
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Deep Learning Architecture for Sentiment Analysis / Çano, Erion; Morisio, Maurizio. - ELETTRONICO. - (2018), pp.
122-126. (Intervento presentato al convegno ICGDA '18 Proceedings of the International Conference on Geoinformatics
and Data Analysis tenutosi a Prague, Czech Republic nel April 20-22, 2018) [10.1145/3220228.3220229].

Original

A Deep Learning Architecture for Sentiment Analysis

Publisher:

Published
DOI:10.1145/3220228.3220229

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2695485 since: 2018-09-01T13:27:44Z

ACM

A Deep Learning Architecture for Sentiment Analysis

Erion Çano
 Politecnico di Torino

 Duca degli Abruzzi, 24, Torino, Italy
 +393478353047

erion.cano@polito.it

 Maurizio Morisio
 Politecnico di Torino

Duca degli Abruzzi, 24, Torino, Italy
+390110907033

maurizio.morisio@polito.it

ABSTRACT

The fabulous results of Deep Convolution Neural Networks in

computer vision and image analysis have recently attracted

considerable attention from researchers of other application

domains as well. In this paper we present NgramCNN, a neural

network architecture we designed for sentiment analysis of long

text documents. It uses pretrained word embeddings for dense

feature representation and a very simple single-layer classifier.

The complexity is encapsulated in feature extraction and selection

parts that benefit from the effectiveness of convolution and

pooling layers. For evaluation we utilized different kinds of

emotional text datasets and achieved an accuracy of 91.2 %

accuracy on the popular IMDB movie reviews. NgramCNN is

more accurate than similar shallow convolution networks or

deeper recurrent networks that were used as baselines. In the

future, we intent to generalize the architecture for state of the art

results in sentiment analysis of variable-length texts.

CCS Concepts

• Computing methodologies ➝ Artificial intelligence ➝

Natural language processing • Applied Computing ➝

Document management and text processing

Keywords

Text-based Sentiment Analysis; Convolution Neural Networks;

Deep Learning Architectures;

1. INTRODUCTION
Deep Learning has been recently the buzzword of top

performance in problems of various domains like computer

vision, speech recognition or sentiment polarity analysis. Utilizing

deep neural networks in different application types requires

limited domain knowledge and yet produces wonderful results.

Moreover, performance does usually scale well with increasing

data and computation capabilities, whilst it is also possible to tune

it with hyper-parameter variations, specific to the application.

Among the various network types, Convolution Neural Networks

(CNN) have been particularly successful in applications related to

image analysis. They were first used about 20 years ago by LeCun

et al. in [1] to recognize handwritten digits. That basic CNN

structure has been used to form a myriad of highly advanced

neural architectures that have produced breakthrough results in the

yearly ImageNet challenge [2]. Architectures like AlexNet [3],

Inception [4], VGG-19 [5] and others have proved very successful

in correctly recognizing images from thousand categories. They

are diverse in terms of complexity, parameters and effectiveness

(as described in [6]) but their fundamental logic is the same: using

generic deep features in combination with a simple classifier. It is

interesting to see that their learnt representations prove to be very

good competitors in even more specific visual recognition tasks

than the one each of them was derived from. Authors in [7]

provide more evidence about that, supporting the idea that generic

descriptors extracted from CNNs are very powerful. This

renowned reputation of CNNs in computer vision, attracted

researchers and practitioners of other application domains as well.

Kim in [8] for example, used basic CNNs for emotional

recognition in sentences, reporting excellent results in various

datasets. Similar results were reported by Kalchbrenner et. al. in

[9] where they also introduce k-max pooling operation for better

feature selection. Other works like [10] or [11] analyze

emotionality of sentences or short texts by combining CNNs with

Recurrent or Recursive Neural Networks (RNN) that have also

been highly successful, especially in representing sequential data.

The most popular RNNs are Long Short-Term Memory (LSTM)

networks that utilize feedback loops as “memory” to capture

information about what has been seen so far [12]. This allows

them to represent sequential data like text (sequence of words).

