optistruct/ 
Hyperview 

Ansys Straus 7 

Element type Shell 4 node,  
Element formulation 13 

Shell CQUAD4 Plane 182 QUAD4 

Integration n.a.  n.a. Simple 
Enh. 
strain 

Enh. 
strain 

Full  Incomp. 
modes 

Gauss points 2x2 2x2 2x2 2x2 

Stress state Plane strain Plane strain Plane strain Plane strain 

σyy,peak/σnom 4.770 4.743 4.720 4.720 4.781 4.718 

σI,peak/σnom 
Averaging 
option (a) 

4.898 4.874 4.840 4.840 4.910 n.a. 

σI,peak/σnom 

Averaging 
option (b) 

5.019 
(default) 

5.003 
(default) 

4.962 4.962 5.031 4.965 
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