The problem with these networks is that in practice they look back

only a few steps and thus are not good in representing long text

documents. Furthermore, RNNs are slower to train compared with

CNNs that are simpler and faster.

In this paper we present NgramCNN, a deep neural architecture

that takes advantage of CNN speed and effectiveness to extract

salient features out of n-grams in various text types. We followed

same basic paradigm that have been successful in image analysis:

complexity in features and simplicity in classifier. For text feature

representation we use GoogleNews1 pretrained word embeddings

which offer excellent generalization (usable across different text

types) and highly reduced dimensionality. The complexity is

packaged in the repeated convolution and pooling layers that are

responsible for feature extraction and selection. Instead of

applying global or k-max pooling on entire text document, we

apply regional max-pooling on text regions and use the aggregate

feature maps for classification. At the end, a single-layer classifier

predicts the emotional category of each document. The

architecture is flexible and extensible both horizontally and

vertically. More convolutions of 4-grams or longer can be

concatenated and stacked if bigger datasets are available. To

validate the effectiveness of NgramCNN we experimented with

1https://code.google.com/p/word2vec/

SAMPLE: Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advantage

and that copies bear this notice and the full citation on the first page. To
copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Conference’10, Month 1–2, 2010, City, State, Country.
Copyright 2010 ACM 1-58113-000-0/00/0010 …$15.00.

DOI: http://dx.doi.org/10.1145/12345.67890

linear as well as shallow CNN or RNN baseline models on 3

datasets of song lyrics, movie reviews and smartphone reviews.

The results confirm the superiority of NgramCNN both in

prediction accuracy and training time. The rest of the paper is

organized as follows: Section 2 describes word representation,

feature extraction and classification layers of NgramCNN

architecture. Section 3 presents the 3 experimental datasets, text

preprocessing steps that were applied upon them, and the baseline

models. Section 4 uncovers the results and various hyper-

parameter choices that we made. Finally, Section 5 concludes and

presents possible future work directions.

2. NgramCNN ARCHITECTURE

2.1 Word Representation

Bag-of-words is the traditional method for extracting text features

that are used for classification. It creates a vector representation of

each document based on the vocabulary of entire text set and

various scoring methods (e.g., binary, count, tf-idf, etc.). Each

document is hence V units long and the entire matrix becomes N x

V units; here V is the length of the entire vocabulary whereas N is

the number of documents. This representation gives very good

results on different text classification tasks, especially when

combined with tf-idf scoring and SVC classifier [13]. However

sparsity and dimensionality become problematic when vocabulary

is high. Actually, neural networks don’t work well with sparse

data representations of very high dimensionality. The introduction

of word embeddings as dense and low dimensional word feature

representations was thus revolutionary [14]. Each word is

represented by a significantly smaller distributed feature vector

(say 300 dimensions) that is able to capture syntactic and semantic

similarities of that word with respect to the other words of the

vocabulary. A choice to make here is whether to use dynamic

word vectors trained from the available experimental text set, or

static vectors obtained from pretrained bundles. In [15] we

performed several experiments on this issue and concluded that

when small text sets are available (as in our case here), sourcing

word vectors trained from big text corpora gives better results.

The pretrained word vectors behave like generic feature extractors

of text that can be utilized across different datasets and tasks. For

this reason, in this work we use static word vectors of 300

dimensions indexed from GoogleNews corpus. They were trained

from a 100-billion tokens bundle and successfully used in various

similar studies [16, 8].

2.2 Feature Extraction Layers

The complexity is packaged in feature processing part as shown in

Figure 1. Here we use convolutions of different kernel sizes to

capture patterns of words (e.g., “nice”, “bad”, etc.), bigrams (e.g.,

“I like”, “not good” etc.), trigrams (e.g., “I like that”, “that was

terrible”, etc.) or even longer n-grams and their relation with text

categories. We used Rectified Linear Unit (Relu(x) = max(0, x))

activation function and got fifteen feature maps of different sizes

out of each convolution. To retain local positional information of

word combinations, pooling operation with pool size four follows

after each convolution. Suppose the output of a convolution is a

feature map f = [f1, f2,…, fn]. Than pooling process is applied to

regions of four consecutive features (f1 – f4, f5 – f8,…, fn-3 – fn)

selecting the maximal of each region which is assumed to be the

best representative of that region. The role of pooling is to

downsample (here by four) data and extract the most salient

features. As reported in [17], 1-max pooling was found to be the

optimal choice. Same process (convolution-pooling) is repeated

two (for smartphone reviews) or three (for lyrics

Figure 1. NgramCNN architecture

and movie reviews) times, refining feature quality and reducing

their size. At the end, the resulting feature maps of the parallel

branches are concatenated and flattened to be useable for the

classification layer. It is important to note that the architecture is

flexible and extendable. It can be extended horizontally (in width)

by adding convolutions of longer word combinations in cases

when longer documents are analyzed. It may also be extended

vertically by stacking more convolution-pooling blocks,

especially if bigger datasets are being worked with.

2.3 Classification Layer

The classifier we used is very simple. It consists of a dense layer

of 100 units and L2 regularization with 0.09 weight, followed by

the output layer. To avoid overfitting we also used dropout of 0.5

between the dense and output layers. Relu and Sigmoid were used

as activation functions of those layers respectively. We also

applied binary crossentropy to compute the loss and Adam

method for optimization. In Section 4 we provide more details and

explanations about the hyper-parameter choices of the entire

architecture for each experiment.

3. EXPERIMENTAL SETUP
For the evaluation we chose text datasets of different content.

Same data cleaning and preprocessing procedure was followed for

the 3 of them. As baseline models we utilized traditional linear

models, shallow CNN and RNN neural networks as well as deeper

combinations of CNNs with RNNs.

3.1 Datasets
Song Lyrics MoodyLyrics is a dataset of 2,596 English song

lyrics labeled as ‘happy’, ‘angry’, ‘sad’ or ‘relaxed’ [18]. The task

here is to automatically predict the emotional category of each

song text. To comply with the other tasks (binary classification)

we use MLPN, a similar dataset of 2,500 positive and 2,500

negative song lyrics constructed from Last.fm user tags and a

systematic process described in [19]. Both datasets can be freely

downloaded from http://softeng.polito.it/erion/.

Movie Reviews IMDB movie review dataset [20] is a ground-

truth collection of 50K movie review texts, very popular in

sentiment analysis studies. The goal is to determine if each movie

review is positive or negative. This task in its basic form

(sentiment analysis of item reviews) has high commercial interest

as it is a basic block of advertising engines.

Phone Reviews Unlocked Mobile Phone reviews is a collection

of user reviews about Amazon smartphones of various brands,

models, prices, etc. Besides the textual description, users also

provide the usual 1-5 stars rating for each phone. We removed

entries without a text review or a star rating. Also, 3-star reviews

which contain both positive and negative (ambiguous)

descriptions were removed, reaching to a total of 232,546 reviews.

Finally, 1-star and 2-star reviews were labeled as ‘negative’

whereas 4-star and 5-star reviews were labeled as ‘positive’. Same

as in the case of movies, we will utilize this dataset to evaluate the

ability of NgramCNN architecture in discriminating between

‘positive’ and ‘negative’ texts.

Table 1. Summarized statistics of each dataset

Dataset No.

Texts

Min

Length

Avg.

Length

Max

Length

Used

Length

Song Lyrics 5K 23 227 2733 600

Movie Reviews 50K 5 204 2174 550

Phone Reviews 232K 3 47 4607 150

3.2 Text Preprocessing

Before training the models we applied some the basic

preprocessing over the texts. First we removed all html markup

patterns and lowercased everything. We also used a regular

expression to collect and keep in the smiley symbol combinations

such as :P, :D, :-), :), :(, :-(, etc. that are frequently found in movie

or smartphone review texts. Being in excellent conformity with

the emotional category of the document they appear in, they

represent very salient and helpful features for classification.

Regarding stopwords, we removed only a small part of them,

namely ['the', 'this', 'that', 'these', 'those', 'a', 'an', 'as', 'of', 'at', 'by',

'for']. These words appear very often but carry very little or no

semantic value at all. The rest of English stopwords are mostly

tokenization residues of short forms (e.g., 'd', 'll', 'm', 's', 't') or

negative auxiliary forms (e.g., ‘don’, couldn', 'didn', 'hadn’) that

shouldn’t be removed, as their presence or absence can

completely shift the emotional polarity of the phrase and thus

cripple prediction performance of the model. At the end, junky or

numerical patterns were removed as well. We observed length

distribution of documents for each dataset. Summary of statistics

is presented in Table 1. In the case of song lyrics, lengths range

from 23 to 2733 with an average of 227. IMDB movie reviews

range from 5 to 2174 averaging to 204 tokens. Smartphone review

lengths are even more dispersed, ranging from 3 to 4607 with an

average of 47. It is important to note that most of documents are

short and very few documents are longer than 1000 words. For

this reason we decided to clip and pad documents to a fixed

length, considering their average length. We made sure that less

than 5 % of documents were clipped and thus chose 600, 550 and

150 words as experimental length for lyrics, movie reviews and

smartphone reviews respectively. This way the computation

complexity of each experiment was significantly reduced without

any loss in data quality. The shorter documents were zero-padded

to reach the uniform length, concluding the preprocessing step.

3.3 Baseline Models

As baselines for comparison, we implemented the classical SVC

and Logistic Regression linear classifiers with bag-of-words text

representation and tf-idf scoring, optimized with grid searched

regularization parameters. We also tried a single LSTM layer

above the embedding layer followed by the dense layer that serves

as classifier. The fourth baseline is described in [10]. Authors first

apply a bi-directional recurrent structure (left and right LSTMs) to

capture context from word embedding representations.

Afterwards, a max-pooling layer is used to automatically select

the best features for the classification. They report excellent

results on topic recognition tasks and good results on emotion

recognition of movie reviews. In [11] we found an even more

complex recurrent model. It builds upon the bi-directional

structure of [10] and adds two-dimensional convolution and

pooling layers that are applied to the generated word-feature

window. Authors exercise the model in various datasets. Best

results they report are achieved on topic modeling and sentiment

analysis of short sentences. The last baseline model we used is

based on a single one-dimensional convolution. It is very similar

to the network proposed by Yoon Kim in [8]. Here we have self-

trained word embeddings and convolutions with kernel sizes 3, 4,

5 that are concatenated together. Max pooling and dropout layers

follow the convolutions with a dense layer at the top.

4. RESULTS AND DISCUSSION

In this section we present and discuss accuracy scores we got on

each of the three datasets, exercising NgramCNN and the baseline

models. We also discuss some of the optimal hyper-parameter

values that were found.

4.1 Classification Results

We used 70/10/20 percent split for training, development and

testing respectively in each experiment. Classification results are

presented in Table 2. As we can see, NgramCNN architecture

model achieves excellent results on all three experiments. It

performs significantly better than the baseline models on song

lyrics (2.2 % higher accuracy than SingleCNN) and slightly better

on smartphone reviews (0.4 % higher accuracy than BLSTM-

2DCNN). On IMDB movie reviews dataset it reaches an accuracy

score of 91.2 %. We also see that the 3 recurrent models perform

badly on song lyrics and movie reviews (long documents). They

perform even worse than Logistic Regression and SVC linear

classifiers. On phone reviews (short documents) on the other

hand, they give almost same accuracy as the two convolution

models. Obviously, recurrent networks work better with short

texts, same as reported in [11]. They can hardly preserve long-

term word dependencies on long documents. By contrast, feature

extraction layers of NgramCNN that are based on convolutions

and pooling, are very effective in capturing emotional context and

selecting the most discriminative features in both long and short

document tasks. It is also worth mentioning that even though we

did not systematically record training time of each model, we saw

Table 2. Classification Accuracy on three tasks

Model\Dataset Lyrics Movies Phones

Optimized LR 73.1 89.4 92.4

Optimized SVC 72.7 88.5 92.6

SingleLSTM 70.3 84.9 93.7

BLSTM-POOL 70.6 85.5 94.3

BLSTM-2DCNN 71.2 85.7 95.5

SingleCNN 73.4 89.8 94.2

NgramCNN 75.6 91.2 95.9

that NgramCNN and SingleCNN were much faster to train

compared to Linear Regression, SVC or the three recurrent

network models.

4.2 Other Observations

NgramCNN architecture and hyper-parameters described in

Section 2 were equally applied on the three tasks. There were

however various hyper-parameters that behaved differently on

each dataset. We used grid searching on train and dev sets to find

optimal values for those parameters and also observed

performance sensitivity of NgramCNN. Classification accuracy

was highly sensitive to kernel size of convolution layers and pool

size of max-pooling layers. We saw that pooling is essential after

each convolution. Alternative architectures of consecutive

convolutions and a final pooling layer were considerably weaker.

We also found that 4 is the optimal region length in every pooling

operation. Extending in width with extra convolutions of 4 or 5

kernel sizes didn’t bring any improvement. Nevertheless, it might

be a good option when working with even longer text documents.

On the other hand, more consecutive convolutions (extending in

depth) followed by pooling layers could possibly enhance

accuracy if bigger datasets were available. Number of epochs till

convergence, was irregular and specific to each task. Song lyrics

required six epochs, whereas movie and smartphone reviews

converged in four and eight respectively. We did not notice much

sensitivity with respect to batch size. Optimal results were

achieved with a batch of 60. Finally, sigmoid and softplus were

equally fruitful and best activation functions for the output layer.

5. CONCLUSIONS AND FUTURE WORK
In this paper we presented NgramCNN, a novel neural network

architecture designed to recognize emotion category in long text

documents of different types and content. It uses pretrained word

embeddings for representing text features, a series of repeating

convolution and max-pooling neural layers for feature extraction

and a simple single-layer classifier for predicting sentiment

polarity label of each document. This design follows the common

principle of the highly successful image analysis architectures:

generic deep features combined with a simple classifier.

Experimental results on song lyrics, movie reviews and

smartphone reviews confirm the superiority of NgramCNN,

especially on long text documents. Contrary, RNN-based models

that were used as baselines perform comparably well on short

reviews but considerably worse (even worse than Logistic

Regression or SVC) on longer documents. In the future, we intent

to investigate performance of NgramCNN and similar alternative

architectures on shorter texts like sentences and possibly on even

bigger datasets. The goal is to build a generic and powerful

architecture for text-based sentiment analysis, that adapts to texts

of different lengths and content with few hyper-parameter changes

to produce state of the art results in reasonable training an

inference time.

6. ACKNOWLEDGMENTS
This work was supported by a fellowship from TIM 2. Part of

computational resources was provided by HPC@POLITO 3 , a

project of Academic Computing within the Department of Control

and Computer Engineering at Politecnico di Torino.

2 https://www.tim.it

3 http://hpc.polito.it

7. REFERENCES
[1] LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P., Gradient-

based learning applied to document recognition. Proceedings

of the IEEE, 86(11), pp. 2278-2324, 1998

[2] M Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh,

S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein,

M.; Berg, A.; Fei-Fei, L., ImageNet Large Scale Visual

Recognition Challenge, International Journal of Computer

Vision, Vol. 115, Issue 3, pp. 211–252, Dec. 2015

[3] Krizhevsky, A.; Sutskever, I.; Hinton, G. E., Imagenet

classification with deep convolutional neural networks. In:

Advances in neural information processing systems, pp.

1097-1105, 2012.

[4] Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.;

Anguelov, D.; Rabinovich, A., Going deeper with

convolutions. In: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 1-9, 2015.

[5] Simonyan, K.; Zisserman, A., Very Deep Convolutional

Networks for Large-Scale Image Recognition, 2014, CoRR,

abs/1409.1556

[6] Canziani, A.; Culurciello, E., Paszke, A., An Analysis of

Deep Neural Network Models for Practical Applications,

2014, CoRR, abs/1605.07678

[7] Razavian, A. S; Azizpour, H.; Sullivan, J.; Carlsson, S., CNN

Features off-the-shelf: an Astounding Baseline for

Recognition, 2014, CoRR, abs/1403.6382

[8] Kim, Y., Convolutional neural networks for sentence

classification, 2014, arXiv preprint arXiv:1408.5882.

[9] Kalchbrenner, N.; Grefenstette, E., A Convolutional Neural

Network for Modelling Sentences, in: Proceedings of the

52nd Annual Meeting of the Association for Computational

Linguistics, Baltimore, USA, June 2014.

[10] Lai, S.; Xu, L.; Liu, K.; Zhao, J., Recurrent Convolutional

Neural Networks for Text Classification, in: Proceedings of

the Twenty-Ninth AAAI Conference on Artificial

Intelligence, pp. 2267-2273, Austin, Texas, 2015

[11] Zhou, P.; Zhenyu, Q.; Zheng, S.; Xu, J.; Bao; H.; Xu, B.,

Text Classification Improved by Integrating Bidirectional

LSTM with Two-dimensional Max Pooling, in: Proceedings

of COLING 2016, the 26th International Conference on

Computational Linguistics: Technical Papers, Osaca, Japan,

Dec 2016.

[12] Hochreiter, S.; Schmidhuber, J., Long Short-Term Memory,

in: Journal of Neural Computation, Vol. 9, No. 8, pp. 1735-

1780, 1997.

[13] Pawar, P. Y.; Gawande, S., A comparative study on different

types of approaches to text categorization, International

Journal of Machine Learning and Computing Vol. 2, No. 4,

pp. 423-426, 2012

[14] Bengio, Y.; Ducharme, R.; Vincent, P.; Janvin, C., A neural

probabilistic language model, Journal of Machine Learning

Res. Vol. 3, pp. 1137–1155, 2003

[15] Çano E.; Morisio M., Quality of Word Embeddings on

Sentiment Analysis Tasks, in: NLDB 2017: 22nd

International Conference on Natural Language and

Information Systems, Springer, pp. 332-338, Liege, Belgium,

21 - 23 June 2017, doi: 10.1007/978-3-319-59569-6_42

https://link.springer.com/journal/11263/115/3/page/1

[16] Mandelbaum, A.; Shalev, A., Word Embeddings and Their

Use In Sentence Classification Tasks, 2016, arXiv preprint

arXiv:1610.08229.

[17] Zhang, Y.; Wallace, B., A Sensitivity Analysis of (and

Practitioners' Guide to) Convolutional Neural Networks for

Sentence Classification, 2016, arXiv preprint

arXiv:1510.03820

[18] Çano, E.; Morisio, M., Moodylyrics: A Sentiment Annotated

Lyrics Dataset, in: 2017 International Conference on

Intelligent Systems, Metaheuristics and Swarm Intelligence,

ACM, pp. 118-124, Hong Kong, March 2017,

doi:10.1145/3059336.3059340.

[19] Çano E.; Morisio M., Music Mood Dataset Creation Based

on Last.fm Tags, in: 2017 International Conference on

Artificial Intelligence and Applications, Vienna, Austria,

May 2017, doi:10.5121/csit.2017.70603.

[20] Maas, A. L.; Daly, R. E.; Pham, P. T.; Huang, D.; Ng, A. Y.;

Potts, C., Learning word vectors for sentiment analysis, in:

Proceedings of the 49th Annual Meeting of the Association

for Computational Linguistics: Human Language

Technologies, Association for Computational Linguistics,

Portland, Oregon, USA, 2011, pp. 142–150

